1 //===--- amdgpu/impl/system.cpp ----------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 #include <libelf.h> 9 10 #include <cassert> 11 #include <sstream> 12 #include <string> 13 14 #include "internal.h" 15 #include "machine.h" 16 #include "rt.h" 17 18 #include "msgpack.h" 19 20 namespace hsa { 21 // Wrap HSA iterate API in a shim that allows passing general callables 22 template <typename C> 23 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) { 24 auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol, 25 void *data) -> hsa_status_t { 26 C *unwrapped = static_cast<C *>(data); 27 return (*unwrapped)(executable, symbol); 28 }; 29 return hsa_executable_iterate_symbols(executable, L, 30 static_cast<void *>(&cb)); 31 } 32 } // namespace hsa 33 34 typedef unsigned char *address; 35 /* 36 * Note descriptors. 37 */ 38 typedef struct { 39 uint32_t n_namesz; /* Length of note's name. */ 40 uint32_t n_descsz; /* Length of note's value. */ 41 uint32_t n_type; /* Type of note. */ 42 // then name 43 // then padding, optional 44 // then desc, at 4 byte alignment (not 8, despite being elf64) 45 } Elf_Note; 46 47 // The following include file and following structs/enums 48 // have been replicated on a per-use basis below. For example, 49 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields, 50 // but we may care only about kernargSegmentSize_ for now, so 51 // we just include that field in our KernelMD implementation. We 52 // chose this approach to replicate in order to avoid forcing 53 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime. 54 // #include "llvm/Support/AMDGPUMetadata.h" 55 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD; 56 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD; 57 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD; 58 // using llvm::AMDGPU::HSAMD::AccessQualifier; 59 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier; 60 // using llvm::AMDGPU::HSAMD::ValueKind; 61 // using llvm::AMDGPU::HSAMD::ValueType; 62 63 class KernelArgMD { 64 public: 65 enum class ValueKind { 66 HiddenGlobalOffsetX, 67 HiddenGlobalOffsetY, 68 HiddenGlobalOffsetZ, 69 HiddenNone, 70 HiddenPrintfBuffer, 71 HiddenDefaultQueue, 72 HiddenCompletionAction, 73 HiddenMultiGridSyncArg, 74 HiddenHostcallBuffer, 75 Unknown 76 }; 77 78 KernelArgMD() 79 : name_(std::string()), typeName_(std::string()), size_(0), offset_(0), 80 align_(0), valueKind_(ValueKind::Unknown) {} 81 82 // fields 83 std::string name_; 84 std::string typeName_; 85 uint32_t size_; 86 uint32_t offset_; 87 uint32_t align_; 88 ValueKind valueKind_; 89 }; 90 91 class KernelMD { 92 public: 93 KernelMD() : kernargSegmentSize_(0ull) {} 94 95 // fields 96 uint64_t kernargSegmentSize_; 97 }; 98 99 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = { 100 // Including only those fields that are relevant to the runtime. 101 // {"ByValue", KernelArgMD::ValueKind::ByValue}, 102 // {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer}, 103 // {"DynamicSharedPointer", 104 // KernelArgMD::ValueKind::DynamicSharedPointer}, 105 // {"Sampler", KernelArgMD::ValueKind::Sampler}, 106 // {"Image", KernelArgMD::ValueKind::Image}, 107 // {"Pipe", KernelArgMD::ValueKind::Pipe}, 108 // {"Queue", KernelArgMD::ValueKind::Queue}, 109 {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 110 {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 111 {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 112 {"HiddenNone", KernelArgMD::ValueKind::HiddenNone}, 113 {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 114 {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 115 {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction}, 116 {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 117 {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 118 // v3 119 // {"by_value", KernelArgMD::ValueKind::ByValue}, 120 // {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer}, 121 // {"dynamic_shared_pointer", 122 // KernelArgMD::ValueKind::DynamicSharedPointer}, 123 // {"sampler", KernelArgMD::ValueKind::Sampler}, 124 // {"image", KernelArgMD::ValueKind::Image}, 125 // {"pipe", KernelArgMD::ValueKind::Pipe}, 126 // {"queue", KernelArgMD::ValueKind::Queue}, 127 {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 128 {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 129 {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 130 {"hidden_none", KernelArgMD::ValueKind::HiddenNone}, 131 {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 132 {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 133 {"hidden_completion_action", 134 KernelArgMD::ValueKind::HiddenCompletionAction}, 135 {"hidden_multigrid_sync_arg", 136 KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 137 {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 138 }; 139 140 ATLMachine g_atl_machine; 141 142 namespace core { 143 144 // Implement memory_pool iteration function 145 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool, 146 void *data) { 147 ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data); 148 hsa_status_t err = HSA_STATUS_SUCCESS; 149 // Check if the memory_pool is allowed to allocate, i.e. do not return group 150 // memory 151 bool alloc_allowed = false; 152 err = hsa_amd_memory_pool_get_info( 153 memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 154 &alloc_allowed); 155 if (err != HSA_STATUS_SUCCESS) { 156 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 157 "Alloc allowed in memory pool check", get_error_string(err)); 158 return err; 159 } 160 if (alloc_allowed) { 161 uint32_t global_flag = 0; 162 err = hsa_amd_memory_pool_get_info( 163 memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag); 164 if (err != HSA_STATUS_SUCCESS) { 165 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 166 "Get memory pool info", get_error_string(err)); 167 return err; 168 } 169 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) { 170 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED); 171 proc->addMemory(new_mem); 172 } else { 173 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED); 174 proc->addMemory(new_mem); 175 } 176 } 177 178 return err; 179 } 180 181 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) { 182 hsa_status_t err = HSA_STATUS_SUCCESS; 183 hsa_device_type_t device_type; 184 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 185 if (err != HSA_STATUS_SUCCESS) { 186 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 187 "Get device type info", get_error_string(err)); 188 return err; 189 } 190 switch (device_type) { 191 case HSA_DEVICE_TYPE_CPU: { 192 ATLCPUProcessor new_proc(agent); 193 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 194 &new_proc); 195 if (err != HSA_STATUS_SUCCESS) { 196 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 197 "Iterate all memory pools", get_error_string(err)); 198 return err; 199 } 200 g_atl_machine.addProcessor(new_proc); 201 } break; 202 case HSA_DEVICE_TYPE_GPU: { 203 hsa_profile_t profile; 204 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile); 205 if (err != HSA_STATUS_SUCCESS) { 206 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 207 "Query the agent profile", get_error_string(err)); 208 return err; 209 } 210 atmi_devtype_t gpu_type; 211 gpu_type = 212 (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU; 213 ATLGPUProcessor new_proc(agent, gpu_type); 214 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 215 &new_proc); 216 if (err != HSA_STATUS_SUCCESS) { 217 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 218 "Iterate all memory pools", get_error_string(err)); 219 return err; 220 } 221 g_atl_machine.addProcessor(new_proc); 222 } break; 223 case HSA_DEVICE_TYPE_DSP: { 224 err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 225 } break; 226 } 227 228 return err; 229 } 230 231 static hsa_status_t init_compute_and_memory() { 232 hsa_status_t err; 233 234 /* Iterate over the agents and pick the gpu agent */ 235 err = hsa_iterate_agents(get_agent_info, NULL); 236 if (err == HSA_STATUS_INFO_BREAK) { 237 err = HSA_STATUS_SUCCESS; 238 } 239 if (err != HSA_STATUS_SUCCESS) { 240 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent", 241 get_error_string(err)); 242 return err; 243 } 244 245 /* Init all devices or individual device types? */ 246 std::vector<ATLCPUProcessor> &cpu_procs = 247 g_atl_machine.processors<ATLCPUProcessor>(); 248 std::vector<ATLGPUProcessor> &gpu_procs = 249 g_atl_machine.processors<ATLGPUProcessor>(); 250 /* For CPU memory pools, add other devices that can access them directly 251 * or indirectly */ 252 for (auto &cpu_proc : cpu_procs) { 253 for (auto &cpu_mem : cpu_proc.memories()) { 254 hsa_amd_memory_pool_t pool = cpu_mem.memory(); 255 for (auto &gpu_proc : gpu_procs) { 256 hsa_agent_t agent = gpu_proc.agent(); 257 hsa_amd_memory_pool_access_t access; 258 hsa_amd_agent_memory_pool_get_info( 259 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 260 if (access != 0) { 261 // this means not NEVER, but could be YES or NO 262 // add this memory pool to the proc 263 gpu_proc.addMemory(cpu_mem); 264 } 265 } 266 } 267 } 268 269 /* FIXME: are the below combinations of procs and memory pools needed? 270 * all to all compare procs with their memory pools and add those memory 271 * pools that are accessible by the target procs */ 272 for (auto &gpu_proc : gpu_procs) { 273 for (auto &gpu_mem : gpu_proc.memories()) { 274 hsa_amd_memory_pool_t pool = gpu_mem.memory(); 275 for (auto &cpu_proc : cpu_procs) { 276 hsa_agent_t agent = cpu_proc.agent(); 277 hsa_amd_memory_pool_access_t access; 278 hsa_amd_agent_memory_pool_get_info( 279 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 280 if (access != 0) { 281 // this means not NEVER, but could be YES or NO 282 // add this memory pool to the proc 283 cpu_proc.addMemory(gpu_mem); 284 } 285 } 286 } 287 } 288 289 size_t num_procs = cpu_procs.size() + gpu_procs.size(); 290 int num_iGPUs = 0; 291 int num_dGPUs = 0; 292 for (uint32_t i = 0; i < gpu_procs.size(); i++) { 293 if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU) 294 num_iGPUs++; 295 else 296 num_dGPUs++; 297 } 298 assert(num_iGPUs + num_dGPUs == gpu_procs.size() && 299 "Number of dGPUs and iGPUs do not add up"); 300 DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size()); 301 DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs); 302 DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs); 303 DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size()); 304 305 int cpus_begin = 0; 306 int cpus_end = cpu_procs.size(); 307 int gpus_begin = cpu_procs.size(); 308 int gpus_end = cpu_procs.size() + gpu_procs.size(); 309 int proc_index = 0; 310 for (int i = cpus_begin; i < cpus_end; i++) { 311 std::vector<ATLMemory> memories = cpu_procs[proc_index].memories(); 312 int fine_memories_size = 0; 313 int coarse_memories_size = 0; 314 DEBUG_PRINT("CPU memory types:\t"); 315 for (auto &memory : memories) { 316 atmi_memtype_t type = memory.type(); 317 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 318 fine_memories_size++; 319 DEBUG_PRINT("Fine\t"); 320 } else { 321 coarse_memories_size++; 322 DEBUG_PRINT("Coarse\t"); 323 } 324 } 325 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 326 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 327 proc_index++; 328 } 329 proc_index = 0; 330 for (int i = gpus_begin; i < gpus_end; i++) { 331 std::vector<ATLMemory> memories = gpu_procs[proc_index].memories(); 332 int fine_memories_size = 0; 333 int coarse_memories_size = 0; 334 DEBUG_PRINT("GPU memory types:\t"); 335 for (auto &memory : memories) { 336 atmi_memtype_t type = memory.type(); 337 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 338 fine_memories_size++; 339 DEBUG_PRINT("Fine\t"); 340 } else { 341 coarse_memories_size++; 342 DEBUG_PRINT("Coarse\t"); 343 } 344 } 345 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 346 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 347 proc_index++; 348 } 349 if (num_procs > 0) 350 return HSA_STATUS_SUCCESS; 351 else 352 return HSA_STATUS_ERROR_NOT_INITIALIZED; 353 } 354 355 hsa_status_t init_hsa() { 356 DEBUG_PRINT("Initializing HSA..."); 357 hsa_status_t err = hsa_init(); 358 if (err != HSA_STATUS_SUCCESS) { 359 return err; 360 } 361 362 err = init_compute_and_memory(); 363 if (err != HSA_STATUS_SUCCESS) 364 return err; 365 if (err != HSA_STATUS_SUCCESS) { 366 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 367 "After initializing compute and memory", get_error_string(err)); 368 return err; 369 } 370 371 DEBUG_PRINT("done\n"); 372 return HSA_STATUS_SUCCESS; 373 } 374 375 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) { 376 #if (ROCM_VERSION_MAJOR >= 3) || \ 377 (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3) 378 if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) { 379 #else 380 if (event->event_type == GPU_MEMORY_FAULT_EVENT) { 381 #endif 382 hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault; 383 // memory_fault.agent 384 // memory_fault.virtual_address 385 // memory_fault.fault_reason_mask 386 // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address); 387 std::stringstream stream; 388 stream << std::hex << (uintptr_t)memory_fault.virtual_address; 389 std::string addr("0x" + stream.str()); 390 391 std::string err_string = "[GPU Memory Error] Addr: " + addr; 392 err_string += " Reason: "; 393 if (!(memory_fault.fault_reason_mask & 0x00111111)) { 394 err_string += "No Idea! "; 395 } else { 396 if (memory_fault.fault_reason_mask & 0x00000001) 397 err_string += "Page not present or supervisor privilege. "; 398 if (memory_fault.fault_reason_mask & 0x00000010) 399 err_string += "Write access to a read-only page. "; 400 if (memory_fault.fault_reason_mask & 0x00000100) 401 err_string += "Execute access to a page marked NX. "; 402 if (memory_fault.fault_reason_mask & 0x00001000) 403 err_string += "Host access only. "; 404 if (memory_fault.fault_reason_mask & 0x00010000) 405 err_string += "ECC failure (if supported by HW). "; 406 if (memory_fault.fault_reason_mask & 0x00100000) 407 err_string += "Can't determine the exact fault address. "; 408 } 409 fprintf(stderr, "%s\n", err_string.c_str()); 410 return HSA_STATUS_ERROR; 411 } 412 return HSA_STATUS_SUCCESS; 413 } 414 415 hsa_status_t atl_init_gpu_context() { 416 hsa_status_t err; 417 err = init_hsa(); 418 if (err != HSA_STATUS_SUCCESS) 419 return HSA_STATUS_ERROR; 420 421 err = hsa_amd_register_system_event_handler(callbackEvent, NULL); 422 if (err != HSA_STATUS_SUCCESS) { 423 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 424 "Registering the system for memory faults", get_error_string(err)); 425 return HSA_STATUS_ERROR; 426 } 427 428 return HSA_STATUS_SUCCESS; 429 } 430 431 static bool isImplicit(KernelArgMD::ValueKind value_kind) { 432 switch (value_kind) { 433 case KernelArgMD::ValueKind::HiddenGlobalOffsetX: 434 case KernelArgMD::ValueKind::HiddenGlobalOffsetY: 435 case KernelArgMD::ValueKind::HiddenGlobalOffsetZ: 436 case KernelArgMD::ValueKind::HiddenNone: 437 case KernelArgMD::ValueKind::HiddenPrintfBuffer: 438 case KernelArgMD::ValueKind::HiddenDefaultQueue: 439 case KernelArgMD::ValueKind::HiddenCompletionAction: 440 case KernelArgMD::ValueKind::HiddenMultiGridSyncArg: 441 case KernelArgMD::ValueKind::HiddenHostcallBuffer: 442 return true; 443 default: 444 return false; 445 } 446 } 447 448 static std::pair<unsigned char *, unsigned char *> 449 find_metadata(void *binary, size_t binSize) { 450 std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr}; 451 452 Elf *e = elf_memory(static_cast<char *>(binary), binSize); 453 if (elf_kind(e) != ELF_K_ELF) { 454 return failure; 455 } 456 457 size_t numpHdrs; 458 if (elf_getphdrnum(e, &numpHdrs) != 0) { 459 return failure; 460 } 461 462 Elf64_Phdr *pHdrs = elf64_getphdr(e); 463 for (size_t i = 0; i < numpHdrs; ++i) { 464 Elf64_Phdr pHdr = pHdrs[i]; 465 466 // Look for the runtime metadata note 467 if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) { 468 // Iterate over the notes in this segment 469 address ptr = (address)binary + pHdr.p_offset; 470 address segmentEnd = ptr + pHdr.p_filesz; 471 472 while (ptr < segmentEnd) { 473 Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr); 474 address name = (address)¬e[1]; 475 476 if (note->n_type == 7 || note->n_type == 8) { 477 return failure; 478 } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ && 479 note->n_namesz == sizeof "AMD" && 480 !memcmp(name, "AMD", note->n_namesz)) { 481 // code object v2 uses yaml metadata, no longer supported 482 return failure; 483 } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ && 484 note->n_namesz == sizeof "AMDGPU" && 485 !memcmp(name, "AMDGPU", note->n_namesz)) { 486 487 // n_descsz = 485 488 // value is padded to 4 byte alignment, may want to move end up to 489 // match 490 size_t offset = sizeof(uint32_t) * 3 /* fields */ 491 + sizeof("AMDGPU") /* name */ 492 + 1 /* padding to 4 byte alignment */; 493 494 // Including the trailing padding means both pointers are 4 bytes 495 // aligned, which may be useful later. 496 unsigned char *metadata_start = (unsigned char *)ptr + offset; 497 unsigned char *metadata_end = 498 metadata_start + core::alignUp(note->n_descsz, 4); 499 return {metadata_start, metadata_end}; 500 } 501 ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) + 502 core::alignUp(note->n_descsz, sizeof(int)); 503 } 504 } 505 } 506 507 return failure; 508 } 509 510 namespace { 511 int map_lookup_array(msgpack::byte_range message, const char *needle, 512 msgpack::byte_range *res, uint64_t *size) { 513 unsigned count = 0; 514 struct s : msgpack::functors_defaults<s> { 515 s(unsigned &count, uint64_t *size) : count(count), size(size) {} 516 unsigned &count; 517 uint64_t *size; 518 const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) { 519 count++; 520 *size = N; 521 return bytes.end; 522 } 523 }; 524 525 msgpack::foreach_map(message, 526 [&](msgpack::byte_range key, msgpack::byte_range value) { 527 if (msgpack::message_is_string(key, needle)) { 528 // If the message is an array, record number of 529 // elements in *size 530 msgpack::handle_msgpack<s>(value, {count, size}); 531 // return the whole array 532 *res = value; 533 } 534 }); 535 // Only claim success if exactly one key/array pair matched 536 return count != 1; 537 } 538 539 int map_lookup_string(msgpack::byte_range message, const char *needle, 540 std::string *res) { 541 unsigned count = 0; 542 struct s : public msgpack::functors_defaults<s> { 543 s(unsigned &count, std::string *res) : count(count), res(res) {} 544 unsigned &count; 545 std::string *res; 546 void handle_string(size_t N, const unsigned char *str) { 547 count++; 548 *res = std::string(str, str + N); 549 } 550 }; 551 msgpack::foreach_map(message, 552 [&](msgpack::byte_range key, msgpack::byte_range value) { 553 if (msgpack::message_is_string(key, needle)) { 554 msgpack::handle_msgpack<s>(value, {count, res}); 555 } 556 }); 557 return count != 1; 558 } 559 560 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle, 561 uint64_t *res) { 562 unsigned count = 0; 563 msgpack::foreach_map(message, 564 [&](msgpack::byte_range key, msgpack::byte_range value) { 565 if (msgpack::message_is_string(key, needle)) { 566 msgpack::foronly_unsigned(value, [&](uint64_t x) { 567 count++; 568 *res = x; 569 }); 570 } 571 }); 572 return count != 1; 573 } 574 575 int array_lookup_element(msgpack::byte_range message, uint64_t elt, 576 msgpack::byte_range *res) { 577 int rc = 1; 578 uint64_t i = 0; 579 msgpack::foreach_array(message, [&](msgpack::byte_range value) { 580 if (i == elt) { 581 *res = value; 582 rc = 0; 583 } 584 i++; 585 }); 586 return rc; 587 } 588 589 int populate_kernelArgMD(msgpack::byte_range args_element, 590 KernelArgMD *kernelarg) { 591 using namespace msgpack; 592 int error = 0; 593 foreach_map(args_element, [&](byte_range key, byte_range value) -> void { 594 if (message_is_string(key, ".name")) { 595 foronly_string(value, [&](size_t N, const unsigned char *str) { 596 kernelarg->name_ = std::string(str, str + N); 597 }); 598 } else if (message_is_string(key, ".type_name")) { 599 foronly_string(value, [&](size_t N, const unsigned char *str) { 600 kernelarg->typeName_ = std::string(str, str + N); 601 }); 602 } else if (message_is_string(key, ".size")) { 603 foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; }); 604 } else if (message_is_string(key, ".offset")) { 605 foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; }); 606 } else if (message_is_string(key, ".value_kind")) { 607 foronly_string(value, [&](size_t N, const unsigned char *str) { 608 std::string s = std::string(str, str + N); 609 auto itValueKind = ArgValueKind.find(s); 610 if (itValueKind != ArgValueKind.end()) { 611 kernelarg->valueKind_ = itValueKind->second; 612 } 613 }); 614 } 615 }); 616 return error; 617 } 618 } // namespace 619 620 static hsa_status_t get_code_object_custom_metadata( 621 void *binary, size_t binSize, 622 std::map<std::string, atl_kernel_info_t> &KernelInfoTable) { 623 // parse code object with different keys from v2 624 // also, the kernel name is not the same as the symbol name -- so a 625 // symbol->name map is needed 626 627 std::pair<unsigned char *, unsigned char *> metadata = 628 find_metadata(binary, binSize); 629 if (!metadata.first) { 630 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 631 } 632 633 uint64_t kernelsSize = 0; 634 int msgpack_errors = 0; 635 msgpack::byte_range kernel_array; 636 msgpack_errors = 637 map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels", 638 &kernel_array, &kernelsSize); 639 if (msgpack_errors != 0) { 640 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 641 "kernels lookup in program metadata"); 642 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 643 } 644 645 for (size_t i = 0; i < kernelsSize; i++) { 646 assert(msgpack_errors == 0); 647 std::string kernelName; 648 std::string symbolName; 649 650 msgpack::byte_range element; 651 msgpack_errors += array_lookup_element(kernel_array, i, &element); 652 if (msgpack_errors != 0) { 653 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 654 "element lookup in kernel metadata"); 655 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 656 } 657 658 msgpack_errors += map_lookup_string(element, ".name", &kernelName); 659 msgpack_errors += map_lookup_string(element, ".symbol", &symbolName); 660 if (msgpack_errors != 0) { 661 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 662 "strings lookup in kernel metadata"); 663 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 664 } 665 666 // Make sure that kernelName + ".kd" == symbolName 667 if ((kernelName + ".kd") != symbolName) { 668 printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n", 669 __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str()); 670 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 671 } 672 673 atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}}; 674 675 uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 676 msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count); 677 if (msgpack_errors != 0) { 678 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 679 "sgpr count metadata lookup in kernel metadata"); 680 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 681 } 682 683 info.sgpr_count = sgpr_count; 684 685 msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count); 686 if (msgpack_errors != 0) { 687 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 688 "vgpr count metadata lookup in kernel metadata"); 689 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 690 } 691 692 info.vgpr_count = vgpr_count; 693 694 msgpack_errors += 695 map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count); 696 if (msgpack_errors != 0) { 697 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 698 "sgpr spill count metadata lookup in kernel metadata"); 699 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 700 } 701 702 info.sgpr_spill_count = sgpr_spill_count; 703 704 msgpack_errors += 705 map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count); 706 if (msgpack_errors != 0) { 707 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 708 "vgpr spill count metadata lookup in kernel metadata"); 709 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 710 } 711 712 info.vgpr_spill_count = vgpr_spill_count; 713 714 size_t kernel_explicit_args_size = 0; 715 uint64_t kernel_segment_size; 716 msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size", 717 &kernel_segment_size); 718 if (msgpack_errors != 0) { 719 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 720 "kernarg segment size metadata lookup in kernel metadata"); 721 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 722 } 723 724 bool hasHiddenArgs = false; 725 if (kernel_segment_size > 0) { 726 uint64_t argsSize; 727 size_t offset = 0; 728 729 msgpack::byte_range args_array; 730 msgpack_errors += 731 map_lookup_array(element, ".args", &args_array, &argsSize); 732 if (msgpack_errors != 0) { 733 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 734 "kernel args metadata lookup in kernel metadata"); 735 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 736 } 737 738 info.num_args = argsSize; 739 740 for (size_t i = 0; i < argsSize; ++i) { 741 KernelArgMD lcArg; 742 743 msgpack::byte_range args_element; 744 msgpack_errors += array_lookup_element(args_array, i, &args_element); 745 if (msgpack_errors != 0) { 746 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 747 "iterate args map in kernel args metadata"); 748 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 749 } 750 751 msgpack_errors += populate_kernelArgMD(args_element, &lcArg); 752 if (msgpack_errors != 0) { 753 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 754 "iterate args map in kernel args metadata"); 755 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 756 } 757 // populate info with sizes and offsets 758 info.arg_sizes.push_back(lcArg.size_); 759 // v3 has offset field and not align field 760 size_t new_offset = lcArg.offset_; 761 size_t padding = new_offset - offset; 762 offset = new_offset; 763 info.arg_offsets.push_back(lcArg.offset_); 764 DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), 765 lcArg.size_, lcArg.offset_); 766 offset += lcArg.size_; 767 768 // check if the arg is a hidden/implicit arg 769 // this logic assumes that all hidden args are 8-byte aligned 770 if (!isImplicit(lcArg.valueKind_)) { 771 kernel_explicit_args_size += lcArg.size_; 772 } else { 773 hasHiddenArgs = true; 774 } 775 kernel_explicit_args_size += padding; 776 } 777 } 778 779 // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but 780 // in ATMI, do not count the compiler set implicit args, but set your own 781 // implicit args by discounting the compiler set implicit args 782 info.kernel_segment_size = 783 (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) + 784 sizeof(atmi_implicit_args_t); 785 DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(), 786 kernel_segment_size, info.kernel_segment_size); 787 788 // kernel received, now add it to the kernel info table 789 KernelInfoTable[kernelName] = info; 790 } 791 792 return HSA_STATUS_SUCCESS; 793 } 794 795 static hsa_status_t 796 populate_InfoTables(hsa_executable_symbol_t symbol, 797 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 798 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) { 799 hsa_symbol_kind_t type; 800 801 uint32_t name_length; 802 hsa_status_t err; 803 err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE, 804 &type); 805 if (err != HSA_STATUS_SUCCESS) { 806 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 807 "Symbol info extraction", get_error_string(err)); 808 return err; 809 } 810 DEBUG_PRINT("Exec Symbol type: %d\n", type); 811 if (type == HSA_SYMBOL_KIND_KERNEL) { 812 err = hsa_executable_symbol_get_info( 813 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 814 if (err != HSA_STATUS_SUCCESS) { 815 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 816 "Symbol info extraction", get_error_string(err)); 817 return err; 818 } 819 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 820 err = hsa_executable_symbol_get_info(symbol, 821 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 822 if (err != HSA_STATUS_SUCCESS) { 823 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 824 "Symbol info extraction", get_error_string(err)); 825 return err; 826 } 827 // remove the suffix .kd from symbol name. 828 name[name_length - 3] = 0; 829 830 atl_kernel_info_t info; 831 std::string kernelName(name); 832 // by now, the kernel info table should already have an entry 833 // because the non-ROCr custom code object parsing is called before 834 // iterating over the code object symbols using ROCr 835 if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) { 836 if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) { 837 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 838 "Finding the entry kernel info table", 839 get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT)); 840 exit(1); 841 } 842 } 843 // found, so assign and update 844 info = KernelInfoTable[kernelName]; 845 846 /* Extract dispatch information from the symbol */ 847 err = hsa_executable_symbol_get_info( 848 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, 849 &(info.kernel_object)); 850 if (err != HSA_STATUS_SUCCESS) { 851 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 852 "Extracting the symbol from the executable", 853 get_error_string(err)); 854 return err; 855 } 856 err = hsa_executable_symbol_get_info( 857 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, 858 &(info.group_segment_size)); 859 if (err != HSA_STATUS_SUCCESS) { 860 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 861 "Extracting the group segment size from the executable", 862 get_error_string(err)); 863 return err; 864 } 865 err = hsa_executable_symbol_get_info( 866 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, 867 &(info.private_segment_size)); 868 if (err != HSA_STATUS_SUCCESS) { 869 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 870 "Extracting the private segment from the executable", 871 get_error_string(err)); 872 return err; 873 } 874 875 DEBUG_PRINT( 876 "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes " 877 "kernarg\n", 878 kernelName.c_str(), info.kernel_object, info.group_segment_size, 879 info.private_segment_size, info.kernel_segment_size); 880 881 // assign it back to the kernel info table 882 KernelInfoTable[kernelName] = info; 883 free(name); 884 } else if (type == HSA_SYMBOL_KIND_VARIABLE) { 885 err = hsa_executable_symbol_get_info( 886 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 887 if (err != HSA_STATUS_SUCCESS) { 888 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 889 "Symbol info extraction", get_error_string(err)); 890 return err; 891 } 892 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 893 err = hsa_executable_symbol_get_info(symbol, 894 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 895 if (err != HSA_STATUS_SUCCESS) { 896 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 897 "Symbol info extraction", get_error_string(err)); 898 return err; 899 } 900 name[name_length] = 0; 901 902 atl_symbol_info_t info; 903 904 err = hsa_executable_symbol_get_info( 905 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr)); 906 if (err != HSA_STATUS_SUCCESS) { 907 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 908 "Symbol info address extraction", get_error_string(err)); 909 return err; 910 } 911 912 err = hsa_executable_symbol_get_info( 913 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size)); 914 if (err != HSA_STATUS_SUCCESS) { 915 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 916 "Symbol info size extraction", get_error_string(err)); 917 return err; 918 } 919 920 DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, 921 info.size); 922 SymbolInfoTable[std::string(name)] = info; 923 free(name); 924 } else { 925 DEBUG_PRINT("Symbol is an indirect function\n"); 926 } 927 return HSA_STATUS_SUCCESS; 928 } 929 930 hsa_status_t RegisterModuleFromMemory( 931 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 932 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 933 void *module_bytes, size_t module_size, hsa_agent_t agent, 934 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 935 void *cb_state), 936 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) { 937 hsa_status_t err; 938 hsa_executable_t executable = {0}; 939 hsa_profile_t agent_profile; 940 941 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile); 942 if (err != HSA_STATUS_SUCCESS) { 943 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 944 "Query the agent profile", get_error_string(err)); 945 return HSA_STATUS_ERROR; 946 } 947 // FIXME: Assume that every profile is FULL until we understand how to build 948 // GCN with base profile 949 agent_profile = HSA_PROFILE_FULL; 950 /* Create the empty executable. */ 951 err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "", 952 &executable); 953 if (err != HSA_STATUS_SUCCESS) { 954 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 955 "Create the executable", get_error_string(err)); 956 return HSA_STATUS_ERROR; 957 } 958 959 bool module_load_success = false; 960 do // Existing control flow used continue, preserve that for this patch 961 { 962 { 963 // Some metadata info is not available through ROCr API, so use custom 964 // code object metadata parsing to collect such metadata info 965 966 err = get_code_object_custom_metadata(module_bytes, module_size, 967 KernelInfoTable); 968 if (err != HSA_STATUS_SUCCESS) { 969 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 970 "Getting custom code object metadata", 971 get_error_string(err)); 972 continue; 973 } 974 975 // Deserialize code object. 976 hsa_code_object_t code_object = {0}; 977 err = hsa_code_object_deserialize(module_bytes, module_size, NULL, 978 &code_object); 979 if (err != HSA_STATUS_SUCCESS) { 980 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 981 "Code Object Deserialization", get_error_string(err)); 982 continue; 983 } 984 assert(0 != code_object.handle); 985 986 // Mutating the device image here avoids another allocation & memcpy 987 void *code_object_alloc_data = 988 reinterpret_cast<void *>(code_object.handle); 989 hsa_status_t atmi_err = 990 on_deserialized_data(code_object_alloc_data, module_size, cb_state); 991 if (atmi_err != HSA_STATUS_SUCCESS) { 992 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 993 "Error in deserialized_data callback", 994 get_error_string(atmi_err)); 995 return atmi_err; 996 } 997 998 /* Load the code object. */ 999 err = 1000 hsa_executable_load_code_object(executable, agent, code_object, NULL); 1001 if (err != HSA_STATUS_SUCCESS) { 1002 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1003 "Loading the code object", get_error_string(err)); 1004 continue; 1005 } 1006 1007 // cannot iterate over symbols until executable is frozen 1008 } 1009 module_load_success = true; 1010 } while (0); 1011 DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success); 1012 if (module_load_success) { 1013 /* Freeze the executable; it can now be queried for symbols. */ 1014 err = hsa_executable_freeze(executable, ""); 1015 if (err != HSA_STATUS_SUCCESS) { 1016 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1017 "Freeze the executable", get_error_string(err)); 1018 return HSA_STATUS_ERROR; 1019 } 1020 1021 err = hsa::executable_iterate_symbols( 1022 executable, 1023 [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t { 1024 return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable); 1025 }); 1026 if (err != HSA_STATUS_SUCCESS) { 1027 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1028 "Iterating over symbols for execuatable", get_error_string(err)); 1029 return HSA_STATUS_ERROR; 1030 } 1031 1032 // save the executable and destroy during finalize 1033 HSAExecutables.push_back(executable); 1034 return HSA_STATUS_SUCCESS; 1035 } else { 1036 return HSA_STATUS_ERROR; 1037 } 1038 } 1039 1040 } // namespace core 1041