1# RUN: SUPPORTLIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s 2import numpy as np 3import os 4import sys 5 6_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__)) 7sys.path.append(_SCRIPT_PATH) 8from tools import mlir_pytaco_api as pt 9 10compressed = pt.compressed 11 12passed = 0 13all_types = [pt.complex64, pt.complex128] 14for t in all_types: 15 i, j = pt.get_index_vars(2) 16 A = pt.tensor([2, 3], dtype=t) 17 B = pt.tensor([2, 3], dtype=t) 18 C = pt.tensor([2, 3], compressed, dtype=t) 19 A.insert([0, 1], 10 + 20j) 20 A.insert([1, 2], 40 + 0.5j) 21 B.insert([0, 0], 20) 22 B.insert([1, 2], 30 + 15j) 23 C[i, j] = A[i, j] + B[i, j] 24 25 indices, values = C.get_coordinates_and_values() 26 passed += isinstance(values[0], t.value) 27 passed += np.array_equal(indices, [[0, 0], [0, 1], [1, 2]]) 28 passed += np.allclose(values, [20, 10 + 20j, 70 + 15.5j]) 29 30# CHECK: Number of passed: 6 31print("Number of passed:", passed) 32