1// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
2// RUN: mlir-opt %s -sparsification | FileCheck %s
3
4#SV = #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>
5
6#trait1 = {
7  indexing_maps = [
8    affine_map<(i) -> (i)>,  // a
9    affine_map<(i) -> (i)>   // x (out)
10  ],
11  iterator_types = ["parallel"],
12  doc = "x(i) = OP a(i)"
13}
14
15#trait2 = {
16  indexing_maps = [
17    affine_map<(i) -> (i)>,  // a
18    affine_map<(i) -> (i)>,  // b
19    affine_map<(i) -> (i)>   // x (out)
20  ],
21  iterator_types = ["parallel"],
22  doc = "x(i) = a(i) OP b(i)"
23}
24
25#traitc = {
26  indexing_maps = [
27    affine_map<(i) -> (i)>,  // a
28    affine_map<(i) -> (i)>   // x (out)
29  ],
30  iterator_types = ["parallel"],
31  doc = "x(i) = a(i) OP c"
32}
33
34// CHECK-LABEL:   func @abs(
35// CHECK-SAME:              %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
36// CHECK-SAME:              %[[VAL_1:.*]]: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
37// CHECK:           %[[VAL_2:.*]] = arith.constant 0 : index
38// CHECK:           %[[VAL_3:.*]] = arith.constant 1 : index
39// CHECK:           %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
40// CHECK:           %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
41// CHECK:           %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
42// CHECK:           %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
43// CHECK:           %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
44// CHECK:           %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
45// CHECK:           scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
46// CHECK:             %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
47// CHECK:             %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
48// CHECK:             %[[VAL_13:.*]] = math.abs %[[VAL_12]] : f64
49// CHECK:             memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
50// CHECK:           }
51// CHECK:           %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
52// CHECK:           return %[[VAL_14]] : tensor<32xf64>
53func @abs(%arga: tensor<32xf64, #SV>,
54          %argx: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
55  %0 = linalg.generic #trait1
56     ins(%arga: tensor<32xf64, #SV>)
57    outs(%argx: tensor<32xf64>) {
58      ^bb(%a: f64, %x: f64):
59        %0 = math.abs %a : f64
60        linalg.yield %0 : f64
61  } -> tensor<32xf64>
62  return %0 : tensor<32xf64>
63}
64
65// CHECK-LABEL:   func @ceil(
66// CHECK-SAME:              %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
67// CHECK-SAME:              %[[VAL_1:.*]]: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
68// CHECK:           %[[VAL_2:.*]] = arith.constant 0 : index
69// CHECK:           %[[VAL_3:.*]] = arith.constant 1 : index
70// CHECK:           %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
71// CHECK:           %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
72// CHECK:           %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
73// CHECK:           %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
74// CHECK:           %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
75// CHECK:           %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
76// CHECK:           scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
77// CHECK:             %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
78// CHECK:             %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
79// CHECK:             %[[VAL_13:.*]] = math.ceil %[[VAL_12]] : f64
80// CHECK:             memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
81// CHECK:           }
82// CHECK:           %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
83// CHECK:           return %[[VAL_14]] : tensor<32xf64>
84// CHECK:         }
85func @ceil(%arga: tensor<32xf64, #SV>,
86           %argx: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
87  %0 = linalg.generic #trait1
88     ins(%arga: tensor<32xf64, #SV>)
89    outs(%argx: tensor<32xf64>) {
90      ^bb(%a: f64, %x: f64):
91        %0 = math.ceil %a : f64
92        linalg.yield %0 : f64
93  } -> tensor<32xf64>
94  return %0 : tensor<32xf64>
95}
96
97// CHECK-LABEL:   func @floor(
98// CHECK-SAME:              %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
99// CHECK-SAME:              %[[VAL_1:.*]]: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
100// CHECK:           %[[VAL_2:.*]] = arith.constant 0 : index
101// CHECK:           %[[VAL_3:.*]] = arith.constant 1 : index
102// CHECK:           %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
103// CHECK:           %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
104// CHECK:           %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
105// CHECK:           %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
106// CHECK:           %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
107// CHECK:           %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
108// CHECK:           scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
109// CHECK:             %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
110// CHECK:             %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
111// CHECK:             %[[VAL_13:.*]] = math.floor %[[VAL_12]] : f64
112// CHECK:             memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
113// CHECK:           }
114// CHECK:           %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
115// CHECK:           return %[[VAL_14]] : tensor<32xf64>
116// CHECK:         }
117func @floor(%arga: tensor<32xf64, #SV>,
118            %argx: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
119  %0 = linalg.generic #trait1
120     ins(%arga: tensor<32xf64, #SV>)
121    outs(%argx: tensor<32xf64>) {
122      ^bb(%a: f64, %x: f64):
123        %0 = math.floor %a : f64
124        linalg.yield %0 : f64
125  } -> tensor<32xf64>
126  return %0 : tensor<32xf64>
127}
128
129// CHECK-LABEL:   func @neg(
130// CHECK-SAME:              %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
131// CHECK-SAME:              %[[VAL_1:.*]]: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
132// CHECK:           %[[VAL_2:.*]] = arith.constant 0 : index
133// CHECK:           %[[VAL_3:.*]] = arith.constant 1 : index
134// CHECK:           %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
135// CHECK:           %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
136// CHECK:           %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
137// CHECK:           %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
138// CHECK:           %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
139// CHECK:           %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
140// CHECK:           scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
141// CHECK:             %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
142// CHECK:             %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
143// CHECK:             %[[VAL_13:.*]] = arith.negf %[[VAL_12]] : f64
144// CHECK:             memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
145// CHECK:           }
146// CHECK:           %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
147// CHECK:           return %[[VAL_14]] : tensor<32xf64>
148// CHECK:         }
149func @neg(%arga: tensor<32xf64, #SV>,
150          %argx: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
151  %0 = linalg.generic #trait1
152     ins(%arga: tensor<32xf64, #SV>)
153    outs(%argx: tensor<32xf64>) {
154      ^bb(%a: f64, %x: f64):
155        %0 = arith.negf %a : f64
156        linalg.yield %0 : f64
157  } -> tensor<32xf64>
158  return %0 : tensor<32xf64>
159}
160
161// CHECK-LABEL:   func @add(
162// CHECK-SAME:              %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
163// CHECK-SAME:              %[[VAL_1:.*]]: tensor<32xf64>,
164// CHECK-SAME:              %[[VAL_2:.*]]: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
165// CHECK-DAG:           %[[VAL_3:.*]] = arith.constant 32 : index
166// CHECK-DAG:           %[[VAL_4:.*]] = arith.constant 0 : index
167// CHECK-DAG:           %[[VAL_5:.*]] = arith.constant true
168// CHECK-DAG:           %[[VAL_6:.*]] = arith.constant 1 : index
169// CHECK:           %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
170// CHECK:           %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
171// CHECK:           %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
172// CHECK:           %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
173// CHECK:           %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64>
174// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref<?xindex>
175// CHECK:           %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref<?xindex>
176// CHECK:           %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) {
177// CHECK:             %[[VAL_17:.*]] = arith.cmpi ult, %[[VAL_15]], %[[VAL_13]] : index
178// CHECK:             scf.condition(%[[VAL_17]]) %[[VAL_15]], %[[VAL_16]] : index, index
179// CHECK:           } do {
180// CHECK:           ^bb0(%[[VAL_18:.*]]: index, %[[VAL_19:.*]]: index):
181// CHECK:             %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xindex>
182// CHECK:             %[[VAL_21:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
183// CHECK:             scf.if %[[VAL_21]] {
184// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xf64>
185// CHECK:               %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
186// CHECK:               %[[VAL_24:.*]] = arith.addf %[[VAL_22]], %[[VAL_23]] : f64
187// CHECK:               memref.store %[[VAL_24]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
188// CHECK:             } else {
189// CHECK:               scf.if %[[VAL_5]] {
190// CHECK:                 %[[VAL_25:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
191// CHECK:                 memref.store %[[VAL_25]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
192// CHECK:               } else {
193// CHECK:               }
194// CHECK:             }
195// CHECK:             %[[VAL_26:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
196// CHECK:             %[[VAL_27:.*]] = arith.addi %[[VAL_18]], %[[VAL_6]] : index
197// CHECK:             %[[VAL_28:.*]] = select %[[VAL_26]], %[[VAL_27]], %[[VAL_18]] : index
198// CHECK:             %[[VAL_29:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index
199// CHECK:             scf.yield %[[VAL_28]], %[[VAL_29]] : index, index
200// CHECK:           }
201// CHECK:           scf.for %[[VAL_30:.*]] = %[[VAL_31:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] {
202// CHECK:             %[[VAL_32:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_30]]] : memref<32xf64>
203// CHECK:             memref.store %[[VAL_32]], %[[VAL_11]]{{\[}}%[[VAL_30]]] : memref<32xf64>
204// CHECK:           }
205// CHECK:           %[[VAL_33:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64>
206// CHECK:           return %[[VAL_33]] : tensor<32xf64>
207// CHECK:         }
208func @add(%arga: tensor<32xf64, #SV>,
209          %argb: tensor<32xf64>,
210          %argx: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
211  %0 = linalg.generic #trait2
212     ins(%arga, %argb: tensor<32xf64, #SV>, tensor<32xf64>)
213    outs(%argx: tensor<32xf64>) {
214      ^bb(%a: f64, %b: f64, %x: f64):
215        %0 = arith.addf %a, %b : f64
216        linalg.yield %0 : f64
217  } -> tensor<32xf64>
218  return %0 : tensor<32xf64>
219}
220
221// CHECK-LABEL:   func @sub(
222// CHECK-SAME:              %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
223// CHECK-SAME:              %[[VAL_1:.*]]: tensor<32xf64>,
224// CHECK-SAME:              %[[VAL_2:.*]]: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
225// CHECK-DAG:           %[[VAL_3:.*]] = arith.constant 32 : index
226// CHECK-DAG:           %[[VAL_4:.*]] = arith.constant 0 : index
227// CHECK-DAG:           %[[VAL_5:.*]] = arith.constant true
228// CHECK-DAG:           %[[VAL_6:.*]] = arith.constant 1 : index
229// CHECK:           %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
230// CHECK:           %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
231// CHECK:           %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
232// CHECK:           %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
233// CHECK:           %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64>
234// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref<?xindex>
235// CHECK:           %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref<?xindex>
236// CHECK:           %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) {
237// CHECK:             %[[VAL_17:.*]] = arith.cmpi ult, %[[VAL_15]], %[[VAL_13]] : index
238// CHECK:             scf.condition(%[[VAL_17]]) %[[VAL_15]], %[[VAL_16]] : index, index
239// CHECK:           } do {
240// CHECK:           ^bb0(%[[VAL_18:.*]]: index, %[[VAL_19:.*]]: index):
241// CHECK:             %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xindex>
242// CHECK:             %[[VAL_21:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
243// CHECK:             scf.if %[[VAL_21]] {
244// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xf64>
245// CHECK:               %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
246// CHECK:               %[[VAL_24:.*]] = arith.subf %[[VAL_22]], %[[VAL_23]] : f64
247// CHECK:               memref.store %[[VAL_24]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
248// CHECK:             } else {
249// CHECK:               scf.if %[[VAL_5]] {
250// CHECK:                 %[[VAL_25:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
251// CHECK:                 %[[VAL_26:.*]] = arith.negf %[[VAL_25]] : f64
252// CHECK:                 memref.store %[[VAL_26]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
253// CHECK:               } else {
254// CHECK:               }
255// CHECK:             }
256// CHECK:             %[[VAL_27:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
257// CHECK:             %[[VAL_28:.*]] = arith.addi %[[VAL_18]], %[[VAL_6]] : index
258// CHECK:             %[[VAL_29:.*]] = select %[[VAL_27]], %[[VAL_28]], %[[VAL_18]] : index
259// CHECK:             %[[VAL_30:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index
260// CHECK:             scf.yield %[[VAL_29]], %[[VAL_30]] : index, index
261// CHECK:           }
262// CHECK:           scf.for %[[VAL_31:.*]] = %[[VAL_32:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] {
263// CHECK:             %[[VAL_33:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_31]]] : memref<32xf64>
264// CHECK:             %[[VAL_34:.*]] = arith.negf %[[VAL_33]] : f64
265// CHECK:             memref.store %[[VAL_34]], %[[VAL_11]]{{\[}}%[[VAL_31]]] : memref<32xf64>
266// CHECK:           }
267// CHECK:           %[[VAL_35:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64>
268// CHECK:           return %[[VAL_35]] : tensor<32xf64>
269// CHECK:         }
270func @sub(%arga: tensor<32xf64, #SV>,
271          %argb: tensor<32xf64>,
272          %argx: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
273  %0 = linalg.generic #trait2
274     ins(%arga, %argb: tensor<32xf64, #SV>, tensor<32xf64>)
275    outs(%argx: tensor<32xf64>) {
276      ^bb(%a: f64, %b: f64, %x: f64):
277        %0 = arith.subf %a, %b : f64
278        linalg.yield %0 : f64
279  } -> tensor<32xf64>
280  return %0 : tensor<32xf64>
281}
282
283// CHECK-LABEL:   func @mul(
284// CHECK-SAME:              %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
285// CHECK-SAME:              %[[VAL_1:.*]]: tensor<32xf64>,
286// CHECK-SAME:              %[[VAL_2:.*]]: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
287// CHECK-DAG:           %[[VAL_3:.*]] = arith.constant 0 : index
288// CHECK-DAG:           %[[VAL_4:.*]] = arith.constant 1 : index
289// CHECK:           %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
290// CHECK:           %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
291// CHECK:           %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
292// CHECK:           %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
293// CHECK:           %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64>
294// CHECK:           %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
295// CHECK:           %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
296// CHECK:           scf.for %[[VAL_12:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_4]] {
297// CHECK:             %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref<?xindex>
298// CHECK:             %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_12]]] : memref<?xf64>
299// CHECK:             %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_13]]] : memref<32xf64>
300// CHECK:             %[[VAL_16:.*]] = arith.mulf %[[VAL_14]], %[[VAL_15]] : f64
301// CHECK:             memref.store %[[VAL_16]], %[[VAL_9]]{{\[}}%[[VAL_13]]] : memref<32xf64>
302// CHECK:           }
303// CHECK:           %[[VAL_17:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xf64>
304// CHECK:           return %[[VAL_17]] : tensor<32xf64>
305// CHECK:         }
306func @mul(%arga: tensor<32xf64, #SV>,
307          %argb: tensor<32xf64>,
308          %argx: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
309  %0 = linalg.generic #trait2
310     ins(%arga, %argb: tensor<32xf64, #SV>, tensor<32xf64>)
311    outs(%argx: tensor<32xf64>) {
312      ^bb(%a: f64, %b: f64, %x: f64):
313        %0 = arith.mulf %a, %b : f64
314        linalg.yield %0 : f64
315  } -> tensor<32xf64>
316  return %0 : tensor<32xf64>
317}
318
319// CHECK-LABEL:   func @divbyc(
320// CHECK-SAME:                 %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
321// CHECK-SAME:                 %[[VAL_1:.*]]: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
322// CHECK-DAG:           %[[VAL_2:.*]] = arith.constant 2.000000e+00 : f64
323// CHECK-DAG:           %[[VAL_3:.*]] = arith.constant 0 : index
324// CHECK-DAG:           %[[VAL_4:.*]] = arith.constant 1 : index
325// CHECK:           %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
326// CHECK:           %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
327// CHECK:           %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
328// CHECK:           %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
329// CHECK:           %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
330// CHECK:           %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
331// CHECK:           scf.for %[[VAL_11:.*]] = %[[VAL_9]] to %[[VAL_10]] step %[[VAL_4]] {
332// CHECK:             %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref<?xindex>
333// CHECK:             %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<?xf64>
334// CHECK:             %[[VAL_14:.*]] = arith.divf %[[VAL_13]], %[[VAL_2]] : f64
335// CHECK:             memref.store %[[VAL_14]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<32xf64>
336// CHECK:           }
337// CHECK:           %[[VAL_15:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xf64>
338// CHECK:           return %[[VAL_15]] : tensor<32xf64>
339// CHECK:         }
340func @divbyc(%arga: tensor<32xf64, #SV>,
341           %argx: tensor<32xf64> {linalg.inplaceable = true}) -> tensor<32xf64> {
342  %c = arith.constant 2.0 : f64
343  %0 = linalg.generic #traitc
344     ins(%arga: tensor<32xf64, #SV>)
345    outs(%argx: tensor<32xf64>) {
346      ^bb(%a: f64, %x: f64):
347        %0 = arith.divf %a, %c : f64
348        linalg.yield %0 : f64
349  } -> tensor<32xf64>
350  return %0 : tensor<32xf64>
351}
352
353