1// RUN: mlir-opt %s --sparse-compiler | \ 2// RUN: mlir-cpu-runner \ 3// RUN: -e entry -entry-point-result=void \ 4// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 5// RUN: FileCheck %s 6// 7// Do the same run, but now with SIMDization as well. This should not change the outcome. 8// 9// RUN: mlir-opt %s --sparse-compiler="vectorization-strategy=2 vl=4" | \ 10// RUN: mlir-cpu-runner \ 11// RUN: -e entry -entry-point-result=void \ 12// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 13// RUN: FileCheck %s 14 15#CSR = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }> 16 17#trait_scale = { 18 indexing_maps = [ 19 affine_map<(i,j) -> (i,j)> // X (out) 20 ], 21 iterator_types = ["parallel", "parallel"], 22 doc = "X(i,j) = X(i,j) * 2" 23} 24 25// 26// Integration test that lowers a kernel annotated as sparse to actual sparse 27// code, initializes a matching sparse storage scheme from a dense tensor, 28// and runs the resulting code with the JIT compiler. 29// 30module { 31 // 32 // A kernel that scales a sparse matrix A by a factor of 2.0. 33 // 34 func.func @sparse_scale(%argx: tensor<8x8xf32, #CSR>) -> tensor<8x8xf32, #CSR> { 35 %c = arith.constant 2.0 : f32 36 %0 = linalg.generic #trait_scale 37 outs(%argx: tensor<8x8xf32, #CSR>) { 38 ^bb(%x: f32): 39 %1 = arith.mulf %x, %c : f32 40 linalg.yield %1 : f32 41 } -> tensor<8x8xf32, #CSR> 42 return %0 : tensor<8x8xf32, #CSR> 43 } 44 45 // 46 // Main driver that converts a dense tensor into a sparse tensor 47 // and then calls the sparse scaling kernel with the sparse tensor 48 // as input argument. 49 // 50 func.func @entry() { 51 %c0 = arith.constant 0 : index 52 %f0 = arith.constant 0.0 : f32 53 54 // Initialize a dense tensor. 55 %0 = arith.constant dense<[ 56 [1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0], 57 [0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 58 [0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0], 59 [0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0], 60 [0.0, 1.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0], 61 [0.0, 1.0, 1.0, 0.0, 0.0, 6.0, 0.0, 0.0], 62 [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 7.0, 1.0], 63 [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 8.0] 64 ]> : tensor<8x8xf32> 65 66 // Convert dense tensor to sparse tensor and call sparse kernel. 67 %1 = sparse_tensor.convert %0 : tensor<8x8xf32> to tensor<8x8xf32, #CSR> 68 %2 = call @sparse_scale(%1) 69 : (tensor<8x8xf32, #CSR>) -> tensor<8x8xf32, #CSR> 70 71 // Print the resulting compacted values for verification. 72 // 73 // CHECK: ( 2, 2, 2, 4, 6, 8, 2, 10, 2, 2, 12, 2, 14, 2, 2, 16 ) 74 // 75 %m = sparse_tensor.values %2 : tensor<8x8xf32, #CSR> to memref<?xf32> 76 %v = vector.transfer_read %m[%c0], %f0: memref<?xf32>, vector<16xf32> 77 vector.print %v : vector<16xf32> 78 79 // Release the resources. 80 bufferization.dealloc_tensor %1 : tensor<8x8xf32, #CSR> 81 82 return 83 } 84} 85