// RUN: mlir-opt %s \ // RUN: --linalg-generalize-named-ops --linalg-fuse-elementwise-ops \ // RUN: --sparsification --sparse-tensor-conversion \ // RUN: --convert-vector-to-scf --convert-scf-to-std \ // RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ // RUN: --std-bufferize --finalizing-bufferize --lower-affine \ // RUN: --convert-vector-to-llvm --convert-memref-to-llvm \ // RUN: --convert-std-to-llvm --reconcile-unrealized-casts | \ // RUN: mlir-cpu-runner \ // RUN: -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s // // Do the same run, but now with SIMDization as well. This should not change the outcome. // // RUN: mlir-opt %s \ // RUN: --linalg-generalize-named-ops --linalg-fuse-elementwise-ops \ // RUN: --sparsification="vectorization-strategy=2 vl=2" --sparse-tensor-conversion \ // RUN: --convert-vector-to-scf --convert-scf-to-std \ // RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ // RUN: --std-bufferize --finalizing-bufferize --lower-affine \ // RUN: --convert-vector-to-llvm --convert-memref-to-llvm \ // RUN: --convert-std-to-llvm --reconcile-unrealized-casts | \ // RUN: mlir-cpu-runner \ // RUN: -e entry -entry-point-result=void \ // RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ // RUN: FileCheck %s #DCSR = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }> // An example of a quantized sparse matmul. With the zero offset for the // sparse input, the sparse compiler generates very efficient code for the // x(i,j) += (ext(a(i,k)) - 2) * ext(b(k,j)) // operation. module { func @quantized_matmul(%input1: tensor<5x3xi8>, %input2: tensor<3x6xi8, #DCSR>, %output: tensor<5x6xi32>) -> tensor<5x6xi32> { %c0 = arith.constant 0 : i32 %c2 = arith.constant 2 : i32 %0 = linalg.quantized_matmul ins(%input1, %input2, %c2, %c0 : tensor<5x3xi8>, tensor<3x6xi8, #DCSR>, i32, i32) outs(%output : tensor<5x6xi32>) -> tensor<5x6xi32> return %0: tensor<5x6xi32> } func @entry() { %c0 = arith.constant 0 : index %i0 = arith.constant 0 : i32 %input1 = arith.constant dense<[ [ -128, 3, 127 ], [ 0, 0, 0 ], [ 11, 1, 0 ], [ 0, 5, -1 ], [ 13, 0, 3 ] ]> : tensor<5x3xi8> %input2 = arith.constant dense<[ [ 127, 0, -128, 0, 0, 3 ], [ 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 100, 10, 0 ] ]> : tensor<3x6xi8> %sparse_input2 = sparse_tensor.convert %input2 : tensor<3x6xi8> to tensor<3x6xi8, #DCSR> // Call the kernel. %output = arith.constant dense<0> : tensor<5x6xi32> %0 = call @quantized_matmul(%input1, %sparse_input2, %output) : (tensor<5x3xi8>, tensor<3x6xi8, #DCSR>, tensor<5x6xi32>) -> tensor<5x6xi32> // // Verify the output. // // CHECK: ( ( -16510, 0, 16640, 12500, 1250, -390 ), // CHECK-SAME: ( -254, 0, 256, -200, -20, -6 ), // CHECK-SAME: ( 1143, 0, -1152, -200, -20, 27 ), // CHECK-SAME: ( -254, 0, 256, -300, -30, -6 ), // CHECK-SAME: ( 1397, 0, -1408, 100, 10, 33 ) ) // %m = bufferization.to_memref %0 : memref<5x6xi32> %v = vector.transfer_read %m[%c0, %c0], %i0 : memref<5x6xi32>, vector<5x6xi32> vector.print %v : vector<5x6xi32> // Release the resources. sparse_tensor.release %sparse_input2 : tensor<3x6xi8, #DCSR> memref.dealloc %m : memref<5x6xi32> return } }