1 /*===-------------------------------------------------------------------------- 2 * ATMI (Asynchronous Task and Memory Interface) 3 * 4 * This file is distributed under the MIT License. See LICENSE.txt for details. 5 *===------------------------------------------------------------------------*/ 6 #include <gelf.h> 7 #include <libelf.h> 8 9 #include <cassert> 10 #include <cstdarg> 11 #include <fstream> 12 #include <iomanip> 13 #include <iostream> 14 #include <set> 15 #include <string> 16 17 #include "internal.h" 18 #include "machine.h" 19 #include "rt.h" 20 21 #include "msgpack.h" 22 23 #define msgpackErrorCheck(msg, status) \ 24 if (status != 0) { \ 25 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, #msg); \ 26 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; \ 27 } else { \ 28 } 29 30 typedef unsigned char *address; 31 /* 32 * Note descriptors. 33 */ 34 typedef struct { 35 uint32_t n_namesz; /* Length of note's name. */ 36 uint32_t n_descsz; /* Length of note's value. */ 37 uint32_t n_type; /* Type of note. */ 38 // then name 39 // then padding, optional 40 // then desc, at 4 byte alignment (not 8, despite being elf64) 41 } Elf_Note; 42 43 // The following include file and following structs/enums 44 // have been replicated on a per-use basis below. For example, 45 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields, 46 // but we may care only about kernargSegmentSize_ for now, so 47 // we just include that field in our KernelMD implementation. We 48 // chose this approach to replicate in order to avoid forcing 49 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime. 50 // #include "llvm/Support/AMDGPUMetadata.h" 51 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD; 52 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD; 53 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD; 54 // using llvm::AMDGPU::HSAMD::AccessQualifier; 55 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier; 56 // using llvm::AMDGPU::HSAMD::ValueKind; 57 // using llvm::AMDGPU::HSAMD::ValueType; 58 59 class KernelArgMD { 60 public: 61 enum class ValueKind { 62 HiddenGlobalOffsetX, 63 HiddenGlobalOffsetY, 64 HiddenGlobalOffsetZ, 65 HiddenNone, 66 HiddenPrintfBuffer, 67 HiddenDefaultQueue, 68 HiddenCompletionAction, 69 HiddenMultiGridSyncArg, 70 HiddenHostcallBuffer, 71 Unknown 72 }; 73 74 KernelArgMD() 75 : name_(std::string()), typeName_(std::string()), size_(0), offset_(0), 76 align_(0), valueKind_(ValueKind::Unknown) {} 77 78 // fields 79 std::string name_; 80 std::string typeName_; 81 uint32_t size_; 82 uint32_t offset_; 83 uint32_t align_; 84 ValueKind valueKind_; 85 }; 86 87 class KernelMD { 88 public: 89 KernelMD() : kernargSegmentSize_(0ull) {} 90 91 // fields 92 uint64_t kernargSegmentSize_; 93 }; 94 95 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = { 96 // Including only those fields that are relevant to the runtime. 97 // {"ByValue", KernelArgMD::ValueKind::ByValue}, 98 // {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer}, 99 // {"DynamicSharedPointer", 100 // KernelArgMD::ValueKind::DynamicSharedPointer}, 101 // {"Sampler", KernelArgMD::ValueKind::Sampler}, 102 // {"Image", KernelArgMD::ValueKind::Image}, 103 // {"Pipe", KernelArgMD::ValueKind::Pipe}, 104 // {"Queue", KernelArgMD::ValueKind::Queue}, 105 {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 106 {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 107 {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 108 {"HiddenNone", KernelArgMD::ValueKind::HiddenNone}, 109 {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 110 {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 111 {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction}, 112 {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 113 {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 114 // v3 115 // {"by_value", KernelArgMD::ValueKind::ByValue}, 116 // {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer}, 117 // {"dynamic_shared_pointer", 118 // KernelArgMD::ValueKind::DynamicSharedPointer}, 119 // {"sampler", KernelArgMD::ValueKind::Sampler}, 120 // {"image", KernelArgMD::ValueKind::Image}, 121 // {"pipe", KernelArgMD::ValueKind::Pipe}, 122 // {"queue", KernelArgMD::ValueKind::Queue}, 123 {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 124 {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 125 {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 126 {"hidden_none", KernelArgMD::ValueKind::HiddenNone}, 127 {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 128 {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 129 {"hidden_completion_action", 130 KernelArgMD::ValueKind::HiddenCompletionAction}, 131 {"hidden_multigrid_sync_arg", 132 KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 133 {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 134 }; 135 136 // global variables. TODO: Get rid of these 137 atmi_machine_t g_atmi_machine; 138 ATLMachine g_atl_machine; 139 140 hsa_region_t atl_gpu_kernarg_region; 141 std::vector<hsa_amd_memory_pool_t> atl_gpu_kernarg_pools; 142 hsa_region_t atl_cpu_kernarg_region; 143 144 static std::vector<hsa_executable_t> g_executables; 145 146 std::map<std::string, std::string> KernelNameMap; 147 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 148 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 149 150 bool g_atmi_initialized = false; 151 bool g_atmi_hostcall_required = false; 152 153 struct timespec context_init_time; 154 int context_init_time_init = 0; 155 156 /* 157 atlc is all internal global values. 158 The structure atl_context_t is defined in atl_internal.h 159 Most references will use the global structure prefix atlc. 160 However the pointer value atlc_p-> is equivalent to atlc. 161 162 */ 163 164 atl_context_t atlc = {.struct_initialized = false}; 165 atl_context_t *atlc_p = NULL; 166 167 namespace core { 168 /* Machine Info */ 169 atmi_machine_t *Runtime::GetMachineInfo() { 170 if (!atlc.g_hsa_initialized) 171 return NULL; 172 return &g_atmi_machine; 173 } 174 175 void atl_set_atmi_initialized() { 176 // FIXME: thread safe? locks? 177 g_atmi_initialized = true; 178 } 179 180 void atl_reset_atmi_initialized() { 181 // FIXME: thread safe? locks? 182 g_atmi_initialized = false; 183 } 184 185 bool atl_is_atmi_initialized() { return g_atmi_initialized; } 186 187 void allow_access_to_all_gpu_agents(void *ptr) { 188 hsa_status_t err; 189 std::vector<ATLGPUProcessor> &gpu_procs = 190 g_atl_machine.processors<ATLGPUProcessor>(); 191 std::vector<hsa_agent_t> agents; 192 for (uint32_t i = 0; i < gpu_procs.size(); i++) { 193 agents.push_back(gpu_procs[i].agent()); 194 } 195 err = hsa_amd_agents_allow_access(agents.size(), &agents[0], NULL, ptr); 196 ErrorCheck(Allow agents ptr access, err); 197 } 198 199 atmi_status_t Runtime::Initialize() { 200 atmi_devtype_t devtype = ATMI_DEVTYPE_GPU; 201 if (atl_is_atmi_initialized()) 202 return ATMI_STATUS_SUCCESS; 203 204 if (devtype == ATMI_DEVTYPE_ALL || devtype & ATMI_DEVTYPE_GPU) { 205 ATMIErrorCheck(GPU context init, atl_init_gpu_context()); 206 } 207 208 atl_set_atmi_initialized(); 209 return ATMI_STATUS_SUCCESS; 210 } 211 212 atmi_status_t Runtime::Finalize() { 213 hsa_status_t err; 214 215 for (uint32_t i = 0; i < g_executables.size(); i++) { 216 err = hsa_executable_destroy(g_executables[i]); 217 ErrorCheck(Destroying executable, err); 218 } 219 220 for (uint32_t i = 0; i < SymbolInfoTable.size(); i++) { 221 SymbolInfoTable[i].clear(); 222 } 223 SymbolInfoTable.clear(); 224 for (uint32_t i = 0; i < KernelInfoTable.size(); i++) { 225 KernelInfoTable[i].clear(); 226 } 227 KernelInfoTable.clear(); 228 229 atl_reset_atmi_initialized(); 230 err = hsa_shut_down(); 231 ErrorCheck(Shutting down HSA, err); 232 233 return ATMI_STATUS_SUCCESS; 234 } 235 236 void atmi_init_context_structs() { 237 atlc_p = &atlc; 238 atlc.struct_initialized = true; /* This only gets called one time */ 239 atlc.g_hsa_initialized = false; 240 atlc.g_gpu_initialized = false; 241 atlc.g_tasks_initialized = false; 242 } 243 244 // Implement memory_pool iteration function 245 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool, 246 void *data) { 247 ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data); 248 hsa_status_t err = HSA_STATUS_SUCCESS; 249 // Check if the memory_pool is allowed to allocate, i.e. do not return group 250 // memory 251 bool alloc_allowed = false; 252 err = hsa_amd_memory_pool_get_info( 253 memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 254 &alloc_allowed); 255 ErrorCheck(Alloc allowed in memory pool check, err); 256 if (alloc_allowed) { 257 uint32_t global_flag = 0; 258 err = hsa_amd_memory_pool_get_info( 259 memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag); 260 ErrorCheck(Get memory pool info, err); 261 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) { 262 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED); 263 proc->addMemory(new_mem); 264 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT & global_flag) { 265 DEBUG_PRINT("GPU kernel args pool handle: %lu\n", memory_pool.handle); 266 atl_gpu_kernarg_pools.push_back(memory_pool); 267 } 268 } else { 269 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED); 270 proc->addMemory(new_mem); 271 } 272 } 273 274 return err; 275 } 276 277 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) { 278 hsa_status_t err = HSA_STATUS_SUCCESS; 279 hsa_device_type_t device_type; 280 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 281 ErrorCheck(Get device type info, err); 282 switch (device_type) { 283 case HSA_DEVICE_TYPE_CPU: { 284 ; 285 ATLCPUProcessor new_proc(agent); 286 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 287 &new_proc); 288 ErrorCheck(Iterate all memory pools, err); 289 g_atl_machine.addProcessor(new_proc); 290 } break; 291 case HSA_DEVICE_TYPE_GPU: { 292 ; 293 hsa_profile_t profile; 294 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile); 295 ErrorCheck(Query the agent profile, err); 296 atmi_devtype_t gpu_type; 297 gpu_type = 298 (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU; 299 ATLGPUProcessor new_proc(agent, gpu_type); 300 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 301 &new_proc); 302 ErrorCheck(Iterate all memory pools, err); 303 g_atl_machine.addProcessor(new_proc); 304 } break; 305 case HSA_DEVICE_TYPE_DSP: { 306 err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 307 } break; 308 } 309 310 return err; 311 } 312 313 hsa_status_t get_fine_grained_region(hsa_region_t region, void *data) { 314 hsa_region_segment_t segment; 315 hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment); 316 if (segment != HSA_REGION_SEGMENT_GLOBAL) { 317 return HSA_STATUS_SUCCESS; 318 } 319 hsa_region_global_flag_t flags; 320 hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags); 321 if (flags & HSA_REGION_GLOBAL_FLAG_FINE_GRAINED) { 322 hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data); 323 *ret = region; 324 return HSA_STATUS_INFO_BREAK; 325 } 326 return HSA_STATUS_SUCCESS; 327 } 328 329 /* Determines if a memory region can be used for kernarg allocations. */ 330 static hsa_status_t get_kernarg_memory_region(hsa_region_t region, void *data) { 331 hsa_region_segment_t segment; 332 hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment); 333 if (HSA_REGION_SEGMENT_GLOBAL != segment) { 334 return HSA_STATUS_SUCCESS; 335 } 336 337 hsa_region_global_flag_t flags; 338 hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags); 339 if (flags & HSA_REGION_GLOBAL_FLAG_KERNARG) { 340 hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data); 341 *ret = region; 342 return HSA_STATUS_INFO_BREAK; 343 } 344 345 return HSA_STATUS_SUCCESS; 346 } 347 348 static hsa_status_t init_compute_and_memory() { 349 hsa_status_t err; 350 351 /* Iterate over the agents and pick the gpu agent */ 352 err = hsa_iterate_agents(get_agent_info, NULL); 353 if (err == HSA_STATUS_INFO_BREAK) { 354 err = HSA_STATUS_SUCCESS; 355 } 356 ErrorCheck(Getting a gpu agent, err); 357 if (err != HSA_STATUS_SUCCESS) 358 return err; 359 360 /* Init all devices or individual device types? */ 361 std::vector<ATLCPUProcessor> &cpu_procs = 362 g_atl_machine.processors<ATLCPUProcessor>(); 363 std::vector<ATLGPUProcessor> &gpu_procs = 364 g_atl_machine.processors<ATLGPUProcessor>(); 365 /* For CPU memory pools, add other devices that can access them directly 366 * or indirectly */ 367 for (auto &cpu_proc : cpu_procs) { 368 for (auto &cpu_mem : cpu_proc.memories()) { 369 hsa_amd_memory_pool_t pool = cpu_mem.memory(); 370 for (auto &gpu_proc : gpu_procs) { 371 hsa_agent_t agent = gpu_proc.agent(); 372 hsa_amd_memory_pool_access_t access; 373 hsa_amd_agent_memory_pool_get_info( 374 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 375 if (access != 0) { 376 // this means not NEVER, but could be YES or NO 377 // add this memory pool to the proc 378 gpu_proc.addMemory(cpu_mem); 379 } 380 } 381 } 382 } 383 384 /* FIXME: are the below combinations of procs and memory pools needed? 385 * all to all compare procs with their memory pools and add those memory 386 * pools that are accessible by the target procs */ 387 for (auto &gpu_proc : gpu_procs) { 388 for (auto &gpu_mem : gpu_proc.memories()) { 389 hsa_amd_memory_pool_t pool = gpu_mem.memory(); 390 for (auto &cpu_proc : cpu_procs) { 391 hsa_agent_t agent = cpu_proc.agent(); 392 hsa_amd_memory_pool_access_t access; 393 hsa_amd_agent_memory_pool_get_info( 394 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 395 if (access != 0) { 396 // this means not NEVER, but could be YES or NO 397 // add this memory pool to the proc 398 cpu_proc.addMemory(gpu_mem); 399 } 400 } 401 } 402 } 403 404 g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_CPU] = cpu_procs.size(); 405 g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_GPU] = gpu_procs.size(); 406 407 size_t num_procs = cpu_procs.size() + gpu_procs.size(); 408 // g_atmi_machine.devices = (atmi_device_t *)malloc(num_procs * 409 // sizeof(atmi_device_t)); 410 atmi_device_t *all_devices = reinterpret_cast<atmi_device_t *>( 411 malloc(num_procs * sizeof(atmi_device_t))); 412 int num_iGPUs = 0; 413 int num_dGPUs = 0; 414 for (uint32_t i = 0; i < gpu_procs.size(); i++) { 415 if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU) 416 num_iGPUs++; 417 else 418 num_dGPUs++; 419 } 420 assert(num_iGPUs + num_dGPUs == gpu_procs.size() && 421 "Number of dGPUs and iGPUs do not add up"); 422 DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size()); 423 DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs); 424 DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs); 425 DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size()); 426 427 g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_iGPU] = num_iGPUs; 428 g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_dGPU] = num_dGPUs; 429 430 int cpus_begin = 0; 431 int cpus_end = cpu_procs.size(); 432 int gpus_begin = cpu_procs.size(); 433 int gpus_end = cpu_procs.size() + gpu_procs.size(); 434 g_atmi_machine.devices_by_type[ATMI_DEVTYPE_CPU] = &all_devices[cpus_begin]; 435 g_atmi_machine.devices_by_type[ATMI_DEVTYPE_GPU] = &all_devices[gpus_begin]; 436 g_atmi_machine.devices_by_type[ATMI_DEVTYPE_iGPU] = &all_devices[gpus_begin]; 437 g_atmi_machine.devices_by_type[ATMI_DEVTYPE_dGPU] = &all_devices[gpus_begin]; 438 int proc_index = 0; 439 for (int i = cpus_begin; i < cpus_end; i++) { 440 all_devices[i].type = cpu_procs[proc_index].type(); 441 442 std::vector<ATLMemory> memories = cpu_procs[proc_index].memories(); 443 int fine_memories_size = 0; 444 int coarse_memories_size = 0; 445 DEBUG_PRINT("CPU memory types:\t"); 446 for (auto &memory : memories) { 447 atmi_memtype_t type = memory.type(); 448 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 449 fine_memories_size++; 450 DEBUG_PRINT("Fine\t"); 451 } else { 452 coarse_memories_size++; 453 DEBUG_PRINT("Coarse\t"); 454 } 455 } 456 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 457 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 458 proc_index++; 459 } 460 proc_index = 0; 461 for (int i = gpus_begin; i < gpus_end; i++) { 462 all_devices[i].type = gpu_procs[proc_index].type(); 463 464 std::vector<ATLMemory> memories = gpu_procs[proc_index].memories(); 465 int fine_memories_size = 0; 466 int coarse_memories_size = 0; 467 DEBUG_PRINT("GPU memory types:\t"); 468 for (auto &memory : memories) { 469 atmi_memtype_t type = memory.type(); 470 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 471 fine_memories_size++; 472 DEBUG_PRINT("Fine\t"); 473 } else { 474 coarse_memories_size++; 475 DEBUG_PRINT("Coarse\t"); 476 } 477 } 478 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 479 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 480 proc_index++; 481 } 482 proc_index = 0; 483 atl_cpu_kernarg_region.handle = (uint64_t)-1; 484 if (cpu_procs.size() > 0) { 485 err = hsa_agent_iterate_regions( 486 cpu_procs[0].agent(), get_fine_grained_region, &atl_cpu_kernarg_region); 487 if (err == HSA_STATUS_INFO_BREAK) { 488 err = HSA_STATUS_SUCCESS; 489 } 490 err = (atl_cpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR 491 : HSA_STATUS_SUCCESS; 492 ErrorCheck(Finding a CPU kernarg memory region handle, err); 493 } 494 /* Find a memory region that supports kernel arguments. */ 495 atl_gpu_kernarg_region.handle = (uint64_t)-1; 496 if (gpu_procs.size() > 0) { 497 hsa_agent_iterate_regions(gpu_procs[0].agent(), get_kernarg_memory_region, 498 &atl_gpu_kernarg_region); 499 err = (atl_gpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR 500 : HSA_STATUS_SUCCESS; 501 ErrorCheck(Finding a kernarg memory region, err); 502 } 503 if (num_procs > 0) 504 return HSA_STATUS_SUCCESS; 505 else 506 return HSA_STATUS_ERROR_NOT_INITIALIZED; 507 } 508 509 hsa_status_t init_hsa() { 510 if (atlc.g_hsa_initialized == false) { 511 DEBUG_PRINT("Initializing HSA..."); 512 hsa_status_t err = hsa_init(); 513 ErrorCheck(Initializing the hsa runtime, err); 514 if (err != HSA_STATUS_SUCCESS) 515 return err; 516 517 err = init_compute_and_memory(); 518 if (err != HSA_STATUS_SUCCESS) 519 return err; 520 ErrorCheck(After initializing compute and memory, err); 521 522 int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>(); 523 KernelInfoTable.resize(gpu_count); 524 SymbolInfoTable.resize(gpu_count); 525 for (uint32_t i = 0; i < SymbolInfoTable.size(); i++) 526 SymbolInfoTable[i].clear(); 527 for (uint32_t i = 0; i < KernelInfoTable.size(); i++) 528 KernelInfoTable[i].clear(); 529 atlc.g_hsa_initialized = true; 530 DEBUG_PRINT("done\n"); 531 } 532 return HSA_STATUS_SUCCESS; 533 } 534 535 void init_tasks() { 536 if (atlc.g_tasks_initialized != false) 537 return; 538 std::vector<hsa_agent_t> gpu_agents; 539 int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>(); 540 for (int gpu = 0; gpu < gpu_count; gpu++) { 541 atmi_place_t place = ATMI_PLACE_GPU(0, gpu); 542 ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place); 543 gpu_agents.push_back(proc.agent()); 544 } 545 atlc.g_tasks_initialized = true; 546 } 547 548 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) { 549 #if (ROCM_VERSION_MAJOR >= 3) || \ 550 (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3) 551 if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) { 552 #else 553 if (event->event_type == GPU_MEMORY_FAULT_EVENT) { 554 #endif 555 hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault; 556 // memory_fault.agent 557 // memory_fault.virtual_address 558 // memory_fault.fault_reason_mask 559 // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address); 560 std::stringstream stream; 561 stream << std::hex << (uintptr_t)memory_fault.virtual_address; 562 std::string addr("0x" + stream.str()); 563 564 std::string err_string = "[GPU Memory Error] Addr: " + addr; 565 err_string += " Reason: "; 566 if (!(memory_fault.fault_reason_mask & 0x00111111)) { 567 err_string += "No Idea! "; 568 } else { 569 if (memory_fault.fault_reason_mask & 0x00000001) 570 err_string += "Page not present or supervisor privilege. "; 571 if (memory_fault.fault_reason_mask & 0x00000010) 572 err_string += "Write access to a read-only page. "; 573 if (memory_fault.fault_reason_mask & 0x00000100) 574 err_string += "Execute access to a page marked NX. "; 575 if (memory_fault.fault_reason_mask & 0x00001000) 576 err_string += "Host access only. "; 577 if (memory_fault.fault_reason_mask & 0x00010000) 578 err_string += "ECC failure (if supported by HW). "; 579 if (memory_fault.fault_reason_mask & 0x00100000) 580 err_string += "Can't determine the exact fault address. "; 581 } 582 fprintf(stderr, "%s\n", err_string.c_str()); 583 return HSA_STATUS_ERROR; 584 } 585 return HSA_STATUS_SUCCESS; 586 } 587 588 atmi_status_t atl_init_gpu_context() { 589 if (atlc.struct_initialized == false) 590 atmi_init_context_structs(); 591 if (atlc.g_gpu_initialized != false) 592 return ATMI_STATUS_SUCCESS; 593 594 hsa_status_t err; 595 err = init_hsa(); 596 if (err != HSA_STATUS_SUCCESS) 597 return ATMI_STATUS_ERROR; 598 599 if (context_init_time_init == 0) { 600 clock_gettime(CLOCK_MONOTONIC_RAW, &context_init_time); 601 context_init_time_init = 1; 602 } 603 604 err = hsa_amd_register_system_event_handler(callbackEvent, NULL); 605 ErrorCheck(Registering the system for memory faults, err); 606 607 init_tasks(); 608 atlc.g_gpu_initialized = true; 609 return ATMI_STATUS_SUCCESS; 610 } 611 612 bool isImplicit(KernelArgMD::ValueKind value_kind) { 613 switch (value_kind) { 614 case KernelArgMD::ValueKind::HiddenGlobalOffsetX: 615 case KernelArgMD::ValueKind::HiddenGlobalOffsetY: 616 case KernelArgMD::ValueKind::HiddenGlobalOffsetZ: 617 case KernelArgMD::ValueKind::HiddenNone: 618 case KernelArgMD::ValueKind::HiddenPrintfBuffer: 619 case KernelArgMD::ValueKind::HiddenDefaultQueue: 620 case KernelArgMD::ValueKind::HiddenCompletionAction: 621 case KernelArgMD::ValueKind::HiddenMultiGridSyncArg: 622 case KernelArgMD::ValueKind::HiddenHostcallBuffer: 623 return true; 624 default: 625 return false; 626 } 627 } 628 629 static std::pair<unsigned char *, unsigned char *> 630 find_metadata(void *binary, size_t binSize) { 631 std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr}; 632 633 Elf *e = elf_memory(static_cast<char *>(binary), binSize); 634 if (elf_kind(e) != ELF_K_ELF) { 635 return failure; 636 } 637 638 size_t numpHdrs; 639 if (elf_getphdrnum(e, &numpHdrs) != 0) { 640 return failure; 641 } 642 643 for (size_t i = 0; i < numpHdrs; ++i) { 644 GElf_Phdr pHdr; 645 if (gelf_getphdr(e, i, &pHdr) != &pHdr) { 646 continue; 647 } 648 // Look for the runtime metadata note 649 if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) { 650 // Iterate over the notes in this segment 651 address ptr = (address)binary + pHdr.p_offset; 652 address segmentEnd = ptr + pHdr.p_filesz; 653 654 while (ptr < segmentEnd) { 655 Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr); 656 address name = (address)¬e[1]; 657 658 if (note->n_type == 7 || note->n_type == 8) { 659 return failure; 660 } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ && 661 note->n_namesz == sizeof "AMD" && 662 !memcmp(name, "AMD", note->n_namesz)) { 663 // code object v2 uses yaml metadata, no longer supported 664 return failure; 665 } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ && 666 note->n_namesz == sizeof "AMDGPU" && 667 !memcmp(name, "AMDGPU", note->n_namesz)) { 668 669 // n_descsz = 485 670 // value is padded to 4 byte alignment, may want to move end up to 671 // match 672 size_t offset = sizeof(uint32_t) * 3 /* fields */ 673 + sizeof("AMDGPU") /* name */ 674 + 1 /* padding to 4 byte alignment */; 675 676 // Including the trailing padding means both pointers are 4 bytes 677 // aligned, which may be useful later. 678 unsigned char *metadata_start = (unsigned char *)ptr + offset; 679 unsigned char *metadata_end = 680 metadata_start + core::alignUp(note->n_descsz, 4); 681 return {metadata_start, metadata_end}; 682 } 683 ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) + 684 core::alignUp(note->n_descsz, sizeof(int)); 685 } 686 } 687 } 688 689 return failure; 690 } 691 692 namespace { 693 int map_lookup_array(msgpack::byte_range message, const char *needle, 694 msgpack::byte_range *res, uint64_t *size) { 695 unsigned count = 0; 696 struct s : msgpack::functors_defaults<s> { 697 s(unsigned &count, uint64_t *size) : count(count), size(size) {} 698 unsigned &count; 699 uint64_t *size; 700 const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) { 701 count++; 702 *size = N; 703 return bytes.end; 704 } 705 }; 706 707 msgpack::foreach_map(message, 708 [&](msgpack::byte_range key, msgpack::byte_range value) { 709 if (msgpack::message_is_string(key, needle)) { 710 // If the message is an array, record number of 711 // elements in *size 712 msgpack::handle_msgpack<s>(value, {count, size}); 713 // return the whole array 714 *res = value; 715 } 716 }); 717 // Only claim success if exactly one key/array pair matched 718 return count != 1; 719 } 720 721 int map_lookup_string(msgpack::byte_range message, const char *needle, 722 std::string *res) { 723 unsigned count = 0; 724 struct s : public msgpack::functors_defaults<s> { 725 s(unsigned &count, std::string *res) : count(count), res(res) {} 726 unsigned &count; 727 std::string *res; 728 void handle_string(size_t N, const unsigned char *str) { 729 count++; 730 *res = std::string(str, str + N); 731 } 732 }; 733 msgpack::foreach_map(message, 734 [&](msgpack::byte_range key, msgpack::byte_range value) { 735 if (msgpack::message_is_string(key, needle)) { 736 msgpack::handle_msgpack<s>(value, {count, res}); 737 } 738 }); 739 return count != 1; 740 } 741 742 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle, 743 uint64_t *res) { 744 unsigned count = 0; 745 msgpack::foreach_map(message, 746 [&](msgpack::byte_range key, msgpack::byte_range value) { 747 if (msgpack::message_is_string(key, needle)) { 748 msgpack::foronly_unsigned(value, [&](uint64_t x) { 749 count++; 750 *res = x; 751 }); 752 } 753 }); 754 return count != 1; 755 } 756 757 int array_lookup_element(msgpack::byte_range message, uint64_t elt, 758 msgpack::byte_range *res) { 759 int rc = 1; 760 uint64_t i = 0; 761 msgpack::foreach_array(message, [&](msgpack::byte_range value) { 762 if (i == elt) { 763 *res = value; 764 rc = 0; 765 } 766 i++; 767 }); 768 return rc; 769 } 770 771 int populate_kernelArgMD(msgpack::byte_range args_element, 772 KernelArgMD *kernelarg) { 773 using namespace msgpack; 774 int error = 0; 775 foreach_map(args_element, [&](byte_range key, byte_range value) -> void { 776 if (message_is_string(key, ".name")) { 777 foronly_string(value, [&](size_t N, const unsigned char *str) { 778 kernelarg->name_ = std::string(str, str + N); 779 }); 780 } else if (message_is_string(key, ".type_name")) { 781 foronly_string(value, [&](size_t N, const unsigned char *str) { 782 kernelarg->typeName_ = std::string(str, str + N); 783 }); 784 } else if (message_is_string(key, ".size")) { 785 foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; }); 786 } else if (message_is_string(key, ".offset")) { 787 foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; }); 788 } else if (message_is_string(key, ".value_kind")) { 789 foronly_string(value, [&](size_t N, const unsigned char *str) { 790 std::string s = std::string(str, str + N); 791 auto itValueKind = ArgValueKind.find(s); 792 if (itValueKind != ArgValueKind.end()) { 793 kernelarg->valueKind_ = itValueKind->second; 794 } 795 }); 796 } 797 }); 798 return error; 799 } 800 } // namespace 801 802 static hsa_status_t get_code_object_custom_metadata(void *binary, 803 size_t binSize, int gpu) { 804 // parse code object with different keys from v2 805 // also, the kernel name is not the same as the symbol name -- so a 806 // symbol->name map is needed 807 808 std::pair<unsigned char *, unsigned char *> metadata = 809 find_metadata(binary, binSize); 810 if (!metadata.first) { 811 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 812 } 813 814 uint64_t kernelsSize = 0; 815 int msgpack_errors = 0; 816 msgpack::byte_range kernel_array; 817 msgpack_errors = 818 map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels", 819 &kernel_array, &kernelsSize); 820 msgpackErrorCheck(kernels lookup in program metadata, msgpack_errors); 821 822 for (size_t i = 0; i < kernelsSize; i++) { 823 assert(msgpack_errors == 0); 824 std::string kernelName; 825 std::string symbolName; 826 827 msgpack::byte_range element; 828 msgpack_errors += array_lookup_element(kernel_array, i, &element); 829 msgpackErrorCheck(element lookup in kernel metadata, msgpack_errors); 830 831 msgpack_errors += map_lookup_string(element, ".name", &kernelName); 832 msgpack_errors += map_lookup_string(element, ".symbol", &symbolName); 833 msgpackErrorCheck(strings lookup in kernel metadata, msgpack_errors); 834 835 atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}}; 836 837 uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 838 msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count); 839 msgpackErrorCheck(sgpr count metadata lookup in kernel metadata, 840 msgpack_errors); 841 info.sgpr_count = sgpr_count; 842 843 msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count); 844 msgpackErrorCheck(vgpr count metadata lookup in kernel metadata, 845 msgpack_errors); 846 info.vgpr_count = vgpr_count; 847 848 msgpack_errors += 849 map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count); 850 msgpackErrorCheck(sgpr spill count metadata lookup in kernel metadata, 851 msgpack_errors); 852 info.sgpr_spill_count = sgpr_spill_count; 853 854 msgpack_errors += 855 map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count); 856 msgpackErrorCheck(vgpr spill count metadata lookup in kernel metadata, 857 msgpack_errors); 858 info.vgpr_spill_count = vgpr_spill_count; 859 860 size_t kernel_explicit_args_size = 0; 861 uint64_t kernel_segment_size; 862 msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size", 863 &kernel_segment_size); 864 msgpackErrorCheck(kernarg segment size metadata lookup in kernel metadata, 865 msgpack_errors); 866 867 // create a map from symbol to name 868 DEBUG_PRINT("Kernel symbol %s; Name: %s; Size: %lu\n", symbolName.c_str(), 869 kernelName.c_str(), kernel_segment_size); 870 KernelNameMap[symbolName] = kernelName; 871 872 bool hasHiddenArgs = false; 873 if (kernel_segment_size > 0) { 874 uint64_t argsSize; 875 size_t offset = 0; 876 877 msgpack::byte_range args_array; 878 msgpack_errors += 879 map_lookup_array(element, ".args", &args_array, &argsSize); 880 msgpackErrorCheck(kernel args metadata lookup in kernel metadata, 881 msgpack_errors); 882 883 info.num_args = argsSize; 884 885 for (size_t i = 0; i < argsSize; ++i) { 886 KernelArgMD lcArg; 887 888 msgpack::byte_range args_element; 889 msgpack_errors += array_lookup_element(args_array, i, &args_element); 890 msgpackErrorCheck(iterate args map in kernel args metadata, 891 msgpack_errors); 892 893 msgpack_errors += populate_kernelArgMD(args_element, &lcArg); 894 msgpackErrorCheck(iterate args map in kernel args metadata, 895 msgpack_errors); 896 897 // populate info with sizes and offsets 898 info.arg_sizes.push_back(lcArg.size_); 899 // v3 has offset field and not align field 900 size_t new_offset = lcArg.offset_; 901 size_t padding = new_offset - offset; 902 offset = new_offset; 903 info.arg_offsets.push_back(lcArg.offset_); 904 DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), 905 lcArg.size_, lcArg.offset_); 906 offset += lcArg.size_; 907 908 // check if the arg is a hidden/implicit arg 909 // this logic assumes that all hidden args are 8-byte aligned 910 if (!isImplicit(lcArg.valueKind_)) { 911 kernel_explicit_args_size += lcArg.size_; 912 } else { 913 hasHiddenArgs = true; 914 } 915 kernel_explicit_args_size += padding; 916 } 917 } 918 919 // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but 920 // in ATMI, do not count the compiler set implicit args, but set your own 921 // implicit args by discounting the compiler set implicit args 922 info.kernel_segment_size = 923 (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) + 924 sizeof(atmi_implicit_args_t); 925 DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(), 926 kernel_segment_size, info.kernel_segment_size); 927 928 // kernel received, now add it to the kernel info table 929 KernelInfoTable[gpu][kernelName] = info; 930 } 931 932 return HSA_STATUS_SUCCESS; 933 } 934 935 static hsa_status_t populate_InfoTables(hsa_executable_t executable, 936 hsa_executable_symbol_t symbol, 937 void *data) { 938 int gpu = *static_cast<int *>(data); 939 hsa_symbol_kind_t type; 940 941 uint32_t name_length; 942 hsa_status_t err; 943 err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE, 944 &type); 945 ErrorCheck(Symbol info extraction, err); 946 DEBUG_PRINT("Exec Symbol type: %d\n", type); 947 if (type == HSA_SYMBOL_KIND_KERNEL) { 948 err = hsa_executable_symbol_get_info( 949 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 950 ErrorCheck(Symbol info extraction, err); 951 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 952 err = hsa_executable_symbol_get_info(symbol, 953 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 954 ErrorCheck(Symbol info extraction, err); 955 name[name_length] = 0; 956 957 if (KernelNameMap.find(std::string(name)) == KernelNameMap.end()) { 958 // did not find kernel name in the kernel map; this can happen only 959 // if the ROCr API for getting symbol info (name) is different from 960 // the comgr method of getting symbol info 961 ErrorCheck(Invalid kernel name, HSA_STATUS_ERROR_INVALID_CODE_OBJECT); 962 } 963 atl_kernel_info_t info; 964 std::string kernelName = KernelNameMap[std::string(name)]; 965 // by now, the kernel info table should already have an entry 966 // because the non-ROCr custom code object parsing is called before 967 // iterating over the code object symbols using ROCr 968 if (KernelInfoTable[gpu].find(kernelName) == KernelInfoTable[gpu].end()) { 969 ErrorCheck(Finding the entry kernel info table, 970 HSA_STATUS_ERROR_INVALID_CODE_OBJECT); 971 } 972 // found, so assign and update 973 info = KernelInfoTable[gpu][kernelName]; 974 975 /* Extract dispatch information from the symbol */ 976 err = hsa_executable_symbol_get_info( 977 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, 978 &(info.kernel_object)); 979 ErrorCheck(Extracting the symbol from the executable, err); 980 err = hsa_executable_symbol_get_info( 981 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, 982 &(info.group_segment_size)); 983 ErrorCheck(Extracting the group segment size from the executable, err); 984 err = hsa_executable_symbol_get_info( 985 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, 986 &(info.private_segment_size)); 987 ErrorCheck(Extracting the private segment from the executable, err); 988 989 DEBUG_PRINT( 990 "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes " 991 "kernarg\n", 992 kernelName.c_str(), info.kernel_object, info.group_segment_size, 993 info.private_segment_size, info.kernel_segment_size); 994 995 // assign it back to the kernel info table 996 KernelInfoTable[gpu][kernelName] = info; 997 free(name); 998 } else if (type == HSA_SYMBOL_KIND_VARIABLE) { 999 err = hsa_executable_symbol_get_info( 1000 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 1001 ErrorCheck(Symbol info extraction, err); 1002 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 1003 err = hsa_executable_symbol_get_info(symbol, 1004 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 1005 ErrorCheck(Symbol info extraction, err); 1006 name[name_length] = 0; 1007 1008 atl_symbol_info_t info; 1009 1010 err = hsa_executable_symbol_get_info( 1011 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr)); 1012 ErrorCheck(Symbol info address extraction, err); 1013 1014 err = hsa_executable_symbol_get_info( 1015 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size)); 1016 ErrorCheck(Symbol info size extraction, err); 1017 1018 atmi_mem_place_t place = ATMI_MEM_PLACE(ATMI_DEVTYPE_GPU, gpu, 0); 1019 DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, 1020 info.size); 1021 register_allocation(reinterpret_cast<void *>(info.addr), (size_t)info.size, 1022 place); 1023 SymbolInfoTable[gpu][std::string(name)] = info; 1024 if (strcmp(name, "needs_hostcall_buffer") == 0) 1025 g_atmi_hostcall_required = true; 1026 free(name); 1027 } else { 1028 DEBUG_PRINT("Symbol is an indirect function\n"); 1029 } 1030 return HSA_STATUS_SUCCESS; 1031 } 1032 1033 atmi_status_t Runtime::RegisterModuleFromMemory( 1034 void *module_bytes, size_t module_size, atmi_place_t place, 1035 atmi_status_t (*on_deserialized_data)(void *data, size_t size, 1036 void *cb_state), 1037 void *cb_state) { 1038 hsa_status_t err; 1039 int gpu = place.device_id; 1040 assert(gpu >= 0); 1041 1042 DEBUG_PRINT("Trying to load module to GPU-%d\n", gpu); 1043 ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place); 1044 hsa_agent_t agent = proc.agent(); 1045 hsa_executable_t executable = {0}; 1046 hsa_profile_t agent_profile; 1047 1048 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile); 1049 ErrorCheck(Query the agent profile, err); 1050 // FIXME: Assume that every profile is FULL until we understand how to build 1051 // GCN with base profile 1052 agent_profile = HSA_PROFILE_FULL; 1053 /* Create the empty executable. */ 1054 err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "", 1055 &executable); 1056 ErrorCheck(Create the executable, err); 1057 1058 bool module_load_success = false; 1059 do // Existing control flow used continue, preserve that for this patch 1060 { 1061 { 1062 // Some metadata info is not available through ROCr API, so use custom 1063 // code object metadata parsing to collect such metadata info 1064 1065 err = get_code_object_custom_metadata(module_bytes, module_size, gpu); 1066 ErrorCheckAndContinue(Getting custom code object metadata, err); 1067 1068 // Deserialize code object. 1069 hsa_code_object_t code_object = {0}; 1070 err = hsa_code_object_deserialize(module_bytes, module_size, NULL, 1071 &code_object); 1072 ErrorCheckAndContinue(Code Object Deserialization, err); 1073 assert(0 != code_object.handle); 1074 1075 // Mutating the device image here avoids another allocation & memcpy 1076 void *code_object_alloc_data = 1077 reinterpret_cast<void *>(code_object.handle); 1078 atmi_status_t atmi_err = 1079 on_deserialized_data(code_object_alloc_data, module_size, cb_state); 1080 ATMIErrorCheck(Error in deserialized_data callback, atmi_err); 1081 1082 /* Load the code object. */ 1083 err = 1084 hsa_executable_load_code_object(executable, agent, code_object, NULL); 1085 ErrorCheckAndContinue(Loading the code object, err); 1086 1087 // cannot iterate over symbols until executable is frozen 1088 } 1089 module_load_success = true; 1090 } while (0); 1091 DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success); 1092 if (module_load_success) { 1093 /* Freeze the executable; it can now be queried for symbols. */ 1094 err = hsa_executable_freeze(executable, ""); 1095 ErrorCheck(Freeze the executable, err); 1096 1097 err = hsa_executable_iterate_symbols(executable, populate_InfoTables, 1098 static_cast<void *>(&gpu)); 1099 ErrorCheck(Iterating over symbols for execuatable, err); 1100 1101 // save the executable and destroy during finalize 1102 g_executables.push_back(executable); 1103 return ATMI_STATUS_SUCCESS; 1104 } else { 1105 return ATMI_STATUS_ERROR; 1106 } 1107 } 1108 1109 } // namespace core 1110