1 /*===--------------------------------------------------------------------------
2  *              ATMI (Asynchronous Task and Memory Interface)
3  *
4  * This file is distributed under the MIT License. See LICENSE.txt for details.
5  *===------------------------------------------------------------------------*/
6 #include <gelf.h>
7 #include <libelf.h>
8 
9 #include <cassert>
10 #include <cstdarg>
11 #include <fstream>
12 #include <iomanip>
13 #include <iostream>
14 #include <set>
15 #include <string>
16 
17 #include "internal.h"
18 #include "machine.h"
19 #include "rt.h"
20 
21 #include "msgpack.h"
22 
23 namespace hsa {
24 // Wrap HSA iterate API in a shim that allows passing general callables
25 template <typename C>
26 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) {
27   auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol,
28               void *data) -> hsa_status_t {
29     C *unwrapped = static_cast<C *>(data);
30     return (*unwrapped)(executable, symbol);
31   };
32   return hsa_executable_iterate_symbols(executable, L,
33                                         static_cast<void *>(&cb));
34 }
35 } // namespace hsa
36 
37 typedef unsigned char *address;
38 /*
39  * Note descriptors.
40  */
41 typedef struct {
42   uint32_t n_namesz; /* Length of note's name. */
43   uint32_t n_descsz; /* Length of note's value. */
44   uint32_t n_type;   /* Type of note. */
45   // then name
46   // then padding, optional
47   // then desc, at 4 byte alignment (not 8, despite being elf64)
48 } Elf_Note;
49 
50 // The following include file and following structs/enums
51 // have been replicated on a per-use basis below. For example,
52 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields,
53 // but we may care only about kernargSegmentSize_ for now, so
54 // we just include that field in our KernelMD implementation. We
55 // chose this approach to replicate in order to avoid forcing
56 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime.
57 // #include "llvm/Support/AMDGPUMetadata.h"
58 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD;
59 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD;
60 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD;
61 // using llvm::AMDGPU::HSAMD::AccessQualifier;
62 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier;
63 // using llvm::AMDGPU::HSAMD::ValueKind;
64 // using llvm::AMDGPU::HSAMD::ValueType;
65 
66 class KernelArgMD {
67 public:
68   enum class ValueKind {
69     HiddenGlobalOffsetX,
70     HiddenGlobalOffsetY,
71     HiddenGlobalOffsetZ,
72     HiddenNone,
73     HiddenPrintfBuffer,
74     HiddenDefaultQueue,
75     HiddenCompletionAction,
76     HiddenMultiGridSyncArg,
77     HiddenHostcallBuffer,
78     Unknown
79   };
80 
81   KernelArgMD()
82       : name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
83         align_(0), valueKind_(ValueKind::Unknown) {}
84 
85   // fields
86   std::string name_;
87   std::string typeName_;
88   uint32_t size_;
89   uint32_t offset_;
90   uint32_t align_;
91   ValueKind valueKind_;
92 };
93 
94 class KernelMD {
95 public:
96   KernelMD() : kernargSegmentSize_(0ull) {}
97 
98   // fields
99   uint64_t kernargSegmentSize_;
100 };
101 
102 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
103     //    Including only those fields that are relevant to the runtime.
104     //    {"ByValue", KernelArgMD::ValueKind::ByValue},
105     //    {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer},
106     //    {"DynamicSharedPointer",
107     //    KernelArgMD::ValueKind::DynamicSharedPointer},
108     //    {"Sampler", KernelArgMD::ValueKind::Sampler},
109     //    {"Image", KernelArgMD::ValueKind::Image},
110     //    {"Pipe", KernelArgMD::ValueKind::Pipe},
111     //    {"Queue", KernelArgMD::ValueKind::Queue},
112     {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
113     {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
114     {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
115     {"HiddenNone", KernelArgMD::ValueKind::HiddenNone},
116     {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
117     {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue},
118     {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction},
119     {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
120     {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
121     // v3
122     //    {"by_value", KernelArgMD::ValueKind::ByValue},
123     //    {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
124     //    {"dynamic_shared_pointer",
125     //    KernelArgMD::ValueKind::DynamicSharedPointer},
126     //    {"sampler", KernelArgMD::ValueKind::Sampler},
127     //    {"image", KernelArgMD::ValueKind::Image},
128     //    {"pipe", KernelArgMD::ValueKind::Pipe},
129     //    {"queue", KernelArgMD::ValueKind::Queue},
130     {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
131     {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
132     {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
133     {"hidden_none", KernelArgMD::ValueKind::HiddenNone},
134     {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
135     {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
136     {"hidden_completion_action",
137      KernelArgMD::ValueKind::HiddenCompletionAction},
138     {"hidden_multigrid_sync_arg",
139      KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
140     {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
141 };
142 
143 ATLMachine g_atl_machine;
144 
145 std::vector<hsa_amd_memory_pool_t> atl_gpu_kernarg_pools;
146 
147 /*
148    atlc is all internal global values.
149    The structure atl_context_t is defined in atl_internal.h
150    Most references will use the global structure prefix atlc.
151 */
152 atl_context_t atlc = {.struct_initialized = false};
153 
154 namespace core {
155 
156 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) {
157   std::vector<ATLGPUProcessor> &gpu_procs =
158       g_atl_machine.processors<ATLGPUProcessor>();
159   std::vector<hsa_agent_t> agents;
160   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
161     agents.push_back(gpu_procs[i].agent());
162   }
163   return hsa_amd_agents_allow_access(agents.size(), &agents[0], NULL, ptr);
164 }
165 
166 static void atmi_init_context_structs() {
167   atlc.struct_initialized = true; /* This only gets called one time */
168   atlc.g_hsa_initialized = false;
169   atlc.g_gpu_initialized = false;
170   atlc.g_tasks_initialized = false;
171 }
172 
173 // Implement memory_pool iteration function
174 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,
175                                          void *data) {
176   ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data);
177   hsa_status_t err = HSA_STATUS_SUCCESS;
178   // Check if the memory_pool is allowed to allocate, i.e. do not return group
179   // memory
180   bool alloc_allowed = false;
181   err = hsa_amd_memory_pool_get_info(
182       memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
183       &alloc_allowed);
184   if (err != HSA_STATUS_SUCCESS) {
185     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
186            "Alloc allowed in memory pool check", get_error_string(err));
187     return err;
188   }
189   if (alloc_allowed) {
190     uint32_t global_flag = 0;
191     err = hsa_amd_memory_pool_get_info(
192         memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag);
193     if (err != HSA_STATUS_SUCCESS) {
194       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
195              "Get memory pool info", get_error_string(err));
196       return err;
197     }
198     if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) {
199       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED);
200       proc->addMemory(new_mem);
201       if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT & global_flag) {
202         DEBUG_PRINT("GPU kernel args pool handle: %lu\n", memory_pool.handle);
203         atl_gpu_kernarg_pools.push_back(memory_pool);
204       }
205     } else {
206       ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED);
207       proc->addMemory(new_mem);
208     }
209   }
210 
211   return err;
212 }
213 
214 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) {
215   hsa_status_t err = HSA_STATUS_SUCCESS;
216   hsa_device_type_t device_type;
217   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
218   if (err != HSA_STATUS_SUCCESS) {
219     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
220            "Get device type info", get_error_string(err));
221     return err;
222   }
223   switch (device_type) {
224   case HSA_DEVICE_TYPE_CPU: {
225     ATLCPUProcessor new_proc(agent);
226     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
227                                              &new_proc);
228     if (err != HSA_STATUS_SUCCESS) {
229       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
230              "Iterate all memory pools", get_error_string(err));
231       return err;
232     }
233     g_atl_machine.addProcessor(new_proc);
234   } break;
235   case HSA_DEVICE_TYPE_GPU: {
236     hsa_profile_t profile;
237     err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile);
238     if (err != HSA_STATUS_SUCCESS) {
239       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
240              "Query the agent profile", get_error_string(err));
241       return err;
242     }
243     atmi_devtype_t gpu_type;
244     gpu_type =
245         (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU;
246     ATLGPUProcessor new_proc(agent, gpu_type);
247     err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
248                                              &new_proc);
249     if (err != HSA_STATUS_SUCCESS) {
250       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
251              "Iterate all memory pools", get_error_string(err));
252       return err;
253     }
254     g_atl_machine.addProcessor(new_proc);
255   } break;
256   case HSA_DEVICE_TYPE_DSP: {
257     err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
258   } break;
259   }
260 
261   return err;
262 }
263 
264 hsa_status_t get_fine_grained_region(hsa_region_t region, void *data) {
265   hsa_region_segment_t segment;
266   hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
267   if (segment != HSA_REGION_SEGMENT_GLOBAL) {
268     return HSA_STATUS_SUCCESS;
269   }
270   hsa_region_global_flag_t flags;
271   hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
272   if (flags & HSA_REGION_GLOBAL_FLAG_FINE_GRAINED) {
273     hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
274     *ret = region;
275     return HSA_STATUS_INFO_BREAK;
276   }
277   return HSA_STATUS_SUCCESS;
278 }
279 
280 /* Determines if a memory region can be used for kernarg allocations.  */
281 static hsa_status_t get_kernarg_memory_region(hsa_region_t region, void *data) {
282   hsa_region_segment_t segment;
283   hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
284   if (HSA_REGION_SEGMENT_GLOBAL != segment) {
285     return HSA_STATUS_SUCCESS;
286   }
287 
288   hsa_region_global_flag_t flags;
289   hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
290   if (flags & HSA_REGION_GLOBAL_FLAG_KERNARG) {
291     hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
292     *ret = region;
293     return HSA_STATUS_INFO_BREAK;
294   }
295 
296   return HSA_STATUS_SUCCESS;
297 }
298 
299 static hsa_status_t init_compute_and_memory() {
300   hsa_status_t err;
301 
302   /* Iterate over the agents and pick the gpu agent */
303   err = hsa_iterate_agents(get_agent_info, NULL);
304   if (err == HSA_STATUS_INFO_BREAK) {
305     err = HSA_STATUS_SUCCESS;
306   }
307   if (err != HSA_STATUS_SUCCESS) {
308     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent",
309            get_error_string(err));
310     return err;
311   }
312 
313   /* Init all devices or individual device types? */
314   std::vector<ATLCPUProcessor> &cpu_procs =
315       g_atl_machine.processors<ATLCPUProcessor>();
316   std::vector<ATLGPUProcessor> &gpu_procs =
317       g_atl_machine.processors<ATLGPUProcessor>();
318   /* For CPU memory pools, add other devices that can access them directly
319    * or indirectly */
320   for (auto &cpu_proc : cpu_procs) {
321     for (auto &cpu_mem : cpu_proc.memories()) {
322       hsa_amd_memory_pool_t pool = cpu_mem.memory();
323       for (auto &gpu_proc : gpu_procs) {
324         hsa_agent_t agent = gpu_proc.agent();
325         hsa_amd_memory_pool_access_t access;
326         hsa_amd_agent_memory_pool_get_info(
327             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
328         if (access != 0) {
329           // this means not NEVER, but could be YES or NO
330           // add this memory pool to the proc
331           gpu_proc.addMemory(cpu_mem);
332         }
333       }
334     }
335   }
336 
337   /* FIXME: are the below combinations of procs and memory pools needed?
338    * all to all compare procs with their memory pools and add those memory
339    * pools that are accessible by the target procs */
340   for (auto &gpu_proc : gpu_procs) {
341     for (auto &gpu_mem : gpu_proc.memories()) {
342       hsa_amd_memory_pool_t pool = gpu_mem.memory();
343       for (auto &cpu_proc : cpu_procs) {
344         hsa_agent_t agent = cpu_proc.agent();
345         hsa_amd_memory_pool_access_t access;
346         hsa_amd_agent_memory_pool_get_info(
347             agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
348         if (access != 0) {
349           // this means not NEVER, but could be YES or NO
350           // add this memory pool to the proc
351           cpu_proc.addMemory(gpu_mem);
352         }
353       }
354     }
355   }
356 
357   size_t num_procs = cpu_procs.size() + gpu_procs.size();
358   atmi_device_t *all_devices = reinterpret_cast<atmi_device_t *>(
359       malloc(num_procs * sizeof(atmi_device_t)));
360   int num_iGPUs = 0;
361   int num_dGPUs = 0;
362   for (uint32_t i = 0; i < gpu_procs.size(); i++) {
363     if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU)
364       num_iGPUs++;
365     else
366       num_dGPUs++;
367   }
368   assert(num_iGPUs + num_dGPUs == gpu_procs.size() &&
369          "Number of dGPUs and iGPUs do not add up");
370   DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size());
371   DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs);
372   DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs);
373   DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size());
374 
375   int cpus_begin = 0;
376   int cpus_end = cpu_procs.size();
377   int gpus_begin = cpu_procs.size();
378   int gpus_end = cpu_procs.size() + gpu_procs.size();
379   int proc_index = 0;
380   for (int i = cpus_begin; i < cpus_end; i++) {
381     all_devices[i].type = cpu_procs[proc_index].type();
382 
383     std::vector<ATLMemory> memories = cpu_procs[proc_index].memories();
384     int fine_memories_size = 0;
385     int coarse_memories_size = 0;
386     DEBUG_PRINT("CPU memory types:\t");
387     for (auto &memory : memories) {
388       atmi_memtype_t type = memory.type();
389       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
390         fine_memories_size++;
391         DEBUG_PRINT("Fine\t");
392       } else {
393         coarse_memories_size++;
394         DEBUG_PRINT("Coarse\t");
395       }
396     }
397     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
398     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
399     proc_index++;
400   }
401   proc_index = 0;
402   for (int i = gpus_begin; i < gpus_end; i++) {
403     all_devices[i].type = gpu_procs[proc_index].type();
404 
405     std::vector<ATLMemory> memories = gpu_procs[proc_index].memories();
406     int fine_memories_size = 0;
407     int coarse_memories_size = 0;
408     DEBUG_PRINT("GPU memory types:\t");
409     for (auto &memory : memories) {
410       atmi_memtype_t type = memory.type();
411       if (type == ATMI_MEMTYPE_FINE_GRAINED) {
412         fine_memories_size++;
413         DEBUG_PRINT("Fine\t");
414       } else {
415         coarse_memories_size++;
416         DEBUG_PRINT("Coarse\t");
417       }
418     }
419     DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
420     DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
421     proc_index++;
422   }
423   proc_index = 0;
424   hsa_region_t atl_cpu_kernarg_region;
425   atl_cpu_kernarg_region.handle = (uint64_t)-1;
426   if (cpu_procs.size() > 0) {
427     err = hsa_agent_iterate_regions(
428         cpu_procs[0].agent(), get_fine_grained_region, &atl_cpu_kernarg_region);
429     if (err == HSA_STATUS_INFO_BREAK) {
430       err = HSA_STATUS_SUCCESS;
431     }
432     err = (atl_cpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
433                                                           : HSA_STATUS_SUCCESS;
434     if (err != HSA_STATUS_SUCCESS) {
435       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
436              "Finding a CPU kernarg memory region handle",
437              get_error_string(err));
438       return err;
439     }
440   }
441   hsa_region_t atl_gpu_kernarg_region;
442   /* Find a memory region that supports kernel arguments.  */
443   atl_gpu_kernarg_region.handle = (uint64_t)-1;
444   if (gpu_procs.size() > 0) {
445     hsa_agent_iterate_regions(gpu_procs[0].agent(), get_kernarg_memory_region,
446                               &atl_gpu_kernarg_region);
447     err = (atl_gpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
448                                                           : HSA_STATUS_SUCCESS;
449     if (err != HSA_STATUS_SUCCESS) {
450       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
451              "Finding a kernarg memory region", get_error_string(err));
452       return err;
453     }
454   }
455   if (num_procs > 0)
456     return HSA_STATUS_SUCCESS;
457   else
458     return HSA_STATUS_ERROR_NOT_INITIALIZED;
459 }
460 
461 hsa_status_t init_hsa() {
462   if (atlc.g_hsa_initialized == false) {
463     DEBUG_PRINT("Initializing HSA...");
464     hsa_status_t err = hsa_init();
465     if (err != HSA_STATUS_SUCCESS) {
466       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
467              "Initializing the hsa runtime", get_error_string(err));
468       return err;
469     }
470     if (err != HSA_STATUS_SUCCESS)
471       return err;
472 
473     err = init_compute_and_memory();
474     if (err != HSA_STATUS_SUCCESS)
475       return err;
476     if (err != HSA_STATUS_SUCCESS) {
477       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
478              "After initializing compute and memory", get_error_string(err));
479       return err;
480     }
481 
482     atlc.g_hsa_initialized = true;
483     DEBUG_PRINT("done\n");
484   }
485   return HSA_STATUS_SUCCESS;
486 }
487 
488 void init_tasks() {
489   if (atlc.g_tasks_initialized != false)
490     return;
491   std::vector<hsa_agent_t> gpu_agents;
492   int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>();
493   for (int gpu = 0; gpu < gpu_count; gpu++) {
494     ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(gpu);
495     gpu_agents.push_back(proc.agent());
496   }
497   atlc.g_tasks_initialized = true;
498 }
499 
500 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
501 #if (ROCM_VERSION_MAJOR >= 3) ||                                               \
502     (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3)
503   if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
504 #else
505   if (event->event_type == GPU_MEMORY_FAULT_EVENT) {
506 #endif
507     hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
508     // memory_fault.agent
509     // memory_fault.virtual_address
510     // memory_fault.fault_reason_mask
511     // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
512     std::stringstream stream;
513     stream << std::hex << (uintptr_t)memory_fault.virtual_address;
514     std::string addr("0x" + stream.str());
515 
516     std::string err_string = "[GPU Memory Error] Addr: " + addr;
517     err_string += " Reason: ";
518     if (!(memory_fault.fault_reason_mask & 0x00111111)) {
519       err_string += "No Idea! ";
520     } else {
521       if (memory_fault.fault_reason_mask & 0x00000001)
522         err_string += "Page not present or supervisor privilege. ";
523       if (memory_fault.fault_reason_mask & 0x00000010)
524         err_string += "Write access to a read-only page. ";
525       if (memory_fault.fault_reason_mask & 0x00000100)
526         err_string += "Execute access to a page marked NX. ";
527       if (memory_fault.fault_reason_mask & 0x00001000)
528         err_string += "Host access only. ";
529       if (memory_fault.fault_reason_mask & 0x00010000)
530         err_string += "ECC failure (if supported by HW). ";
531       if (memory_fault.fault_reason_mask & 0x00100000)
532         err_string += "Can't determine the exact fault address. ";
533     }
534     fprintf(stderr, "%s\n", err_string.c_str());
535     return HSA_STATUS_ERROR;
536   }
537   return HSA_STATUS_SUCCESS;
538 }
539 
540 hsa_status_t atl_init_gpu_context() {
541   if (atlc.struct_initialized == false)
542     atmi_init_context_structs();
543   if (atlc.g_gpu_initialized != false)
544     return HSA_STATUS_SUCCESS;
545 
546   hsa_status_t err;
547   err = init_hsa();
548   if (err != HSA_STATUS_SUCCESS)
549     return HSA_STATUS_ERROR;
550 
551   err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
552   if (err != HSA_STATUS_SUCCESS) {
553     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
554            "Registering the system for memory faults", get_error_string(err));
555     return HSA_STATUS_ERROR;
556   }
557 
558   init_tasks();
559   atlc.g_gpu_initialized = true;
560   return HSA_STATUS_SUCCESS;
561 }
562 
563 static bool isImplicit(KernelArgMD::ValueKind value_kind) {
564   switch (value_kind) {
565   case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
566   case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
567   case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
568   case KernelArgMD::ValueKind::HiddenNone:
569   case KernelArgMD::ValueKind::HiddenPrintfBuffer:
570   case KernelArgMD::ValueKind::HiddenDefaultQueue:
571   case KernelArgMD::ValueKind::HiddenCompletionAction:
572   case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
573   case KernelArgMD::ValueKind::HiddenHostcallBuffer:
574     return true;
575   default:
576     return false;
577   }
578 }
579 
580 static std::pair<unsigned char *, unsigned char *>
581 find_metadata(void *binary, size_t binSize) {
582   std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
583 
584   Elf *e = elf_memory(static_cast<char *>(binary), binSize);
585   if (elf_kind(e) != ELF_K_ELF) {
586     return failure;
587   }
588 
589   size_t numpHdrs;
590   if (elf_getphdrnum(e, &numpHdrs) != 0) {
591     return failure;
592   }
593 
594   for (size_t i = 0; i < numpHdrs; ++i) {
595     GElf_Phdr pHdr;
596     if (gelf_getphdr(e, i, &pHdr) != &pHdr) {
597       continue;
598     }
599     // Look for the runtime metadata note
600     if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
601       // Iterate over the notes in this segment
602       address ptr = (address)binary + pHdr.p_offset;
603       address segmentEnd = ptr + pHdr.p_filesz;
604 
605       while (ptr < segmentEnd) {
606         Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
607         address name = (address)&note[1];
608 
609         if (note->n_type == 7 || note->n_type == 8) {
610           return failure;
611         } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
612                    note->n_namesz == sizeof "AMD" &&
613                    !memcmp(name, "AMD", note->n_namesz)) {
614           // code object v2 uses yaml metadata, no longer supported
615           return failure;
616         } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
617                    note->n_namesz == sizeof "AMDGPU" &&
618                    !memcmp(name, "AMDGPU", note->n_namesz)) {
619 
620           // n_descsz = 485
621           // value is padded to 4 byte alignment, may want to move end up to
622           // match
623           size_t offset = sizeof(uint32_t) * 3 /* fields */
624                           + sizeof("AMDGPU")   /* name */
625                           + 1 /* padding to 4 byte alignment */;
626 
627           // Including the trailing padding means both pointers are 4 bytes
628           // aligned, which may be useful later.
629           unsigned char *metadata_start = (unsigned char *)ptr + offset;
630           unsigned char *metadata_end =
631               metadata_start + core::alignUp(note->n_descsz, 4);
632           return {metadata_start, metadata_end};
633         }
634         ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
635                core::alignUp(note->n_descsz, sizeof(int));
636       }
637     }
638   }
639 
640   return failure;
641 }
642 
643 namespace {
644 int map_lookup_array(msgpack::byte_range message, const char *needle,
645                      msgpack::byte_range *res, uint64_t *size) {
646   unsigned count = 0;
647   struct s : msgpack::functors_defaults<s> {
648     s(unsigned &count, uint64_t *size) : count(count), size(size) {}
649     unsigned &count;
650     uint64_t *size;
651     const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
652       count++;
653       *size = N;
654       return bytes.end;
655     }
656   };
657 
658   msgpack::foreach_map(message,
659                        [&](msgpack::byte_range key, msgpack::byte_range value) {
660                          if (msgpack::message_is_string(key, needle)) {
661                            // If the message is an array, record number of
662                            // elements in *size
663                            msgpack::handle_msgpack<s>(value, {count, size});
664                            // return the whole array
665                            *res = value;
666                          }
667                        });
668   // Only claim success if exactly one key/array pair matched
669   return count != 1;
670 }
671 
672 int map_lookup_string(msgpack::byte_range message, const char *needle,
673                       std::string *res) {
674   unsigned count = 0;
675   struct s : public msgpack::functors_defaults<s> {
676     s(unsigned &count, std::string *res) : count(count), res(res) {}
677     unsigned &count;
678     std::string *res;
679     void handle_string(size_t N, const unsigned char *str) {
680       count++;
681       *res = std::string(str, str + N);
682     }
683   };
684   msgpack::foreach_map(message,
685                        [&](msgpack::byte_range key, msgpack::byte_range value) {
686                          if (msgpack::message_is_string(key, needle)) {
687                            msgpack::handle_msgpack<s>(value, {count, res});
688                          }
689                        });
690   return count != 1;
691 }
692 
693 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
694                         uint64_t *res) {
695   unsigned count = 0;
696   msgpack::foreach_map(message,
697                        [&](msgpack::byte_range key, msgpack::byte_range value) {
698                          if (msgpack::message_is_string(key, needle)) {
699                            msgpack::foronly_unsigned(value, [&](uint64_t x) {
700                              count++;
701                              *res = x;
702                            });
703                          }
704                        });
705   return count != 1;
706 }
707 
708 int array_lookup_element(msgpack::byte_range message, uint64_t elt,
709                          msgpack::byte_range *res) {
710   int rc = 1;
711   uint64_t i = 0;
712   msgpack::foreach_array(message, [&](msgpack::byte_range value) {
713     if (i == elt) {
714       *res = value;
715       rc = 0;
716     }
717     i++;
718   });
719   return rc;
720 }
721 
722 int populate_kernelArgMD(msgpack::byte_range args_element,
723                          KernelArgMD *kernelarg) {
724   using namespace msgpack;
725   int error = 0;
726   foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
727     if (message_is_string(key, ".name")) {
728       foronly_string(value, [&](size_t N, const unsigned char *str) {
729         kernelarg->name_ = std::string(str, str + N);
730       });
731     } else if (message_is_string(key, ".type_name")) {
732       foronly_string(value, [&](size_t N, const unsigned char *str) {
733         kernelarg->typeName_ = std::string(str, str + N);
734       });
735     } else if (message_is_string(key, ".size")) {
736       foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
737     } else if (message_is_string(key, ".offset")) {
738       foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
739     } else if (message_is_string(key, ".value_kind")) {
740       foronly_string(value, [&](size_t N, const unsigned char *str) {
741         std::string s = std::string(str, str + N);
742         auto itValueKind = ArgValueKind.find(s);
743         if (itValueKind != ArgValueKind.end()) {
744           kernelarg->valueKind_ = itValueKind->second;
745         }
746       });
747     }
748   });
749   return error;
750 }
751 } // namespace
752 
753 static hsa_status_t get_code_object_custom_metadata(
754     void *binary, size_t binSize, int gpu,
755     std::map<std::string, atl_kernel_info_t> &KernelInfoTable) {
756   // parse code object with different keys from v2
757   // also, the kernel name is not the same as the symbol name -- so a
758   // symbol->name map is needed
759 
760   std::pair<unsigned char *, unsigned char *> metadata =
761       find_metadata(binary, binSize);
762   if (!metadata.first) {
763     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
764   }
765 
766   uint64_t kernelsSize = 0;
767   int msgpack_errors = 0;
768   msgpack::byte_range kernel_array;
769   msgpack_errors =
770       map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
771                        &kernel_array, &kernelsSize);
772   if (msgpack_errors != 0) {
773     printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
774            "kernels lookup in program metadata");
775     return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
776   }
777 
778   for (size_t i = 0; i < kernelsSize; i++) {
779     assert(msgpack_errors == 0);
780     std::string kernelName;
781     std::string symbolName;
782 
783     msgpack::byte_range element;
784     msgpack_errors += array_lookup_element(kernel_array, i, &element);
785     if (msgpack_errors != 0) {
786       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
787              "element lookup in kernel metadata");
788       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
789     }
790 
791     msgpack_errors += map_lookup_string(element, ".name", &kernelName);
792     msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
793     if (msgpack_errors != 0) {
794       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
795              "strings lookup in kernel metadata");
796       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
797     }
798 
799     // Make sure that kernelName + ".kd" == symbolName
800     if ((kernelName + ".kd") != symbolName) {
801       printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n",
802              __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str());
803       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
804     }
805 
806     atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}};
807 
808     uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
809     msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
810     if (msgpack_errors != 0) {
811       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
812              "sgpr count metadata lookup in kernel metadata");
813       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
814     }
815 
816     info.sgpr_count = sgpr_count;
817 
818     msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
819     if (msgpack_errors != 0) {
820       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
821              "vgpr count metadata lookup in kernel metadata");
822       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
823     }
824 
825     info.vgpr_count = vgpr_count;
826 
827     msgpack_errors +=
828         map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
829     if (msgpack_errors != 0) {
830       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
831              "sgpr spill count metadata lookup in kernel metadata");
832       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
833     }
834 
835     info.sgpr_spill_count = sgpr_spill_count;
836 
837     msgpack_errors +=
838         map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
839     if (msgpack_errors != 0) {
840       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
841              "vgpr spill count metadata lookup in kernel metadata");
842       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
843     }
844 
845     info.vgpr_spill_count = vgpr_spill_count;
846 
847     size_t kernel_explicit_args_size = 0;
848     uint64_t kernel_segment_size;
849     msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
850                                           &kernel_segment_size);
851     if (msgpack_errors != 0) {
852       printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
853              "kernarg segment size metadata lookup in kernel metadata");
854       return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
855     }
856 
857     bool hasHiddenArgs = false;
858     if (kernel_segment_size > 0) {
859       uint64_t argsSize;
860       size_t offset = 0;
861 
862       msgpack::byte_range args_array;
863       msgpack_errors +=
864           map_lookup_array(element, ".args", &args_array, &argsSize);
865       if (msgpack_errors != 0) {
866         printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
867                "kernel args metadata lookup in kernel metadata");
868         return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
869       }
870 
871       info.num_args = argsSize;
872 
873       for (size_t i = 0; i < argsSize; ++i) {
874         KernelArgMD lcArg;
875 
876         msgpack::byte_range args_element;
877         msgpack_errors += array_lookup_element(args_array, i, &args_element);
878         if (msgpack_errors != 0) {
879           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
880                  "iterate args map in kernel args metadata");
881           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
882         }
883 
884         msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
885         if (msgpack_errors != 0) {
886           printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
887                  "iterate args map in kernel args metadata");
888           return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
889         }
890         // populate info with sizes and offsets
891         info.arg_sizes.push_back(lcArg.size_);
892         // v3 has offset field and not align field
893         size_t new_offset = lcArg.offset_;
894         size_t padding = new_offset - offset;
895         offset = new_offset;
896         info.arg_offsets.push_back(lcArg.offset_);
897         DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(),
898                     lcArg.size_, lcArg.offset_);
899         offset += lcArg.size_;
900 
901         // check if the arg is a hidden/implicit arg
902         // this logic assumes that all hidden args are 8-byte aligned
903         if (!isImplicit(lcArg.valueKind_)) {
904           kernel_explicit_args_size += lcArg.size_;
905         } else {
906           hasHiddenArgs = true;
907         }
908         kernel_explicit_args_size += padding;
909       }
910     }
911 
912     // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
913     // in ATMI, do not count the compiler set implicit args, but set your own
914     // implicit args by discounting the compiler set implicit args
915     info.kernel_segment_size =
916         (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
917         sizeof(atmi_implicit_args_t);
918     DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
919                 kernel_segment_size, info.kernel_segment_size);
920 
921     // kernel received, now add it to the kernel info table
922     KernelInfoTable[kernelName] = info;
923   }
924 
925   return HSA_STATUS_SUCCESS;
926 }
927 
928 static hsa_status_t
929 populate_InfoTables(hsa_executable_symbol_t symbol, int gpu,
930                     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
931                     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) {
932   hsa_symbol_kind_t type;
933 
934   uint32_t name_length;
935   hsa_status_t err;
936   err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
937                                        &type);
938   if (err != HSA_STATUS_SUCCESS) {
939     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
940            "Symbol info extraction", get_error_string(err));
941     return err;
942   }
943   DEBUG_PRINT("Exec Symbol type: %d\n", type);
944   if (type == HSA_SYMBOL_KIND_KERNEL) {
945     err = hsa_executable_symbol_get_info(
946         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
947     if (err != HSA_STATUS_SUCCESS) {
948       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
949              "Symbol info extraction", get_error_string(err));
950       return err;
951     }
952     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
953     err = hsa_executable_symbol_get_info(symbol,
954                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
955     if (err != HSA_STATUS_SUCCESS) {
956       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
957              "Symbol info extraction", get_error_string(err));
958       return err;
959     }
960     // remove the suffix .kd from symbol name.
961     name[name_length - 3] = 0;
962 
963     atl_kernel_info_t info;
964     std::string kernelName(name);
965     // by now, the kernel info table should already have an entry
966     // because the non-ROCr custom code object parsing is called before
967     // iterating over the code object symbols using ROCr
968     if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) {
969       if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) {
970         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
971                "Finding the entry kernel info table",
972                get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT));
973         exit(1);
974       }
975     }
976     // found, so assign and update
977     info = KernelInfoTable[kernelName];
978 
979     /* Extract dispatch information from the symbol */
980     err = hsa_executable_symbol_get_info(
981         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
982         &(info.kernel_object));
983     if (err != HSA_STATUS_SUCCESS) {
984       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
985              "Extracting the symbol from the executable",
986              get_error_string(err));
987       return err;
988     }
989     err = hsa_executable_symbol_get_info(
990         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
991         &(info.group_segment_size));
992     if (err != HSA_STATUS_SUCCESS) {
993       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
994              "Extracting the group segment size from the executable",
995              get_error_string(err));
996       return err;
997     }
998     err = hsa_executable_symbol_get_info(
999         symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
1000         &(info.private_segment_size));
1001     if (err != HSA_STATUS_SUCCESS) {
1002       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1003              "Extracting the private segment from the executable",
1004              get_error_string(err));
1005       return err;
1006     }
1007 
1008     DEBUG_PRINT(
1009         "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
1010         "kernarg\n",
1011         kernelName.c_str(), info.kernel_object, info.group_segment_size,
1012         info.private_segment_size, info.kernel_segment_size);
1013 
1014     // assign it back to the kernel info table
1015     KernelInfoTable[kernelName] = info;
1016     free(name);
1017   } else if (type == HSA_SYMBOL_KIND_VARIABLE) {
1018     err = hsa_executable_symbol_get_info(
1019         symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
1020     if (err != HSA_STATUS_SUCCESS) {
1021       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1022              "Symbol info extraction", get_error_string(err));
1023       return err;
1024     }
1025     char *name = reinterpret_cast<char *>(malloc(name_length + 1));
1026     err = hsa_executable_symbol_get_info(symbol,
1027                                          HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
1028     if (err != HSA_STATUS_SUCCESS) {
1029       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1030              "Symbol info extraction", get_error_string(err));
1031       return err;
1032     }
1033     name[name_length] = 0;
1034 
1035     atl_symbol_info_t info;
1036 
1037     err = hsa_executable_symbol_get_info(
1038         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
1039     if (err != HSA_STATUS_SUCCESS) {
1040       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1041              "Symbol info address extraction", get_error_string(err));
1042       return err;
1043     }
1044 
1045     err = hsa_executable_symbol_get_info(
1046         symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
1047     if (err != HSA_STATUS_SUCCESS) {
1048       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1049              "Symbol info size extraction", get_error_string(err));
1050       return err;
1051     }
1052 
1053     DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr,
1054                 info.size);
1055     err = register_allocation(reinterpret_cast<void *>(info.addr),
1056                               (size_t)info.size, ATMI_DEVTYPE_GPU);
1057     if (err != HSA_STATUS_SUCCESS) {
1058       return err;
1059     }
1060     SymbolInfoTable[std::string(name)] = info;
1061     free(name);
1062   } else {
1063     DEBUG_PRINT("Symbol is an indirect function\n");
1064   }
1065   return HSA_STATUS_SUCCESS;
1066 }
1067 
1068 hsa_status_t RegisterModuleFromMemory(
1069     std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
1070     std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
1071     void *module_bytes, size_t module_size, int gpu,
1072     hsa_status_t (*on_deserialized_data)(void *data, size_t size,
1073                                          void *cb_state),
1074     void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
1075   hsa_status_t err;
1076   assert(gpu >= 0);
1077 
1078   DEBUG_PRINT("Trying to load module to GPU-%d\n", gpu);
1079   ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(gpu);
1080   hsa_agent_t agent = proc.agent();
1081   hsa_executable_t executable = {0};
1082   hsa_profile_t agent_profile;
1083 
1084   err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
1085   if (err != HSA_STATUS_SUCCESS) {
1086     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1087            "Query the agent profile", get_error_string(err));
1088     return HSA_STATUS_ERROR;
1089   }
1090   // FIXME: Assume that every profile is FULL until we understand how to build
1091   // GCN with base profile
1092   agent_profile = HSA_PROFILE_FULL;
1093   /* Create the empty executable.  */
1094   err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
1095                               &executable);
1096   if (err != HSA_STATUS_SUCCESS) {
1097     printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1098            "Create the executable", get_error_string(err));
1099     return HSA_STATUS_ERROR;
1100   }
1101 
1102   bool module_load_success = false;
1103   do // Existing control flow used continue, preserve that for this patch
1104   {
1105     {
1106       // Some metadata info is not available through ROCr API, so use custom
1107       // code object metadata parsing to collect such metadata info
1108 
1109       err = get_code_object_custom_metadata(module_bytes, module_size, gpu,
1110                                             KernelInfoTable);
1111       if (err != HSA_STATUS_SUCCESS) {
1112         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1113                     "Getting custom code object metadata",
1114                     get_error_string(err));
1115         continue;
1116       }
1117 
1118       // Deserialize code object.
1119       hsa_code_object_t code_object = {0};
1120       err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
1121                                         &code_object);
1122       if (err != HSA_STATUS_SUCCESS) {
1123         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1124                     "Code Object Deserialization", get_error_string(err));
1125         continue;
1126       }
1127       assert(0 != code_object.handle);
1128 
1129       // Mutating the device image here avoids another allocation & memcpy
1130       void *code_object_alloc_data =
1131           reinterpret_cast<void *>(code_object.handle);
1132       hsa_status_t atmi_err =
1133           on_deserialized_data(code_object_alloc_data, module_size, cb_state);
1134       if (atmi_err != HSA_STATUS_SUCCESS) {
1135         printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1136                "Error in deserialized_data callback",
1137                get_atmi_error_string(atmi_err));
1138         return atmi_err;
1139       }
1140 
1141       /* Load the code object.  */
1142       err =
1143           hsa_executable_load_code_object(executable, agent, code_object, NULL);
1144       if (err != HSA_STATUS_SUCCESS) {
1145         DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1146                     "Loading the code object", get_error_string(err));
1147         continue;
1148       }
1149 
1150       // cannot iterate over symbols until executable is frozen
1151     }
1152     module_load_success = true;
1153   } while (0);
1154   DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success);
1155   if (module_load_success) {
1156     /* Freeze the executable; it can now be queried for symbols.  */
1157     err = hsa_executable_freeze(executable, "");
1158     if (err != HSA_STATUS_SUCCESS) {
1159       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1160              "Freeze the executable", get_error_string(err));
1161       return HSA_STATUS_ERROR;
1162     }
1163 
1164     err = hsa::executable_iterate_symbols(
1165         executable,
1166         [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t {
1167           return populate_InfoTables(symbol, gpu, KernelInfoTable,
1168                                      SymbolInfoTable);
1169         });
1170     if (err != HSA_STATUS_SUCCESS) {
1171       printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
1172              "Iterating over symbols for execuatable", get_error_string(err));
1173       return HSA_STATUS_ERROR;
1174     }
1175 
1176     // save the executable and destroy during finalize
1177     HSAExecutables.push_back(executable);
1178     return HSA_STATUS_SUCCESS;
1179   } else {
1180     return HSA_STATUS_ERROR;
1181   }
1182 }
1183 
1184 } // namespace core
1185