1// RUN: mlir-opt %s --sparse-compiler | \ 2// RUN: TENSOR0="%mlir_integration_test_dir/data/test.mtx" \ 3// RUN: mlir-cpu-runner \ 4// RUN: -e entry -entry-point-result=void \ 5// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 6// RUN: FileCheck %s 7// 8// Do the same run, but now with SIMDization as well. This should not change the outcome. 9// 10// RUN: mlir-opt %s --sparse-compiler="vectorization-strategy=2 vl=4" | \ 11// RUN: TENSOR0="%mlir_integration_test_dir/data/test.mtx" \ 12// RUN: mlir-cpu-runner \ 13// RUN: -e entry -entry-point-result=void \ 14// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 15// RUN: FileCheck %s 16 17!Filename = !llvm.ptr<i8> 18 19#DCSR = #sparse_tensor.encoding<{ 20 dimLevelType = [ "compressed", "compressed" ], 21 dimOrdering = affine_map<(i,j) -> (i,j)> 22}> 23 24#eltwise_mult = { 25 indexing_maps = [ 26 affine_map<(i,j) -> (i,j)> // X (out) 27 ], 28 iterator_types = ["parallel", "parallel"], 29 doc = "X(i,j) *= X(i,j)" 30} 31 32// 33// Integration test that lowers a kernel annotated as sparse to 34// actual sparse code, initializes a matching sparse storage scheme 35// from file, and runs the resulting code with the JIT compiler. 36// 37module { 38 // 39 // A kernel that multiplies a sparse matrix A with itself 40 // in an element-wise fashion. In this operation, we have 41 // a sparse tensor as output, but although the values of the 42 // sparse tensor change, its nonzero structure remains the same. 43 // 44 func.func @kernel_eltwise_mult(%argx: tensor<?x?xf64, #DCSR>) 45 -> tensor<?x?xf64, #DCSR> { 46 %0 = linalg.generic #eltwise_mult 47 outs(%argx: tensor<?x?xf64, #DCSR>) { 48 ^bb(%x: f64): 49 %0 = arith.mulf %x, %x : f64 50 linalg.yield %0 : f64 51 } -> tensor<?x?xf64, #DCSR> 52 return %0 : tensor<?x?xf64, #DCSR> 53 } 54 55 func.func private @getTensorFilename(index) -> (!Filename) 56 57 // 58 // Main driver that reads matrix from file and calls the sparse kernel. 59 // 60 func.func @entry() { 61 %d0 = arith.constant 0.0 : f64 62 %c0 = arith.constant 0 : index 63 64 // Read the sparse matrix from file, construct sparse storage. 65 %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) 66 %x = sparse_tensor.new %fileName : !Filename to tensor<?x?xf64, #DCSR> 67 68 // Call kernel. 69 %0 = call @kernel_eltwise_mult(%x) : (tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR> 70 71 // Print the result for verification. 72 // 73 // CHECK: ( 1, 1.96, 4, 6.25, 9, 16.81, 16, 27.04, 25 ) 74 // 75 %m = sparse_tensor.values %0 : tensor<?x?xf64, #DCSR> to memref<?xf64> 76 %v = vector.transfer_read %m[%c0], %d0: memref<?xf64>, vector<9xf64> 77 vector.print %v : vector<9xf64> 78 79 // Release the resources. 80 bufferization.dealloc_tensor %x : tensor<?x?xf64, #DCSR> 81 82 return 83 } 84} 85