1// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
2// RUN: mlir-opt %s \
3// RUN: --linalg-generalize-named-ops --linalg-fuse-elementwise-ops \
4// RUN: --sparsification | FileCheck %s
5
6#SparseVector = #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>
7
8#DCSR = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>
9
10// CHECK-LABEL:   func @matmul1(
11// CHECK-SAME:      %[[VAL_0:.*]]: tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>>,
12// CHECK-SAME:      %[[VAL_1:.*]]: tensor<20x30xf32>,
13// CHECK-SAME:      %[[VAL_2:.*]]: tensor<10x30xf32>) -> tensor<10x30xf32> {
14// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 0 : index
15// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 1 : index
16// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 30 : index
17// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>>
18// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>>
19// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>>
20// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>>
21// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>>
22// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<20x30xf32>
23// CHECK-DAG:       %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<10x30xf32>
24// CHECK:           %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_3]]] : memref<?xindex>
25// CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
26// CHECK:           scf.for %[[VAL_16:.*]] = %[[VAL_14]] to %[[VAL_15]] step %[[VAL_4]] {
27// CHECK:             %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref<?xindex>
28// CHECK:             %[[VAL_18:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref<?xindex>
29// CHECK:             %[[VAL_19:.*]] = arith.addi %[[VAL_16]], %[[VAL_4]] : index
30// CHECK:             %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_19]]] : memref<?xindex>
31// CHECK:             scf.for %[[VAL_21:.*]] = %[[VAL_18]] to %[[VAL_20]] step %[[VAL_4]] {
32// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_21]]] : memref<?xindex>
33// CHECK:               %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_21]]] : memref<?xf32>
34// CHECK:               scf.for %[[VAL_24:.*]] = %[[VAL_3]] to %[[VAL_5]] step %[[VAL_4]] {
35// CHECK:                 %[[VAL_25:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_17]], %[[VAL_24]]] : memref<10x30xf32>
36// CHECK:                 %[[VAL_26:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_22]], %[[VAL_24]]] : memref<20x30xf32>
37// CHECK:                 %[[VAL_27:.*]] = arith.mulf %[[VAL_23]], %[[VAL_26]] : f32
38// CHECK:                 %[[VAL_28:.*]] = arith.addf %[[VAL_25]], %[[VAL_27]] : f32
39// CHECK:                 memref.store %[[VAL_28]], %[[VAL_13]]{{\[}}%[[VAL_17]], %[[VAL_24]]] : memref<10x30xf32>
40// CHECK:               }
41// CHECK:             }
42// CHECK:           }
43// CHECK:           %[[VAL_29:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<10x30xf32>
44// CHECK:           return %[[VAL_29]] : tensor<10x30xf32>
45// CHECK:         }
46func.func @matmul1(%a: tensor<10x20xf32, #DCSR>,
47              %b: tensor<20x30xf32>,
48              %c: tensor<10x30xf32>) -> tensor<10x30xf32> {
49  %0 = linalg.matmul
50    ins(%a, %b: tensor<10x20xf32, #DCSR>, tensor<20x30xf32>)
51    outs(%c: tensor<10x30xf32>) -> tensor<10x30xf32>
52  return %0 : tensor<10x30xf32>
53}
54
55//
56// Computes C = A x B with all matrices sparse (SpMSpM) in DCSR.
57//
58// CHECK-LABEL:   func @matmul2(
59// CHECK-SAME:      %[[VAL_0:.*]]: tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>>,
60// CHECK-SAME:      %[[VAL_1:.*]]: tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> {
61// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 0 : index
62// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 1 : index
63// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 2 : index
64// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant false
65// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant true
66// CHECK:           %[[VAL_8:.*]] = bufferization.alloc_tensor() : tensor<4x4xf64, #sparse_tensor.encoding<{{{.*}}}>>
67// CHECK:           %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
68// CHECK:           %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
69// CHECK:           %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
70// CHECK:           %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
71// CHECK:           %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
72// CHECK:           %[[VAL_14:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
73// CHECK:           %[[VAL_15:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
74// CHECK:           %[[VAL_16:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
75// CHECK:           %[[VAL_17:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
76// CHECK:           %[[VAL_18:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
77// CHECK:           %[[VAL_19:.*]] = memref.alloca(%[[VAL_5]]) : memref<?xindex>
78// CHECK:           %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_3]]] : memref<?xindex>
79// CHECK:           %[[VAL_21:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_4]]] : memref<?xindex>
80// CHECK:           scf.for %[[VAL_22:.*]] = %[[VAL_20]] to %[[VAL_21]] step %[[VAL_4]] {
81// CHECK:             %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_22]]] : memref<?xindex>
82// CHECK:             memref.store %[[VAL_23]], %[[VAL_19]]{{\[}}%[[VAL_3]]] : memref<?xindex>
83// CHECK:             %[[VAL_24:.*]], %[[VAL_25:.*]], %[[VAL_26:.*]], %[[VAL_27:.*]] = sparse_tensor.expand %[[VAL_8]] : tensor<4x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>, memref<?xi1>, memref<?xindex>, index
84// CHECK:             %[[VAL_28:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_22]]] : memref<?xindex>
85// CHECK:             %[[VAL_29:.*]] = arith.addi %[[VAL_22]], %[[VAL_4]] : index
86// CHECK:             %[[VAL_30:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_29]]] : memref<?xindex>
87// CHECK:             %[[VAL_31:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_3]]] : memref<?xindex>
88// CHECK:             %[[VAL_32:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_4]]] : memref<?xindex>
89// CHECK:             %[[VAL_33:.*]]:3 = scf.while (%[[VAL_34:.*]] = %[[VAL_28]], %[[VAL_35:.*]] = %[[VAL_31]], %[[VAL_36:.*]] = %[[VAL_27]]) : (index, index, index) -> (index, index, index) {
90// CHECK:               %[[VAL_37:.*]] = arith.cmpi ult, %[[VAL_34]], %[[VAL_30]] : index
91// CHECK:               %[[VAL_38:.*]] = arith.cmpi ult, %[[VAL_35]], %[[VAL_32]] : index
92// CHECK:               %[[VAL_39:.*]] = arith.andi %[[VAL_37]], %[[VAL_38]] : i1
93// CHECK:               scf.condition(%[[VAL_39]]) %[[VAL_34]], %[[VAL_35]], %[[VAL_36]] : index, index, index
94// CHECK:             } do {
95// CHECK:             ^bb0(%[[VAL_40:.*]]: index, %[[VAL_41:.*]]: index, %[[VAL_42:.*]]: index):
96// CHECK:               %[[VAL_43:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_40]]] : memref<?xindex>
97// CHECK:               %[[VAL_44:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_41]]] : memref<?xindex>
98// CHECK:               %[[VAL_45:.*]] = arith.cmpi ult, %[[VAL_44]], %[[VAL_43]] : index
99// CHECK:               %[[VAL_46:.*]] = arith.select %[[VAL_45]], %[[VAL_44]], %[[VAL_43]] : index
100// CHECK:               %[[VAL_47:.*]] = arith.cmpi eq, %[[VAL_43]], %[[VAL_46]] : index
101// CHECK:               %[[VAL_48:.*]] = arith.cmpi eq, %[[VAL_44]], %[[VAL_46]] : index
102// CHECK:               %[[VAL_49:.*]] = arith.andi %[[VAL_47]], %[[VAL_48]] : i1
103// CHECK:               %[[VAL_50:.*]] = scf.if %[[VAL_49]] -> (index) {
104// CHECK:                 %[[VAL_51:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_40]]] : memref<?xf64>
105// CHECK:                 %[[VAL_52:.*]] = memref.load %[[VAL_16]]{{\[}}%[[VAL_41]]] : memref<?xindex>
106// CHECK:                 %[[VAL_53:.*]] = arith.addi %[[VAL_41]], %[[VAL_4]] : index
107// CHECK:                 %[[VAL_54:.*]] = memref.load %[[VAL_16]]{{\[}}%[[VAL_53]]] : memref<?xindex>
108// CHECK:                 %[[VAL_55:.*]] = scf.for %[[VAL_56:.*]] = %[[VAL_52]] to %[[VAL_54]] step %[[VAL_4]] iter_args(%[[VAL_57:.*]] = %[[VAL_42]]) -> (index) {
109// CHECK:                   %[[VAL_58:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_56]]] : memref<?xindex>
110// CHECK:                   %[[VAL_59:.*]] = memref.load %[[VAL_24]]{{\[}}%[[VAL_58]]] : memref<?xf64>
111// CHECK:                   %[[VAL_60:.*]] = memref.load %[[VAL_18]]{{\[}}%[[VAL_56]]] : memref<?xf64>
112// CHECK:                   %[[VAL_61:.*]] = arith.mulf %[[VAL_51]], %[[VAL_60]] : f64
113// CHECK:                   %[[VAL_62:.*]] = arith.addf %[[VAL_59]], %[[VAL_61]] : f64
114// CHECK:                   %[[VAL_63:.*]] = memref.load %[[VAL_25]]{{\[}}%[[VAL_58]]] : memref<?xi1>
115// CHECK:                   %[[VAL_64:.*]] = arith.cmpi eq, %[[VAL_63]], %[[VAL_6]] : i1
116// CHECK:                   %[[VAL_65:.*]] = scf.if %[[VAL_64]] -> (index) {
117// CHECK:                     memref.store %[[VAL_7]], %[[VAL_25]]{{\[}}%[[VAL_58]]] : memref<?xi1>
118// CHECK:                     memref.store %[[VAL_58]], %[[VAL_26]]{{\[}}%[[VAL_57]]] : memref<?xindex>
119// CHECK:                     %[[VAL_66:.*]] = arith.addi %[[VAL_57]], %[[VAL_4]] : index
120// CHECK:                     scf.yield %[[VAL_66]] : index
121// CHECK:                   } else {
122// CHECK:                     scf.yield %[[VAL_57]] : index
123// CHECK:                   }
124// CHECK:                   memref.store %[[VAL_62]], %[[VAL_24]]{{\[}}%[[VAL_58]]] : memref<?xf64>
125// CHECK:                   scf.yield %[[VAL_67:.*]] : index
126// CHECK:                 }
127// CHECK:                 scf.yield %[[VAL_68:.*]] : index
128// CHECK:               } else {
129// CHECK:                 scf.yield %[[VAL_42]] : index
130// CHECK:               }
131// CHECK:               %[[VAL_69:.*]] = arith.cmpi eq, %[[VAL_43]], %[[VAL_46]] : index
132// CHECK:               %[[VAL_70:.*]] = arith.addi %[[VAL_40]], %[[VAL_4]] : index
133// CHECK:               %[[VAL_71:.*]] = arith.select %[[VAL_69]], %[[VAL_70]], %[[VAL_40]] : index
134// CHECK:               %[[VAL_72:.*]] = arith.cmpi eq, %[[VAL_44]], %[[VAL_46]] : index
135// CHECK:               %[[VAL_73:.*]] = arith.addi %[[VAL_41]], %[[VAL_4]] : index
136// CHECK:               %[[VAL_74:.*]] = arith.select %[[VAL_72]], %[[VAL_73]], %[[VAL_41]] : index
137// CHECK:               scf.yield %[[VAL_71]], %[[VAL_74]], %[[VAL_75:.*]] : index, index, index
138// CHECK:             }
139// CHECK:             sparse_tensor.compress %[[VAL_8]], %[[VAL_19]], %[[VAL_24]], %[[VAL_25]], %[[VAL_26]], %[[VAL_76:.*]]#2 : tensor<4x4xf64, #sparse_tensor.encoding<{{{.*}}}>>, memref<?xindex>, memref<?xf64>, memref<?xi1>, memref<?xindex>, index
140// CHECK:           }
141// CHECK:           %[[VAL_77:.*]] = sparse_tensor.load %[[VAL_8]] hasInserts : tensor<4x4xf64, #sparse_tensor.encoding<{{{.*}}}>>
142// CHECK:           return %[[VAL_77]] : tensor<4x4xf64, #sparse_tensor.encoding<{{{.*}}}>>
143// CHECK:         }
144func.func @matmul2(%A: tensor<4x8xf64, #DCSR>,
145              %B: tensor<8x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> {
146  %c4 = arith.constant 4 : index
147  %C = bufferization.alloc_tensor() : tensor<4x4xf64, #DCSR>
148  %D = linalg.matmul
149    ins(%A, %B: tensor<4x8xf64, #DCSR>, tensor<8x4xf64, #DCSR>)
150       outs(%C: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR>
151  return %D: tensor<4x4xf64, #DCSR>
152}
153
154// CHECK-LABEL:   func @conv2d(
155// CHECK-SAME:      %[[VAL_0:.*]]: tensor<8x8xi32>,
156// CHECK-SAME:      %[[VAL_1:.*]]: tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>>,
157// CHECK-SAME:      %[[VAL_2:.*]]: tensor<6x6xi32>) -> tensor<6x6xi32> {
158// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 0 : index
159// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 1 : index
160// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 6 : index
161// CHECK-DAG:       %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_0]] : memref<8x8xi32>
162// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>>
163// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>>
164// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>>
165// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>>
166// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>>
167// CHECK-DAG:       %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<6x6xi32>
168// CHECK:           %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_3]]] : memref<?xindex>
169// CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref<?xindex>
170// CHECK:           scf.for %[[VAL_16:.*]] = %[[VAL_14]] to %[[VAL_15]] step %[[VAL_4]] {
171// CHECK:             %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref<?xindex>
172// CHECK:             %[[VAL_18:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_16]]] : memref<?xindex>
173// CHECK:             %[[VAL_19:.*]] = arith.addi %[[VAL_16]], %[[VAL_4]] : index
174// CHECK:             %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_19]]] : memref<?xindex>
175// CHECK:             scf.for %[[VAL_21:.*]] = %[[VAL_18]] to %[[VAL_20]] step %[[VAL_4]] {
176// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_21]]] : memref<?xindex>
177// CHECK:               %[[VAL_23:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_21]]] : memref<?xi32>
178// CHECK:               scf.for %[[VAL_24:.*]] = %[[VAL_3]] to %[[VAL_5]] step %[[VAL_4]] {
179// CHECK:                 scf.for %[[VAL_25:.*]] = %[[VAL_3]] to %[[VAL_5]] step %[[VAL_4]] {
180// CHECK:                   %[[VAL_26:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_25]], %[[VAL_24]]] : memref<6x6xi32>
181// CHECK:                   %[[VAL_27:.*]] = arith.addi %[[VAL_25]], %[[VAL_17]] : index
182// CHECK:                   %[[VAL_28:.*]] = arith.addi %[[VAL_24]], %[[VAL_22]] : index
183// CHECK:                   %[[VAL_29:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_27]], %[[VAL_28]]] : memref<8x8xi32>
184// CHECK:                   %[[VAL_30:.*]] = arith.muli %[[VAL_29]], %[[VAL_23]] : i32
185// CHECK:                   %[[VAL_31:.*]] = arith.addi %[[VAL_26]], %[[VAL_30]] : i32
186// CHECK:                   memref.store %[[VAL_31]], %[[VAL_13]]{{\[}}%[[VAL_25]], %[[VAL_24]]] : memref<6x6xi32>
187// CHECK:                 }
188// CHECK:               }
189// CHECK:             }
190// CHECK:           }
191// CHECK:           %[[VAL_32:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<6x6xi32>
192// CHECK:           return %[[VAL_32]] : tensor<6x6xi32>
193// CHECK:         }
194func.func @conv2d(%input:  tensor<8x8xi32>,
195             %filter: tensor<3x3xi32, #DCSR>,
196             %output: tensor<6x6xi32>) -> tensor<6x6xi32> {
197  %0 = linalg.conv_2d
198    ins  (%input, %filter: tensor<8x8xi32>, tensor<3x3xi32, #DCSR>)
199    outs (%output: tensor<6x6xi32>) -> tensor<6x6xi32>
200  return %0 : tensor<6x6xi32>
201}
202
203// CHECK-LABEL:   func @quantized_matmul(
204// CHECK-SAME:      %[[VAL_0:.*]]: tensor<5x3xi8>,
205// CHECK-SAME:      %[[VAL_1:.*]]: tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>>,
206// CHECK-SAME:      %[[VAL_2:.*]]: tensor<5x6xi64>) -> tensor<5x6xi64> {
207// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 2 : i64
208// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
209// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
210// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 5 : index
211// CHECK-DAG:       %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_0]] : memref<5x3xi8>
212// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>>
213// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>>
214// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_5]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>>
215// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_5]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>>
216// CHECK-DAG:       %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>>
217// CHECK-DAG:       %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<5x6xi64>
218// CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref<?xindex>
219// CHECK:           %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_5]]] : memref<?xindex>
220// CHECK:           scf.for %[[VAL_17:.*]] = %[[VAL_15]] to %[[VAL_16]] step %[[VAL_5]] {
221// CHECK:             %[[VAL_18:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_17]]] : memref<?xindex>
222// CHECK:             %[[VAL_19:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_17]]] : memref<?xindex>
223// CHECK:             %[[VAL_20:.*]] = arith.addi %[[VAL_17]], %[[VAL_5]] : index
224// CHECK:             %[[VAL_21:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_20]]] : memref<?xindex>
225// CHECK:             scf.for %[[VAL_22:.*]] = %[[VAL_19]] to %[[VAL_21]] step %[[VAL_5]] {
226// CHECK:               %[[VAL_23:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_22]]] : memref<?xindex>
227// CHECK:               %[[VAL_24:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_22]]] : memref<?xi8>
228// CHECK:               scf.for %[[VAL_25:.*]] = %[[VAL_4]] to %[[VAL_6]] step %[[VAL_5]] {
229// CHECK:                 %[[VAL_26:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_25]], %[[VAL_23]]] : memref<5x6xi64>
230// CHECK:                 %[[VAL_27:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_25]], %[[VAL_18]]] : memref<5x3xi8>
231// CHECK:                 %[[VAL_28:.*]] = arith.extsi %[[VAL_27]] : i8 to i64
232// CHECK:                 %[[VAL_29:.*]] = arith.subi %[[VAL_28]], %[[VAL_3]] : i64
233// CHECK:                 %[[VAL_30:.*]] = arith.extsi %[[VAL_24]] : i8 to i64
234// CHECK:                 %[[VAL_31:.*]] = arith.muli %[[VAL_29]], %[[VAL_30]] : i64
235// CHECK:                 %[[VAL_32:.*]] = arith.addi %[[VAL_26]], %[[VAL_31]] : i64
236// CHECK:                 memref.store %[[VAL_32]], %[[VAL_14]]{{\[}}%[[VAL_25]], %[[VAL_23]]] : memref<5x6xi64>
237// CHECK:               }
238// CHECK:             }
239// CHECK:           }
240// CHECK:           %[[VAL_33:.*]] = bufferization.to_tensor %[[VAL_14]] : memref<5x6xi64>
241// CHECK:           return %[[VAL_33]] : tensor<5x6xi64>
242// CHECK:         }
243func.func @quantized_matmul(%input1: tensor<5x3xi8>,
244                       %input2: tensor<3x6xi8, #DCSR>,
245                       %output: tensor<5x6xi64>) -> tensor<5x6xi64> {
246  %c0 = arith.constant 0 : i32
247  %c2 = arith.constant 2 : i32
248  %0 = linalg.quantized_matmul
249    ins(%input1, %input2, %c2, %c0 : tensor<5x3xi8>, tensor<3x6xi8, #DCSR>, i32, i32)
250    outs(%output : tensor<5x6xi64>) -> tensor<5x6xi64>
251  return %0: tensor<5x6xi64>
252}
253
254// CHECK-LABEL:   func @sparse_dot(
255// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 0 : index
256// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 1 : index
257// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0:.*]], %[[VAL_3]] : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
258// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
259// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf32>
260// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1:.*]], %[[VAL_3]] : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
261// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
262// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf32>
263// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2:.*]] : memref<f32>
264// CHECK-DAG:       %[[VAL_13:.*]] = memref.load %[[VAL_11]][] : memref<f32>
265// CHECK-DAG:       %[[VAL_14:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
266// CHECK-DAG:       %[[VAL_15:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
267// CHECK-DAG:       %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_3]]] : memref<?xindex>
268// CHECK-DAG:       %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref<?xindex>
269// CHECK:           %[[VAL_18:.*]]:3 = scf.while (%[[VAL_19:.*]] = %[[VAL_14]], %[[VAL_20:.*]] = %[[VAL_16]], %[[VAL_21:.*]] = %[[VAL_13]]) : (index, index, f32) -> (index, index, f32) {
270// CHECK:             %[[VAL_22:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_15]] : index
271// CHECK:             %[[VAL_23:.*]] = arith.cmpi ult, %[[VAL_20]], %[[VAL_17]] : index
272// CHECK:             %[[VAL_24:.*]] = arith.andi %[[VAL_22]], %[[VAL_23]] : i1
273// CHECK:             scf.condition(%[[VAL_24]]) %[[VAL_19]], %[[VAL_20]], %[[VAL_21]] : index, index, f32
274// CHECK:           } do {
275// CHECK:           ^bb0(%[[VAL_25:.*]]: index, %[[VAL_26:.*]]: index, %[[VAL_27:.*]]: f32):
276// CHECK:             %[[VAL_28:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_25]]] : memref<?xindex>
277// CHECK:             %[[VAL_29:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_26]]] : memref<?xindex>
278// CHECK:             %[[VAL_30:.*]] = arith.cmpi ult, %[[VAL_29]], %[[VAL_28]] : index
279// CHECK:             %[[VAL_31:.*]] = arith.select %[[VAL_30]], %[[VAL_29]], %[[VAL_28]] : index
280// CHECK:             %[[VAL_32:.*]] = arith.cmpi eq, %[[VAL_28]], %[[VAL_31]] : index
281// CHECK:             %[[VAL_33:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_31]] : index
282// CHECK:             %[[VAL_34:.*]] = arith.andi %[[VAL_32]], %[[VAL_33]] : i1
283// CHECK:             %[[VAL_35:.*]] = scf.if %[[VAL_34]] -> (f32) {
284// CHECK:               %[[VAL_36:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_25]]] : memref<?xf32>
285// CHECK:               %[[VAL_37:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_26]]] : memref<?xf32>
286// CHECK:               %[[VAL_38:.*]] = arith.mulf %[[VAL_36]], %[[VAL_37]] : f32
287// CHECK:               %[[VAL_39:.*]] = arith.addf %[[VAL_27]], %[[VAL_38]] : f32
288// CHECK:               scf.yield %[[VAL_39]] : f32
289// CHECK:             } else {
290// CHECK:               scf.yield %[[VAL_27]] : f32
291// CHECK:             }
292// CHECK:             %[[VAL_40:.*]] = arith.cmpi eq, %[[VAL_28]], %[[VAL_31]] : index
293// CHECK:             %[[VAL_41:.*]] = arith.addi %[[VAL_25]], %[[VAL_4]] : index
294// CHECK:             %[[VAL_42:.*]] = arith.select %[[VAL_40]], %[[VAL_41]], %[[VAL_25]] : index
295// CHECK:             %[[VAL_43:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_31]] : index
296// CHECK:             %[[VAL_44:.*]] = arith.addi %[[VAL_26]], %[[VAL_4]] : index
297// CHECK:             %[[VAL_45:.*]] = arith.select %[[VAL_43]], %[[VAL_44]], %[[VAL_26]] : index
298// CHECK:             scf.yield %[[VAL_42]], %[[VAL_45]], %[[VAL_46:.*]] : index, index, f32
299// CHECK:           }
300// CHECK:           memref.store %[[VAL_47:.*]]#2, %[[VAL_11]][] : memref<f32>
301// CHECK:           %[[VAL_48:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<f32>
302// CHECK:           return %[[VAL_48]] : tensor<f32>
303// CHECK:         }
304func.func @sparse_dot(%a: tensor<1024xf32, #SparseVector>,
305                 %b: tensor<1024xf32, #SparseVector>,
306		 %x: tensor<f32>) -> tensor<f32> {
307  %dot = linalg.dot ins(%a, %b: tensor<1024xf32, #SparseVector>,
308                                tensor<1024xf32, #SparseVector>)
309                   outs(%x: tensor<f32>) -> tensor<f32>
310  return %dot : tensor<f32>
311}
312