1// RUN: mlir-opt %s --sparse-compiler | \ 2// RUN: mlir-cpu-runner \ 3// RUN: -e entry -entry-point-result=void \ 4// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 5// RUN: FileCheck %s 6 7#ST = #sparse_tensor.encoding<{dimLevelType = ["compressed", "compressed", "compressed"]}> 8 9// 10// Trait for 3-d tensor element wise multiplication. 11// 12#trait_mul = { 13 indexing_maps = [ 14 affine_map<(i,j,k) -> (i,j,k)>, // A (in) 15 affine_map<(i,j,k) -> (i,j,k)>, // B (in) 16 affine_map<(i,j,k) -> (i,j,k)> // X (out) 17 ], 18 iterator_types = ["parallel", "parallel", "parallel"], 19 doc = "X(i,j,k) = A(i,j,k) * B(i,j,k)" 20} 21 22module { 23 // Multiplies two 3-d sparse tensors element-wise into a new sparse tensor. 24 func.func @tensor_mul(%arga: tensor<?x?x?xf64, #ST>, 25 %argb: tensor<?x?x?xf64, #ST>) -> tensor<?x?x?xf64, #ST> { 26 %c0 = arith.constant 0 : index 27 %c1 = arith.constant 1 : index 28 %c2 = arith.constant 2 : index 29 %d0 = tensor.dim %arga, %c0 : tensor<?x?x?xf64, #ST> 30 %d1 = tensor.dim %arga, %c1 : tensor<?x?x?xf64, #ST> 31 %d2 = tensor.dim %arga, %c2 : tensor<?x?x?xf64, #ST> 32 %xt = bufferization.alloc_tensor(%d0, %d1, %d2) : tensor<?x?x?xf64, #ST> 33 %0 = linalg.generic #trait_mul 34 ins(%arga, %argb: tensor<?x?x?xf64, #ST>, tensor<?x?x?xf64, #ST>) 35 outs(%xt: tensor<?x?x?xf64, #ST>) { 36 ^bb(%a: f64, %b: f64, %x: f64): 37 %1 = arith.mulf %a, %b : f64 38 linalg.yield %1 : f64 39 } -> tensor<?x?x?xf64, #ST> 40 return %0 : tensor<?x?x?xf64, #ST> 41 } 42 43 // Driver method to call and verify tensor multiplication kernel. 44 func.func @entry() { 45 %c0 = arith.constant 0 : index 46 %default_val = arith.constant -1.0 : f64 47 48 // Setup sparse tensor A 49 %ta = arith.constant dense< 50 [ [ [1.0, 0.0, 0.0, 0.0, 0.0 ], 51 [0.0, 0.0, 0.0, 0.0, 0.0 ], 52 [1.2, 0.0, 3.5, 0.0, 0.0 ] ], 53 [ [0.0, 0.0, 0.0, 0.0, 0.0 ], 54 [0.0, 0.0, 0.0, 0.0, 0.0 ], 55 [0.0, 0.0, 0.0, 0.0, 0.0 ] ], 56 [ [2.0, 0.0, 0.0, 0.0, 0.0 ], 57 [0.0, 0.0, 0.0, 0.0, 0.0 ], 58 [0.0, 0.0, 4.0, 0.0, 0.0 ]] ]> : tensor<3x3x5xf64> 59 60 // Setup sparse tensor B 61 %tb = arith.constant dense< 62 [ [ [0.0, 0.0, 0.0, 0.0, 4.0 ], 63 [0.0, 0.0, 0.0, 0.0, 0.0 ], 64 [2.0, 0.0, 1.0, 0.0, 0.0 ] ], 65 [ [0.0, 0.0, 0.0, 0.0, 9.0 ], 66 [0.0, 0.0, 0.0, 0.0, 0.0 ], 67 [0.0, 7.0, 0.0, 0.0, 0.0 ] ], 68 [ [1.0, 0.0, 0.0, 0.0, 0.0 ], 69 [0.0, 0.0, 0.0, 0.0, 0.0 ], 70 [0.0, 0.0, 2.0, 0.0, 0.0 ]] ]> : tensor<3x3x5xf64> 71 72 %sta = sparse_tensor.convert %ta : tensor<3x3x5xf64> to tensor<?x?x?xf64, #ST> 73 %stb = sparse_tensor.convert %tb : tensor<3x3x5xf64> to tensor<?x?x?xf64, #ST> 74 75 76 // Call sparse tensor multiplication kernel. 77 %0 = call @tensor_mul(%sta, %stb) 78 : (tensor<?x?x?xf64, #ST>, tensor<?x?x?xf64, #ST>) -> tensor<?x?x?xf64, #ST> 79 80 // Verify results 81 // 82 // CHECK: ( 2.4, 3.5, 2, 8, -1, -1, -1, -1 ) 83 // CHECK-NEXT: ( ( ( 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0 ), ( 2.4, 0, 3.5, 0, 0 ) ), 84 // CHECK-SAME: ( ( 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0 ) ), 85 // CHECK-SAME: ( ( 2, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0 ), ( 0, 0, 8, 0, 0 ) ) ) 86 // 87 %m1 = sparse_tensor.values %0 : tensor<?x?x?xf64, #ST> to memref<?xf64> 88 %v1 = vector.transfer_read %m1[%c0], %default_val: memref<?xf64>, vector<8xf64> 89 vector.print %v1 : vector<8xf64> 90 91 // Print %0 in dense form. 92 %dt = sparse_tensor.convert %0 : tensor<?x?x?xf64, #ST> to tensor<?x?x?xf64> 93 %v2 = vector.transfer_read %dt[%c0, %c0, %c0], %default_val: tensor<?x?x?xf64>, vector<3x3x5xf64> 94 vector.print %v2 : vector<3x3x5xf64> 95 96 // Release the resources. 97 bufferization.dealloc_tensor %sta : tensor<?x?x?xf64, #ST> 98 bufferization.dealloc_tensor %stb : tensor<?x?x?xf64, #ST> 99 bufferization.dealloc_tensor %0 : tensor<?x?x?xf64, #ST> 100 return 101 } 102} 103