1// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
2// RUN: mlir-opt %s -sparsification | FileCheck %s
3
4#SV = #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>
5
6#trait1 = {
7  indexing_maps = [
8    affine_map<(i) -> (i)>,  // a
9    affine_map<(i) -> (i)>   // x (out)
10  ],
11  iterator_types = ["parallel"],
12  doc = "x(i) = OP a(i)"
13}
14
15#trait2 = {
16  indexing_maps = [
17    affine_map<(i) -> (i)>,  // a
18    affine_map<(i) -> (i)>,  // b
19    affine_map<(i) -> (i)>   // x (out)
20  ],
21  iterator_types = ["parallel"],
22  doc = "x(i) = a(i) OP b(i)"
23}
24
25#traitc = {
26  indexing_maps = [
27    affine_map<(i) -> (i)>,  // a
28    affine_map<(i) -> (i)>   // x (out)
29  ],
30  iterator_types = ["parallel"],
31  doc = "x(i) = a(i) OP c"
32}
33
34// CHECK-LABEL: func @abs(
35// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
36// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> {
37// CHECK-DAG:     %[[VAL_2:.*]] = arith.constant 0 : index
38// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 1 : index
39// CHECK:         %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
40// CHECK:         %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
41// CHECK:         %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
42// CHECK:         %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
43// CHECK:         %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
44// CHECK:         %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
45// CHECK:         scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
46// CHECK:           %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
47// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
48// CHECK:           %[[VAL_13:.*]] = math.abs %[[VAL_12]] : f64
49// CHECK:             memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
50// CHECK:         }
51// CHECK:         %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
52// CHECK:         return %[[VAL_14]] : tensor<32xf64>
53// CHECK:       }
54func.func @abs(%arga: tensor<32xf64, #SV>,
55               %argx: tensor<32xf64>) -> tensor<32xf64> {
56  %0 = linalg.generic #trait1
57     ins(%arga: tensor<32xf64, #SV>)
58    outs(%argx: tensor<32xf64>) {
59      ^bb(%a: f64, %x: f64):
60        %0 = math.abs %a : f64
61        linalg.yield %0 : f64
62  } -> tensor<32xf64>
63  return %0 : tensor<32xf64>
64}
65
66// CHECK-LABEL: func @ceil(
67// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
68// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> {
69// CHECK-DAG:     %[[VAL_2:.*]] = arith.constant 0 : index
70// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 1 : index
71// CHECK:         %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
72// CHECK:         %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
73// CHECK:         %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
74// CHECK:         %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
75// CHECK:         %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
76// CHECK:         %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
77// CHECK:         scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
78// CHECK:           %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
79// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
80// CHECK:           %[[VAL_13:.*]] = math.ceil %[[VAL_12]] : f64
81// CHECK:           memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
82// CHECK:         }
83// CHECK:         %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
84// CHECK:         return %[[VAL_14]] : tensor<32xf64>
85// CHECK:       }
86func.func @ceil(%arga: tensor<32xf64, #SV>,
87                %argx: tensor<32xf64>) -> tensor<32xf64> {
88  %0 = linalg.generic #trait1
89     ins(%arga: tensor<32xf64, #SV>)
90    outs(%argx: tensor<32xf64>) {
91      ^bb(%a: f64, %x: f64):
92        %0 = math.ceil %a : f64
93        linalg.yield %0 : f64
94  } -> tensor<32xf64>
95  return %0 : tensor<32xf64>
96}
97
98// CHECK-LABEL: func @floor(
99// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
100// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> {
101// CHECK-DAG:     %[[VAL_2:.*]] = arith.constant 0 : index
102// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 1 : index
103// CHECK:         %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
104// CHECK:         %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
105// CHECK:         %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
106// CHECK:         %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
107// CHECK:         %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
108// CHECK:         %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
109// CHECK:         scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
110// CHECK:           %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
111// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
112// CHECK:           %[[VAL_13:.*]] = math.floor %[[VAL_12]] : f64
113// CHECK:           memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
114// CHECK:         }
115// CHECK:         %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
116// CHECK:         return %[[VAL_14]] : tensor<32xf64>
117// CHECK:       }
118func.func @floor(%arga: tensor<32xf64, #SV>,
119                 %argx: tensor<32xf64>) -> tensor<32xf64> {
120  %0 = linalg.generic #trait1
121     ins(%arga: tensor<32xf64, #SV>)
122    outs(%argx: tensor<32xf64>) {
123      ^bb(%a: f64, %x: f64):
124        %0 = math.floor %a : f64
125        linalg.yield %0 : f64
126  } -> tensor<32xf64>
127  return %0 : tensor<32xf64>
128}
129
130// CHECK-LABEL: func @neg(
131// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
132// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> {
133// CHECK-DAG:     %[[VAL_2:.*]] = arith.constant 0 : index
134// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 1 : index
135// CHECK:         %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
136// CHECK:         %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
137// CHECK:         %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
138// CHECK:         %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
139// CHECK:         %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
140// CHECK:         %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
141// CHECK:         scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
142// CHECK:           %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
143// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
144// CHECK:           %[[VAL_13:.*]] = arith.negf %[[VAL_12]] : f64
145// CHECK:           memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
146// CHECK:         }
147// CHECK:         %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
148// CHECK:         return %[[VAL_14]] : tensor<32xf64>
149// CHECK:       }
150func.func @neg(%arga: tensor<32xf64, #SV>,
151               %argx: tensor<32xf64>) -> tensor<32xf64> {
152  %0 = linalg.generic #trait1
153     ins(%arga: tensor<32xf64, #SV>)
154    outs(%argx: tensor<32xf64>) {
155      ^bb(%a: f64, %x: f64):
156        %0 = arith.negf %a : f64
157        linalg.yield %0 : f64
158  } -> tensor<32xf64>
159  return %0 : tensor<32xf64>
160}
161
162// CHECK-LABEL: func @add(
163// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
164// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>,
165// CHECK-SAME:    %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> {
166// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 32 : index
167// CHECK-DAG:     %[[VAL_4:.*]] = arith.constant 0 : index
168// CHECK-DAG:     %[[VAL_5:.*]] = arith.constant true
169// CHECK-DAG:     %[[VAL_6:.*]] = arith.constant 1 : index
170// CHECK:         %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
171// CHECK:         %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
172// CHECK:         %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
173// CHECK:         %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
174// CHECK:         %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64>
175// CHECK:         %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref<?xindex>
176// CHECK:         %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref<?xindex>
177// CHECK:         %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) {
178// CHECK:           %[[VAL_17:.*]] = arith.cmpi ult, %[[VAL_15]], %[[VAL_13]] : index
179// CHECK:           scf.condition(%[[VAL_17]]) %[[VAL_15]], %[[VAL_16]] : index, index
180// CHECK:         } do {
181// CHECK:         ^bb0(%[[VAL_18:.*]]: index, %[[VAL_19:.*]]: index):
182// CHECK:           %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xindex>
183// CHECK:           %[[VAL_21:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
184// CHECK:           scf.if %[[VAL_21]] {
185// CHECK:             %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xf64>
186// CHECK:             %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
187// CHECK:             %[[VAL_24:.*]] = arith.addf %[[VAL_22]], %[[VAL_23]] : f64
188// CHECK:             memref.store %[[VAL_24]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
189// CHECK:           } else {
190// CHECK:             scf.if %[[VAL_5]] {
191// CHECK:               %[[VAL_25:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
192// CHECK:               memref.store %[[VAL_25]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
193// CHECK:             } else {
194// CHECK:             }
195// CHECK:           }
196// CHECK:           %[[VAL_26:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
197// CHECK:           %[[VAL_27:.*]] = arith.addi %[[VAL_18]], %[[VAL_6]] : index
198// CHECK:           %[[VAL_28:.*]] = arith.select %[[VAL_26]], %[[VAL_27]], %[[VAL_18]] : index
199// CHECK:           %[[VAL_29:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index
200// CHECK:           scf.yield %[[VAL_28]], %[[VAL_29]] : index, index
201// CHECK:         }
202// CHECK:         scf.for %[[VAL_30:.*]] = %[[VAL_31:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] {
203// CHECK:           %[[VAL_32:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_30]]] : memref<32xf64>
204// CHECK:           memref.store %[[VAL_32]], %[[VAL_11]]{{\[}}%[[VAL_30]]] : memref<32xf64>
205// CHECK:         }
206// CHECK:         %[[VAL_33:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64>
207// CHECK:         return %[[VAL_33]] : tensor<32xf64>
208// CHECK:       }
209func.func @add(%arga: tensor<32xf64, #SV>,
210               %argb: tensor<32xf64>,
211               %argx: tensor<32xf64>) -> tensor<32xf64> {
212  %0 = linalg.generic #trait2
213     ins(%arga, %argb: tensor<32xf64, #SV>, tensor<32xf64>)
214    outs(%argx: tensor<32xf64>) {
215      ^bb(%a: f64, %b: f64, %x: f64):
216        %0 = arith.addf %a, %b : f64
217        linalg.yield %0 : f64
218  } -> tensor<32xf64>
219  return %0 : tensor<32xf64>
220}
221
222// CHECK-LABEL: func @sub(
223// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
224// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>,
225// CHECK-SAME:    %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> {
226// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 32 : index
227// CHECK-DAG:     %[[VAL_4:.*]] = arith.constant 0 : index
228// CHECK-DAG:     %[[VAL_5:.*]] = arith.constant true
229// CHECK-DAG:     %[[VAL_6:.*]] = arith.constant 1 : index
230// CHECK:         %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
231// CHECK:         %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
232// CHECK:         %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
233// CHECK:         %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
234// CHECK:         %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64>
235// CHECK:         %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref<?xindex>
236// CHECK:         %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref<?xindex>
237// CHECK:         %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) {
238// CHECK:         %[[VAL_17:.*]] = arith.cmpi ult, %[[VAL_15]], %[[VAL_13]] : index
239// CHECK:         scf.condition(%[[VAL_17]]) %[[VAL_15]], %[[VAL_16]] : index, index
240// CHECK:         } do {
241// CHECK:         ^bb0(%[[VAL_18:.*]]: index, %[[VAL_19:.*]]: index):
242// CHECK:           %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xindex>
243// CHECK:           %[[VAL_21:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
244// CHECK:           scf.if %[[VAL_21]] {
245// CHECK:             %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xf64>
246// CHECK:             %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
247// CHECK:             %[[VAL_24:.*]] = arith.subf %[[VAL_22]], %[[VAL_23]] : f64
248// CHECK:             memref.store %[[VAL_24]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
249// CHECK:           } else {
250// CHECK:             scf.if %[[VAL_5]] {
251// CHECK:               %[[VAL_25:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
252// CHECK:               %[[VAL_26:.*]] = arith.negf %[[VAL_25]] : f64
253// CHECK:               memref.store %[[VAL_26]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
254// CHECK:             } else {
255// CHECK:             }
256// CHECK:           }
257// CHECK:           %[[VAL_27:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
258// CHECK:           %[[VAL_28:.*]] = arith.addi %[[VAL_18]], %[[VAL_6]] : index
259// CHECK:           %[[VAL_29:.*]] = arith.select %[[VAL_27]], %[[VAL_28]], %[[VAL_18]] : index
260// CHECK:           %[[VAL_30:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index
261// CHECK:           scf.yield %[[VAL_29]], %[[VAL_30]] : index, index
262// CHECK:         }
263// CHECK:         scf.for %[[VAL_31:.*]] = %[[VAL_32:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] {
264// CHECK:           %[[VAL_33:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_31]]] : memref<32xf64>
265// CHECK:           %[[VAL_34:.*]] = arith.negf %[[VAL_33]] : f64
266// CHECK:           memref.store %[[VAL_34]], %[[VAL_11]]{{\[}}%[[VAL_31]]] : memref<32xf64>
267// CHECK:         }
268// CHECK:         %[[VAL_35:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64>
269// CHECK:         return %[[VAL_35]] : tensor<32xf64>
270// CHECK:       }
271func.func @sub(%arga: tensor<32xf64, #SV>,
272               %argb: tensor<32xf64>,
273               %argx: tensor<32xf64>) -> tensor<32xf64> {
274  %0 = linalg.generic #trait2
275     ins(%arga, %argb: tensor<32xf64, #SV>, tensor<32xf64>)
276    outs(%argx: tensor<32xf64>) {
277      ^bb(%a: f64, %b: f64, %x: f64):
278        %0 = arith.subf %a, %b : f64
279        linalg.yield %0 : f64
280  } -> tensor<32xf64>
281  return %0 : tensor<32xf64>
282}
283
284// CHECK-LABEL: func @mul(
285// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
286// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>,
287// CHECK-SAME:    %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> {
288// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 0 : index
289// CHECK-DAG:     %[[VAL_4:.*]] = arith.constant 1 : index
290// CHECK:         %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
291// CHECK:         %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
292// CHECK:         %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
293// CHECK:         %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
294// CHECK:         %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64>
295// CHECK:         %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
296// CHECK:         %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
297// CHECK:         scf.for %[[VAL_12:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_4]] {
298// CHECK:           %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref<?xindex>
299// CHECK:           %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_12]]] : memref<?xf64>
300// CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_13]]] : memref<32xf64>
301// CHECK:           %[[VAL_16:.*]] = arith.mulf %[[VAL_14]], %[[VAL_15]] : f64
302// CHECK:           memref.store %[[VAL_16]], %[[VAL_9]]{{\[}}%[[VAL_13]]] : memref<32xf64>
303// CHECK:         }
304// CHECK:         %[[VAL_17:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xf64>
305// CHECK:         return %[[VAL_17]] : tensor<32xf64>
306// CHECK:       }
307func.func @mul(%arga: tensor<32xf64, #SV>,
308               %argb: tensor<32xf64>,
309               %argx: tensor<32xf64>) -> tensor<32xf64> {
310  %0 = linalg.generic #trait2
311     ins(%arga, %argb: tensor<32xf64, #SV>, tensor<32xf64>)
312    outs(%argx: tensor<32xf64>) {
313      ^bb(%a: f64, %b: f64, %x: f64):
314        %0 = arith.mulf %a, %b : f64
315        linalg.yield %0 : f64
316  } -> tensor<32xf64>
317  return %0 : tensor<32xf64>
318}
319
320// CHECK-LABEL: func @divbyc(
321// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
322// CHECK-SAME:    %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> {
323// CHECK-DAG:     %[[VAL_2:.*]] = arith.constant 2.000000e+00 : f64
324// CHECK-DAG:     %[[VAL_3:.*]] = arith.constant 0 : index
325// CHECK-DAG:     %[[VAL_4:.*]] = arith.constant 1 : index
326// CHECK:         %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
327// CHECK:         %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
328// CHECK:         %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
329// CHECK:         %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
330// CHECK:         %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
331// CHECK:         %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
332// CHECK:         scf.for %[[VAL_11:.*]] = %[[VAL_9]] to %[[VAL_10]] step %[[VAL_4]] {
333// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref<?xindex>
334// CHECK:           %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<?xf64>
335// CHECK:           %[[VAL_14:.*]] = arith.divf %[[VAL_13]], %[[VAL_2]] : f64
336// CHECK:           memref.store %[[VAL_14]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<32xf64>
337// CHECK:         }
338// CHECK:         %[[VAL_15:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xf64>
339// CHECK:         return %[[VAL_15]] : tensor<32xf64>
340// CHECK:       }
341func.func @divbyc(%arga: tensor<32xf64, #SV>,
342                  %argx: tensor<32xf64>) -> tensor<32xf64> {
343  %c = arith.constant 2.0 : f64
344  %0 = linalg.generic #traitc
345     ins(%arga: tensor<32xf64, #SV>)
346    outs(%argx: tensor<32xf64>) {
347      ^bb(%a: f64, %x: f64):
348        %0 = arith.divf %a, %c : f64
349        linalg.yield %0 : f64
350  } -> tensor<32xf64>
351  return %0 : tensor<32xf64>
352}
353
354// CHECK-LABEL: func @zero_preserving_math(
355// CHECK-SAME:    %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> {
356// CHECK-DAG:     %[[VAL_1:.*]] = arith.constant 0 : index
357// CHECK-DAG:     %[[VAL_2:.*]] = arith.constant 1 : index
358// CHECK:         %[[VAL_4:.*]] = bufferization.alloc_tensor() : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
359// CHECK:         %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_1]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
360// CHECK:         %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_1]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
361// CHECK:         %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
362// CHECK:         %[[VAL_8:.*]] = memref.alloca(%[[VAL_2]]) : memref<?xindex>
363// CHECK:         %[[BUF:.*]] = memref.alloca() : memref<f64>
364// CHECK:         %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_1]]] : memref<?xindex>
365// CHECK:         %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_2]]] : memref<?xindex>
366// CHECK:         scf.for %[[VAL_11:.*]] = %[[VAL_9]] to %[[VAL_10]] step %[[VAL_2]] {
367// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref<?xindex>
368// CHECK:           memref.store %[[VAL_12]], %[[VAL_8]]{{\[}}%[[VAL_1]]] : memref<?xindex>
369// CHECK:           %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<?xf64>
370// CHECK:           %[[VAL_14:.*]] = math.abs %[[VAL_13]] : f64
371// CHECK:           %[[VAL_15:.*]] = math.ceil %[[VAL_14]] : f64
372// CHECK:           %[[VAL_16:.*]] = math.floor %[[VAL_15]] : f64
373// CHECK:           %[[VAL_17:.*]] = math.sqrt %[[VAL_16]] : f64
374// CHECK:           %[[VAL_18:.*]] = math.expm1 %[[VAL_17]] : f64
375// CHECK:           %[[VAL_19:.*]] = math.log1p %[[VAL_18]] : f64
376// CHECK:           %[[VAL_20:.*]] = math.sin %[[VAL_19]] : f64
377// CHECK:           %[[VAL_21:.*]] = math.tanh %[[VAL_20]] : f64
378// CHECK:           memref.store %[[VAL_21]], %[[BUF]][] : memref<f64>
379// CHECK:           sparse_tensor.lex_insert %[[VAL_4]], %[[VAL_8]], %[[BUF]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>, memref<?xindex>, memref<f64>
380// CHECK:         }
381// CHECK:         %[[VAL_22:.*]] = sparse_tensor.load %[[VAL_4]] hasInserts : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
382// CHECK:         return %[[VAL_22]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
383// CHECK:       }
384func.func @zero_preserving_math(%arga: tensor<32xf64, #SV>) -> tensor<32xf64, #SV> {
385  %c32 = arith.constant 32 : index
386  %xinp = bufferization.alloc_tensor() : tensor<32xf64, #SV>
387  %0 = linalg.generic #trait1
388     ins(%arga: tensor<32xf64, #SV>)
389    outs(%xinp: tensor<32xf64, #SV>) {
390      ^bb(%a: f64, %x: f64):
391	%0 = math.abs %a : f64
392        %1 = math.ceil %0 : f64
393        %2 = math.floor %1 : f64
394        %3 = math.sqrt %2 : f64
395        %4 = math.expm1 %3 : f64
396        %5 = math.log1p %4 : f64
397        %6 = math.sin %5 : f64
398        %7 = math.tanh %6 : f64
399        linalg.yield %7 : f64
400  } -> tensor<32xf64, #SV>
401  return %0 : tensor<32xf64, #SV>
402}
403