1// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py 2// RUN: mlir-opt %s \ 3// RUN: --linalg-generalize-named-ops --linalg-fuse-elementwise-ops \ 4// RUN: --sparsification | FileCheck %s 5 6#DCSR = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }> 7 8// CHECK-LABEL: func @matmul1( 9// CHECK-SAME: %[[VAL_0:.*]]: tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>>, 10// CHECK-SAME: %[[VAL_1:.*]]: tensor<20x30xf32>, 11// CHECK-SAME: %[[VAL_2:.*]]: tensor<10x30xf32>) -> tensor<10x30xf32> { 12// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index 13// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index 14// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 30 : index 15// CHECK: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> 16// CHECK: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> 17// CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> 18// CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> 19// CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> 20// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<20x30xf32> 21// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<10x30xf32> 22// CHECK: %[[VAL_13:.*]] = memref.alloc() : memref<10x30xf32> 23// CHECK: memref.copy %[[VAL_12]], %[[VAL_13]] : memref<10x30xf32> to memref<10x30xf32> 24// CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_3]]] : memref<?xindex> 25// CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex> 26// CHECK: scf.for %[[VAL_16:.*]] = %[[VAL_14]] to %[[VAL_15]] step %[[VAL_4]] { 27// CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref<?xindex> 28// CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref<?xindex> 29// CHECK: %[[VAL_19:.*]] = arith.addi %[[VAL_16]], %[[VAL_4]] : index 30// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_19]]] : memref<?xindex> 31// CHECK: scf.for %[[VAL_21:.*]] = %[[VAL_18]] to %[[VAL_20]] step %[[VAL_4]] { 32// CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_21]]] : memref<?xindex> 33// CHECK: %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_21]]] : memref<?xf32> 34// CHECK: scf.for %[[VAL_24:.*]] = %[[VAL_3]] to %[[VAL_5]] step %[[VAL_4]] { 35// CHECK: %[[VAL_25:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_17]], %[[VAL_24]]] : memref<10x30xf32> 36// CHECK: %[[VAL_26:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_22]], %[[VAL_24]]] : memref<20x30xf32> 37// CHECK: %[[VAL_27:.*]] = arith.mulf %[[VAL_23]], %[[VAL_26]] : f32 38// CHECK: %[[VAL_28:.*]] = arith.addf %[[VAL_25]], %[[VAL_27]] : f32 39// CHECK: memref.store %[[VAL_28]], %[[VAL_13]]{{\[}}%[[VAL_17]], %[[VAL_24]]] : memref<10x30xf32> 40// CHECK: } 41// CHECK: } 42// CHECK: } 43// CHECK: %[[VAL_29:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<10x30xf32> 44// CHECK: return %[[VAL_29]] : tensor<10x30xf32> 45// CHECK: } 46func @matmul1(%a: tensor<10x20xf32, #DCSR>, 47 %b: tensor<20x30xf32>, 48 %c: tensor<10x30xf32>) -> tensor<10x30xf32> { 49 %0 = linalg.matmul 50 ins(%a, %b: tensor<10x20xf32, #DCSR>, tensor<20x30xf32>) 51 outs(%c: tensor<10x30xf32>) -> tensor<10x30xf32> 52 return %0 : tensor<10x30xf32> 53} 54 55// 56// Computes C = A x B with all matrices sparse (SpMSpM) in DCSR. 57// 58// CHECK-LABEL: func @matmul2( 59// CHECK-SAME: %[[VAL_0:.*]]: tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>>, 60// CHECK-SAME: %[[VAL_1:.*]]: tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> { 61// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 4 : index 62// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index 63// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index 64// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 2 : index 65// CHECK-DAG: %[[VAL_6:.*]] = arith.constant false 66// CHECK-DAG: %[[VAL_7:.*]] = arith.constant true 67// CHECK: %[[VAL_8:.*]] = sparse_tensor.init{{\[}}%[[VAL_2]], %[[VAL_2]]] : tensor<4x4xf64, #sparse_tensor.encoding<{{{.*}}}>> 68// CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex> 69// CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex> 70// CHECK: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex> 71// CHECK: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex> 72// CHECK: %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64> 73// CHECK: %[[VAL_14:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex> 74// CHECK: %[[VAL_15:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex> 75// CHECK: %[[VAL_16:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex> 76// CHECK: %[[VAL_17:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex> 77// CHECK: %[[VAL_18:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64> 78// CHECK: %[[VAL_19:.*]] = memref.alloca(%[[VAL_5]]) : memref<?xindex> 79// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_3]]] : memref<?xindex> 80// CHECK: %[[VAL_21:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_4]]] : memref<?xindex> 81// CHECK: scf.for %[[VAL_22:.*]] = %[[VAL_20]] to %[[VAL_21]] step %[[VAL_4]] { 82// CHECK: %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_22]]] : memref<?xindex> 83// CHECK: memref.store %[[VAL_23]], %[[VAL_19]]{{\[}}%[[VAL_3]]] : memref<?xindex> 84// CHECK: %[[VAL_24:.*]], %[[VAL_25:.*]], %[[VAL_26:.*]], %[[VAL_27:.*]] = sparse_tensor.expand %[[VAL_8]] : tensor<4x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>, memref<?xi1>, memref<?xindex>, index 85// CHECK: %[[VAL_28:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_22]]] : memref<?xindex> 86// CHECK: %[[VAL_29:.*]] = arith.addi %[[VAL_22]], %[[VAL_4]] : index 87// CHECK: %[[VAL_30:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_29]]] : memref<?xindex> 88// CHECK: %[[VAL_31:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_3]]] : memref<?xindex> 89// CHECK: %[[VAL_32:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_4]]] : memref<?xindex> 90// CHECK: %[[VAL_33:.*]]:3 = scf.while (%[[VAL_34:.*]] = %[[VAL_28]], %[[VAL_35:.*]] = %[[VAL_31]], %[[VAL_36:.*]] = %[[VAL_27]]) : (index, index, index) -> (index, index, index) { 91// CHECK: %[[VAL_37:.*]] = arith.cmpi ult, %[[VAL_34]], %[[VAL_30]] : index 92// CHECK: %[[VAL_38:.*]] = arith.cmpi ult, %[[VAL_35]], %[[VAL_32]] : index 93// CHECK: %[[VAL_39:.*]] = arith.andi %[[VAL_37]], %[[VAL_38]] : i1 94// CHECK: scf.condition(%[[VAL_39]]) %[[VAL_34]], %[[VAL_35]], %[[VAL_36]] : index, index, index 95// CHECK: } do { 96// CHECK: ^bb0(%[[VAL_40:.*]]: index, %[[VAL_41:.*]]: index, %[[VAL_42:.*]]: index): 97// CHECK: %[[VAL_43:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_40]]] : memref<?xindex> 98// CHECK: %[[VAL_44:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_41]]] : memref<?xindex> 99// CHECK: %[[VAL_45:.*]] = arith.cmpi ult, %[[VAL_44]], %[[VAL_43]] : index 100// CHECK: %[[VAL_46:.*]] = select %[[VAL_45]], %[[VAL_44]], %[[VAL_43]] : index 101// CHECK: %[[VAL_47:.*]] = arith.cmpi eq, %[[VAL_43]], %[[VAL_46]] : index 102// CHECK: %[[VAL_48:.*]] = arith.cmpi eq, %[[VAL_44]], %[[VAL_46]] : index 103// CHECK: %[[VAL_49:.*]] = arith.andi %[[VAL_47]], %[[VAL_48]] : i1 104// CHECK: %[[VAL_50:.*]] = scf.if %[[VAL_49]] -> (index) { 105// CHECK: %[[VAL_51:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_40]]] : memref<?xf64> 106// CHECK: %[[VAL_52:.*]] = memref.load %[[VAL_16]]{{\[}}%[[VAL_41]]] : memref<?xindex> 107// CHECK: %[[VAL_53:.*]] = arith.addi %[[VAL_41]], %[[VAL_4]] : index 108// CHECK: %[[VAL_54:.*]] = memref.load %[[VAL_16]]{{\[}}%[[VAL_53]]] : memref<?xindex> 109// CHECK: %[[VAL_55:.*]] = scf.for %[[VAL_56:.*]] = %[[VAL_52]] to %[[VAL_54]] step %[[VAL_4]] iter_args(%[[VAL_57:.*]] = %[[VAL_42]]) -> (index) { 110// CHECK: %[[VAL_58:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_56]]] : memref<?xindex> 111// CHECK: %[[VAL_59:.*]] = memref.load %[[VAL_24]]{{\[}}%[[VAL_58]]] : memref<?xf64> 112// CHECK: %[[VAL_60:.*]] = memref.load %[[VAL_18]]{{\[}}%[[VAL_56]]] : memref<?xf64> 113// CHECK: %[[VAL_61:.*]] = arith.mulf %[[VAL_51]], %[[VAL_60]] : f64 114// CHECK: %[[VAL_62:.*]] = arith.addf %[[VAL_59]], %[[VAL_61]] : f64 115// CHECK: %[[VAL_63:.*]] = memref.load %[[VAL_25]]{{\[}}%[[VAL_58]]] : memref<?xi1> 116// CHECK: %[[VAL_64:.*]] = arith.cmpi eq, %[[VAL_63]], %[[VAL_6]] : i1 117// CHECK: %[[VAL_65:.*]] = scf.if %[[VAL_64]] -> (index) { 118// CHECK: memref.store %[[VAL_7]], %[[VAL_25]]{{\[}}%[[VAL_58]]] : memref<?xi1> 119// CHECK: memref.store %[[VAL_58]], %[[VAL_26]]{{\[}}%[[VAL_57]]] : memref<?xindex> 120// CHECK: %[[VAL_66:.*]] = arith.addi %[[VAL_57]], %[[VAL_4]] : index 121// CHECK: scf.yield %[[VAL_66]] : index 122// CHECK: } else { 123// CHECK: scf.yield %[[VAL_57]] : index 124// CHECK: } 125// CHECK: memref.store %[[VAL_62]], %[[VAL_24]]{{\[}}%[[VAL_58]]] : memref<?xf64> 126// CHECK: scf.yield %[[VAL_67:.*]] : index 127// CHECK: } 128// CHECK: scf.yield %[[VAL_68:.*]] : index 129// CHECK: } else { 130// CHECK: scf.yield %[[VAL_42]] : index 131// CHECK: } 132// CHECK: %[[VAL_69:.*]] = arith.cmpi eq, %[[VAL_43]], %[[VAL_46]] : index 133// CHECK: %[[VAL_70:.*]] = arith.addi %[[VAL_40]], %[[VAL_4]] : index 134// CHECK: %[[VAL_71:.*]] = select %[[VAL_69]], %[[VAL_70]], %[[VAL_40]] : index 135// CHECK: %[[VAL_72:.*]] = arith.cmpi eq, %[[VAL_44]], %[[VAL_46]] : index 136// CHECK: %[[VAL_73:.*]] = arith.addi %[[VAL_41]], %[[VAL_4]] : index 137// CHECK: %[[VAL_74:.*]] = select %[[VAL_72]], %[[VAL_73]], %[[VAL_41]] : index 138// CHECK: scf.yield %[[VAL_71]], %[[VAL_74]], %[[VAL_75:.*]] : index, index, index 139// CHECK: } 140// CHECK: sparse_tensor.compress %[[VAL_8]], %[[VAL_19]], %[[VAL_24]], %[[VAL_25]], %[[VAL_26]], %[[VAL_76:.*]]#2 : tensor<4x4xf64, #sparse_tensor.encoding<{{{.*}}}>>, memref<?xindex>, memref<?xf64>, memref<?xi1>, memref<?xindex>, index 141// CHECK: } 142// CHECK: %[[VAL_77:.*]] = sparse_tensor.load %[[VAL_8]] hasInserts : tensor<4x4xf64, #sparse_tensor.encoding<{{{.*}}}>> 143// CHECK: return %[[VAL_77]] : tensor<4x4xf64, #sparse_tensor.encoding<{{{.*}}}>> 144// CHECK: } 145func @matmul2(%A: tensor<4x8xf64, #DCSR>, 146 %B: tensor<8x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> { 147 %c4 = arith.constant 4 : index 148 %C = sparse_tensor.init [%c4, %c4] : tensor<4x4xf64, #DCSR> 149 %D = linalg.matmul 150 ins(%A, %B: tensor<4x8xf64, #DCSR>, tensor<8x4xf64, #DCSR>) 151 outs(%C: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> 152 return %D: tensor<4x4xf64, #DCSR> 153} 154 155// CHECK-LABEL: func @conv2d( 156// CHECK-SAME: %[[VAL_0:.*]]: tensor<8x8xi32>, 157// CHECK-SAME: %[[VAL_1:.*]]: tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>>, 158// CHECK-SAME: %[[VAL_2:.*]]: tensor<6x6xi32>) -> tensor<6x6xi32> { 159// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index 160// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index 161// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 6 : index 162// CHECK: %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_0]] : memref<8x8xi32> 163// CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> 164// CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> 165// CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> 166// CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> 167// CHECK: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> 168// CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<6x6xi32> 169// CHECK: %[[VAL_13:.*]] = memref.alloc() : memref<6x6xi32> 170// CHECK: memref.copy %[[VAL_12]], %[[VAL_13]] : memref<6x6xi32> to memref<6x6xi32> 171// CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_3]]] : memref<?xindex> 172// CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref<?xindex> 173// CHECK: scf.for %[[VAL_16:.*]] = %[[VAL_14]] to %[[VAL_15]] step %[[VAL_4]] { 174// CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref<?xindex> 175// CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_16]]] : memref<?xindex> 176// CHECK: %[[VAL_19:.*]] = arith.addi %[[VAL_16]], %[[VAL_4]] : index 177// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_19]]] : memref<?xindex> 178// CHECK: scf.for %[[VAL_21:.*]] = %[[VAL_18]] to %[[VAL_20]] step %[[VAL_4]] { 179// CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_21]]] : memref<?xindex> 180// CHECK: %[[VAL_23:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_21]]] : memref<?xi32> 181// CHECK: scf.for %[[VAL_24:.*]] = %[[VAL_3]] to %[[VAL_5]] step %[[VAL_4]] { 182// CHECK: scf.for %[[VAL_25:.*]] = %[[VAL_3]] to %[[VAL_5]] step %[[VAL_4]] { 183// CHECK: %[[VAL_26:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_25]], %[[VAL_24]]] : memref<6x6xi32> 184// CHECK: %[[VAL_27:.*]] = arith.addi %[[VAL_25]], %[[VAL_17]] : index 185// CHECK: %[[VAL_28:.*]] = arith.addi %[[VAL_24]], %[[VAL_22]] : index 186// CHECK: %[[VAL_29:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_27]], %[[VAL_28]]] : memref<8x8xi32> 187// CHECK: %[[VAL_30:.*]] = arith.muli %[[VAL_29]], %[[VAL_23]] : i32 188// CHECK: %[[VAL_31:.*]] = arith.addi %[[VAL_26]], %[[VAL_30]] : i32 189// CHECK: memref.store %[[VAL_31]], %[[VAL_13]]{{\[}}%[[VAL_25]], %[[VAL_24]]] : memref<6x6xi32> 190// CHECK: } 191// CHECK: } 192// CHECK: } 193// CHECK: } 194// CHECK: %[[VAL_32:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<6x6xi32> 195// CHECK: return %[[VAL_32]] : tensor<6x6xi32> 196// CHECK: } 197func @conv2d(%input: tensor<8x8xi32>, 198 %filter: tensor<3x3xi32, #DCSR>, 199 %output: tensor<6x6xi32>) -> tensor<6x6xi32> { 200 %0 = linalg.conv_2d 201 ins (%input, %filter: tensor<8x8xi32>, tensor<3x3xi32, #DCSR>) 202 outs (%output: tensor<6x6xi32>) -> tensor<6x6xi32> 203 return %0 : tensor<6x6xi32> 204} 205 206// CHECK-LABEL: func @quantized_matmul( 207// CHECK-SAME: %[[VAL_0:.*]]: tensor<5x3xi8>, 208// CHECK-SAME: %[[VAL_1:.*]]: tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>>, 209// CHECK-SAME: %[[VAL_2:.*]]: tensor<5x6xi64>) -> tensor<5x6xi64> { 210// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 2 : i64 211// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index 212// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index 213// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 5 : index 214// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_0]] : memref<5x3xi8> 215// CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> 216// CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> 217// CHECK: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_5]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> 218// CHECK: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_5]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> 219// CHECK: %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> 220// CHECK: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<5x6xi64> 221// CHECK: %[[VAL_14:.*]] = memref.alloc() : memref<5x6xi64> 222// CHECK: memref.copy %[[VAL_13]], %[[VAL_14]] : memref<5x6xi64> to memref<5x6xi64> 223// CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref<?xindex> 224// CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_5]]] : memref<?xindex> 225// CHECK: scf.for %[[VAL_17:.*]] = %[[VAL_15]] to %[[VAL_16]] step %[[VAL_5]] { 226// CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_17]]] : memref<?xindex> 227// CHECK: %[[VAL_19:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_17]]] : memref<?xindex> 228// CHECK: %[[VAL_20:.*]] = arith.addi %[[VAL_17]], %[[VAL_5]] : index 229// CHECK: %[[VAL_21:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_20]]] : memref<?xindex> 230// CHECK: scf.for %[[VAL_22:.*]] = %[[VAL_19]] to %[[VAL_21]] step %[[VAL_5]] { 231// CHECK: %[[VAL_23:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_22]]] : memref<?xindex> 232// CHECK: %[[VAL_24:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_22]]] : memref<?xi8> 233// CHECK: scf.for %[[VAL_25:.*]] = %[[VAL_4]] to %[[VAL_6]] step %[[VAL_5]] { 234// CHECK: %[[VAL_26:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_25]], %[[VAL_23]]] : memref<5x6xi64> 235// CHECK: %[[VAL_27:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_25]], %[[VAL_18]]] : memref<5x3xi8> 236// CHECK: %[[VAL_28:.*]] = arith.extsi %[[VAL_27]] : i8 to i64 237// CHECK: %[[VAL_29:.*]] = arith.subi %[[VAL_28]], %[[VAL_3]] : i64 238// CHECK: %[[VAL_30:.*]] = arith.extsi %[[VAL_24]] : i8 to i64 239// CHECK: %[[VAL_31:.*]] = arith.muli %[[VAL_29]], %[[VAL_30]] : i64 240// CHECK: %[[VAL_32:.*]] = arith.addi %[[VAL_26]], %[[VAL_31]] : i64 241// CHECK: memref.store %[[VAL_32]], %[[VAL_14]]{{\[}}%[[VAL_25]], %[[VAL_23]]] : memref<5x6xi64> 242// CHECK: } 243// CHECK: } 244// CHECK: } 245// CHECK: %[[VAL_33:.*]] = bufferization.to_tensor %[[VAL_14]] : memref<5x6xi64> 246// CHECK: return %[[VAL_33]] : tensor<5x6xi64> 247// CHECK: } 248func @quantized_matmul(%input1: tensor<5x3xi8>, 249 %input2: tensor<3x6xi8, #DCSR>, 250 %output: tensor<5x6xi64>) -> tensor<5x6xi64> { 251 %c0 = arith.constant 0 : i32 252 %c2 = arith.constant 2 : i32 253 %0 = linalg.quantized_matmul 254 ins(%input1, %input2, %c2, %c0 : tensor<5x3xi8>, tensor<3x6xi8, #DCSR>, i32, i32) 255 outs(%output : tensor<5x6xi64>) -> tensor<5x6xi64> 256 return %0: tensor<5x6xi64> 257} 258