1 /*===-------------------------------------------------------------------------- 2 * ATMI (Asynchronous Task and Memory Interface) 3 * 4 * This file is distributed under the MIT License. See LICENSE.txt for details. 5 *===------------------------------------------------------------------------*/ 6 #include <libelf.h> 7 8 #include <cassert> 9 #include <sstream> 10 #include <string> 11 12 #include "internal.h" 13 #include "machine.h" 14 #include "rt.h" 15 16 #include "msgpack.h" 17 18 namespace hsa { 19 // Wrap HSA iterate API in a shim that allows passing general callables 20 template <typename C> 21 hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) { 22 auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol, 23 void *data) -> hsa_status_t { 24 C *unwrapped = static_cast<C *>(data); 25 return (*unwrapped)(executable, symbol); 26 }; 27 return hsa_executable_iterate_symbols(executable, L, 28 static_cast<void *>(&cb)); 29 } 30 } // namespace hsa 31 32 typedef unsigned char *address; 33 /* 34 * Note descriptors. 35 */ 36 typedef struct { 37 uint32_t n_namesz; /* Length of note's name. */ 38 uint32_t n_descsz; /* Length of note's value. */ 39 uint32_t n_type; /* Type of note. */ 40 // then name 41 // then padding, optional 42 // then desc, at 4 byte alignment (not 8, despite being elf64) 43 } Elf_Note; 44 45 // The following include file and following structs/enums 46 // have been replicated on a per-use basis below. For example, 47 // llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields, 48 // but we may care only about kernargSegmentSize_ for now, so 49 // we just include that field in our KernelMD implementation. We 50 // chose this approach to replicate in order to avoid forcing 51 // a dependency on LLVM_INCLUDE_DIR just to compile the runtime. 52 // #include "llvm/Support/AMDGPUMetadata.h" 53 // typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD; 54 // typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD; 55 // typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD; 56 // using llvm::AMDGPU::HSAMD::AccessQualifier; 57 // using llvm::AMDGPU::HSAMD::AddressSpaceQualifier; 58 // using llvm::AMDGPU::HSAMD::ValueKind; 59 // using llvm::AMDGPU::HSAMD::ValueType; 60 61 class KernelArgMD { 62 public: 63 enum class ValueKind { 64 HiddenGlobalOffsetX, 65 HiddenGlobalOffsetY, 66 HiddenGlobalOffsetZ, 67 HiddenNone, 68 HiddenPrintfBuffer, 69 HiddenDefaultQueue, 70 HiddenCompletionAction, 71 HiddenMultiGridSyncArg, 72 HiddenHostcallBuffer, 73 Unknown 74 }; 75 76 KernelArgMD() 77 : name_(std::string()), typeName_(std::string()), size_(0), offset_(0), 78 align_(0), valueKind_(ValueKind::Unknown) {} 79 80 // fields 81 std::string name_; 82 std::string typeName_; 83 uint32_t size_; 84 uint32_t offset_; 85 uint32_t align_; 86 ValueKind valueKind_; 87 }; 88 89 class KernelMD { 90 public: 91 KernelMD() : kernargSegmentSize_(0ull) {} 92 93 // fields 94 uint64_t kernargSegmentSize_; 95 }; 96 97 static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = { 98 // Including only those fields that are relevant to the runtime. 99 // {"ByValue", KernelArgMD::ValueKind::ByValue}, 100 // {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer}, 101 // {"DynamicSharedPointer", 102 // KernelArgMD::ValueKind::DynamicSharedPointer}, 103 // {"Sampler", KernelArgMD::ValueKind::Sampler}, 104 // {"Image", KernelArgMD::ValueKind::Image}, 105 // {"Pipe", KernelArgMD::ValueKind::Pipe}, 106 // {"Queue", KernelArgMD::ValueKind::Queue}, 107 {"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 108 {"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 109 {"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 110 {"HiddenNone", KernelArgMD::ValueKind::HiddenNone}, 111 {"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 112 {"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 113 {"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction}, 114 {"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 115 {"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 116 // v3 117 // {"by_value", KernelArgMD::ValueKind::ByValue}, 118 // {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer}, 119 // {"dynamic_shared_pointer", 120 // KernelArgMD::ValueKind::DynamicSharedPointer}, 121 // {"sampler", KernelArgMD::ValueKind::Sampler}, 122 // {"image", KernelArgMD::ValueKind::Image}, 123 // {"pipe", KernelArgMD::ValueKind::Pipe}, 124 // {"queue", KernelArgMD::ValueKind::Queue}, 125 {"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX}, 126 {"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY}, 127 {"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ}, 128 {"hidden_none", KernelArgMD::ValueKind::HiddenNone}, 129 {"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer}, 130 {"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue}, 131 {"hidden_completion_action", 132 KernelArgMD::ValueKind::HiddenCompletionAction}, 133 {"hidden_multigrid_sync_arg", 134 KernelArgMD::ValueKind::HiddenMultiGridSyncArg}, 135 {"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer}, 136 }; 137 138 ATLMachine g_atl_machine; 139 140 namespace core { 141 142 // Implement memory_pool iteration function 143 static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool, 144 void *data) { 145 ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data); 146 hsa_status_t err = HSA_STATUS_SUCCESS; 147 // Check if the memory_pool is allowed to allocate, i.e. do not return group 148 // memory 149 bool alloc_allowed = false; 150 err = hsa_amd_memory_pool_get_info( 151 memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 152 &alloc_allowed); 153 if (err != HSA_STATUS_SUCCESS) { 154 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 155 "Alloc allowed in memory pool check", get_error_string(err)); 156 return err; 157 } 158 if (alloc_allowed) { 159 uint32_t global_flag = 0; 160 err = hsa_amd_memory_pool_get_info( 161 memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag); 162 if (err != HSA_STATUS_SUCCESS) { 163 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 164 "Get memory pool info", get_error_string(err)); 165 return err; 166 } 167 if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) { 168 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED); 169 proc->addMemory(new_mem); 170 } else { 171 ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED); 172 proc->addMemory(new_mem); 173 } 174 } 175 176 return err; 177 } 178 179 static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) { 180 hsa_status_t err = HSA_STATUS_SUCCESS; 181 hsa_device_type_t device_type; 182 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 183 if (err != HSA_STATUS_SUCCESS) { 184 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 185 "Get device type info", get_error_string(err)); 186 return err; 187 } 188 switch (device_type) { 189 case HSA_DEVICE_TYPE_CPU: { 190 ATLCPUProcessor new_proc(agent); 191 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 192 &new_proc); 193 if (err != HSA_STATUS_SUCCESS) { 194 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 195 "Iterate all memory pools", get_error_string(err)); 196 return err; 197 } 198 g_atl_machine.addProcessor(new_proc); 199 } break; 200 case HSA_DEVICE_TYPE_GPU: { 201 hsa_profile_t profile; 202 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile); 203 if (err != HSA_STATUS_SUCCESS) { 204 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 205 "Query the agent profile", get_error_string(err)); 206 return err; 207 } 208 atmi_devtype_t gpu_type; 209 gpu_type = 210 (profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU; 211 ATLGPUProcessor new_proc(agent, gpu_type); 212 err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info, 213 &new_proc); 214 if (err != HSA_STATUS_SUCCESS) { 215 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 216 "Iterate all memory pools", get_error_string(err)); 217 return err; 218 } 219 g_atl_machine.addProcessor(new_proc); 220 } break; 221 case HSA_DEVICE_TYPE_DSP: { 222 err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 223 } break; 224 } 225 226 return err; 227 } 228 229 static hsa_status_t init_compute_and_memory() { 230 hsa_status_t err; 231 232 /* Iterate over the agents and pick the gpu agent */ 233 err = hsa_iterate_agents(get_agent_info, NULL); 234 if (err == HSA_STATUS_INFO_BREAK) { 235 err = HSA_STATUS_SUCCESS; 236 } 237 if (err != HSA_STATUS_SUCCESS) { 238 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent", 239 get_error_string(err)); 240 return err; 241 } 242 243 /* Init all devices or individual device types? */ 244 std::vector<ATLCPUProcessor> &cpu_procs = 245 g_atl_machine.processors<ATLCPUProcessor>(); 246 std::vector<ATLGPUProcessor> &gpu_procs = 247 g_atl_machine.processors<ATLGPUProcessor>(); 248 /* For CPU memory pools, add other devices that can access them directly 249 * or indirectly */ 250 for (auto &cpu_proc : cpu_procs) { 251 for (auto &cpu_mem : cpu_proc.memories()) { 252 hsa_amd_memory_pool_t pool = cpu_mem.memory(); 253 for (auto &gpu_proc : gpu_procs) { 254 hsa_agent_t agent = gpu_proc.agent(); 255 hsa_amd_memory_pool_access_t access; 256 hsa_amd_agent_memory_pool_get_info( 257 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 258 if (access != 0) { 259 // this means not NEVER, but could be YES or NO 260 // add this memory pool to the proc 261 gpu_proc.addMemory(cpu_mem); 262 } 263 } 264 } 265 } 266 267 /* FIXME: are the below combinations of procs and memory pools needed? 268 * all to all compare procs with their memory pools and add those memory 269 * pools that are accessible by the target procs */ 270 for (auto &gpu_proc : gpu_procs) { 271 for (auto &gpu_mem : gpu_proc.memories()) { 272 hsa_amd_memory_pool_t pool = gpu_mem.memory(); 273 for (auto &cpu_proc : cpu_procs) { 274 hsa_agent_t agent = cpu_proc.agent(); 275 hsa_amd_memory_pool_access_t access; 276 hsa_amd_agent_memory_pool_get_info( 277 agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access); 278 if (access != 0) { 279 // this means not NEVER, but could be YES or NO 280 // add this memory pool to the proc 281 cpu_proc.addMemory(gpu_mem); 282 } 283 } 284 } 285 } 286 287 size_t num_procs = cpu_procs.size() + gpu_procs.size(); 288 int num_iGPUs = 0; 289 int num_dGPUs = 0; 290 for (uint32_t i = 0; i < gpu_procs.size(); i++) { 291 if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU) 292 num_iGPUs++; 293 else 294 num_dGPUs++; 295 } 296 assert(num_iGPUs + num_dGPUs == gpu_procs.size() && 297 "Number of dGPUs and iGPUs do not add up"); 298 DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size()); 299 DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs); 300 DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs); 301 DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size()); 302 303 int cpus_begin = 0; 304 int cpus_end = cpu_procs.size(); 305 int gpus_begin = cpu_procs.size(); 306 int gpus_end = cpu_procs.size() + gpu_procs.size(); 307 int proc_index = 0; 308 for (int i = cpus_begin; i < cpus_end; i++) { 309 std::vector<ATLMemory> memories = cpu_procs[proc_index].memories(); 310 int fine_memories_size = 0; 311 int coarse_memories_size = 0; 312 DEBUG_PRINT("CPU memory types:\t"); 313 for (auto &memory : memories) { 314 atmi_memtype_t type = memory.type(); 315 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 316 fine_memories_size++; 317 DEBUG_PRINT("Fine\t"); 318 } else { 319 coarse_memories_size++; 320 DEBUG_PRINT("Coarse\t"); 321 } 322 } 323 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 324 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 325 proc_index++; 326 } 327 proc_index = 0; 328 for (int i = gpus_begin; i < gpus_end; i++) { 329 std::vector<ATLMemory> memories = gpu_procs[proc_index].memories(); 330 int fine_memories_size = 0; 331 int coarse_memories_size = 0; 332 DEBUG_PRINT("GPU memory types:\t"); 333 for (auto &memory : memories) { 334 atmi_memtype_t type = memory.type(); 335 if (type == ATMI_MEMTYPE_FINE_GRAINED) { 336 fine_memories_size++; 337 DEBUG_PRINT("Fine\t"); 338 } else { 339 coarse_memories_size++; 340 DEBUG_PRINT("Coarse\t"); 341 } 342 } 343 DEBUG_PRINT("\nFine Memories : %d", fine_memories_size); 344 DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size); 345 proc_index++; 346 } 347 if (num_procs > 0) 348 return HSA_STATUS_SUCCESS; 349 else 350 return HSA_STATUS_ERROR_NOT_INITIALIZED; 351 } 352 353 hsa_status_t init_hsa() { 354 DEBUG_PRINT("Initializing HSA..."); 355 hsa_status_t err = hsa_init(); 356 if (err != HSA_STATUS_SUCCESS) { 357 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 358 "Initializing the hsa runtime", get_error_string(err)); 359 return err; 360 } 361 if (err != HSA_STATUS_SUCCESS) 362 return err; 363 364 err = init_compute_and_memory(); 365 if (err != HSA_STATUS_SUCCESS) 366 return err; 367 if (err != HSA_STATUS_SUCCESS) { 368 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 369 "After initializing compute and memory", get_error_string(err)); 370 return err; 371 } 372 373 DEBUG_PRINT("done\n"); 374 return HSA_STATUS_SUCCESS; 375 } 376 377 hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) { 378 #if (ROCM_VERSION_MAJOR >= 3) || \ 379 (ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3) 380 if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) { 381 #else 382 if (event->event_type == GPU_MEMORY_FAULT_EVENT) { 383 #endif 384 hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault; 385 // memory_fault.agent 386 // memory_fault.virtual_address 387 // memory_fault.fault_reason_mask 388 // fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address); 389 std::stringstream stream; 390 stream << std::hex << (uintptr_t)memory_fault.virtual_address; 391 std::string addr("0x" + stream.str()); 392 393 std::string err_string = "[GPU Memory Error] Addr: " + addr; 394 err_string += " Reason: "; 395 if (!(memory_fault.fault_reason_mask & 0x00111111)) { 396 err_string += "No Idea! "; 397 } else { 398 if (memory_fault.fault_reason_mask & 0x00000001) 399 err_string += "Page not present or supervisor privilege. "; 400 if (memory_fault.fault_reason_mask & 0x00000010) 401 err_string += "Write access to a read-only page. "; 402 if (memory_fault.fault_reason_mask & 0x00000100) 403 err_string += "Execute access to a page marked NX. "; 404 if (memory_fault.fault_reason_mask & 0x00001000) 405 err_string += "Host access only. "; 406 if (memory_fault.fault_reason_mask & 0x00010000) 407 err_string += "ECC failure (if supported by HW). "; 408 if (memory_fault.fault_reason_mask & 0x00100000) 409 err_string += "Can't determine the exact fault address. "; 410 } 411 fprintf(stderr, "%s\n", err_string.c_str()); 412 return HSA_STATUS_ERROR; 413 } 414 return HSA_STATUS_SUCCESS; 415 } 416 417 hsa_status_t atl_init_gpu_context() { 418 hsa_status_t err; 419 err = init_hsa(); 420 if (err != HSA_STATUS_SUCCESS) 421 return HSA_STATUS_ERROR; 422 423 err = hsa_amd_register_system_event_handler(callbackEvent, NULL); 424 if (err != HSA_STATUS_SUCCESS) { 425 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 426 "Registering the system for memory faults", get_error_string(err)); 427 return HSA_STATUS_ERROR; 428 } 429 430 return HSA_STATUS_SUCCESS; 431 } 432 433 static bool isImplicit(KernelArgMD::ValueKind value_kind) { 434 switch (value_kind) { 435 case KernelArgMD::ValueKind::HiddenGlobalOffsetX: 436 case KernelArgMD::ValueKind::HiddenGlobalOffsetY: 437 case KernelArgMD::ValueKind::HiddenGlobalOffsetZ: 438 case KernelArgMD::ValueKind::HiddenNone: 439 case KernelArgMD::ValueKind::HiddenPrintfBuffer: 440 case KernelArgMD::ValueKind::HiddenDefaultQueue: 441 case KernelArgMD::ValueKind::HiddenCompletionAction: 442 case KernelArgMD::ValueKind::HiddenMultiGridSyncArg: 443 case KernelArgMD::ValueKind::HiddenHostcallBuffer: 444 return true; 445 default: 446 return false; 447 } 448 } 449 450 static std::pair<unsigned char *, unsigned char *> 451 find_metadata(void *binary, size_t binSize) { 452 std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr}; 453 454 Elf *e = elf_memory(static_cast<char *>(binary), binSize); 455 if (elf_kind(e) != ELF_K_ELF) { 456 return failure; 457 } 458 459 size_t numpHdrs; 460 if (elf_getphdrnum(e, &numpHdrs) != 0) { 461 return failure; 462 } 463 464 Elf64_Phdr *pHdrs = elf64_getphdr(e); 465 for (size_t i = 0; i < numpHdrs; ++i) { 466 Elf64_Phdr pHdr = pHdrs[i]; 467 468 // Look for the runtime metadata note 469 if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) { 470 // Iterate over the notes in this segment 471 address ptr = (address)binary + pHdr.p_offset; 472 address segmentEnd = ptr + pHdr.p_filesz; 473 474 while (ptr < segmentEnd) { 475 Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr); 476 address name = (address)¬e[1]; 477 478 if (note->n_type == 7 || note->n_type == 8) { 479 return failure; 480 } else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ && 481 note->n_namesz == sizeof "AMD" && 482 !memcmp(name, "AMD", note->n_namesz)) { 483 // code object v2 uses yaml metadata, no longer supported 484 return failure; 485 } else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ && 486 note->n_namesz == sizeof "AMDGPU" && 487 !memcmp(name, "AMDGPU", note->n_namesz)) { 488 489 // n_descsz = 485 490 // value is padded to 4 byte alignment, may want to move end up to 491 // match 492 size_t offset = sizeof(uint32_t) * 3 /* fields */ 493 + sizeof("AMDGPU") /* name */ 494 + 1 /* padding to 4 byte alignment */; 495 496 // Including the trailing padding means both pointers are 4 bytes 497 // aligned, which may be useful later. 498 unsigned char *metadata_start = (unsigned char *)ptr + offset; 499 unsigned char *metadata_end = 500 metadata_start + core::alignUp(note->n_descsz, 4); 501 return {metadata_start, metadata_end}; 502 } 503 ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) + 504 core::alignUp(note->n_descsz, sizeof(int)); 505 } 506 } 507 } 508 509 return failure; 510 } 511 512 namespace { 513 int map_lookup_array(msgpack::byte_range message, const char *needle, 514 msgpack::byte_range *res, uint64_t *size) { 515 unsigned count = 0; 516 struct s : msgpack::functors_defaults<s> { 517 s(unsigned &count, uint64_t *size) : count(count), size(size) {} 518 unsigned &count; 519 uint64_t *size; 520 const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) { 521 count++; 522 *size = N; 523 return bytes.end; 524 } 525 }; 526 527 msgpack::foreach_map(message, 528 [&](msgpack::byte_range key, msgpack::byte_range value) { 529 if (msgpack::message_is_string(key, needle)) { 530 // If the message is an array, record number of 531 // elements in *size 532 msgpack::handle_msgpack<s>(value, {count, size}); 533 // return the whole array 534 *res = value; 535 } 536 }); 537 // Only claim success if exactly one key/array pair matched 538 return count != 1; 539 } 540 541 int map_lookup_string(msgpack::byte_range message, const char *needle, 542 std::string *res) { 543 unsigned count = 0; 544 struct s : public msgpack::functors_defaults<s> { 545 s(unsigned &count, std::string *res) : count(count), res(res) {} 546 unsigned &count; 547 std::string *res; 548 void handle_string(size_t N, const unsigned char *str) { 549 count++; 550 *res = std::string(str, str + N); 551 } 552 }; 553 msgpack::foreach_map(message, 554 [&](msgpack::byte_range key, msgpack::byte_range value) { 555 if (msgpack::message_is_string(key, needle)) { 556 msgpack::handle_msgpack<s>(value, {count, res}); 557 } 558 }); 559 return count != 1; 560 } 561 562 int map_lookup_uint64_t(msgpack::byte_range message, const char *needle, 563 uint64_t *res) { 564 unsigned count = 0; 565 msgpack::foreach_map(message, 566 [&](msgpack::byte_range key, msgpack::byte_range value) { 567 if (msgpack::message_is_string(key, needle)) { 568 msgpack::foronly_unsigned(value, [&](uint64_t x) { 569 count++; 570 *res = x; 571 }); 572 } 573 }); 574 return count != 1; 575 } 576 577 int array_lookup_element(msgpack::byte_range message, uint64_t elt, 578 msgpack::byte_range *res) { 579 int rc = 1; 580 uint64_t i = 0; 581 msgpack::foreach_array(message, [&](msgpack::byte_range value) { 582 if (i == elt) { 583 *res = value; 584 rc = 0; 585 } 586 i++; 587 }); 588 return rc; 589 } 590 591 int populate_kernelArgMD(msgpack::byte_range args_element, 592 KernelArgMD *kernelarg) { 593 using namespace msgpack; 594 int error = 0; 595 foreach_map(args_element, [&](byte_range key, byte_range value) -> void { 596 if (message_is_string(key, ".name")) { 597 foronly_string(value, [&](size_t N, const unsigned char *str) { 598 kernelarg->name_ = std::string(str, str + N); 599 }); 600 } else if (message_is_string(key, ".type_name")) { 601 foronly_string(value, [&](size_t N, const unsigned char *str) { 602 kernelarg->typeName_ = std::string(str, str + N); 603 }); 604 } else if (message_is_string(key, ".size")) { 605 foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; }); 606 } else if (message_is_string(key, ".offset")) { 607 foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; }); 608 } else if (message_is_string(key, ".value_kind")) { 609 foronly_string(value, [&](size_t N, const unsigned char *str) { 610 std::string s = std::string(str, str + N); 611 auto itValueKind = ArgValueKind.find(s); 612 if (itValueKind != ArgValueKind.end()) { 613 kernelarg->valueKind_ = itValueKind->second; 614 } 615 }); 616 } 617 }); 618 return error; 619 } 620 } // namespace 621 622 static hsa_status_t get_code_object_custom_metadata( 623 void *binary, size_t binSize, 624 std::map<std::string, atl_kernel_info_t> &KernelInfoTable) { 625 // parse code object with different keys from v2 626 // also, the kernel name is not the same as the symbol name -- so a 627 // symbol->name map is needed 628 629 std::pair<unsigned char *, unsigned char *> metadata = 630 find_metadata(binary, binSize); 631 if (!metadata.first) { 632 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 633 } 634 635 uint64_t kernelsSize = 0; 636 int msgpack_errors = 0; 637 msgpack::byte_range kernel_array; 638 msgpack_errors = 639 map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels", 640 &kernel_array, &kernelsSize); 641 if (msgpack_errors != 0) { 642 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 643 "kernels lookup in program metadata"); 644 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 645 } 646 647 for (size_t i = 0; i < kernelsSize; i++) { 648 assert(msgpack_errors == 0); 649 std::string kernelName; 650 std::string symbolName; 651 652 msgpack::byte_range element; 653 msgpack_errors += array_lookup_element(kernel_array, i, &element); 654 if (msgpack_errors != 0) { 655 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 656 "element lookup in kernel metadata"); 657 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 658 } 659 660 msgpack_errors += map_lookup_string(element, ".name", &kernelName); 661 msgpack_errors += map_lookup_string(element, ".symbol", &symbolName); 662 if (msgpack_errors != 0) { 663 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 664 "strings lookup in kernel metadata"); 665 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 666 } 667 668 // Make sure that kernelName + ".kd" == symbolName 669 if ((kernelName + ".kd") != symbolName) { 670 printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n", 671 __FILE__, __LINE__, symbolName.c_str(), kernelName.c_str()); 672 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 673 } 674 675 atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}}; 676 677 uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 678 msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count); 679 if (msgpack_errors != 0) { 680 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 681 "sgpr count metadata lookup in kernel metadata"); 682 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 683 } 684 685 info.sgpr_count = sgpr_count; 686 687 msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count); 688 if (msgpack_errors != 0) { 689 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 690 "vgpr count metadata lookup in kernel metadata"); 691 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 692 } 693 694 info.vgpr_count = vgpr_count; 695 696 msgpack_errors += 697 map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count); 698 if (msgpack_errors != 0) { 699 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 700 "sgpr spill count metadata lookup in kernel metadata"); 701 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 702 } 703 704 info.sgpr_spill_count = sgpr_spill_count; 705 706 msgpack_errors += 707 map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count); 708 if (msgpack_errors != 0) { 709 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 710 "vgpr spill count metadata lookup in kernel metadata"); 711 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 712 } 713 714 info.vgpr_spill_count = vgpr_spill_count; 715 716 size_t kernel_explicit_args_size = 0; 717 uint64_t kernel_segment_size; 718 msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size", 719 &kernel_segment_size); 720 if (msgpack_errors != 0) { 721 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 722 "kernarg segment size metadata lookup in kernel metadata"); 723 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 724 } 725 726 bool hasHiddenArgs = false; 727 if (kernel_segment_size > 0) { 728 uint64_t argsSize; 729 size_t offset = 0; 730 731 msgpack::byte_range args_array; 732 msgpack_errors += 733 map_lookup_array(element, ".args", &args_array, &argsSize); 734 if (msgpack_errors != 0) { 735 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 736 "kernel args metadata lookup in kernel metadata"); 737 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 738 } 739 740 info.num_args = argsSize; 741 742 for (size_t i = 0; i < argsSize; ++i) { 743 KernelArgMD lcArg; 744 745 msgpack::byte_range args_element; 746 msgpack_errors += array_lookup_element(args_array, i, &args_element); 747 if (msgpack_errors != 0) { 748 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 749 "iterate args map in kernel args metadata"); 750 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 751 } 752 753 msgpack_errors += populate_kernelArgMD(args_element, &lcArg); 754 if (msgpack_errors != 0) { 755 printf("[%s:%d] %s failed\n", __FILE__, __LINE__, 756 "iterate args map in kernel args metadata"); 757 return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; 758 } 759 // populate info with sizes and offsets 760 info.arg_sizes.push_back(lcArg.size_); 761 // v3 has offset field and not align field 762 size_t new_offset = lcArg.offset_; 763 size_t padding = new_offset - offset; 764 offset = new_offset; 765 info.arg_offsets.push_back(lcArg.offset_); 766 DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), 767 lcArg.size_, lcArg.offset_); 768 offset += lcArg.size_; 769 770 // check if the arg is a hidden/implicit arg 771 // this logic assumes that all hidden args are 8-byte aligned 772 if (!isImplicit(lcArg.valueKind_)) { 773 kernel_explicit_args_size += lcArg.size_; 774 } else { 775 hasHiddenArgs = true; 776 } 777 kernel_explicit_args_size += padding; 778 } 779 } 780 781 // add size of implicit args, e.g.: offset x, y and z and pipe pointer, but 782 // in ATMI, do not count the compiler set implicit args, but set your own 783 // implicit args by discounting the compiler set implicit args 784 info.kernel_segment_size = 785 (hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) + 786 sizeof(atmi_implicit_args_t); 787 DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(), 788 kernel_segment_size, info.kernel_segment_size); 789 790 // kernel received, now add it to the kernel info table 791 KernelInfoTable[kernelName] = info; 792 } 793 794 return HSA_STATUS_SUCCESS; 795 } 796 797 static hsa_status_t 798 populate_InfoTables(hsa_executable_symbol_t symbol, 799 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 800 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) { 801 hsa_symbol_kind_t type; 802 803 uint32_t name_length; 804 hsa_status_t err; 805 err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE, 806 &type); 807 if (err != HSA_STATUS_SUCCESS) { 808 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 809 "Symbol info extraction", get_error_string(err)); 810 return err; 811 } 812 DEBUG_PRINT("Exec Symbol type: %d\n", type); 813 if (type == HSA_SYMBOL_KIND_KERNEL) { 814 err = hsa_executable_symbol_get_info( 815 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 816 if (err != HSA_STATUS_SUCCESS) { 817 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 818 "Symbol info extraction", get_error_string(err)); 819 return err; 820 } 821 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 822 err = hsa_executable_symbol_get_info(symbol, 823 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 824 if (err != HSA_STATUS_SUCCESS) { 825 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 826 "Symbol info extraction", get_error_string(err)); 827 return err; 828 } 829 // remove the suffix .kd from symbol name. 830 name[name_length - 3] = 0; 831 832 atl_kernel_info_t info; 833 std::string kernelName(name); 834 // by now, the kernel info table should already have an entry 835 // because the non-ROCr custom code object parsing is called before 836 // iterating over the code object symbols using ROCr 837 if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) { 838 if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) { 839 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 840 "Finding the entry kernel info table", 841 get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT)); 842 exit(1); 843 } 844 } 845 // found, so assign and update 846 info = KernelInfoTable[kernelName]; 847 848 /* Extract dispatch information from the symbol */ 849 err = hsa_executable_symbol_get_info( 850 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, 851 &(info.kernel_object)); 852 if (err != HSA_STATUS_SUCCESS) { 853 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 854 "Extracting the symbol from the executable", 855 get_error_string(err)); 856 return err; 857 } 858 err = hsa_executable_symbol_get_info( 859 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, 860 &(info.group_segment_size)); 861 if (err != HSA_STATUS_SUCCESS) { 862 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 863 "Extracting the group segment size from the executable", 864 get_error_string(err)); 865 return err; 866 } 867 err = hsa_executable_symbol_get_info( 868 symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, 869 &(info.private_segment_size)); 870 if (err != HSA_STATUS_SUCCESS) { 871 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 872 "Extracting the private segment from the executable", 873 get_error_string(err)); 874 return err; 875 } 876 877 DEBUG_PRINT( 878 "Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes " 879 "kernarg\n", 880 kernelName.c_str(), info.kernel_object, info.group_segment_size, 881 info.private_segment_size, info.kernel_segment_size); 882 883 // assign it back to the kernel info table 884 KernelInfoTable[kernelName] = info; 885 free(name); 886 } else if (type == HSA_SYMBOL_KIND_VARIABLE) { 887 err = hsa_executable_symbol_get_info( 888 symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length); 889 if (err != HSA_STATUS_SUCCESS) { 890 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 891 "Symbol info extraction", get_error_string(err)); 892 return err; 893 } 894 char *name = reinterpret_cast<char *>(malloc(name_length + 1)); 895 err = hsa_executable_symbol_get_info(symbol, 896 HSA_EXECUTABLE_SYMBOL_INFO_NAME, name); 897 if (err != HSA_STATUS_SUCCESS) { 898 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 899 "Symbol info extraction", get_error_string(err)); 900 return err; 901 } 902 name[name_length] = 0; 903 904 atl_symbol_info_t info; 905 906 err = hsa_executable_symbol_get_info( 907 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr)); 908 if (err != HSA_STATUS_SUCCESS) { 909 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 910 "Symbol info address extraction", get_error_string(err)); 911 return err; 912 } 913 914 err = hsa_executable_symbol_get_info( 915 symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size)); 916 if (err != HSA_STATUS_SUCCESS) { 917 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 918 "Symbol info size extraction", get_error_string(err)); 919 return err; 920 } 921 922 DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, 923 info.size); 924 SymbolInfoTable[std::string(name)] = info; 925 free(name); 926 } else { 927 DEBUG_PRINT("Symbol is an indirect function\n"); 928 } 929 return HSA_STATUS_SUCCESS; 930 } 931 932 hsa_status_t RegisterModuleFromMemory( 933 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 934 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 935 void *module_bytes, size_t module_size, hsa_agent_t agent, 936 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 937 void *cb_state), 938 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) { 939 hsa_status_t err; 940 hsa_executable_t executable = {0}; 941 hsa_profile_t agent_profile; 942 943 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile); 944 if (err != HSA_STATUS_SUCCESS) { 945 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 946 "Query the agent profile", get_error_string(err)); 947 return HSA_STATUS_ERROR; 948 } 949 // FIXME: Assume that every profile is FULL until we understand how to build 950 // GCN with base profile 951 agent_profile = HSA_PROFILE_FULL; 952 /* Create the empty executable. */ 953 err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "", 954 &executable); 955 if (err != HSA_STATUS_SUCCESS) { 956 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 957 "Create the executable", get_error_string(err)); 958 return HSA_STATUS_ERROR; 959 } 960 961 bool module_load_success = false; 962 do // Existing control flow used continue, preserve that for this patch 963 { 964 { 965 // Some metadata info is not available through ROCr API, so use custom 966 // code object metadata parsing to collect such metadata info 967 968 err = get_code_object_custom_metadata(module_bytes, module_size, 969 KernelInfoTable); 970 if (err != HSA_STATUS_SUCCESS) { 971 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 972 "Getting custom code object metadata", 973 get_error_string(err)); 974 continue; 975 } 976 977 // Deserialize code object. 978 hsa_code_object_t code_object = {0}; 979 err = hsa_code_object_deserialize(module_bytes, module_size, NULL, 980 &code_object); 981 if (err != HSA_STATUS_SUCCESS) { 982 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 983 "Code Object Deserialization", get_error_string(err)); 984 continue; 985 } 986 assert(0 != code_object.handle); 987 988 // Mutating the device image here avoids another allocation & memcpy 989 void *code_object_alloc_data = 990 reinterpret_cast<void *>(code_object.handle); 991 hsa_status_t atmi_err = 992 on_deserialized_data(code_object_alloc_data, module_size, cb_state); 993 if (atmi_err != HSA_STATUS_SUCCESS) { 994 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 995 "Error in deserialized_data callback", 996 get_error_string(atmi_err)); 997 return atmi_err; 998 } 999 1000 /* Load the code object. */ 1001 err = 1002 hsa_executable_load_code_object(executable, agent, code_object, NULL); 1003 if (err != HSA_STATUS_SUCCESS) { 1004 DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1005 "Loading the code object", get_error_string(err)); 1006 continue; 1007 } 1008 1009 // cannot iterate over symbols until executable is frozen 1010 } 1011 module_load_success = true; 1012 } while (0); 1013 DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success); 1014 if (module_load_success) { 1015 /* Freeze the executable; it can now be queried for symbols. */ 1016 err = hsa_executable_freeze(executable, ""); 1017 if (err != HSA_STATUS_SUCCESS) { 1018 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1019 "Freeze the executable", get_error_string(err)); 1020 return HSA_STATUS_ERROR; 1021 } 1022 1023 err = hsa::executable_iterate_symbols( 1024 executable, 1025 [&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t { 1026 return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable); 1027 }); 1028 if (err != HSA_STATUS_SUCCESS) { 1029 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 1030 "Iterating over symbols for execuatable", get_error_string(err)); 1031 return HSA_STATUS_ERROR; 1032 } 1033 1034 // save the executable and destroy during finalize 1035 HSAExecutables.push_back(executable); 1036 return HSA_STATUS_SUCCESS; 1037 } else { 1038 return HSA_STATUS_ERROR; 1039 } 1040 } 1041 1042 } // namespace core 1043