1// RUN: mlir-opt %s --sparse-compiler | \ 2// RUN: mlir-cpu-runner \ 3// RUN: -e entry -entry-point-result=void \ 4// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 5// RUN: FileCheck %s 6 7#ST1 = #sparse_tensor.encoding<{dimLevelType = ["compressed", "compressed", "compressed"]}> 8#ST2 = #sparse_tensor.encoding<{dimLevelType = ["compressed", "compressed", "dense"]}> 9 10// 11// Trait for 3-d tensor operation. 12// 13#trait_scale = { 14 indexing_maps = [ 15 affine_map<(i,j,k) -> (i,j,k)>, // A (in) 16 affine_map<(i,j,k) -> (i,j,k)> // X (out) 17 ], 18 iterator_types = ["parallel", "parallel", "parallel"], 19 doc = "X(i,j,k) = A(i,j,k) * 2.0" 20} 21 22module { 23 // Scales a sparse tensor into a new sparse tensor. 24 func.func @tensor_scale(%arga: tensor<?x?x?xf64, #ST1>) -> tensor<?x?x?xf64, #ST2> { 25 %s = arith.constant 2.0 : f64 26 %c0 = arith.constant 0 : index 27 %c1 = arith.constant 1 : index 28 %c2 = arith.constant 2 : index 29 %d0 = tensor.dim %arga, %c0 : tensor<?x?x?xf64, #ST1> 30 %d1 = tensor.dim %arga, %c1 : tensor<?x?x?xf64, #ST1> 31 %d2 = tensor.dim %arga, %c2 : tensor<?x?x?xf64, #ST1> 32 %xm = bufferization.alloc_tensor(%d0, %d1, %d2) : tensor<?x?x?xf64, #ST2> 33 %0 = linalg.generic #trait_scale 34 ins(%arga: tensor<?x?x?xf64, #ST1>) 35 outs(%xm: tensor<?x?x?xf64, #ST2>) { 36 ^bb(%a: f64, %x: f64): 37 %1 = arith.mulf %a, %s : f64 38 linalg.yield %1 : f64 39 } -> tensor<?x?x?xf64, #ST2> 40 return %0 : tensor<?x?x?xf64, #ST2> 41 } 42 43 // Driver method to call and verify tensor kernel. 44 func.func @entry() { 45 %c0 = arith.constant 0 : index 46 %d1 = arith.constant -1.0 : f64 47 48 // Setup sparse tensor. 49 %t = arith.constant dense< 50 [ [ [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], 51 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], 52 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], 53 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0 ] ], 54 [ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], 55 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], 56 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], 57 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ], 58 [ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], 59 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], 60 [0.0, 3.0, 4.0, 0.0, 0.0, 0.0, 0.0, 5.0 ], 61 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] ] ]> : tensor<3x4x8xf64> 62 %st = sparse_tensor.convert %t : tensor<3x4x8xf64> to tensor<?x?x?xf64, #ST1> 63 64 // Call sparse vector kernels. 65 %0 = call @tensor_scale(%st) : (tensor<?x?x?xf64, #ST1>) -> tensor<?x?x?xf64, #ST2> 66 67 // Sanity check on stored values. 68 // 69 // CHECK: ( 1, 2, 3, 4, 5, -1, -1, -1 ) 70 // CHECK-NEXT: ( 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 6, 8, 0, 0, 0, 0, 10, -1, -1, -1, -1, -1, -1, -1, -1 ) 71 %m1 = sparse_tensor.values %st : tensor<?x?x?xf64, #ST1> to memref<?xf64> 72 %m2 = sparse_tensor.values %0 : tensor<?x?x?xf64, #ST2> to memref<?xf64> 73 %v1 = vector.transfer_read %m1[%c0], %d1: memref<?xf64>, vector<8xf64> 74 %v2 = vector.transfer_read %m2[%c0], %d1: memref<?xf64>, vector<32xf64> 75 vector.print %v1 : vector<8xf64> 76 vector.print %v2 : vector<32xf64> 77 78 // Release the resources. 79 bufferization.dealloc_tensor %st : tensor<?x?x?xf64, #ST1> 80 bufferization.dealloc_tensor %0 : tensor<?x?x?xf64, #ST2> 81 return 82 } 83} 84