1// RUN: mlir-opt %s \ 2// RUN: --linalg-generalize-named-ops --linalg-fuse-elementwise-ops \ 3// RUN: --sparsification --sparse-tensor-conversion \ 4// RUN: --convert-vector-to-scf --convert-scf-to-std \ 5// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ 6// RUN: --std-bufferize --finalizing-bufferize --lower-affine \ 7// RUN: --convert-vector-to-llvm --convert-memref-to-llvm \ 8// RUN: --convert-std-to-llvm --reconcile-unrealized-casts | \ 9// RUN: mlir-cpu-runner \ 10// RUN: -e entry -entry-point-result=void \ 11// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 12// RUN: FileCheck %s 13// 14// Do the same run, but now with SIMDization as well. This should not change the outcome. 15// 16// RUN: mlir-opt %s \ 17// RUN: --linalg-generalize-named-ops --linalg-fuse-elementwise-ops \ 18// RUN: --sparsification="vectorization-strategy=2 vl=2" --sparse-tensor-conversion \ 19// RUN: --convert-vector-to-scf --convert-scf-to-std \ 20// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ 21// RUN: --std-bufferize --finalizing-bufferize --lower-affine \ 22// RUN: --convert-vector-to-llvm --convert-memref-to-llvm \ 23// RUN: --convert-std-to-llvm --reconcile-unrealized-casts | \ 24// RUN: mlir-cpu-runner \ 25// RUN: -e entry -entry-point-result=void \ 26// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 27// RUN: FileCheck %s 28 29#DCSR = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }> 30 31// An example of a quantized sparse matmul. With the zero offset for the 32// sparse input, the sparse compiler generates very efficient code for the 33// x(i,j) += (ext(a(i,k)) - 2) * ext(b(k,j)) 34// operation. 35module { 36 37 func @quantized_matmul(%input1: tensor<5x3xi8>, 38 %input2: tensor<3x6xi8, #DCSR>, 39 %output: tensor<5x6xi32>) -> tensor<5x6xi32> { 40 %c0 = arith.constant 0 : i32 41 %c2 = arith.constant 2 : i32 42 %0 = linalg.quantized_matmul 43 ins(%input1, %input2, %c2, %c0 : tensor<5x3xi8>, tensor<3x6xi8, #DCSR>, i32, i32) 44 outs(%output : tensor<5x6xi32>) -> tensor<5x6xi32> 45 return %0: tensor<5x6xi32> 46 } 47 48 func @entry() { 49 %c0 = arith.constant 0 : index 50 %i0 = arith.constant 0 : i32 51 52 %input1 = arith.constant dense<[ 53 [ -128, 3, 127 ], 54 [ 0, 0, 0 ], 55 [ 11, 1, 0 ], 56 [ 0, 5, -1 ], 57 [ 13, 0, 3 ] 58 ]> : tensor<5x3xi8> 59 60 %input2 = arith.constant dense<[ 61 [ 127, 0, -128, 0, 0, 3 ], 62 [ 0, 0, 0, 0, 0, 0 ], 63 [ 0, 0, 0, 100, 10, 0 ] 64 ]> : tensor<3x6xi8> 65 66 %sparse_input2 = sparse_tensor.convert %input2 : tensor<3x6xi8> to tensor<3x6xi8, #DCSR> 67 68 // Call the kernel. 69 %output = arith.constant dense<0> : tensor<5x6xi32> 70 %0 = call @quantized_matmul(%input1, %sparse_input2, %output) 71 : (tensor<5x3xi8>, 72 tensor<3x6xi8, #DCSR>, 73 tensor<5x6xi32>) -> tensor<5x6xi32> 74 75 // 76 // Verify the output. 77 // 78 // CHECK: ( ( -16510, 0, 16640, 12500, 1250, -390 ), 79 // CHECK-SAME: ( -254, 0, 256, -200, -20, -6 ), 80 // CHECK-SAME: ( 1143, 0, -1152, -200, -20, 27 ), 81 // CHECK-SAME: ( -254, 0, 256, -300, -30, -6 ), 82 // CHECK-SAME: ( 1397, 0, -1408, 100, 10, 33 ) ) 83 // 84 %m = bufferization.to_memref %0 : memref<5x6xi32> 85 %v = vector.transfer_read %m[%c0, %c0], %i0 86 : memref<5x6xi32>, vector<5x6xi32> 87 vector.print %v : vector<5x6xi32> 88 89 // Release the resources. 90 sparse_tensor.release %sparse_input2 : tensor<3x6xi8, #DCSR> 91 memref.dealloc %m : memref<5x6xi32> 92 93 return 94 } 95} 96