1// RUN: mlir-translate -mlir-to-cpp %s | FileCheck %s 2 3// CHECK: #include "myheader.h" 4emitc.include "myheader.h" 5// CHECK: #include <myheader.h> 6emitc.include <"myheader.h"> 7 8// CHECK: void test_foo_print() { 9func.func @test_foo_print() { 10 // CHECK: [[V1:[^ ]*]] = foo::constant({0, 1}); 11 %0 = emitc.call "foo::constant"() {args = [dense<[0, 1]> : tensor<2xi32>]} : () -> (i32) 12 // CHECK: [[V2:[^ ]*]] = foo::op_and_attr({0, 1}, [[V1]]); 13 %1 = emitc.call "foo::op_and_attr"(%0) {args = [dense<[0, 1]> : tensor<2xi32>, 0 : index]} : (i32) -> (i32) 14 // CHECK: [[V3:[^ ]*]] = foo::op_and_attr([[V2]], {0, 1}); 15 %2 = emitc.call "foo::op_and_attr"(%1) {args = [0 : index, dense<[0, 1]> : tensor<2xi32>]} : (i32) -> (i32) 16 // CHECK: foo::print([[V3]]); 17 emitc.call "foo::print"(%2): (i32) -> () 18 return 19} 20 21// CHECK: int32_t test_single_return(int32_t [[V2:.*]]) 22func.func @test_single_return(%arg0 : i32) -> i32 { 23 // CHECK: return [[V2]] 24 return %arg0 : i32 25} 26 27// CHECK: std::tuple<int32_t, int32_t> test_multiple_return() 28func.func @test_multiple_return() -> (i32, i32) { 29 // CHECK: std::tie([[V3:.*]], [[V4:.*]]) = foo::blah(); 30 %0:2 = emitc.call "foo::blah"() : () -> (i32, i32) 31 // CHECK: [[V5:[^ ]*]] = test_single_return([[V3]]); 32 %1 = call @test_single_return(%0#0) : (i32) -> i32 33 // CHECK: return std::make_tuple([[V5]], [[V4]]); 34 return %1, %0#1 : i32, i32 35} 36 37// CHECK: test_float 38func.func @test_float() { 39 // CHECK: foo::constant({(float)0.0e+00, (float)1.000000000e+00}) 40 %0 = emitc.call "foo::constant"() {args = [dense<[0.000000e+00, 1.000000e+00]> : tensor<2xf32>]} : () -> f32 41 return 42} 43 44// CHECK: test_uint 45func.func @test_uint() { 46 // CHECK: uint32_t 47 %0 = emitc.call "foo::constant"() {args = [dense<[0, 1]> : tensor<2xui32>]} : () -> ui32 48 // CHECK: uint64_t 49 %1 = emitc.call "foo::constant"() {args = [dense<[0, 1]> : tensor<2xui64>]} : () -> ui64 50 return 51} 52 53// CHECK: int64_t test_plus_int(int64_t [[V1]]) 54func.func @test_plus_int(%arg0 : i64) -> i64 { 55 // CHECK: mhlo::add([[V1]], [[V1]]) 56 %0 = emitc.call "mhlo::add"(%arg0, %arg0) {args = [0 : index, 1 : index]} : (i64, i64) -> i64 57 return %0 : i64 58} 59 60// CHECK: Tensor<float, 2> mixed_types(Tensor<double, 2> [[V1]]) 61func.func @mixed_types(%arg0: tensor<2xf64>) -> tensor<2xf32> { 62 // CHECK: foo::mixed_types([[V1]]); 63 %0 = emitc.call "foo::mixed_types"(%arg0) {args = [0 : index]} : (tensor<2xf64>) -> tensor<2xf32> 64 return %0 : tensor<2xf32> 65} 66 67// CHECK: Tensor<uint64_t> mhlo_convert(Tensor<uint32_t> [[V1]]) 68func.func @mhlo_convert(%arg0: tensor<ui32>) -> tensor<ui64> { 69 // CHECK: mhlo::convert([[V1]]); 70 %0 = emitc.call "mhlo::convert"(%arg0) {args = [0 : index]} : (tensor<ui32>) -> tensor<ui64> 71 return %0 : tensor<ui64> 72} 73 74// CHECK: status_t opaque_types(bool [[V1:[^ ]*]], char [[V2:[^ ]*]]) { 75func.func @opaque_types(%arg0: !emitc.opaque<"bool">, %arg1: !emitc.opaque<"char">) -> !emitc.opaque<"status_t"> { 76 // CHECK: int [[V3:[^ ]*]] = a([[V1]], [[V2]]); 77 %0 = emitc.call "a"(%arg0, %arg1) : (!emitc.opaque<"bool">, !emitc.opaque<"char">) -> (!emitc.opaque<"int">) 78 // CHECK: char [[V4:[^ ]*]] = b([[V3]]); 79 %1 = emitc.call "b"(%0): (!emitc.opaque<"int">) -> (!emitc.opaque<"char">) 80 // CHECK: status_t [[V5:[^ ]*]] = c([[V3]], [[V4]]); 81 %2 = emitc.call "c"(%0, %1): (!emitc.opaque<"int">, !emitc.opaque<"char">) -> (!emitc.opaque<"status_t">) 82 return %2 : !emitc.opaque<"status_t"> 83} 84 85func.func @apply(%arg0: i32) -> !emitc.ptr<i32> { 86 // CHECK: int32_t* [[V2]] = &[[V1]]; 87 %0 = emitc.apply "&"(%arg0) : (i32) -> !emitc.ptr<i32> 88 // CHECK: int32_t [[V3]] = *[[V2]]; 89 %1 = emitc.apply "*"(%0) : (!emitc.ptr<i32>) -> (i32) 90 return %0 : !emitc.ptr<i32> 91} 92