1// RUN: mlir-opt %s --sparse-compiler | \ 2// RUN: mlir-cpu-runner \ 3// RUN: -e entry -entry-point-result=void \ 4// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 5// RUN: FileCheck %s 6 7#SparseVector = #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }> 8 9#trait_op = { 10 indexing_maps = [ 11 affine_map<(i) -> (i)> // X (out) 12 ], 13 iterator_types = ["parallel"], 14 doc = "X(i) = OP X(i)" 15} 16 17module { 18 // Performs zero-preserving math to sparse vector. 19 func.func @sparse_tanh(%vec: tensor<?xf64, #SparseVector>) 20 -> tensor<?xf64, #SparseVector> { 21 %0 = linalg.generic #trait_op 22 outs(%vec: tensor<?xf64, #SparseVector>) { 23 ^bb(%x: f64): 24 %1 = math.tanh %x : f64 25 linalg.yield %1 : f64 26 } -> tensor<?xf64, #SparseVector> 27 return %0 : tensor<?xf64, #SparseVector> 28 } 29 30 // Dumps a sparse vector of type f64. 31 func.func @dump_vec_f64(%arg0: tensor<?xf64, #SparseVector>) { 32 // Dump the values array to verify only sparse contents are stored. 33 %c0 = arith.constant 0 : index 34 %d0 = arith.constant -1.0 : f64 35 %0 = sparse_tensor.values %arg0 36 : tensor<?xf64, #SparseVector> to memref<?xf64> 37 %1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<32xf64> 38 vector.print %1 : vector<32xf64> 39 // Dump the dense vector to verify structure is correct. 40 %dv = sparse_tensor.convert %arg0 41 : tensor<?xf64, #SparseVector> to tensor<?xf64> 42 %3 = vector.transfer_read %dv[%c0], %d0: tensor<?xf64>, vector<32xf64> 43 vector.print %3 : vector<32xf64> 44 return 45 } 46 47 // Driver method to call and verify vector kernels. 48 func.func @entry() { 49 // Setup sparse vector. 50 %v1 = arith.constant sparse< 51 [ [0], [3], [11], [17], [20], [21], [28], [29], [31] ], 52 [ -1.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0 ] 53 > : tensor<32xf64> 54 %sv1 = sparse_tensor.convert %v1 55 : tensor<32xf64> to tensor<?xf64, #SparseVector> 56 57 // Call sparse vector kernel. 58 %0 = call @sparse_tanh(%sv1) : (tensor<?xf64, #SparseVector>) 59 -> tensor<?xf64, #SparseVector> 60 61 // 62 // Verify the results (within some precision). 63 // 64 // CHECK: {{( -0.761[0-9]*, 0.761[0-9]*, 0.96[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 0.99[0-9]*, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 )}} 65 // CHECK-NEXT {{( -0.761[0-9]*, 0, 0, 0.761[0-9]*, 0, 0, 0, 0, 0, 0, 0, 0.96[0-9]*, 0, 0, 0, 0, 0, 0.99[0-9]*, 0, 0, 0.99[0-9]*, 0.99[0-9]*, 0, 0, 0, 0, 0, 0, 0.99[0-9]*, 0.99[0-9]*, 0, 1 )}} 66 // 67 call @dump_vec_f64(%0) : (tensor<?xf64, #SparseVector>) -> () 68 69 // Release the resources. 70 bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector> 71 return 72 } 73} 74