1// RUN: mlir-opt %s --sparse-compiler | \ 2// RUN: TENSOR0="%mlir_integration_test_dir/data/test.tns" \ 3// RUN: mlir-cpu-runner \ 4// RUN: -e entry -entry-point-result=void \ 5// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 6// RUN: FileCheck %s 7// 8// Do the same run, but now with SIMDization as well. This should not change the outcome. 9// 10// RUN: mlir-opt %s --sparse-compiler="vectorization-strategy=2 vl=4" | \ 11// RUN: TENSOR0="%mlir_integration_test_dir/data/test.tns" \ 12// RUN: mlir-cpu-runner \ 13// RUN: -e entry -entry-point-result=void \ 14// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 15// RUN: FileCheck %s 16 17!Filename = !llvm.ptr<i8> 18 19#SparseTensor = #sparse_tensor.encoding<{ 20 dimLevelType = [ "compressed", "compressed", "compressed", "compressed", 21 "compressed", "compressed", "compressed", "compressed" ], 22 // Note that any dimOrdering permutation should give the same results 23 // since, even though it impacts the sparse storage scheme layout, 24 // it should not change the semantics. 25 dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)> 26}> 27 28#trait_flatten = { 29 indexing_maps = [ 30 affine_map<(i,j,k,l,m,n,o,p) -> (i,j,k,l,m,n,o,p)>, // A 31 affine_map<(i,j,k,l,m,n,o,p) -> (i,j)> // X (out) 32 ], 33 iterator_types = [ "parallel", "parallel", "reduction", "reduction", 34 "reduction", "reduction", "reduction", "reduction" ], 35 doc = "X(i,j) += A(i,j,k,l,m,n,o,p)" 36} 37 38// 39// Integration test that lowers a kernel annotated as sparse to 40// actual sparse code, initializes a matching sparse storage scheme 41// from file, and runs the resulting code with the JIT compiler. 42// 43module { 44 // 45 // A kernel that flattens a rank 8 tensor into a dense matrix. 46 // 47 func.func @kernel_flatten(%arga: tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>, 48 %argx: tensor<7x3xf64>) 49 -> tensor<7x3xf64> { 50 %0 = linalg.generic #trait_flatten 51 ins(%arga: tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>) 52 outs(%argx: tensor<7x3xf64>) { 53 ^bb(%a: f64, %x: f64): 54 %0 = arith.addf %x, %a : f64 55 linalg.yield %0 : f64 56 } -> tensor<7x3xf64> 57 return %0 : tensor<7x3xf64> 58 } 59 60 func.func private @getTensorFilename(index) -> (!Filename) 61 62 // 63 // Main driver that reads tensor from file and calls the sparse kernel. 64 // 65 func.func @entry() { 66 %d0 = arith.constant 0.0 : f64 67 %c0 = arith.constant 0 : index 68 %c1 = arith.constant 1 : index 69 %c3 = arith.constant 3 : index 70 %c7 = arith.constant 7 : index 71 72 // Setup matrix memory that is initialized to zero. 73 %x = arith.constant dense<0.000000e+00> : tensor<7x3xf64> 74 75 // Read the sparse tensor from file, construct sparse storage. 76 %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) 77 %a = sparse_tensor.new %fileName : !Filename to tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor> 78 79 // Call the kernel. 80 %0 = call @kernel_flatten(%a, %x) 81 : (tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor>, tensor<7x3xf64>) -> tensor<7x3xf64> 82 83 // Print the result for verification. 84 // 85 // CHECK: ( 6.25, 0, 0 ) 86 // CHECK: ( 4.224, 6.21, 0 ) 87 // CHECK: ( 0, 0, 15.455 ) 88 // CHECK: ( 0, 0, 0 ) 89 // CHECK: ( 0, 0, 0 ) 90 // CHECK: ( 0, 0, 0 ) 91 // CHECK: ( 7, 0, 0 ) 92 // 93 scf.for %i = %c0 to %c7 step %c1 { 94 %v = vector.transfer_read %0[%i, %c0], %d0: tensor<7x3xf64>, vector<3xf64> 95 vector.print %v : vector<3xf64> 96 } 97 98 // Release the resources. 99 bufferization.dealloc_tensor %a : tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor> 100 101 return 102 } 103} 104