1// RUN: mlir-opt %s -sparsification | FileCheck %s --check-prefix=CHECK-HIR 2// 3// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion | \ 4// RUN: FileCheck %s --check-prefix=CHECK-MIR 5// 6// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion \ 7// RUN: --func-bufferize --arith-bufferize \ 8// RUN: --tensor-bufferize --finalizing-bufferize | \ 9// RUN: FileCheck %s --check-prefix=CHECK-LIR 10 11#CSC = #sparse_tensor.encoding<{ 12 dimLevelType = [ "dense", "compressed" ], 13 dimOrdering = affine_map<(i,j) -> (j,i)> 14}> 15 16#trait_matvec = { 17 indexing_maps = [ 18 affine_map<(i,j) -> (i,j)>, // A 19 affine_map<(i,j) -> (j)>, // b 20 affine_map<(i,j) -> (i)> // x (out) 21 ], 22 iterator_types = ["parallel","reduction"], 23 doc = "x(i) += A(i,j) * b(j)" 24} 25 26// CHECK-HIR-LABEL: func @matvec( 27// CHECK-HIR-SAME: %[[VAL_0:.*]]: tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, pointerBitWidth = 0, indexBitWidth = 0 }>>, 28// CHECK-HIR-SAME: %[[VAL_1:.*]]: tensor<64xf64>, 29// CHECK-HIR-SAME: %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> { 30// CHECK-HIR-DAG: %[[VAL_3:.*]] = arith.constant 64 : index 31// CHECK-HIR-DAG: %[[VAL_4:.*]] = arith.constant 0 : index 32// CHECK-HIR-DAG: %[[VAL_5:.*]] = arith.constant 1 : index 33// CHECK-HIR-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex> 34// CHECK-HIR-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex> 35// CHECK-HIR-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf64> 36// CHECK-HIR-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<64xf64> 37// CHECK-HIR-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> 38// CHECK-HIR: scf.for %[[VAL_12:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] { 39// CHECK-HIR: %[[VAL_13:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_12]]] : memref<64xf64> 40// CHECK-HIR: %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref<?xindex> 41// CHECK-HIR: %[[VAL_15:.*]] = arith.addi %[[VAL_12]], %[[VAL_5]] : index 42// CHECK-HIR: %[[VAL_16:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_15]]] : memref<?xindex> 43// CHECK-HIR: scf.for %[[VAL_17:.*]] = %[[VAL_14]] to %[[VAL_16]] step %[[VAL_5]] { 44// CHECK-HIR: %[[VAL_18:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_17]]] : memref<?xindex> 45// CHECK-HIR: %[[VAL_19:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_18]]] : memref<32xf64> 46// CHECK-HIR: %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_17]]] : memref<?xf64> 47// CHECK-HIR: %[[VAL_21:.*]] = arith.mulf %[[VAL_20]], %[[VAL_13]] : f64 48// CHECK-HIR: %[[VAL_22:.*]] = arith.addf %[[VAL_19]], %[[VAL_21]] : f64 49// CHECK-HIR: memref.store %[[VAL_22]], %[[VAL_11]]{{\[}}%[[VAL_18]]] : memref<32xf64> 50// CHECK-HIR: } 51// CHECK-HIR: } 52// CHECK-HIR: %[[VAL_23:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64> 53// CHECK-HIR: return %[[VAL_23]] : tensor<32xf64> 54// CHECK-HIR: } 55 56// CHECK-MIR-LABEL: func @matvec( 57// CHECK-MIR-SAME: %[[VAL_0:.*]]: !llvm.ptr<i8>, 58// CHECK-MIR-SAME: %[[VAL_1:.*]]: tensor<64xf64>, 59// CHECK-MIR-SAME: %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> { 60// CHECK-MIR-DAG: %[[VAL_3:.*]] = arith.constant 64 : index 61// CHECK-MIR-DAG: %[[VAL_5:.*]] = arith.constant 0 : index 62// CHECK-MIR-DAG: %[[VAL_6:.*]] = arith.constant 1 : index 63// CHECK-MIR-DAG: %[[VAL_7:.*]] = call @sparsePointers0(%[[VAL_0]], %[[VAL_6]]) : (!llvm.ptr<i8>, index) -> memref<?xindex> 64// CHECK-MIR-DAG: %[[VAL_8:.*]] = call @sparseIndices0(%[[VAL_0]], %[[VAL_6]]) : (!llvm.ptr<i8>, index) -> memref<?xindex> 65// CHECK-MIR-DAG: %[[VAL_9:.*]] = call @sparseValuesF64(%[[VAL_0]]) : (!llvm.ptr<i8>) -> memref<?xf64> 66// CHECK-MIR-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<64xf64> 67// CHECK-MIR-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> 68// CHECK-MIR: scf.for %[[VAL_15:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] { 69// CHECK-MIR: %[[VAL_16:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_15]]] : memref<64xf64> 70// CHECK-MIR: %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_15]]] : memref<?xindex> 71// CHECK-MIR: %[[VAL_18:.*]] = arith.addi %[[VAL_15]], %[[VAL_6]] : index 72// CHECK-MIR: %[[VAL_19:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_18]]] : memref<?xindex> 73// CHECK-MIR: scf.for %[[VAL_20:.*]] = %[[VAL_17]] to %[[VAL_19]] step %[[VAL_6]] { 74// CHECK-MIR: %[[VAL_21:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_20]]] : memref<?xindex> 75// CHECK-MIR: %[[VAL_22:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_21]]] : memref<32xf64> 76// CHECK-MIR: %[[VAL_23:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_20]]] : memref<?xf64> 77// CHECK-MIR: %[[VAL_24:.*]] = arith.mulf %[[VAL_23]], %[[VAL_16]] : f64 78// CHECK-MIR: %[[VAL_25:.*]] = arith.addf %[[VAL_22]], %[[VAL_24]] : f64 79// CHECK-MIR: memref.store %[[VAL_25]], %[[VAL_12]]{{\[}}%[[VAL_21]]] : memref<32xf64> 80// CHECK-MIR: } 81// CHECK-MIR: } 82// CHECK-MIR: %[[VAL_26:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32xf64> 83// CHECK-MIR: return %[[VAL_26]] : tensor<32xf64> 84// CHECK-MIR: } 85 86// CHECK-LIR-LABEL: func @matvec( 87// CHECK-LIR-SAME: %[[VAL_0:.*]]: !llvm.ptr<i8>, 88// CHECK-LIR-SAME: %[[VAL_1:.*]]: memref<64xf64>, 89// CHECK-LIR-SAME: %[[VAL_2:.*]]: memref<32xf64>) -> memref<32xf64> { 90// CHECK-LIR-DAG: %[[VAL_3:.*]] = arith.constant 64 : index 91// CHECK-LIR-DAG: %[[VAL_5:.*]] = arith.constant 0 : index 92// CHECK-LIR-DAG: %[[VAL_6:.*]] = arith.constant 1 : index 93// CHECK-LIR-DAG: %[[VAL_7:.*]] = call @sparsePointers0(%[[VAL_0]], %[[VAL_6]]) : (!llvm.ptr<i8>, index) -> memref<?xindex> 94// CHECK-LIR-DAG: %[[VAL_8:.*]] = call @sparseIndices0(%[[VAL_0]], %[[VAL_6]]) : (!llvm.ptr<i8>, index) -> memref<?xindex> 95// CHECK-LIR-DAG: %[[VAL_9:.*]] = call @sparseValuesF64(%[[VAL_0]]) : (!llvm.ptr<i8>) -> memref<?xf64> 96// CHECK-LIR: scf.for %[[VAL_13:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] { 97// CHECK-LIR: %[[VAL_14:.*]] = memref.load %[[VAL_1]]{{\[}}%[[VAL_13]]] : memref<64xf64> 98// CHECK-LIR: %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_13]]] : memref<?xindex> 99// CHECK-LIR: %[[VAL_16:.*]] = arith.addi %[[VAL_13]], %[[VAL_6]] : index 100// CHECK-LIR: %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref<?xindex> 101// CHECK-LIR: scf.for %[[VAL_18:.*]] = %[[VAL_15]] to %[[VAL_17]] step %[[VAL_6]] { 102// CHECK-LIR: %[[VAL_19:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xindex> 103// CHECK-LIR: %[[VAL_20:.*]] = memref.load %[[VAL_2]]{{\[}}%[[VAL_19]]] : memref<32xf64> 104// CHECK-LIR: %[[VAL_21:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xf64> 105// CHECK-LIR: %[[VAL_22:.*]] = arith.mulf %[[VAL_21]], %[[VAL_14]] : f64 106// CHECK-LIR: %[[VAL_23:.*]] = arith.addf %[[VAL_20]], %[[VAL_22]] : f64 107// CHECK-LIR: memref.store %[[VAL_23]], %[[VAL_2]]{{\[}}%[[VAL_19]]] : memref<32xf64> 108// CHECK-LIR: } 109// CHECK-LIR: } 110// CHECK-LIR: return %[[VAL_2]] : memref<32xf64> 111// CHECK-LIR: } 112 113func.func @matvec(%arga: tensor<32x64xf64, #CSC>, 114 %argb: tensor<64xf64>, 115 %argx: tensor<32xf64>) -> tensor<32xf64> { 116 %0 = linalg.generic #trait_matvec 117 ins(%arga, %argb : tensor<32x64xf64, #CSC>, tensor<64xf64>) 118 outs(%argx: tensor<32xf64>) { 119 ^bb(%A: f64, %b: f64, %x: f64): 120 %0 = arith.mulf %A, %b : f64 121 %1 = arith.addf %x, %0 : f64 122 linalg.yield %1 : f64 123 } -> tensor<32xf64> 124 return %0 : tensor<32xf64> 125} 126