1 //===- SimplexTest.cpp - Tests for Simplex --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "./Utils.h"
10
11 #include "mlir/Analysis/Presburger/Simplex.h"
12 #include "mlir/IR/MLIRContext.h"
13
14 #include <gmock/gmock.h>
15 #include <gtest/gtest.h>
16
17 using namespace mlir;
18 using namespace presburger;
19
20 /// Take a snapshot, add constraints making the set empty, and rollback.
21 /// The set should not be empty after rolling back. We add additional
22 /// constraints after the set is already empty and roll back the addition
23 /// of these. The set should be marked non-empty only once we rollback
24 /// past the addition of the first constraint that made it empty.
TEST(SimplexTest,emptyRollback)25 TEST(SimplexTest, emptyRollback) {
26 Simplex simplex(2);
27 // (u - v) >= 0
28 simplex.addInequality({1, -1, 0});
29 ASSERT_FALSE(simplex.isEmpty());
30
31 unsigned snapshot = simplex.getSnapshot();
32 // (u - v) <= -1
33 simplex.addInequality({-1, 1, -1});
34 ASSERT_TRUE(simplex.isEmpty());
35
36 unsigned snapshot2 = simplex.getSnapshot();
37 // (u - v) <= -3
38 simplex.addInequality({-1, 1, -3});
39 ASSERT_TRUE(simplex.isEmpty());
40
41 simplex.rollback(snapshot2);
42 ASSERT_TRUE(simplex.isEmpty());
43
44 simplex.rollback(snapshot);
45 ASSERT_FALSE(simplex.isEmpty());
46 }
47
48 /// Check that the set gets marked as empty when we add contradictory
49 /// constraints.
TEST(SimplexTest,addEquality_separate)50 TEST(SimplexTest, addEquality_separate) {
51 Simplex simplex(1);
52 simplex.addInequality({1, -1}); // x >= 1.
53 ASSERT_FALSE(simplex.isEmpty());
54 simplex.addEquality({1, 0}); // x == 0.
55 EXPECT_TRUE(simplex.isEmpty());
56 }
57
expectInequalityMakesSetEmpty(Simplex & simplex,ArrayRef<int64_t> coeffs,bool expect)58 void expectInequalityMakesSetEmpty(Simplex &simplex, ArrayRef<int64_t> coeffs,
59 bool expect) {
60 ASSERT_FALSE(simplex.isEmpty());
61 unsigned snapshot = simplex.getSnapshot();
62 simplex.addInequality(coeffs);
63 EXPECT_EQ(simplex.isEmpty(), expect);
64 simplex.rollback(snapshot);
65 }
66
TEST(SimplexTest,addInequality_rollback)67 TEST(SimplexTest, addInequality_rollback) {
68 Simplex simplex(3);
69 SmallVector<int64_t, 4> coeffs[]{{1, 0, 0, 0}, // u >= 0.
70 {-1, 0, 0, 0}, // u <= 0.
71 {1, -1, 1, 0}, // u - v + w >= 0.
72 {1, 1, -1, 0}}; // u + v - w >= 0.
73 // The above constraints force u = 0 and v = w.
74 // The constraints below violate v = w.
75 SmallVector<int64_t, 4> checkCoeffs[]{{0, 1, -1, -1}, // v - w >= 1.
76 {0, -1, 1, -1}}; // v - w <= -1.
77
78 for (int run = 0; run < 4; run++) {
79 unsigned snapshot = simplex.getSnapshot();
80
81 expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], false);
82 expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], false);
83
84 for (int i = 0; i < 4; i++)
85 simplex.addInequality(coeffs[(run + i) % 4]);
86
87 expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], true);
88 expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], true);
89
90 simplex.rollback(snapshot);
91 EXPECT_EQ(simplex.getNumConstraints(), 0u);
92
93 expectInequalityMakesSetEmpty(simplex, checkCoeffs[0], false);
94 expectInequalityMakesSetEmpty(simplex, checkCoeffs[1], false);
95 }
96 }
97
simplexFromConstraints(unsigned nDim,ArrayRef<SmallVector<int64_t,8>> ineqs,ArrayRef<SmallVector<int64_t,8>> eqs)98 Simplex simplexFromConstraints(unsigned nDim,
99 ArrayRef<SmallVector<int64_t, 8>> ineqs,
100 ArrayRef<SmallVector<int64_t, 8>> eqs) {
101 Simplex simplex(nDim);
102 for (const auto &ineq : ineqs)
103 simplex.addInequality(ineq);
104 for (const auto &eq : eqs)
105 simplex.addEquality(eq);
106 return simplex;
107 }
108
TEST(SimplexTest,isUnbounded)109 TEST(SimplexTest, isUnbounded) {
110 EXPECT_FALSE(simplexFromConstraints(
111 2, {{1, 1, 0}, {-1, -1, 0}, {1, -1, 5}, {-1, 1, -5}}, {})
112 .isUnbounded());
113
114 EXPECT_TRUE(
115 simplexFromConstraints(2, {{1, 1, 0}, {1, -1, 5}, {-1, 1, -5}}, {})
116 .isUnbounded());
117
118 EXPECT_TRUE(
119 simplexFromConstraints(2, {{-1, -1, 0}, {1, -1, 5}, {-1, 1, -5}}, {})
120 .isUnbounded());
121
122 EXPECT_TRUE(simplexFromConstraints(2, {}, {}).isUnbounded());
123
124 EXPECT_FALSE(simplexFromConstraints(3,
125 {
126 {2, 0, 0, -1},
127 {-2, 0, 0, 1},
128 {0, 2, 0, -1},
129 {0, -2, 0, 1},
130 {0, 0, 2, -1},
131 {0, 0, -2, 1},
132 },
133 {})
134 .isUnbounded());
135
136 EXPECT_TRUE(simplexFromConstraints(3,
137 {
138 {2, 0, 0, -1},
139 {-2, 0, 0, 1},
140 {0, 2, 0, -1},
141 {0, -2, 0, 1},
142 {0, 0, -2, 1},
143 },
144 {})
145 .isUnbounded());
146
147 EXPECT_TRUE(simplexFromConstraints(3,
148 {
149 {2, 0, 0, -1},
150 {-2, 0, 0, 1},
151 {0, 2, 0, -1},
152 {0, -2, 0, 1},
153 {0, 0, 2, -1},
154 },
155 {})
156 .isUnbounded());
157
158 // Bounded set with equalities.
159 EXPECT_FALSE(simplexFromConstraints(2,
160 {{1, 1, 1}, // x + y >= -1.
161 {-1, -1, 1}}, // x + y <= 1.
162 {{1, -1, 0}} // x = y.
163 )
164 .isUnbounded());
165
166 // Unbounded set with equalities.
167 EXPECT_TRUE(simplexFromConstraints(3,
168 {{1, 1, 1, 1}, // x + y + z >= -1.
169 {-1, -1, -1, 1}}, // x + y + z <= 1.
170 {{1, -1, -1, 0}} // x = y + z.
171 )
172 .isUnbounded());
173
174 // Rational empty set.
175 EXPECT_FALSE(simplexFromConstraints(3,
176 {
177 {2, 0, 0, -1},
178 {-2, 0, 0, 1},
179 {0, 2, 2, -1},
180 {0, -2, -2, 1},
181 {3, 3, 3, -4},
182 },
183 {})
184 .isUnbounded());
185 }
186
TEST(SimplexTest,getSamplePointIfIntegral)187 TEST(SimplexTest, getSamplePointIfIntegral) {
188 // Empty set.
189 EXPECT_FALSE(simplexFromConstraints(3,
190 {
191 {2, 0, 0, -1},
192 {-2, 0, 0, 1},
193 {0, 2, 2, -1},
194 {0, -2, -2, 1},
195 {3, 3, 3, -4},
196 },
197 {})
198 .getSamplePointIfIntegral()
199 .has_value());
200
201 auto maybeSample = simplexFromConstraints(2,
202 {// x = y - 2.
203 {1, -1, 2},
204 {-1, 1, -2},
205 // x + y = 2.
206 {1, 1, -2},
207 {-1, -1, 2}},
208 {})
209 .getSamplePointIfIntegral();
210
211 EXPECT_TRUE(maybeSample.has_value());
212 EXPECT_THAT(*maybeSample, testing::ElementsAre(0, 2));
213
214 auto maybeSample2 = simplexFromConstraints(2,
215 {
216 {1, 0, 0}, // x >= 0.
217 {-1, 0, 0}, // x <= 0.
218 },
219 {
220 {0, 1, -2} // y = 2.
221 })
222 .getSamplePointIfIntegral();
223 EXPECT_TRUE(maybeSample2.has_value());
224 EXPECT_THAT(*maybeSample2, testing::ElementsAre(0, 2));
225
226 EXPECT_FALSE(simplexFromConstraints(1,
227 {// 2x = 1. (no integer solutions)
228 {2, -1},
229 {-2, +1}},
230 {})
231 .getSamplePointIfIntegral()
232 .has_value());
233 }
234
235 /// Some basic sanity checks involving zero or one variables.
TEST(SimplexTest,isMarkedRedundant_no_var_ge_zero)236 TEST(SimplexTest, isMarkedRedundant_no_var_ge_zero) {
237 Simplex simplex(0);
238 simplex.addInequality({0}); // 0 >= 0.
239
240 simplex.detectRedundant();
241 ASSERT_FALSE(simplex.isEmpty());
242 EXPECT_TRUE(simplex.isMarkedRedundant(0));
243 }
244
TEST(SimplexTest,isMarkedRedundant_no_var_eq)245 TEST(SimplexTest, isMarkedRedundant_no_var_eq) {
246 Simplex simplex(0);
247 simplex.addEquality({0}); // 0 == 0.
248 simplex.detectRedundant();
249 ASSERT_FALSE(simplex.isEmpty());
250 EXPECT_TRUE(simplex.isMarkedRedundant(0));
251 }
252
TEST(SimplexTest,isMarkedRedundant_pos_var_eq)253 TEST(SimplexTest, isMarkedRedundant_pos_var_eq) {
254 Simplex simplex(1);
255 simplex.addEquality({1, 0}); // x == 0.
256
257 simplex.detectRedundant();
258 ASSERT_FALSE(simplex.isEmpty());
259 EXPECT_FALSE(simplex.isMarkedRedundant(0));
260 }
261
TEST(SimplexTest,isMarkedRedundant_zero_var_eq)262 TEST(SimplexTest, isMarkedRedundant_zero_var_eq) {
263 Simplex simplex(1);
264 simplex.addEquality({0, 0}); // 0x == 0.
265 simplex.detectRedundant();
266 ASSERT_FALSE(simplex.isEmpty());
267 EXPECT_TRUE(simplex.isMarkedRedundant(0));
268 }
269
TEST(SimplexTest,isMarkedRedundant_neg_var_eq)270 TEST(SimplexTest, isMarkedRedundant_neg_var_eq) {
271 Simplex simplex(1);
272 simplex.addEquality({-1, 0}); // -x == 0.
273 simplex.detectRedundant();
274 ASSERT_FALSE(simplex.isEmpty());
275 EXPECT_FALSE(simplex.isMarkedRedundant(0));
276 }
277
TEST(SimplexTest,isMarkedRedundant_pos_var_ge)278 TEST(SimplexTest, isMarkedRedundant_pos_var_ge) {
279 Simplex simplex(1);
280 simplex.addInequality({1, 0}); // x >= 0.
281 simplex.detectRedundant();
282 ASSERT_FALSE(simplex.isEmpty());
283 EXPECT_FALSE(simplex.isMarkedRedundant(0));
284 }
285
TEST(SimplexTest,isMarkedRedundant_zero_var_ge)286 TEST(SimplexTest, isMarkedRedundant_zero_var_ge) {
287 Simplex simplex(1);
288 simplex.addInequality({0, 0}); // 0x >= 0.
289 simplex.detectRedundant();
290 ASSERT_FALSE(simplex.isEmpty());
291 EXPECT_TRUE(simplex.isMarkedRedundant(0));
292 }
293
TEST(SimplexTest,isMarkedRedundant_neg_var_ge)294 TEST(SimplexTest, isMarkedRedundant_neg_var_ge) {
295 Simplex simplex(1);
296 simplex.addInequality({-1, 0}); // x <= 0.
297 simplex.detectRedundant();
298 ASSERT_FALSE(simplex.isEmpty());
299 EXPECT_FALSE(simplex.isMarkedRedundant(0));
300 }
301
302 /// None of the constraints are redundant. Slightly more complicated test
303 /// involving an equality.
TEST(SimplexTest,isMarkedRedundant_no_redundant)304 TEST(SimplexTest, isMarkedRedundant_no_redundant) {
305 Simplex simplex(3);
306
307 simplex.addEquality({-1, 0, 1, 0}); // u = w.
308 simplex.addInequality({-1, 16, 0, 15}); // 15 - (u - 16v) >= 0.
309 simplex.addInequality({1, -16, 0, 0}); // (u - 16v) >= 0.
310
311 simplex.detectRedundant();
312 ASSERT_FALSE(simplex.isEmpty());
313
314 for (unsigned i = 0; i < simplex.getNumConstraints(); ++i)
315 EXPECT_FALSE(simplex.isMarkedRedundant(i)) << "i = " << i << "\n";
316 }
317
TEST(SimplexTest,isMarkedRedundant_repeated_constraints)318 TEST(SimplexTest, isMarkedRedundant_repeated_constraints) {
319 Simplex simplex(3);
320
321 // [4] to [7] are repeats of [0] to [3].
322 simplex.addInequality({0, -1, 0, 1}); // [0]: y <= 1.
323 simplex.addInequality({-1, 0, 8, 7}); // [1]: 8z >= x - 7.
324 simplex.addInequality({1, 0, -8, 0}); // [2]: 8z <= x.
325 simplex.addInequality({0, 1, 0, 0}); // [3]: y >= 0.
326 simplex.addInequality({-1, 0, 8, 7}); // [4]: 8z >= 7 - x.
327 simplex.addInequality({1, 0, -8, 0}); // [5]: 8z <= x.
328 simplex.addInequality({0, 1, 0, 0}); // [6]: y >= 0.
329 simplex.addInequality({0, -1, 0, 1}); // [7]: y <= 1.
330
331 simplex.detectRedundant();
332 ASSERT_FALSE(simplex.isEmpty());
333
334 EXPECT_EQ(simplex.isMarkedRedundant(0), true);
335 EXPECT_EQ(simplex.isMarkedRedundant(1), true);
336 EXPECT_EQ(simplex.isMarkedRedundant(2), true);
337 EXPECT_EQ(simplex.isMarkedRedundant(3), true);
338 EXPECT_EQ(simplex.isMarkedRedundant(4), false);
339 EXPECT_EQ(simplex.isMarkedRedundant(5), false);
340 EXPECT_EQ(simplex.isMarkedRedundant(6), false);
341 EXPECT_EQ(simplex.isMarkedRedundant(7), false);
342 }
343
TEST(SimplexTest,isMarkedRedundant)344 TEST(SimplexTest, isMarkedRedundant) {
345 Simplex simplex(3);
346 simplex.addInequality({0, -1, 0, 1}); // [0]: y <= 1.
347 simplex.addInequality({1, 0, 0, -1}); // [1]: x >= 1.
348 simplex.addInequality({-1, 0, 0, 2}); // [2]: x <= 2.
349 simplex.addInequality({-1, 0, 2, 7}); // [3]: 2z >= x - 7.
350 simplex.addInequality({1, 0, -2, 0}); // [4]: 2z <= x.
351 simplex.addInequality({0, 1, 0, 0}); // [5]: y >= 0.
352 simplex.addInequality({0, 1, -2, 1}); // [6]: y >= 2z - 1.
353 simplex.addInequality({-1, 1, 0, 1}); // [7]: y >= x - 1.
354
355 simplex.detectRedundant();
356 ASSERT_FALSE(simplex.isEmpty());
357
358 // [0], [1], [3], [4], [7] together imply [2], [5], [6] must hold.
359 //
360 // From [7], [0]: x <= y + 1 <= 2, so we have [2].
361 // From [7], [1]: y >= x - 1 >= 0, so we have [5].
362 // From [4], [7]: 2z - 1 <= x - 1 <= y, so we have [6].
363 EXPECT_FALSE(simplex.isMarkedRedundant(0));
364 EXPECT_FALSE(simplex.isMarkedRedundant(1));
365 EXPECT_TRUE(simplex.isMarkedRedundant(2));
366 EXPECT_FALSE(simplex.isMarkedRedundant(3));
367 EXPECT_FALSE(simplex.isMarkedRedundant(4));
368 EXPECT_TRUE(simplex.isMarkedRedundant(5));
369 EXPECT_TRUE(simplex.isMarkedRedundant(6));
370 EXPECT_FALSE(simplex.isMarkedRedundant(7));
371 }
372
TEST(SimplexTest,isMarkedRedundantTiledLoopNestConstraints)373 TEST(SimplexTest, isMarkedRedundantTiledLoopNestConstraints) {
374 Simplex simplex(3); // Variables are x, y, N.
375 simplex.addInequality({1, 0, 0, 0}); // [0]: x >= 0.
376 simplex.addInequality({-32, 0, 1, -1}); // [1]: 32x <= N - 1.
377 simplex.addInequality({0, 1, 0, 0}); // [2]: y >= 0.
378 simplex.addInequality({-32, 1, 0, 0}); // [3]: y >= 32x.
379 simplex.addInequality({32, -1, 0, 31}); // [4]: y <= 32x + 31.
380 simplex.addInequality({0, -1, 1, -1}); // [5]: y <= N - 1.
381 // [3] and [0] imply [2], as we have y >= 32x >= 0.
382 // [3] and [5] imply [1], as we have 32x <= y <= N - 1.
383 simplex.detectRedundant();
384 EXPECT_FALSE(simplex.isMarkedRedundant(0));
385 EXPECT_TRUE(simplex.isMarkedRedundant(1));
386 EXPECT_TRUE(simplex.isMarkedRedundant(2));
387 EXPECT_FALSE(simplex.isMarkedRedundant(3));
388 EXPECT_FALSE(simplex.isMarkedRedundant(4));
389 EXPECT_FALSE(simplex.isMarkedRedundant(5));
390 }
391
TEST(SimplexTest,pivotRedundantRegressionTest)392 TEST(SimplexTest, pivotRedundantRegressionTest) {
393 Simplex simplex(2);
394 simplex.addInequality({-1, 0, -1}); // x <= -1.
395 unsigned snapshot = simplex.getSnapshot();
396
397 simplex.addInequality({-1, 0, -2}); // x <= -2.
398 simplex.addInequality({-3, 0, -6});
399
400 // This first marks x <= -1 as redundant. Then it performs some more pivots
401 // to check if the other constraints are redundant. Pivot must update the
402 // non-redundant rows as well, otherwise these pivots result in an incorrect
403 // tableau state. In particular, after the rollback below, some rows that are
404 // NOT marked redundant will have an incorrect state.
405 simplex.detectRedundant();
406
407 // After the rollback, the only remaining constraint is x <= -1.
408 // The maximum value of x should be -1.
409 simplex.rollback(snapshot);
410 MaybeOptimum<Fraction> maxX =
411 simplex.computeOptimum(Simplex::Direction::Up, {1, 0, 0});
412 EXPECT_TRUE(maxX.isBounded() && *maxX == Fraction(-1, 1));
413 }
414
TEST(SimplexTest,addInequality_already_redundant)415 TEST(SimplexTest, addInequality_already_redundant) {
416 Simplex simplex(1);
417 simplex.addInequality({1, -1}); // x >= 1.
418 simplex.addInequality({1, 0}); // x >= 0.
419 simplex.detectRedundant();
420 ASSERT_FALSE(simplex.isEmpty());
421 EXPECT_FALSE(simplex.isMarkedRedundant(0));
422 EXPECT_TRUE(simplex.isMarkedRedundant(1));
423 }
424
TEST(SimplexTest,appendVariable)425 TEST(SimplexTest, appendVariable) {
426 Simplex simplex(1);
427
428 unsigned snapshot1 = simplex.getSnapshot();
429 simplex.appendVariable();
430 simplex.appendVariable(0);
431 EXPECT_EQ(simplex.getNumVariables(), 2u);
432
433 int64_t yMin = 2, yMax = 5;
434 simplex.addInequality({0, 1, -yMin}); // y >= 2.
435 simplex.addInequality({0, -1, yMax}); // y <= 5.
436
437 unsigned snapshot2 = simplex.getSnapshot();
438 simplex.appendVariable(2);
439 EXPECT_EQ(simplex.getNumVariables(), 4u);
440 simplex.rollback(snapshot2);
441
442 EXPECT_EQ(simplex.getNumVariables(), 2u);
443 EXPECT_EQ(simplex.getNumConstraints(), 2u);
444 EXPECT_EQ(
445 simplex.computeIntegerBounds({0, 1, 0}),
446 std::make_pair(MaybeOptimum<int64_t>(yMin), MaybeOptimum<int64_t>(yMax)));
447
448 simplex.rollback(snapshot1);
449 EXPECT_EQ(simplex.getNumVariables(), 1u);
450 EXPECT_EQ(simplex.getNumConstraints(), 0u);
451 }
452
TEST(SimplexTest,isRedundantInequality)453 TEST(SimplexTest, isRedundantInequality) {
454 Simplex simplex(2);
455 simplex.addInequality({0, -1, 2}); // y <= 2.
456 simplex.addInequality({1, 0, 0}); // x >= 0.
457 simplex.addEquality({-1, 1, 0}); // y = x.
458
459 EXPECT_TRUE(simplex.isRedundantInequality({-1, 0, 2})); // x <= 2.
460 EXPECT_TRUE(simplex.isRedundantInequality({0, 1, 0})); // y >= 0.
461
462 EXPECT_FALSE(simplex.isRedundantInequality({-1, 0, -1})); // x <= -1.
463 EXPECT_FALSE(simplex.isRedundantInequality({0, 1, -2})); // y >= 2.
464 EXPECT_FALSE(simplex.isRedundantInequality({0, 1, -1})); // y >= 1.
465 }
466
TEST(SimplexTest,ineqType)467 TEST(SimplexTest, ineqType) {
468 Simplex simplex(2);
469 simplex.addInequality({0, -1, 2}); // y <= 2.
470 simplex.addInequality({1, 0, 0}); // x >= 0.
471 simplex.addEquality({-1, 1, 0}); // y = x.
472
473 EXPECT_TRUE(simplex.findIneqType({-1, 0, 2}) ==
474 Simplex::IneqType::Redundant); // x <= 2.
475 EXPECT_TRUE(simplex.findIneqType({0, 1, 0}) ==
476 Simplex::IneqType::Redundant); // y >= 0.
477
478 EXPECT_TRUE(simplex.findIneqType({0, 1, -1}) ==
479 Simplex::IneqType::Cut); // y >= 1.
480 EXPECT_TRUE(simplex.findIneqType({-1, 0, 1}) ==
481 Simplex::IneqType::Cut); // x <= 1.
482 EXPECT_TRUE(simplex.findIneqType({0, 1, -2}) ==
483 Simplex::IneqType::Cut); // y >= 2.
484
485 EXPECT_TRUE(simplex.findIneqType({-1, 0, -1}) ==
486 Simplex::IneqType::Separate); // x <= -1.
487 }
488
TEST(SimplexTest,isRedundantEquality)489 TEST(SimplexTest, isRedundantEquality) {
490 Simplex simplex(2);
491 simplex.addInequality({0, -1, 2}); // y <= 2.
492 simplex.addInequality({1, 0, 0}); // x >= 0.
493 simplex.addEquality({-1, 1, 0}); // y = x.
494
495 EXPECT_TRUE(simplex.isRedundantEquality({-1, 1, 0})); // y = x.
496 EXPECT_TRUE(simplex.isRedundantEquality({1, -1, 0})); // x = y.
497
498 EXPECT_FALSE(simplex.isRedundantEquality({0, 1, -1})); // y = 1.
499
500 simplex.addEquality({0, -1, 2}); // y = 2.
501
502 EXPECT_TRUE(simplex.isRedundantEquality({-1, 0, 2})); // x = 2.
503 }
504
TEST(SimplexTest,IsRationalSubsetOf)505 TEST(SimplexTest, IsRationalSubsetOf) {
506 IntegerPolyhedron univ = parsePoly("(x) : ()");
507 IntegerPolyhedron empty = parsePoly("(x) : (x + 0 >= 0, -x - 1 >= 0)");
508 IntegerPolyhedron s1 = parsePoly("(x) : ( x >= 0, -x + 4 >= 0)");
509 IntegerPolyhedron s2 = parsePoly("(x) : (x - 1 >= 0, -x + 3 >= 0)");
510
511 Simplex simUniv(univ);
512 Simplex simEmpty(empty);
513 Simplex sim1(s1);
514 Simplex sim2(s2);
515
516 EXPECT_TRUE(simUniv.isRationalSubsetOf(univ));
517 EXPECT_TRUE(simEmpty.isRationalSubsetOf(empty));
518 EXPECT_TRUE(sim1.isRationalSubsetOf(s1));
519 EXPECT_TRUE(sim2.isRationalSubsetOf(s2));
520
521 EXPECT_TRUE(simEmpty.isRationalSubsetOf(univ));
522 EXPECT_TRUE(simEmpty.isRationalSubsetOf(s1));
523 EXPECT_TRUE(simEmpty.isRationalSubsetOf(s2));
524 EXPECT_TRUE(simEmpty.isRationalSubsetOf(empty));
525
526 EXPECT_TRUE(simUniv.isRationalSubsetOf(univ));
527 EXPECT_FALSE(simUniv.isRationalSubsetOf(s1));
528 EXPECT_FALSE(simUniv.isRationalSubsetOf(s2));
529 EXPECT_FALSE(simUniv.isRationalSubsetOf(empty));
530
531 EXPECT_TRUE(sim1.isRationalSubsetOf(univ));
532 EXPECT_TRUE(sim1.isRationalSubsetOf(s1));
533 EXPECT_FALSE(sim1.isRationalSubsetOf(s2));
534 EXPECT_FALSE(sim1.isRationalSubsetOf(empty));
535
536 EXPECT_TRUE(sim2.isRationalSubsetOf(univ));
537 EXPECT_TRUE(sim2.isRationalSubsetOf(s1));
538 EXPECT_TRUE(sim2.isRationalSubsetOf(s2));
539 EXPECT_FALSE(sim2.isRationalSubsetOf(empty));
540 }
541
TEST(SimplexTest,addDivisionVariable)542 TEST(SimplexTest, addDivisionVariable) {
543 Simplex simplex(/*nVar=*/1);
544 simplex.addDivisionVariable({1, 0}, 2);
545 simplex.addInequality({1, 0, -3}); // x >= 3.
546 simplex.addInequality({-1, 0, 9}); // x <= 9.
547 Optional<SmallVector<int64_t, 8>> sample = simplex.findIntegerSample();
548 ASSERT_TRUE(sample.has_value());
549 EXPECT_EQ((*sample)[0] / 2, (*sample)[1]);
550 }
551
TEST(SimplexTest,LexIneqType)552 TEST(SimplexTest, LexIneqType) {
553 LexSimplex simplex(/*nVar=*/1);
554 simplex.addInequality({2, -1}); // x >= 1/2.
555
556 // Redundant inequality x >= 2/3.
557 EXPECT_TRUE(simplex.isRedundantInequality({3, -2}));
558 EXPECT_FALSE(simplex.isSeparateInequality({3, -2}));
559
560 // Separate inequality x <= 2/3.
561 EXPECT_FALSE(simplex.isRedundantInequality({-3, 2}));
562 EXPECT_TRUE(simplex.isSeparateInequality({-3, 2}));
563
564 // Cut inequality x <= 1.
565 EXPECT_FALSE(simplex.isRedundantInequality({-1, 1}));
566 EXPECT_FALSE(simplex.isSeparateInequality({-1, 1}));
567 }
568