1 /*===--------------------------------------------------------------------------
2  *              ATMI (Asynchronous Task and Memory Interface)
3  *
4  * This file is distributed under the MIT License. See LICENSE.txt for details.
5  *===------------------------------------------------------------------------*/
6 #include <gelf.h>
7 #include <libelf.h>
8 
9 #include <cassert>
10 #include <fstream>
11 #include <iomanip>
12 #include <set>
13 #include <sstream>
14 #include <string>
15 
16 #include "internal.h"
17 #include "machine.h"
18 #include "rt.h"
19 
20 #include "msgpack.h"
21 
22 namespace hsa {
23 // Wrap HSA iterate API in a shim that allows passing general callables
24 template <typename C>
25 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) {
26   auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol,
27               void *data) -> hsa_status_t {
28     C *unwrapped = static_cast<C *>(data);
29     return (*unwrapped)(executable, symbol);
30   };
31   return hsa_executable_iterate_symbols(executable, L,
32                                         static_cast<void *>(&cb));
33 }
34 } // namespace hsa
35 
36 typedef unsigned char *address;
37 /*
38  * Note descriptors.
39  */
40 typedef struct {
41   uint32_t n_namesz; /* Length of note's name. */
42   uint32_t n_descsz; /* Length of note's value. */
43   uint32_t n_type;   /* Type of note. */
44   // then name
45   // then padding, optional
46   // then desc, at 4 byte alignment (not 8, despite being elf64)
47 } Elf_Note;
48 
49 // The following include file and following structs/enums
50 // have been replicated on a per-use basis below. For example,
51 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields,
52 // but we may care only about kernargSegmentSize_ for now, so
53 // we just include that field in our KernelMD implementation. We
54 // chose this approach to replicate in order to avoid forcing
55 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime.
56 // #include "llvm/Support/AMDGPUMetadata.h"
57 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD;
58 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD;
59 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD;
60 // using llvm::AMDGPU::HSAMD::AccessQualifier;
61 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier;
62 // using llvm::AMDGPU::HSAMD::ValueKind;
63 // using llvm::AMDGPU::HSAMD::ValueType;
64 
65 class KernelArgMD {
66 public:
67   enum class ValueKind {
68     HiddenGlobalOffsetX,
69     HiddenGlobalOffsetY,
70     HiddenGlobalOffsetZ,
71     HiddenNone,
72     HiddenPrintfBuffer,
73     HiddenDefaultQueue,
74     HiddenCompletionAction,
75     HiddenMultiGridSyncArg,
76     HiddenHostcallBuffer,
77     Unknown
78   };
79 
80   KernelArgMD()
81       : name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
82         align_(0), valueKind_(ValueKind::Unknown) {}
83 
84   // fields
85   std::string name_;
86   std::string typeName_;
87   uint32_t size_;
88   uint32_t offset_;
89   uint32_t align_;
90   ValueKind valueKind_;
91 };
92 
93 class KernelMD {
94 public:
95   KernelMD() : kernargSegmentSize_(0ull) {}
96 
97   // fields
98   uint64_t kernargSegmentSize_;
99 };
100 
101 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
102     //    Including only those fields that are relevant to the runtime.
103     //    {"ByValue", KernelArgMD::ValueKind::ByValue},
104     //    {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer},
105     //    {"DynamicSharedPointer",
106     //    KernelArgMD::ValueKind::DynamicSharedPointer},
107     //    {"Sampler", KernelArgMD::ValueKind::Sampler},
108     //    {"Image", KernelArgMD::ValueKind::Image},
109     //    {"Pipe", KernelArgMD::ValueKind::Pipe},
110     //    {"Queue", KernelArgMD::ValueKind::Queue},
111     {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
112     {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
113     {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
114     {"HiddenNone", KernelArgMD::ValueKind::HiddenNone},
115     {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
116     {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue},
117     {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction},
118     {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
119     {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
120     // v3
121     //    {"by_value", KernelArgMD::ValueKind::ByValue},
122     //    {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
123     //    {"dynamic_shared_pointer",
124     //    KernelArgMD::ValueKind::DynamicSharedPointer},
125     //    {"sampler", KernelArgMD::ValueKind::Sampler},
126     //    {"image", KernelArgMD::ValueKind::Image},
127     //    {"pipe", KernelArgMD::ValueKind::Pipe},
128     //    {"queue", KernelArgMD::ValueKind::Queue},
129     {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
130     {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
131     {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
132     {"hidden_none", KernelArgMD::ValueKind::HiddenNone},
133     {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
134     {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
135     {"hidden_completion_action",
136      KernelArgMD::ValueKind::HiddenCompletionAction},
137     {"hidden_multigrid_sync_arg",
138      KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
139     {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
140 };
141 
142 ATLMachine g_atl_machine;
143 
144 namespace core {
145 
146 // Implement memory_pool iteration function
147 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,
148                                          void *data) {
149   ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data);
150   hsa_status_t err = HSA_STATUS_SUCCESS;
151   // Check if the memory_pool is allowed to allocate, i.e. do not return group
152   // memory
153   bool alloc_allowed = false;
154   err = hsa_amd_memory_pool_get_info(
155       memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
156       &alloc_allowed);
157   if (err != HSA_STATUS_SUCCESS) {
158     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
159            "Alloc allowed in memory pool check", get_error_string(err));
160     return err;
161   }
162   if (alloc_allowed) {
163     uint32_t global_flag = 0;
164     err = hsa_amd_memory_pool_get_info(
165         memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag);
166     if (err != HSA_STATUS_SUCCESS) {
167       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
168              "Get memory pool info", get_error_string(err));
169       return err;
170     }
171     if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) {
172       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED);
173       proc->addMemory(new_mem);
174     } else {
175       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED);
176       proc->addMemory(new_mem);
177     }
178   }
179 
180   return err;
181 }
182 
183 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) {
184   hsa_status_t err = HSA_STATUS_SUCCESS;
185   hsa_device_type_t device_type;
186   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
187   if (err != HSA_STATUS_SUCCESS) {
188     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
189            "Get device type info", get_error_string(err));
190     return err;
191   }
192   switch (device_type) {
193   case HSA_DEVICE_TYPE_CPU: {
194     ATLCPUProcessor new_proc(agent);
195     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
196                                              &new_proc);
197     if (err != HSA_STATUS_SUCCESS) {
198       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
199              "Iterate all memory pools", get_error_string(err));
200       return err;
201     }
202     g_atl_machine.addProcessor(new_proc);
203   } break;
204   case HSA_DEVICE_TYPE_GPU: {
205     hsa_profile_t profile;
206     err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile);
207     if (err != HSA_STATUS_SUCCESS) {
208       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
209              "Query the agent profile", get_error_string(err));
210       return err;
211     }
212     atmi_devtype_t gpu_type;
213     gpu_type =
214         (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU;
215     ATLGPUProcessor new_proc(agent, gpu_type);
216     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
217                                              &new_proc);
218     if (err != HSA_STATUS_SUCCESS) {
219       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
220              "Iterate all memory pools", get_error_string(err));
221       return err;
222     }
223     g_atl_machine.addProcessor(new_proc);
224   } break;
225   case HSA_DEVICE_TYPE_DSP: {
226     err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
227   } break;
228   }
229 
230   return err;
231 }
232 
233 static hsa_status_t init_compute_and_memory() {
234   hsa_status_t err;
235 
236   /* Iterate over the agents and pick the gpu agent */
237   err = hsa_iterate_agents(get_agent_info, NULL);
238   if (err == HSA_STATUS_INFO_BREAK) {
239     err = HSA_STATUS_SUCCESS;
240   }
241   if (err != HSA_STATUS_SUCCESS) {
242     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent",
243            get_error_string(err));
244     return err;
245   }
246 
247   /* Init all devices or individual device types? */
248   std::vector<ATLCPUProcessor> &cpu_procs =
249       g_atl_machine.processors<ATLCPUProcessor>();
250   std::vector<ATLGPUProcessor> &gpu_procs =
251       g_atl_machine.processors<ATLGPUProcessor>();
252   /* For CPU memory pools, add other devices that can access them directly
253    * or indirectly */
254   for (auto &cpu_proc : cpu_procs) {
255     for (auto &cpu_mem : cpu_proc.memories()) {
256       hsa_amd_memory_pool_t pool = cpu_mem.memory();
257       for (auto &gpu_proc : gpu_procs) {
258         hsa_agent_t agent = gpu_proc.agent();
259         hsa_amd_memory_pool_access_t access;
260         hsa_amd_agent_memory_pool_get_info(
261             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
262         if (access != 0) {
263           // this means not NEVER, but could be YES or NO
264           // add this memory pool to the proc
265           gpu_proc.addMemory(cpu_mem);
266         }
267       }
268     }
269   }
270 
271   /* FIXME: are the below combinations of procs and memory pools needed?
272    * all to all compare procs with their memory pools and add those memory
273    * pools that are accessible by the target procs */
274   for (auto &gpu_proc : gpu_procs) {
275     for (auto &gpu_mem : gpu_proc.memories()) {
276       hsa_amd_memory_pool_t pool = gpu_mem.memory();
277       for (auto &cpu_proc : cpu_procs) {
278         hsa_agent_t agent = cpu_proc.agent();
279         hsa_amd_memory_pool_access_t access;
280         hsa_amd_agent_memory_pool_get_info(
281             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
282         if (access != 0) {
283           // this means not NEVER, but could be YES or NO
284           // add this memory pool to the proc
285           cpu_proc.addMemory(gpu_mem);
286         }
287       }
288     }
289   }
290 
291   size_t num_procs = cpu_procs.size() + gpu_procs.size();
292   int num_iGPUs = 0;
293   int num_dGPUs = 0;
294   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
295     if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU)
296       num_iGPUs++;
297     else
298       num_dGPUs++;
299   }
300   assert(num_iGPUs + num_dGPUs == gpu_procs.size() &&
301          "Number of dGPUs and iGPUs do not add up");
302   DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size());
303   DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs);
304   DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs);
305   DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size());
306 
307   int cpus_begin = 0;
308   int cpus_end = cpu_procs.size();
309   int gpus_begin = cpu_procs.size();
310   int gpus_end = cpu_procs.size() + gpu_procs.size();
311   int proc_index = 0;
312   for (int i = cpus_begin; i < cpus_end; i++) {
313     std::vector<ATLMemory> memories = cpu_procs[proc_index].memories();
314     int fine_memories_size = 0;
315     int coarse_memories_size = 0;
316     DEBUG_PRINT("CPU memory types:\t");
317     for (auto &memory : memories) {
318       atmi_memtype_t type = memory.type();
319       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
320         fine_memories_size++;
321         DEBUG_PRINT("Fine\t");
322       } else {
323         coarse_memories_size++;
324         DEBUG_PRINT("Coarse\t");
325       }
326     }
327     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
328     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
329     proc_index++;
330   }
331   proc_index = 0;
332   for (int i = gpus_begin; i < gpus_end; i++) {
333     std::vector<ATLMemory> memories = gpu_procs[proc_index].memories();
334     int fine_memories_size = 0;
335     int coarse_memories_size = 0;
336     DEBUG_PRINT("GPU memory types:\t");
337     for (auto &memory : memories) {
338       atmi_memtype_t type = memory.type();
339       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
340         fine_memories_size++;
341         DEBUG_PRINT("Fine\t");
342       } else {
343         coarse_memories_size++;
344         DEBUG_PRINT("Coarse\t");
345       }
346     }
347     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
348     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
349     proc_index++;
350   }
351   if (num_procs > 0)
352     return HSA_STATUS_SUCCESS;
353   else
354     return HSA_STATUS_ERROR_NOT_INITIALIZED;
355 }
356 
357 hsa_status_t init_hsa() {
358   DEBUG_PRINT("Initializing HSA...");
359   hsa_status_t err = hsa_init();
360   if (err != HSA_STATUS_SUCCESS) {
361     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
362            "Initializing the hsa runtime", get_error_string(err));
363     return err;
364   }
365   if (err != HSA_STATUS_SUCCESS)
366     return err;
367 
368   err = init_compute_and_memory();
369   if (err != HSA_STATUS_SUCCESS)
370     return err;
371   if (err != HSA_STATUS_SUCCESS) {
372     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
373            "After initializing compute and memory", get_error_string(err));
374     return err;
375   }
376 
377   DEBUG_PRINT("done\n");
378   return HSA_STATUS_SUCCESS;
379 }
380 
381 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
382 #if (ROCM_VERSION_MAJOR >= 3) ||                                               \
383     (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3)
384   if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
385 #else
386   if (event->event_type == GPU_MEMORY_FAULT_EVENT) {
387 #endif
388     hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
389     // memory_fault.agent
390     // memory_fault.virtual_address
391     // memory_fault.fault_reason_mask
392     // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
393     std::stringstream stream;
394     stream << std::hex << (uintptr_t)memory_fault.virtual_address;
395     std::string addr("0x" + stream.str());
396 
397     std::string err_string = "[GPU Memory Error] Addr: " + addr;
398     err_string += " Reason: ";
399     if (!(memory_fault.fault_reason_mask & 0x00111111)) {
400       err_string += "No Idea! ";
401     } else {
402       if (memory_fault.fault_reason_mask & 0x00000001)
403         err_string += "Page not present or supervisor privilege. ";
404       if (memory_fault.fault_reason_mask & 0x00000010)
405         err_string += "Write access to a read-only page. ";
406       if (memory_fault.fault_reason_mask & 0x00000100)
407         err_string += "Execute access to a page marked NX. ";
408       if (memory_fault.fault_reason_mask & 0x00001000)
409         err_string += "Host access only. ";
410       if (memory_fault.fault_reason_mask & 0x00010000)
411         err_string += "ECC failure (if supported by HW). ";
412       if (memory_fault.fault_reason_mask & 0x00100000)
413         err_string += "Can't determine the exact fault address. ";
414     }
415     fprintf(stderr, "%s\n", err_string.c_str());
416     return HSA_STATUS_ERROR;
417   }
418   return HSA_STATUS_SUCCESS;
419 }
420 
421 hsa_status_t atl_init_gpu_context() {
422   hsa_status_t err;
423   err = init_hsa();
424   if (err != HSA_STATUS_SUCCESS)
425     return HSA_STATUS_ERROR;
426 
427   err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
428   if (err != HSA_STATUS_SUCCESS) {
429     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
430            "Registering the system for memory faults", get_error_string(err));
431     return HSA_STATUS_ERROR;
432   }
433 
434   return HSA_STATUS_SUCCESS;
435 }
436 
437 static bool isImplicit(KernelArgMD::ValueKind value_kind) {
438   switch (value_kind) {
439   case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
440   case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
441   case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
442   case KernelArgMD::ValueKind::HiddenNone:
443   case KernelArgMD::ValueKind::HiddenPrintfBuffer:
444   case KernelArgMD::ValueKind::HiddenDefaultQueue:
445   case KernelArgMD::ValueKind::HiddenCompletionAction:
446   case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
447   case KernelArgMD::ValueKind::HiddenHostcallBuffer:
448     return true;
449   default:
450     return false;
451   }
452 }
453 
454 static std::pair<unsigned char *, unsigned char *>
455 find_metadata(void *binary, size_t binSize) {
456   std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
457 
458   Elf *e = elf_memory(static_cast<char *>(binary), binSize);
459   if (elf_kind(e) != ELF_K_ELF) {
460     return failure;
461   }
462 
463   size_t numpHdrs;
464   if (elf_getphdrnum(e, &numpHdrs) != 0) {
465     return failure;
466   }
467 
468   for (size_t i = 0; i < numpHdrs; ++i) {
469     GElf_Phdr pHdr;
470     if (gelf_getphdr(e, i, &pHdr) != &pHdr) {
471       continue;
472     }
473     // Look for the runtime metadata note
474     if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
475       // Iterate over the notes in this segment
476       address ptr = (address)binary + pHdr.p_offset;
477       address segmentEnd = ptr + pHdr.p_filesz;
478 
479       while (ptr < segmentEnd) {
480         Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
481         address name = (address)&note[1];
482 
483         if (note->n_type == 7 || note->n_type == 8) {
484           return failure;
485         } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
486                    note->n_namesz == sizeof "AMD" &&
487                    !memcmp(name, "AMD", note->n_namesz)) {
488           // code object v2 uses yaml metadata, no longer supported
489           return failure;
490         } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
491                    note->n_namesz == sizeof "AMDGPU" &&
492                    !memcmp(name, "AMDGPU", note->n_namesz)) {
493 
494           // n_descsz = 485
495           // value is padded to 4 byte alignment, may want to move end up to
496           // match
497           size_t offset = sizeof(uint32_t) * 3 /* fields */
498                           + sizeof("AMDGPU")   /* name */
499                           + 1 /* padding to 4 byte alignment */;
500 
501           // Including the trailing padding means both pointers are 4 bytes
502           // aligned, which may be useful later.
503           unsigned char *metadata_start = (unsigned char *)ptr + offset;
504           unsigned char *metadata_end =
505               metadata_start + core::alignUp(note->n_descsz, 4);
506           return {metadata_start, metadata_end};
507         }
508         ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
509                core::alignUp(note->n_descsz, sizeof(int));
510       }
511     }
512   }
513 
514   return failure;
515 }
516 
517 namespace {
518 int map_lookup_array(msgpack::byte_range message, const char *needle,
519                      msgpack::byte_range *res, uint64_t *size) {
520   unsigned count = 0;
521   struct s : msgpack::functors_defaults<s> {
522     s(unsigned &count, uint64_t *size) : count(count), size(size) {}
523     unsigned &count;
524     uint64_t *size;
525     const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
526       count++;
527       *size = N;
528       return bytes.end;
529     }
530   };
531 
532   msgpack::foreach_map(message,
533                        [&](msgpack::byte_range key, msgpack::byte_range value) {
534                          if (msgpack::message_is_string(key, needle)) {
535                            // If the message is an array, record number of
536                            // elements in *size
537                            msgpack::handle_msgpack<s>(value, {count, size});
538                            // return the whole array
539                            *res = value;
540                          }
541                        });
542   // Only claim success if exactly one key/array pair matched
543   return count != 1;
544 }
545 
546 int map_lookup_string(msgpack::byte_range message, const char *needle,
547                       std::string *res) {
548   unsigned count = 0;
549   struct s : public msgpack::functors_defaults<s> {
550     s(unsigned &count, std::string *res) : count(count), res(res) {}
551     unsigned &count;
552     std::string *res;
553     void handle_string(size_t N, const unsigned char *str) {
554       count++;
555       *res = std::string(str, str + N);
556     }
557   };
558   msgpack::foreach_map(message,
559                        [&](msgpack::byte_range key, msgpack::byte_range value) {
560                          if (msgpack::message_is_string(key, needle)) {
561                            msgpack::handle_msgpack<s>(value, {count, res});
562                          }
563                        });
564   return count != 1;
565 }
566 
567 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
568                         uint64_t *res) {
569   unsigned count = 0;
570   msgpack::foreach_map(message,
571                        [&](msgpack::byte_range key, msgpack::byte_range value) {
572                          if (msgpack::message_is_string(key, needle)) {
573                            msgpack::foronly_unsigned(value, [&](uint64_t x) {
574                              count++;
575                              *res = x;
576                            });
577                          }
578                        });
579   return count != 1;
580 }
581 
582 int array_lookup_element(msgpack::byte_range message, uint64_t elt,
583                          msgpack::byte_range *res) {
584   int rc = 1;
585   uint64_t i = 0;
586   msgpack::foreach_array(message, [&](msgpack::byte_range value) {
587     if (i == elt) {
588       *res = value;
589       rc = 0;
590     }
591     i++;
592   });
593   return rc;
594 }
595 
596 int populate_kernelArgMD(msgpack::byte_range args_element,
597                          KernelArgMD *kernelarg) {
598   using namespace msgpack;
599   int error = 0;
600   foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
601     if (message_is_string(key, ".name")) {
602       foronly_string(value, [&](size_t N, const unsigned char *str) {
603         kernelarg->name_ = std::string(str, str + N);
604       });
605     } else if (message_is_string(key, ".type_name")) {
606       foronly_string(value, [&](size_t N, const unsigned char *str) {
607         kernelarg->typeName_ = std::string(str, str + N);
608       });
609     } else if (message_is_string(key, ".size")) {
610       foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
611     } else if (message_is_string(key, ".offset")) {
612       foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
613     } else if (message_is_string(key, ".value_kind")) {
614       foronly_string(value, [&](size_t N, const unsigned char *str) {
615         std::string s = std::string(str, str + N);
616         auto itValueKind = ArgValueKind.find(s);
617         if (itValueKind != ArgValueKind.end()) {
618           kernelarg->valueKind_ = itValueKind->second;
619         }
620       });
621     }
622   });
623   return error;
624 }
625 } // namespace
626 
627 static hsa_status_t get_code_object_custom_metadata(
628     void *binary, size_t binSize,
629     std::map<std::string, atl_kernel_info_t> &KernelInfoTable) {
630   // parse code object with different keys from v2
631   // also, the kernel name is not the same as the symbol name -- so a
632   // symbol->name map is needed
633 
634   std::pair<unsigned char *, unsigned char *> metadata =
635       find_metadata(binary, binSize);
636   if (!metadata.first) {
637     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
638   }
639 
640   uint64_t kernelsSize = 0;
641   int msgpack_errors = 0;
642   msgpack::byte_range kernel_array;
643   msgpack_errors =
644       map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
645                        &kernel_array, &kernelsSize);
646   if (msgpack_errors != 0) {
647     printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
648            "kernels lookup in program metadata");
649     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
650   }
651 
652   for (size_t i = 0; i < kernelsSize; i++) {
653     assert(msgpack_errors == 0);
654     std::string kernelName;
655     std::string symbolName;
656 
657     msgpack::byte_range element;
658     msgpack_errors += array_lookup_element(kernel_array, i, &element);
659     if (msgpack_errors != 0) {
660       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
661              "element lookup in kernel metadata");
662       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
663     }
664 
665     msgpack_errors += map_lookup_string(element, ".name", &kernelName);
666     msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
667     if (msgpack_errors != 0) {
668       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
669              "strings lookup in kernel metadata");
670       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
671     }
672 
673     // Make sure that kernelName + ".kd" == symbolName
674     if ((kernelName + ".kd") != symbolName) {
675       printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n",
676              __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str());
677       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
678     }
679 
680     atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}};
681 
682     uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
683     msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
684     if (msgpack_errors != 0) {
685       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
686              "sgpr count metadata lookup in kernel metadata");
687       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
688     }
689 
690     info.sgpr_count = sgpr_count;
691 
692     msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
693     if (msgpack_errors != 0) {
694       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
695              "vgpr count metadata lookup in kernel metadata");
696       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
697     }
698 
699     info.vgpr_count = vgpr_count;
700 
701     msgpack_errors +=
702         map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
703     if (msgpack_errors != 0) {
704       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
705              "sgpr spill count metadata lookup in kernel metadata");
706       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
707     }
708 
709     info.sgpr_spill_count = sgpr_spill_count;
710 
711     msgpack_errors +=
712         map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
713     if (msgpack_errors != 0) {
714       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
715              "vgpr spill count metadata lookup in kernel metadata");
716       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
717     }
718 
719     info.vgpr_spill_count = vgpr_spill_count;
720 
721     size_t kernel_explicit_args_size = 0;
722     uint64_t kernel_segment_size;
723     msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
724                                           &kernel_segment_size);
725     if (msgpack_errors != 0) {
726       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
727              "kernarg segment size metadata lookup in kernel metadata");
728       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
729     }
730 
731     bool hasHiddenArgs = false;
732     if (kernel_segment_size > 0) {
733       uint64_t argsSize;
734       size_t offset = 0;
735 
736       msgpack::byte_range args_array;
737       msgpack_errors +=
738           map_lookup_array(element, ".args", &args_array, &argsSize);
739       if (msgpack_errors != 0) {
740         printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
741                "kernel args metadata lookup in kernel metadata");
742         return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
743       }
744 
745       info.num_args = argsSize;
746 
747       for (size_t i = 0; i < argsSize; ++i) {
748         KernelArgMD lcArg;
749 
750         msgpack::byte_range args_element;
751         msgpack_errors += array_lookup_element(args_array, i, &args_element);
752         if (msgpack_errors != 0) {
753           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
754                  "iterate args map in kernel args metadata");
755           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
756         }
757 
758         msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
759         if (msgpack_errors != 0) {
760           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
761                  "iterate args map in kernel args metadata");
762           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
763         }
764         // populate info with sizes and offsets
765         info.arg_sizes.push_back(lcArg.size_);
766         // v3 has offset field and not align field
767         size_t new_offset = lcArg.offset_;
768         size_t padding = new_offset - offset;
769         offset = new_offset;
770         info.arg_offsets.push_back(lcArg.offset_);
771         DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(),
772                     lcArg.size_, lcArg.offset_);
773         offset += lcArg.size_;
774 
775         // check if the arg is a hidden/implicit arg
776         // this logic assumes that all hidden args are 8-byte aligned
777         if (!isImplicit(lcArg.valueKind_)) {
778           kernel_explicit_args_size += lcArg.size_;
779         } else {
780           hasHiddenArgs = true;
781         }
782         kernel_explicit_args_size += padding;
783       }
784     }
785 
786     // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
787     // in ATMI, do not count the compiler set implicit args, but set your own
788     // implicit args by discounting the compiler set implicit args
789     info.kernel_segment_size =
790         (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
791         sizeof(atmi_implicit_args_t);
792     DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
793                 kernel_segment_size, info.kernel_segment_size);
794 
795     // kernel received, now add it to the kernel info table
796     KernelInfoTable[kernelName] = info;
797   }
798 
799   return HSA_STATUS_SUCCESS;
800 }
801 
802 static hsa_status_t
803 populate_InfoTables(hsa_executable_symbol_t symbol,
804                     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
805                     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) {
806   hsa_symbol_kind_t type;
807 
808   uint32_t name_length;
809   hsa_status_t err;
810   err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
811                                        &type);
812   if (err != HSA_STATUS_SUCCESS) {
813     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
814            "Symbol info extraction", get_error_string(err));
815     return err;
816   }
817   DEBUG_PRINT("Exec Symbol type: %d\n", type);
818   if (type == HSA_SYMBOL_KIND_KERNEL) {
819     err = hsa_executable_symbol_get_info(
820         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
821     if (err != HSA_STATUS_SUCCESS) {
822       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
823              "Symbol info extraction", get_error_string(err));
824       return err;
825     }
826     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
827     err = hsa_executable_symbol_get_info(symbol,
828                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
829     if (err != HSA_STATUS_SUCCESS) {
830       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
831              "Symbol info extraction", get_error_string(err));
832       return err;
833     }
834     // remove the suffix .kd from symbol name.
835     name[name_length - 3] = 0;
836 
837     atl_kernel_info_t info;
838     std::string kernelName(name);
839     // by now, the kernel info table should already have an entry
840     // because the non-ROCr custom code object parsing is called before
841     // iterating over the code object symbols using ROCr
842     if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) {
843       if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) {
844         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
845                "Finding the entry kernel info table",
846                get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT));
847         exit(1);
848       }
849     }
850     // found, so assign and update
851     info = KernelInfoTable[kernelName];
852 
853     /* Extract dispatch information from the symbol */
854     err = hsa_executable_symbol_get_info(
855         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
856         &(info.kernel_object));
857     if (err != HSA_STATUS_SUCCESS) {
858       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
859              "Extracting the symbol from the executable",
860              get_error_string(err));
861       return err;
862     }
863     err = hsa_executable_symbol_get_info(
864         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
865         &(info.group_segment_size));
866     if (err != HSA_STATUS_SUCCESS) {
867       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
868              "Extracting the group segment size from the executable",
869              get_error_string(err));
870       return err;
871     }
872     err = hsa_executable_symbol_get_info(
873         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
874         &(info.private_segment_size));
875     if (err != HSA_STATUS_SUCCESS) {
876       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
877              "Extracting the private segment from the executable",
878              get_error_string(err));
879       return err;
880     }
881 
882     DEBUG_PRINT(
883         "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
884         "kernarg\n",
885         kernelName.c_str(), info.kernel_object, info.group_segment_size,
886         info.private_segment_size, info.kernel_segment_size);
887 
888     // assign it back to the kernel info table
889     KernelInfoTable[kernelName] = info;
890     free(name);
891   } else if (type == HSA_SYMBOL_KIND_VARIABLE) {
892     err = hsa_executable_symbol_get_info(
893         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
894     if (err != HSA_STATUS_SUCCESS) {
895       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
896              "Symbol info extraction", get_error_string(err));
897       return err;
898     }
899     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
900     err = hsa_executable_symbol_get_info(symbol,
901                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
902     if (err != HSA_STATUS_SUCCESS) {
903       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
904              "Symbol info extraction", get_error_string(err));
905       return err;
906     }
907     name[name_length] = 0;
908 
909     atl_symbol_info_t info;
910 
911     err = hsa_executable_symbol_get_info(
912         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
913     if (err != HSA_STATUS_SUCCESS) {
914       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
915              "Symbol info address extraction", get_error_string(err));
916       return err;
917     }
918 
919     err = hsa_executable_symbol_get_info(
920         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
921     if (err != HSA_STATUS_SUCCESS) {
922       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
923              "Symbol info size extraction", get_error_string(err));
924       return err;
925     }
926 
927     DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr,
928                 info.size);
929     SymbolInfoTable[std::string(name)] = info;
930     free(name);
931   } else {
932     DEBUG_PRINT("Symbol is an indirect function\n");
933   }
934   return HSA_STATUS_SUCCESS;
935 }
936 
937 hsa_status_t RegisterModuleFromMemory(
938     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
939     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
940     void *module_bytes, size_t module_size, hsa_agent_t agent,
941     hsa_status_t (*on_deserialized_data)(void *data, size_t size,
942                                          void *cb_state),
943     void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
944   hsa_status_t err;
945   hsa_executable_t executable = {0};
946   hsa_profile_t agent_profile;
947 
948   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
949   if (err != HSA_STATUS_SUCCESS) {
950     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
951            "Query the agent profile", get_error_string(err));
952     return HSA_STATUS_ERROR;
953   }
954   // FIXME: Assume that every profile is FULL until we understand how to build
955   // GCN with base profile
956   agent_profile = HSA_PROFILE_FULL;
957   /* Create the empty executable.  */
958   err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
959                               &executable);
960   if (err != HSA_STATUS_SUCCESS) {
961     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
962            "Create the executable", get_error_string(err));
963     return HSA_STATUS_ERROR;
964   }
965 
966   bool module_load_success = false;
967   do // Existing control flow used continue, preserve that for this patch
968   {
969     {
970       // Some metadata info is not available through ROCr API, so use custom
971       // code object metadata parsing to collect such metadata info
972 
973       err = get_code_object_custom_metadata(module_bytes, module_size,
974                                             KernelInfoTable);
975       if (err != HSA_STATUS_SUCCESS) {
976         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
977                     "Getting custom code object metadata",
978                     get_error_string(err));
979         continue;
980       }
981 
982       // Deserialize code object.
983       hsa_code_object_t code_object = {0};
984       err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
985                                         &code_object);
986       if (err != HSA_STATUS_SUCCESS) {
987         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
988                     "Code Object Deserialization", get_error_string(err));
989         continue;
990       }
991       assert(0 != code_object.handle);
992 
993       // Mutating the device image here avoids another allocation & memcpy
994       void *code_object_alloc_data =
995           reinterpret_cast<void *>(code_object.handle);
996       hsa_status_t atmi_err =
997           on_deserialized_data(code_object_alloc_data, module_size, cb_state);
998       if (atmi_err != HSA_STATUS_SUCCESS) {
999         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1000                "Error in deserialized_data callback",
1001                get_error_string(atmi_err));
1002         return atmi_err;
1003       }
1004 
1005       /* Load the code object.  */
1006       err =
1007           hsa_executable_load_code_object(executable, agent, code_object, NULL);
1008       if (err != HSA_STATUS_SUCCESS) {
1009         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1010                     "Loading the code object", get_error_string(err));
1011         continue;
1012       }
1013 
1014       // cannot iterate over symbols until executable is frozen
1015     }
1016     module_load_success = true;
1017   } while (0);
1018   DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success);
1019   if (module_load_success) {
1020     /* Freeze the executable; it can now be queried for symbols.  */
1021     err = hsa_executable_freeze(executable, "");
1022     if (err != HSA_STATUS_SUCCESS) {
1023       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1024              "Freeze the executable", get_error_string(err));
1025       return HSA_STATUS_ERROR;
1026     }
1027 
1028     err = hsa::executable_iterate_symbols(
1029         executable,
1030         [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t {
1031           return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable);
1032         });
1033     if (err != HSA_STATUS_SUCCESS) {
1034       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1035              "Iterating over symbols for execuatable", get_error_string(err));
1036       return HSA_STATUS_ERROR;
1037     }
1038 
1039     // save the executable and destroy during finalize
1040     HSAExecutables.push_back(executable);
1041     return HSA_STATUS_SUCCESS;
1042   } else {
1043     return HSA_STATUS_ERROR;
1044   }
1045 }
1046 
1047 } // namespace core
1048