1 /*===-------------------------------------------------------------------------- 2 * ATMI (Asynchronous Task and Memory Interface) 3 * 4 * This file is distributed under the MIT License. See LICENSE.txt for details. 5 *===------------------------------------------------------------------------*/ 6 #include <gelf.h> 7 #include <libelf.h> 8 9 #include <cassert> 10 #include <cstdarg> 11 #include <fstream> 12 #include <iomanip> 13 #include <iostream> 14 #include <set> 15 #include <string> 16 17 #include "internal.h" 18 #include "machine.h" 19 #include "rt.h" 20 21 #include "msgpack.h" 22 23 typedef unsigned char *address; 24 /* 25 * Note descriptors. 26 */ 27 typedef struct { 28 uint32_t n_namesz; /* Length of note's name. */ 29 uint32_t n_descsz; /* Length of note's value. */ 30 uint32_t n_type; /* Type of note. */ 31 // then name 32 // then padding, optional 33 // then desc, at 4 byte alignment (not 8, despite being elf64) 34 } Elf_Note; 35 36 // The following include file and following structs/enums 37 // have been replicated on a per-use basis below. For example, 38 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields, 39 // but we may care only about kernargSegmentSize_ for now, so 40 // we just include that field in our KernelMD implementation. We 41 // chose this approach to replicate in order to avoid forcing 42 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime. 43 // #include "llvm/Support/AMDGPUMetadata.h" 44 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD; 45 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD; 46 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD; 47 // using llvm::AMDGPU::HSAMD::AccessQualifier; 48 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier; 49 // using llvm::AMDGPU::HSAMD::ValueKind; 50 // using llvm::AMDGPU::HSAMD::ValueType; 51 52 class KernelArgMD { 53 public: 54 enum class ValueKind { 55 HiddenGlobalOffsetX, 56 HiddenGlobalOffsetY, 57 HiddenGlobalOffsetZ, 58 HiddenNone, 59 HiddenPrintfBuffer, 60 HiddenDefaultQueue, 61 HiddenCompletionAction, 62 HiddenMultiGridSyncArg, 63 HiddenHostcallBuffer, 64 Unknown 65 }; 66 67 KernelArgMD() 68 : name_(std::string()), typeName_(std::string()), size_(0), offset_(0), 69 align_(0), valueKind_(ValueKind::Unknown) {} 70 71 // fields 72 std::string name_; 73 std::string typeName_; 74 uint32_t size_; 75 uint32_t offset_; 76 uint32_t align_; 77 ValueKind valueKind_; 78 }; 79 80 class KernelMD { 81 public: 82 KernelMD() : kernargSegmentSize_(0ull) {} 83 84 // fields 85 uint64_t kernargSegmentSize_; 86 }; 87 88 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = { 89 // Including only those fields that are relevant to the runtime. 90 // {"ByValue", KernelArgMD::ValueKind::ByValue}, 91 // {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer}, 92 // {"DynamicSharedPointer", 93 // KernelArgMD::ValueKind::DynamicSharedPointer}, 94 // {"Sampler", KernelArgMD::ValueKind::Sampler}, 95 // {"Image", KernelArgMD::ValueKind::Image}, 96 // {"Pipe", KernelArgMD::ValueKind::Pipe}, 97 // {"Queue", KernelArgMD::ValueKind::Queue}, 98 {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 99 {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 100 {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 101 {"HiddenNone", KernelArgMD::ValueKind::HiddenNone}, 102 {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 103 {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 104 {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction}, 105 {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 106 {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 107 // v3 108 // {"by_value", KernelArgMD::ValueKind::ByValue}, 109 // {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer}, 110 // {"dynamic_shared_pointer", 111 // KernelArgMD::ValueKind::DynamicSharedPointer}, 112 // {"sampler", KernelArgMD::ValueKind::Sampler}, 113 // {"image", KernelArgMD::ValueKind::Image}, 114 // {"pipe", KernelArgMD::ValueKind::Pipe}, 115 // {"queue", KernelArgMD::ValueKind::Queue}, 116 {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 117 {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 118 {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 119 {"hidden_none", KernelArgMD::ValueKind::HiddenNone}, 120 {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 121 {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 122 {"hidden_completion_action", 123 KernelArgMD::ValueKind::HiddenCompletionAction}, 124 {"hidden_multigrid_sync_arg", 125 KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 126 {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 127 }; 128 129 // global variables. TODO: Get rid of these 130 atmi_machine_t g_atmi_machine; 131 ATLMachine g_atl_machine; 132 133 hsa_region_t atl_gpu_kernarg_region; 134 std::vector<hsa_amd_memory_pool_t> atl_gpu_kernarg_pools; 135 hsa_region_t atl_cpu_kernarg_region; 136 137 static std::vector<hsa_executable_t> g_executables; 138 139 std::map<std::string, std::string> KernelNameMap; 140 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 141 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 142 143 bool g_atmi_initialized = false; 144 bool g_atmi_hostcall_required = false; 145 146 struct timespec context_init_time; 147 int context_init_time_init = 0; 148 149 /* 150 atlc is all internal global values. 151 The structure atl_context_t is defined in atl_internal.h 152 Most references will use the global structure prefix atlc. 153 However the pointer value atlc_p-> is equivalent to atlc. 154 155 */ 156 157 atl_context_t atlc = {.struct_initialized = false}; 158 atl_context_t *atlc_p = NULL; 159 160 namespace core { 161 /* Machine Info */ 162 atmi_machine_t *Runtime::GetMachineInfo() { 163 if (!atlc.g_hsa_initialized) 164 return NULL; 165 return &g_atmi_machine; 166 } 167 168 static void atl_set_atmi_initialized() { 169 // FIXME: thread safe? locks? 170 g_atmi_initialized = true; 171 } 172 173 static void atl_reset_atmi_initialized() { 174 // FIXME: thread safe? locks? 175 g_atmi_initialized = false; 176 } 177 178 bool atl_is_atmi_initialized() { return g_atmi_initialized; } 179 180 void allow_access_to_all_gpu_agents(void *ptr) { 181 hsa_status_t err; 182 std::vector<ATLGPUProcessor> &gpu_procs = 183 g_atl_machine.processors<ATLGPUProcessor>(); 184 std::vector<hsa_agent_t> agents; 185 for (uint32_t i = 0; i < gpu_procs.size(); i++) { 186 agents.push_back(gpu_procs[i].agent()); 187 } 188 err = hsa_amd_agents_allow_access(agents.size(), &agents[0], NULL, ptr); 189 if (err != HSA_STATUS_SUCCESS) { 190 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 191 "Allow agents ptr access", get_error_string(err)); 192 exit(1); 193 } 194 } 195 196 atmi_status_t Runtime::Initialize() { 197 atmi_devtype_t devtype = ATMI_DEVTYPE_GPU; 198 if (atl_is_atmi_initialized()) 199 return ATMI_STATUS_SUCCESS; 200 201 if (devtype == ATMI_DEVTYPE_ALL || devtype & ATMI_DEVTYPE_GPU) { 202 if (atl_init_gpu_context() != ATMI_STATUS_SUCCESS) { 203 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "GPU context init", 204 get_atmi_error_string(atl_init_gpu_context())); 205 exit(1); 206 } 207 } 208 209 atl_set_atmi_initialized(); 210 return ATMI_STATUS_SUCCESS; 211 } 212 213 atmi_status_t Runtime::Finalize() { 214 hsa_status_t err; 215 216 for (uint32_t i = 0; i < g_executables.size(); i++) { 217 err = hsa_executable_destroy(g_executables[i]); 218 if (err != HSA_STATUS_SUCCESS) { 219 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 220 "Destroying executable", get_error_string(err)); 221 exit(1); 222 } 223 } 224 225 for (uint32_t i = 0; i < SymbolInfoTable.size(); i++) { 226 SymbolInfoTable[i].clear(); 227 } 228 SymbolInfoTable.clear(); 229 for (uint32_t i = 0; i < KernelInfoTable.size(); i++) { 230 KernelInfoTable[i].clear(); 231 } 232 KernelInfoTable.clear(); 233 234 atl_reset_atmi_initialized(); 235 err = hsa_shut_down(); 236 if (err != HSA_STATUS_SUCCESS) { 237 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA", 238 get_error_string(err)); 239 exit(1); 240 } 241 242 return ATMI_STATUS_SUCCESS; 243 } 244 245 static void atmi_init_context_structs() { 246 atlc_p = &atlc; 247 atlc.struct_initialized = true; /* This only gets called one time */ 248 atlc.g_hsa_initialized = false; 249 atlc.g_gpu_initialized = false; 250 atlc.g_tasks_initialized = false; 251 } 252 253 // Implement memory_pool iteration function 254 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool, 255 void *data) { 256 ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data); 257 hsa_status_t err = HSA_STATUS_SUCCESS; 258 // Check if the memory_pool is allowed to allocate, i.e. do not return group 259 // memory 260 bool alloc_allowed = false; 261 err = hsa_amd_memory_pool_get_info( 262 memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 263 &alloc_allowed); 264 if (err != HSA_STATUS_SUCCESS) { 265 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 266 "Alloc allowed in memory pool check", get_error_string(err)); 267 exit(1); 268 } 269 if (alloc_allowed) { 270 uint32_t global_flag = 0; 271 err = hsa_amd_memory_pool_get_info( 272 memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag); 273 if (err != HSA_STATUS_SUCCESS) { 274 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 275 "Get memory pool info", get_error_string(err)); 276 exit(1); 277 } 278 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) { 279 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED); 280 proc->addMemory(new_mem); 281 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT & global_flag) { 282 DEBUG_PRINT("GPU kernel args pool handle: %lu\n", memory_pool.handle); 283 atl_gpu_kernarg_pools.push_back(memory_pool); 284 } 285 } else { 286 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED); 287 proc->addMemory(new_mem); 288 } 289 } 290 291 return err; 292 } 293 294 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) { 295 hsa_status_t err = HSA_STATUS_SUCCESS; 296 hsa_device_type_t device_type; 297 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 298 if (err != HSA_STATUS_SUCCESS) { 299 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 300 "Get device type info", get_error_string(err)); 301 exit(1); 302 } 303 switch (device_type) { 304 case HSA_DEVICE_TYPE_CPU: { 305 ; 306 ATLCPUProcessor new_proc(agent); 307 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 308 &new_proc); 309 if (err != HSA_STATUS_SUCCESS) { 310 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 311 "Iterate all memory pools", get_error_string(err)); 312 exit(1); 313 } 314 g_atl_machine.addProcessor(new_proc); 315 } break; 316 case HSA_DEVICE_TYPE_GPU: { 317 ; 318 hsa_profile_t profile; 319 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile); 320 if (err != HSA_STATUS_SUCCESS) { 321 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 322 "Query the agent profile", get_error_string(err)); 323 exit(1); 324 } 325 atmi_devtype_t gpu_type; 326 gpu_type = 327 (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU; 328 ATLGPUProcessor new_proc(agent, gpu_type); 329 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 330 &new_proc); 331 if (err != HSA_STATUS_SUCCESS) { 332 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 333 "Iterate all memory pools", get_error_string(err)); 334 exit(1); 335 } 336 g_atl_machine.addProcessor(new_proc); 337 } break; 338 case HSA_DEVICE_TYPE_DSP: { 339 err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 340 } break; 341 } 342 343 return err; 344 } 345 346 hsa_status_t get_fine_grained_region(hsa_region_t region, void *data) { 347 hsa_region_segment_t segment; 348 hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment); 349 if (segment != HSA_REGION_SEGMENT_GLOBAL) { 350 return HSA_STATUS_SUCCESS; 351 } 352 hsa_region_global_flag_t flags; 353 hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags); 354 if (flags & HSA_REGION_GLOBAL_FLAG_FINE_GRAINED) { 355 hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data); 356 *ret = region; 357 return HSA_STATUS_INFO_BREAK; 358 } 359 return HSA_STATUS_SUCCESS; 360 } 361 362 /* Determines if a memory region can be used for kernarg allocations. */ 363 static hsa_status_t get_kernarg_memory_region(hsa_region_t region, void *data) { 364 hsa_region_segment_t segment; 365 hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment); 366 if (HSA_REGION_SEGMENT_GLOBAL != segment) { 367 return HSA_STATUS_SUCCESS; 368 } 369 370 hsa_region_global_flag_t flags; 371 hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags); 372 if (flags & HSA_REGION_GLOBAL_FLAG_KERNARG) { 373 hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data); 374 *ret = region; 375 return HSA_STATUS_INFO_BREAK; 376 } 377 378 return HSA_STATUS_SUCCESS; 379 } 380 381 static hsa_status_t init_compute_and_memory() { 382 hsa_status_t err; 383 384 /* Iterate over the agents and pick the gpu agent */ 385 err = hsa_iterate_agents(get_agent_info, NULL); 386 if (err == HSA_STATUS_INFO_BREAK) { 387 err = HSA_STATUS_SUCCESS; 388 } 389 if (err != HSA_STATUS_SUCCESS) { 390 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent", 391 get_error_string(err)); 392 exit(1); 393 } 394 if (err != HSA_STATUS_SUCCESS) 395 return err; 396 397 /* Init all devices or individual device types? */ 398 std::vector<ATLCPUProcessor> &cpu_procs = 399 g_atl_machine.processors<ATLCPUProcessor>(); 400 std::vector<ATLGPUProcessor> &gpu_procs = 401 g_atl_machine.processors<ATLGPUProcessor>(); 402 /* For CPU memory pools, add other devices that can access them directly 403 * or indirectly */ 404 for (auto &cpu_proc : cpu_procs) { 405 for (auto &cpu_mem : cpu_proc.memories()) { 406 hsa_amd_memory_pool_t pool = cpu_mem.memory(); 407 for (auto &gpu_proc : gpu_procs) { 408 hsa_agent_t agent = gpu_proc.agent(); 409 hsa_amd_memory_pool_access_t access; 410 hsa_amd_agent_memory_pool_get_info( 411 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 412 if (access != 0) { 413 // this means not NEVER, but could be YES or NO 414 // add this memory pool to the proc 415 gpu_proc.addMemory(cpu_mem); 416 } 417 } 418 } 419 } 420 421 /* FIXME: are the below combinations of procs and memory pools needed? 422 * all to all compare procs with their memory pools and add those memory 423 * pools that are accessible by the target procs */ 424 for (auto &gpu_proc : gpu_procs) { 425 for (auto &gpu_mem : gpu_proc.memories()) { 426 hsa_amd_memory_pool_t pool = gpu_mem.memory(); 427 for (auto &cpu_proc : cpu_procs) { 428 hsa_agent_t agent = cpu_proc.agent(); 429 hsa_amd_memory_pool_access_t access; 430 hsa_amd_agent_memory_pool_get_info( 431 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 432 if (access != 0) { 433 // this means not NEVER, but could be YES or NO 434 // add this memory pool to the proc 435 cpu_proc.addMemory(gpu_mem); 436 } 437 } 438 } 439 } 440 441 g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_CPU] = cpu_procs.size(); 442 g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_GPU] = gpu_procs.size(); 443 444 size_t num_procs = cpu_procs.size() + gpu_procs.size(); 445 // g_atmi_machine.devices = (atmi_device_t *)malloc(num_procs * 446 // sizeof(atmi_device_t)); 447 atmi_device_t *all_devices = reinterpret_cast<atmi_device_t *>( 448 malloc(num_procs * sizeof(atmi_device_t))); 449 int num_iGPUs = 0; 450 int num_dGPUs = 0; 451 for (uint32_t i = 0; i < gpu_procs.size(); i++) { 452 if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU) 453 num_iGPUs++; 454 else 455 num_dGPUs++; 456 } 457 assert(num_iGPUs + num_dGPUs == gpu_procs.size() && 458 "Number of dGPUs and iGPUs do not add up"); 459 DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size()); 460 DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs); 461 DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs); 462 DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size()); 463 464 g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_iGPU] = num_iGPUs; 465 g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_dGPU] = num_dGPUs; 466 467 int cpus_begin = 0; 468 int cpus_end = cpu_procs.size(); 469 int gpus_begin = cpu_procs.size(); 470 int gpus_end = cpu_procs.size() + gpu_procs.size(); 471 g_atmi_machine.devices_by_type[ATMI_DEVTYPE_CPU] = &all_devices[cpus_begin]; 472 g_atmi_machine.devices_by_type[ATMI_DEVTYPE_GPU] = &all_devices[gpus_begin]; 473 g_atmi_machine.devices_by_type[ATMI_DEVTYPE_iGPU] = &all_devices[gpus_begin]; 474 g_atmi_machine.devices_by_type[ATMI_DEVTYPE_dGPU] = &all_devices[gpus_begin]; 475 int proc_index = 0; 476 for (int i = cpus_begin; i < cpus_end; i++) { 477 all_devices[i].type = cpu_procs[proc_index].type(); 478 479 std::vector<ATLMemory> memories = cpu_procs[proc_index].memories(); 480 int fine_memories_size = 0; 481 int coarse_memories_size = 0; 482 DEBUG_PRINT("CPU memory types:\t"); 483 for (auto &memory : memories) { 484 atmi_memtype_t type = memory.type(); 485 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 486 fine_memories_size++; 487 DEBUG_PRINT("Fine\t"); 488 } else { 489 coarse_memories_size++; 490 DEBUG_PRINT("Coarse\t"); 491 } 492 } 493 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 494 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 495 proc_index++; 496 } 497 proc_index = 0; 498 for (int i = gpus_begin; i < gpus_end; i++) { 499 all_devices[i].type = gpu_procs[proc_index].type(); 500 501 std::vector<ATLMemory> memories = gpu_procs[proc_index].memories(); 502 int fine_memories_size = 0; 503 int coarse_memories_size = 0; 504 DEBUG_PRINT("GPU memory types:\t"); 505 for (auto &memory : memories) { 506 atmi_memtype_t type = memory.type(); 507 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 508 fine_memories_size++; 509 DEBUG_PRINT("Fine\t"); 510 } else { 511 coarse_memories_size++; 512 DEBUG_PRINT("Coarse\t"); 513 } 514 } 515 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 516 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 517 proc_index++; 518 } 519 proc_index = 0; 520 atl_cpu_kernarg_region.handle = (uint64_t)-1; 521 if (cpu_procs.size() > 0) { 522 err = hsa_agent_iterate_regions( 523 cpu_procs[0].agent(), get_fine_grained_region, &atl_cpu_kernarg_region); 524 if (err == HSA_STATUS_INFO_BREAK) { 525 err = HSA_STATUS_SUCCESS; 526 } 527 err = (atl_cpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR 528 : HSA_STATUS_SUCCESS; 529 if (err != HSA_STATUS_SUCCESS) { 530 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 531 "Finding a CPU kernarg memory region handle", 532 get_error_string(err)); 533 exit(1); 534 } 535 } 536 /* Find a memory region that supports kernel arguments. */ 537 atl_gpu_kernarg_region.handle = (uint64_t)-1; 538 if (gpu_procs.size() > 0) { 539 hsa_agent_iterate_regions(gpu_procs[0].agent(), get_kernarg_memory_region, 540 &atl_gpu_kernarg_region); 541 err = (atl_gpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR 542 : HSA_STATUS_SUCCESS; 543 if (err != HSA_STATUS_SUCCESS) { 544 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 545 "Finding a kernarg memory region", get_error_string(err)); 546 exit(1); 547 } 548 } 549 if (num_procs > 0) 550 return HSA_STATUS_SUCCESS; 551 else 552 return HSA_STATUS_ERROR_NOT_INITIALIZED; 553 } 554 555 hsa_status_t init_hsa() { 556 if (atlc.g_hsa_initialized == false) { 557 DEBUG_PRINT("Initializing HSA..."); 558 hsa_status_t err = hsa_init(); 559 if (err != HSA_STATUS_SUCCESS) { 560 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 561 "Initializing the hsa runtime", get_error_string(err)); 562 exit(1); 563 } 564 if (err != HSA_STATUS_SUCCESS) 565 return err; 566 567 err = init_compute_and_memory(); 568 if (err != HSA_STATUS_SUCCESS) 569 return err; 570 if (err != HSA_STATUS_SUCCESS) { 571 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 572 "After initializing compute and memory", get_error_string(err)); 573 exit(1); 574 } 575 576 int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>(); 577 KernelInfoTable.resize(gpu_count); 578 SymbolInfoTable.resize(gpu_count); 579 for (uint32_t i = 0; i < SymbolInfoTable.size(); i++) 580 SymbolInfoTable[i].clear(); 581 for (uint32_t i = 0; i < KernelInfoTable.size(); i++) 582 KernelInfoTable[i].clear(); 583 atlc.g_hsa_initialized = true; 584 DEBUG_PRINT("done\n"); 585 } 586 return HSA_STATUS_SUCCESS; 587 } 588 589 void init_tasks() { 590 if (atlc.g_tasks_initialized != false) 591 return; 592 std::vector<hsa_agent_t> gpu_agents; 593 int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>(); 594 for (int gpu = 0; gpu < gpu_count; gpu++) { 595 atmi_place_t place = ATMI_PLACE_GPU(0, gpu); 596 ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place); 597 gpu_agents.push_back(proc.agent()); 598 } 599 atlc.g_tasks_initialized = true; 600 } 601 602 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) { 603 #if (ROCM_VERSION_MAJOR >= 3) || \ 604 (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3) 605 if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) { 606 #else 607 if (event->event_type == GPU_MEMORY_FAULT_EVENT) { 608 #endif 609 hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault; 610 // memory_fault.agent 611 // memory_fault.virtual_address 612 // memory_fault.fault_reason_mask 613 // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address); 614 std::stringstream stream; 615 stream << std::hex << (uintptr_t)memory_fault.virtual_address; 616 std::string addr("0x" + stream.str()); 617 618 std::string err_string = "[GPU Memory Error] Addr: " + addr; 619 err_string += " Reason: "; 620 if (!(memory_fault.fault_reason_mask & 0x00111111)) { 621 err_string += "No Idea! "; 622 } else { 623 if (memory_fault.fault_reason_mask & 0x00000001) 624 err_string += "Page not present or supervisor privilege. "; 625 if (memory_fault.fault_reason_mask & 0x00000010) 626 err_string += "Write access to a read-only page. "; 627 if (memory_fault.fault_reason_mask & 0x00000100) 628 err_string += "Execute access to a page marked NX. "; 629 if (memory_fault.fault_reason_mask & 0x00001000) 630 err_string += "Host access only. "; 631 if (memory_fault.fault_reason_mask & 0x00010000) 632 err_string += "ECC failure (if supported by HW). "; 633 if (memory_fault.fault_reason_mask & 0x00100000) 634 err_string += "Can't determine the exact fault address. "; 635 } 636 fprintf(stderr, "%s\n", err_string.c_str()); 637 return HSA_STATUS_ERROR; 638 } 639 return HSA_STATUS_SUCCESS; 640 } 641 642 atmi_status_t atl_init_gpu_context() { 643 if (atlc.struct_initialized == false) 644 atmi_init_context_structs(); 645 if (atlc.g_gpu_initialized != false) 646 return ATMI_STATUS_SUCCESS; 647 648 hsa_status_t err; 649 err = init_hsa(); 650 if (err != HSA_STATUS_SUCCESS) 651 return ATMI_STATUS_ERROR; 652 653 if (context_init_time_init == 0) { 654 clock_gettime(CLOCK_MONOTONIC_RAW, &context_init_time); 655 context_init_time_init = 1; 656 } 657 658 err = hsa_amd_register_system_event_handler(callbackEvent, NULL); 659 if (err != HSA_STATUS_SUCCESS) { 660 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 661 "Registering the system for memory faults", get_error_string(err)); 662 exit(1); 663 } 664 665 init_tasks(); 666 atlc.g_gpu_initialized = true; 667 return ATMI_STATUS_SUCCESS; 668 } 669 670 static bool isImplicit(KernelArgMD::ValueKind value_kind) { 671 switch (value_kind) { 672 case KernelArgMD::ValueKind::HiddenGlobalOffsetX: 673 case KernelArgMD::ValueKind::HiddenGlobalOffsetY: 674 case KernelArgMD::ValueKind::HiddenGlobalOffsetZ: 675 case KernelArgMD::ValueKind::HiddenNone: 676 case KernelArgMD::ValueKind::HiddenPrintfBuffer: 677 case KernelArgMD::ValueKind::HiddenDefaultQueue: 678 case KernelArgMD::ValueKind::HiddenCompletionAction: 679 case KernelArgMD::ValueKind::HiddenMultiGridSyncArg: 680 case KernelArgMD::ValueKind::HiddenHostcallBuffer: 681 return true; 682 default: 683 return false; 684 } 685 } 686 687 static std::pair<unsigned char *, unsigned char *> 688 find_metadata(void *binary, size_t binSize) { 689 std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr}; 690 691 Elf *e = elf_memory(static_cast<char *>(binary), binSize); 692 if (elf_kind(e) != ELF_K_ELF) { 693 return failure; 694 } 695 696 size_t numpHdrs; 697 if (elf_getphdrnum(e, &numpHdrs) != 0) { 698 return failure; 699 } 700 701 for (size_t i = 0; i < numpHdrs; ++i) { 702 GElf_Phdr pHdr; 703 if (gelf_getphdr(e, i, &pHdr) != &pHdr) { 704 continue; 705 } 706 // Look for the runtime metadata note 707 if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) { 708 // Iterate over the notes in this segment 709 address ptr = (address)binary + pHdr.p_offset; 710 address segmentEnd = ptr + pHdr.p_filesz; 711 712 while (ptr < segmentEnd) { 713 Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr); 714 address name = (address)¬e[1]; 715 716 if (note->n_type == 7 || note->n_type == 8) { 717 return failure; 718 } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ && 719 note->n_namesz == sizeof "AMD" && 720 !memcmp(name, "AMD", note->n_namesz)) { 721 // code object v2 uses yaml metadata, no longer supported 722 return failure; 723 } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ && 724 note->n_namesz == sizeof "AMDGPU" && 725 !memcmp(name, "AMDGPU", note->n_namesz)) { 726 727 // n_descsz = 485 728 // value is padded to 4 byte alignment, may want to move end up to 729 // match 730 size_t offset = sizeof(uint32_t) * 3 /* fields */ 731 + sizeof("AMDGPU") /* name */ 732 + 1 /* padding to 4 byte alignment */; 733 734 // Including the trailing padding means both pointers are 4 bytes 735 // aligned, which may be useful later. 736 unsigned char *metadata_start = (unsigned char *)ptr + offset; 737 unsigned char *metadata_end = 738 metadata_start + core::alignUp(note->n_descsz, 4); 739 return {metadata_start, metadata_end}; 740 } 741 ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) + 742 core::alignUp(note->n_descsz, sizeof(int)); 743 } 744 } 745 } 746 747 return failure; 748 } 749 750 namespace { 751 int map_lookup_array(msgpack::byte_range message, const char *needle, 752 msgpack::byte_range *res, uint64_t *size) { 753 unsigned count = 0; 754 struct s : msgpack::functors_defaults<s> { 755 s(unsigned &count, uint64_t *size) : count(count), size(size) {} 756 unsigned &count; 757 uint64_t *size; 758 const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) { 759 count++; 760 *size = N; 761 return bytes.end; 762 } 763 }; 764 765 msgpack::foreach_map(message, 766 [&](msgpack::byte_range key, msgpack::byte_range value) { 767 if (msgpack::message_is_string(key, needle)) { 768 // If the message is an array, record number of 769 // elements in *size 770 msgpack::handle_msgpack<s>(value, {count, size}); 771 // return the whole array 772 *res = value; 773 } 774 }); 775 // Only claim success if exactly one key/array pair matched 776 return count != 1; 777 } 778 779 int map_lookup_string(msgpack::byte_range message, const char *needle, 780 std::string *res) { 781 unsigned count = 0; 782 struct s : public msgpack::functors_defaults<s> { 783 s(unsigned &count, std::string *res) : count(count), res(res) {} 784 unsigned &count; 785 std::string *res; 786 void handle_string(size_t N, const unsigned char *str) { 787 count++; 788 *res = std::string(str, str + N); 789 } 790 }; 791 msgpack::foreach_map(message, 792 [&](msgpack::byte_range key, msgpack::byte_range value) { 793 if (msgpack::message_is_string(key, needle)) { 794 msgpack::handle_msgpack<s>(value, {count, res}); 795 } 796 }); 797 return count != 1; 798 } 799 800 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle, 801 uint64_t *res) { 802 unsigned count = 0; 803 msgpack::foreach_map(message, 804 [&](msgpack::byte_range key, msgpack::byte_range value) { 805 if (msgpack::message_is_string(key, needle)) { 806 msgpack::foronly_unsigned(value, [&](uint64_t x) { 807 count++; 808 *res = x; 809 }); 810 } 811 }); 812 return count != 1; 813 } 814 815 int array_lookup_element(msgpack::byte_range message, uint64_t elt, 816 msgpack::byte_range *res) { 817 int rc = 1; 818 uint64_t i = 0; 819 msgpack::foreach_array(message, [&](msgpack::byte_range value) { 820 if (i == elt) { 821 *res = value; 822 rc = 0; 823 } 824 i++; 825 }); 826 return rc; 827 } 828 829 int populate_kernelArgMD(msgpack::byte_range args_element, 830 KernelArgMD *kernelarg) { 831 using namespace msgpack; 832 int error = 0; 833 foreach_map(args_element, [&](byte_range key, byte_range value) -> void { 834 if (message_is_string(key, ".name")) { 835 foronly_string(value, [&](size_t N, const unsigned char *str) { 836 kernelarg->name_ = std::string(str, str + N); 837 }); 838 } else if (message_is_string(key, ".type_name")) { 839 foronly_string(value, [&](size_t N, const unsigned char *str) { 840 kernelarg->typeName_ = std::string(str, str + N); 841 }); 842 } else if (message_is_string(key, ".size")) { 843 foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; }); 844 } else if (message_is_string(key, ".offset")) { 845 foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; }); 846 } else if (message_is_string(key, ".value_kind")) { 847 foronly_string(value, [&](size_t N, const unsigned char *str) { 848 std::string s = std::string(str, str + N); 849 auto itValueKind = ArgValueKind.find(s); 850 if (itValueKind != ArgValueKind.end()) { 851 kernelarg->valueKind_ = itValueKind->second; 852 } 853 }); 854 } 855 }); 856 return error; 857 } 858 } // namespace 859 860 static hsa_status_t get_code_object_custom_metadata(void *binary, 861 size_t binSize, int gpu) { 862 // parse code object with different keys from v2 863 // also, the kernel name is not the same as the symbol name -- so a 864 // symbol->name map is needed 865 866 std::pair<unsigned char *, unsigned char *> metadata = 867 find_metadata(binary, binSize); 868 if (!metadata.first) { 869 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 870 } 871 872 uint64_t kernelsSize = 0; 873 int msgpack_errors = 0; 874 msgpack::byte_range kernel_array; 875 msgpack_errors = 876 map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels", 877 &kernel_array, &kernelsSize); 878 if (msgpack_errors != 0) { 879 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 880 "kernels lookup in program metadata"); 881 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 882 } 883 884 for (size_t i = 0; i < kernelsSize; i++) { 885 assert(msgpack_errors == 0); 886 std::string kernelName; 887 std::string symbolName; 888 889 msgpack::byte_range element; 890 msgpack_errors += array_lookup_element(kernel_array, i, &element); 891 if (msgpack_errors != 0) { 892 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 893 "element lookup in kernel metadata"); 894 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 895 } 896 897 msgpack_errors += map_lookup_string(element, ".name", &kernelName); 898 msgpack_errors += map_lookup_string(element, ".symbol", &symbolName); 899 if (msgpack_errors != 0) { 900 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 901 "strings lookup in kernel metadata"); 902 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 903 } 904 905 atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}}; 906 907 uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 908 msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count); 909 if (msgpack_errors != 0) { 910 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 911 "sgpr count metadata lookup in kernel metadata"); 912 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 913 } 914 915 info.sgpr_count = sgpr_count; 916 917 msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count); 918 if (msgpack_errors != 0) { 919 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 920 "vgpr count metadata lookup in kernel metadata"); 921 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 922 } 923 924 info.vgpr_count = vgpr_count; 925 926 msgpack_errors += 927 map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count); 928 if (msgpack_errors != 0) { 929 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 930 "sgpr spill count metadata lookup in kernel metadata"); 931 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 932 } 933 934 info.sgpr_spill_count = sgpr_spill_count; 935 936 msgpack_errors += 937 map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count); 938 if (msgpack_errors != 0) { 939 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 940 "vgpr spill count metadata lookup in kernel metadata"); 941 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 942 } 943 944 info.vgpr_spill_count = vgpr_spill_count; 945 946 size_t kernel_explicit_args_size = 0; 947 uint64_t kernel_segment_size; 948 msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size", 949 &kernel_segment_size); 950 if (msgpack_errors != 0) { 951 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 952 "kernarg segment size metadata lookup in kernel metadata"); 953 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 954 } 955 956 // create a map from symbol to name 957 DEBUG_PRINT("Kernel symbol %s; Name: %s; Size: %lu\n", symbolName.c_str(), 958 kernelName.c_str(), kernel_segment_size); 959 KernelNameMap[symbolName] = kernelName; 960 961 bool hasHiddenArgs = false; 962 if (kernel_segment_size > 0) { 963 uint64_t argsSize; 964 size_t offset = 0; 965 966 msgpack::byte_range args_array; 967 msgpack_errors += 968 map_lookup_array(element, ".args", &args_array, &argsSize); 969 if (msgpack_errors != 0) { 970 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 971 "kernel args metadata lookup in kernel metadata"); 972 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 973 } 974 975 info.num_args = argsSize; 976 977 for (size_t i = 0; i < argsSize; ++i) { 978 KernelArgMD lcArg; 979 980 msgpack::byte_range args_element; 981 msgpack_errors += array_lookup_element(args_array, i, &args_element); 982 if (msgpack_errors != 0) { 983 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 984 "iterate args map in kernel args metadata"); 985 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 986 } 987 988 msgpack_errors += populate_kernelArgMD(args_element, &lcArg); 989 if (msgpack_errors != 0) { 990 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 991 "iterate args map in kernel args metadata"); 992 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 993 } 994 // populate info with sizes and offsets 995 info.arg_sizes.push_back(lcArg.size_); 996 // v3 has offset field and not align field 997 size_t new_offset = lcArg.offset_; 998 size_t padding = new_offset - offset; 999 offset = new_offset; 1000 info.arg_offsets.push_back(lcArg.offset_); 1001 DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), 1002 lcArg.size_, lcArg.offset_); 1003 offset += lcArg.size_; 1004 1005 // check if the arg is a hidden/implicit arg 1006 // this logic assumes that all hidden args are 8-byte aligned 1007 if (!isImplicit(lcArg.valueKind_)) { 1008 kernel_explicit_args_size += lcArg.size_; 1009 } else { 1010 hasHiddenArgs = true; 1011 } 1012 kernel_explicit_args_size += padding; 1013 } 1014 } 1015 1016 // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but 1017 // in ATMI, do not count the compiler set implicit args, but set your own 1018 // implicit args by discounting the compiler set implicit args 1019 info.kernel_segment_size = 1020 (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) + 1021 sizeof(atmi_implicit_args_t); 1022 DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(), 1023 kernel_segment_size, info.kernel_segment_size); 1024 1025 // kernel received, now add it to the kernel info table 1026 KernelInfoTable[gpu][kernelName] = info; 1027 } 1028 1029 return HSA_STATUS_SUCCESS; 1030 } 1031 1032 static hsa_status_t populate_InfoTables(hsa_executable_t executable, 1033 hsa_executable_symbol_t symbol, 1034 void *data) { 1035 int gpu = *static_cast<int *>(data); 1036 hsa_symbol_kind_t type; 1037 1038 uint32_t name_length; 1039 hsa_status_t err; 1040 err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE, 1041 &type); 1042 if (err != HSA_STATUS_SUCCESS) { 1043 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1044 "Symbol info extraction", get_error_string(err)); 1045 exit(1); 1046 } 1047 DEBUG_PRINT("Exec Symbol type: %d\n", type); 1048 if (type == HSA_SYMBOL_KIND_KERNEL) { 1049 err = hsa_executable_symbol_get_info( 1050 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 1051 if (err != HSA_STATUS_SUCCESS) { 1052 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1053 "Symbol info extraction", get_error_string(err)); 1054 exit(1); 1055 } 1056 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 1057 err = hsa_executable_symbol_get_info(symbol, 1058 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 1059 if (err != HSA_STATUS_SUCCESS) { 1060 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1061 "Symbol info extraction", get_error_string(err)); 1062 exit(1); 1063 } 1064 name[name_length] = 0; 1065 1066 if (KernelNameMap.find(std::string(name)) == KernelNameMap.end()) { 1067 // did not find kernel name in the kernel map; this can happen only 1068 // if the ROCr API for getting symbol info (name) is different from 1069 // the comgr method of getting symbol info 1070 if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) { 1071 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1072 "Invalid kernel name", 1073 get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT)); 1074 exit(1); 1075 } 1076 } 1077 atl_kernel_info_t info; 1078 std::string kernelName = KernelNameMap[std::string(name)]; 1079 // by now, the kernel info table should already have an entry 1080 // because the non-ROCr custom code object parsing is called before 1081 // iterating over the code object symbols using ROCr 1082 if (KernelInfoTable[gpu].find(kernelName) == KernelInfoTable[gpu].end()) { 1083 if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) { 1084 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1085 "Finding the entry kernel info table", 1086 get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT)); 1087 exit(1); 1088 } 1089 } 1090 // found, so assign and update 1091 info = KernelInfoTable[gpu][kernelName]; 1092 1093 /* Extract dispatch information from the symbol */ 1094 err = hsa_executable_symbol_get_info( 1095 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, 1096 &(info.kernel_object)); 1097 if (err != HSA_STATUS_SUCCESS) { 1098 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1099 "Extracting the symbol from the executable", 1100 get_error_string(err)); 1101 exit(1); 1102 } 1103 err = hsa_executable_symbol_get_info( 1104 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, 1105 &(info.group_segment_size)); 1106 if (err != HSA_STATUS_SUCCESS) { 1107 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1108 "Extracting the group segment size from the executable", 1109 get_error_string(err)); 1110 exit(1); 1111 } 1112 err = hsa_executable_symbol_get_info( 1113 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, 1114 &(info.private_segment_size)); 1115 if (err != HSA_STATUS_SUCCESS) { 1116 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1117 "Extracting the private segment from the executable", 1118 get_error_string(err)); 1119 exit(1); 1120 } 1121 1122 DEBUG_PRINT( 1123 "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes " 1124 "kernarg\n", 1125 kernelName.c_str(), info.kernel_object, info.group_segment_size, 1126 info.private_segment_size, info.kernel_segment_size); 1127 1128 // assign it back to the kernel info table 1129 KernelInfoTable[gpu][kernelName] = info; 1130 free(name); 1131 } else if (type == HSA_SYMBOL_KIND_VARIABLE) { 1132 err = hsa_executable_symbol_get_info( 1133 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 1134 if (err != HSA_STATUS_SUCCESS) { 1135 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1136 "Symbol info extraction", get_error_string(err)); 1137 exit(1); 1138 } 1139 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 1140 err = hsa_executable_symbol_get_info(symbol, 1141 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 1142 if (err != HSA_STATUS_SUCCESS) { 1143 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1144 "Symbol info extraction", get_error_string(err)); 1145 exit(1); 1146 } 1147 name[name_length] = 0; 1148 1149 atl_symbol_info_t info; 1150 1151 err = hsa_executable_symbol_get_info( 1152 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr)); 1153 if (err != HSA_STATUS_SUCCESS) { 1154 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1155 "Symbol info address extraction", get_error_string(err)); 1156 exit(1); 1157 } 1158 1159 err = hsa_executable_symbol_get_info( 1160 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size)); 1161 if (err != HSA_STATUS_SUCCESS) { 1162 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1163 "Symbol info size extraction", get_error_string(err)); 1164 exit(1); 1165 } 1166 1167 atmi_mem_place_t place = ATMI_MEM_PLACE(ATMI_DEVTYPE_GPU, gpu, 0); 1168 DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, 1169 info.size); 1170 register_allocation(reinterpret_cast<void *>(info.addr), (size_t)info.size, 1171 place); 1172 SymbolInfoTable[gpu][std::string(name)] = info; 1173 if (strcmp(name, "needs_hostcall_buffer") == 0) 1174 g_atmi_hostcall_required = true; 1175 free(name); 1176 } else { 1177 DEBUG_PRINT("Symbol is an indirect function\n"); 1178 } 1179 return HSA_STATUS_SUCCESS; 1180 } 1181 1182 atmi_status_t Runtime::RegisterModuleFromMemory( 1183 void *module_bytes, size_t module_size, atmi_place_t place, 1184 atmi_status_t (*on_deserialized_data)(void *data, size_t size, 1185 void *cb_state), 1186 void *cb_state) { 1187 hsa_status_t err; 1188 int gpu = place.device_id; 1189 assert(gpu >= 0); 1190 1191 DEBUG_PRINT("Trying to load module to GPU-%d\n", gpu); 1192 ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place); 1193 hsa_agent_t agent = proc.agent(); 1194 hsa_executable_t executable = {0}; 1195 hsa_profile_t agent_profile; 1196 1197 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile); 1198 if (err != HSA_STATUS_SUCCESS) { 1199 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1200 "Query the agent profile", get_error_string(err)); 1201 exit(1); 1202 } 1203 // FIXME: Assume that every profile is FULL until we understand how to build 1204 // GCN with base profile 1205 agent_profile = HSA_PROFILE_FULL; 1206 /* Create the empty executable. */ 1207 err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "", 1208 &executable); 1209 if (err != HSA_STATUS_SUCCESS) { 1210 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1211 "Create the executable", get_error_string(err)); 1212 exit(1); 1213 } 1214 1215 bool module_load_success = false; 1216 do // Existing control flow used continue, preserve that for this patch 1217 { 1218 { 1219 // Some metadata info is not available through ROCr API, so use custom 1220 // code object metadata parsing to collect such metadata info 1221 1222 err = get_code_object_custom_metadata(module_bytes, module_size, gpu); 1223 if (err != HSA_STATUS_SUCCESS) { 1224 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1225 "Getting custom code object metadata", 1226 get_error_string(err)); 1227 continue; 1228 } 1229 1230 // Deserialize code object. 1231 hsa_code_object_t code_object = {0}; 1232 err = hsa_code_object_deserialize(module_bytes, module_size, NULL, 1233 &code_object); 1234 if (err != HSA_STATUS_SUCCESS) { 1235 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1236 "Code Object Deserialization", get_error_string(err)); 1237 continue; 1238 } 1239 assert(0 != code_object.handle); 1240 1241 // Mutating the device image here avoids another allocation & memcpy 1242 void *code_object_alloc_data = 1243 reinterpret_cast<void *>(code_object.handle); 1244 atmi_status_t atmi_err = 1245 on_deserialized_data(code_object_alloc_data, module_size, cb_state); 1246 if (atmi_err != ATMI_STATUS_SUCCESS) { 1247 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1248 "Error in deserialized_data callback", 1249 get_atmi_error_string(atmi_err)); 1250 exit(1); 1251 } 1252 1253 /* Load the code object. */ 1254 err = 1255 hsa_executable_load_code_object(executable, agent, code_object, NULL); 1256 if (err != HSA_STATUS_SUCCESS) { 1257 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1258 "Loading the code object", get_error_string(err)); 1259 continue; 1260 } 1261 1262 // cannot iterate over symbols until executable is frozen 1263 } 1264 module_load_success = true; 1265 } while (0); 1266 DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success); 1267 if (module_load_success) { 1268 /* Freeze the executable; it can now be queried for symbols. */ 1269 err = hsa_executable_freeze(executable, ""); 1270 if (err != HSA_STATUS_SUCCESS) { 1271 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1272 "Freeze the executable", get_error_string(err)); 1273 exit(1); 1274 } 1275 1276 err = hsa_executable_iterate_symbols(executable, populate_InfoTables, 1277 static_cast<void *>(&gpu)); 1278 if (err != HSA_STATUS_SUCCESS) { 1279 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1280 "Iterating over symbols for execuatable", get_error_string(err)); 1281 exit(1); 1282 } 1283 1284 // save the executable and destroy during finalize 1285 g_executables.push_back(executable); 1286 return ATMI_STATUS_SUCCESS; 1287 } else { 1288 return ATMI_STATUS_ERROR; 1289 } 1290 } 1291 1292 } // namespace core 1293