1// RUN: mlir-opt %s \ 2// RUN: --sparsification --sparse-tensor-conversion \ 3// RUN: --convert-vector-to-scf --convert-scf-to-std \ 4// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ 5// RUN: --std-bufferize --finalizing-bufferize --lower-affine \ 6// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm --reconcile-unrealized-casts | \ 7// RUN: mlir-cpu-runner \ 8// RUN: -e entry -entry-point-result=void \ 9// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 10// RUN: FileCheck %s 11// 12// Do the same run, but now with SIMDization as well. This should not change the outcome. 13// 14// RUN: mlir-opt %s \ 15// RUN: --sparsification="vectorization-strategy=2 vl=4" --sparse-tensor-conversion \ 16// RUN: --convert-vector-to-scf --convert-scf-to-std \ 17// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ 18// RUN: --std-bufferize --finalizing-bufferize --lower-affine \ 19// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm --reconcile-unrealized-casts | \ 20// RUN: mlir-cpu-runner \ 21// RUN: -e entry -entry-point-result=void \ 22// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 23// RUN: FileCheck %s 24 25#CSR = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }> 26 27#trait_scale = { 28 indexing_maps = [ 29 affine_map<(i,j) -> (i,j)> // X (out) 30 ], 31 iterator_types = ["parallel", "parallel"], 32 doc = "X(i,j) = X(i,j) * 2" 33} 34 35// 36// Integration test that lowers a kernel annotated as sparse to actual sparse 37// code, initializes a matching sparse storage scheme from a dense tensor, 38// and runs the resulting code with the JIT compiler. 39// 40module { 41 // 42 // A kernel that scales a sparse matrix A by a factor of 2.0. 43 // 44 func @sparse_scale(%argx: tensor<8x8xf32, #CSR> 45 {linalg.inplaceable = true}) -> tensor<8x8xf32, #CSR> { 46 %c = arith.constant 2.0 : f32 47 %0 = linalg.generic #trait_scale 48 outs(%argx: tensor<8x8xf32, #CSR>) { 49 ^bb(%x: f32): 50 %1 = arith.mulf %x, %c : f32 51 linalg.yield %1 : f32 52 } -> tensor<8x8xf32, #CSR> 53 return %0 : tensor<8x8xf32, #CSR> 54 } 55 56 // 57 // Main driver that converts a dense tensor into a sparse tensor 58 // and then calls the sparse scaling kernel with the sparse tensor 59 // as input argument. 60 // 61 func @entry() { 62 %c0 = arith.constant 0 : index 63 %f0 = arith.constant 0.0 : f32 64 65 // Initialize a dense tensor. 66 %0 = arith.constant dense<[ 67 [1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0], 68 [0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 69 [0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0], 70 [0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0], 71 [0.0, 1.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0], 72 [0.0, 1.0, 1.0, 0.0, 0.0, 6.0, 0.0, 0.0], 73 [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 7.0, 1.0], 74 [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 8.0] 75 ]> : tensor<8x8xf32> 76 77 // Convert dense tensor to sparse tensor and call sparse kernel. 78 %1 = sparse_tensor.convert %0 : tensor<8x8xf32> to tensor<8x8xf32, #CSR> 79 %2 = call @sparse_scale(%1) 80 : (tensor<8x8xf32, #CSR>) -> tensor<8x8xf32, #CSR> 81 82 // Print the resulting compacted values for verification. 83 // 84 // CHECK: ( 2, 2, 2, 4, 6, 8, 2, 10, 2, 2, 12, 2, 14, 2, 2, 16 ) 85 // 86 %m = sparse_tensor.values %2 : tensor<8x8xf32, #CSR> to memref<?xf32> 87 %v = vector.transfer_read %m[%c0], %f0: memref<?xf32>, vector<16xf32> 88 vector.print %v : vector<16xf32> 89 90 // Release the resources. 91 sparse_tensor.release %1 : tensor<8x8xf32, #CSR> 92 93 return 94 } 95} 96