1// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
2// RUN: mlir-opt %s -sparsification | FileCheck %s
3
4#Tdd = #sparse_tensor.encoding<{ dimLevelType = [ "dense",      "dense"      ] }>
5#Tds = #sparse_tensor.encoding<{ dimLevelType = [ "dense",      "compressed" ] }>
6#Tsd = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense"      ] }>
7#Tss = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>
8
9#trait2 = {
10  indexing_maps = [
11    affine_map<(i,j) -> (i,j)>,  // A
12    affine_map<(i,j) -> (i,j)>,  // B
13    affine_map<(i,j) -> (i,j)>   // X (out)
14  ],
15  iterator_types = ["parallel", "parallel"],
16  doc = "X(i,j) = A(i,j) OP B(i,j)"
17}
18
19// CHECK-LABEL:   func @add_dd(
20// CHECK-SAME:                 %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
21// CHECK-SAME:                 %[[VAL_1:.*]]: tensor<32x16xf32>,
22// CHECK-SAME:                 %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
23// CHECK:           %[[VAL_3:.*]] = arith.constant 32 : index
24// CHECK:           %[[VAL_4:.*]] = arith.constant 16 : index
25// CHECK:           %[[VAL_5:.*]] = arith.constant 0 : index
26// CHECK:           %[[VAL_6:.*]] = arith.constant 1 : index
27// CHECK:           %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
28// CHECK:           %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
29// CHECK:           %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
30// CHECK:           %[[VAL_10:.*]] = memref.alloc() : memref<32x16xf32>
31// CHECK:           memref.copy %[[VAL_9]], %[[VAL_10]] : memref<32x16xf32> to memref<32x16xf32>
32// CHECK:           scf.for %[[VAL_11:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] {
33// CHECK:             scf.for %[[VAL_12:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] {
34// CHECK:               %[[VAL_13:.*]] = arith.muli %[[VAL_11]], %[[VAL_4]] : index
35// CHECK:               %[[VAL_14:.*]] = arith.addi %[[VAL_13]], %[[VAL_12]] : index
36// CHECK:               %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_14]]] : memref<?xf32>
37// CHECK:               %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_11]], %[[VAL_12]]] : memref<32x16xf32>
38// CHECK:               %[[VAL_17:.*]] = arith.addf %[[VAL_15]], %[[VAL_16]] : f32
39// CHECK:               memref.store %[[VAL_17]], %[[VAL_10]]{{\[}}%[[VAL_11]], %[[VAL_12]]] : memref<32x16xf32>
40// CHECK:             }
41// CHECK:           }
42// CHECK:           %[[VAL_18:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<32x16xf32>
43// CHECK:           return %[[VAL_18]] : tensor<32x16xf32>
44// CHECK:         }
45func @add_dd(%arga: tensor<32x16xf32, #Tdd>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
46  %0 = linalg.generic #trait2
47     ins(%arga, %argb: tensor<32x16xf32, #Tdd>, tensor<32x16xf32>)
48    outs(%argx: tensor<32x16xf32>) {
49      ^bb(%a: f32, %b: f32, %x: f32):
50        %0 = arith.addf %a, %b : f32
51        linalg.yield %0 : f32
52  } -> tensor<32x16xf32>
53  return %0 : tensor<32x16xf32>
54}
55
56// CHECK-LABEL:   func @mul_dd(
57// CHECK-SAME:                 %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
58// CHECK-SAME:                 %[[VAL_1:.*]]: tensor<32x16xf32>,
59// CHECK-SAME:                 %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
60// CHECK:           %[[VAL_3:.*]] = arith.constant 32 : index
61// CHECK:           %[[VAL_4:.*]] = arith.constant 16 : index
62// CHECK:           %[[VAL_5:.*]] = arith.constant 0 : index
63// CHECK:           %[[VAL_6:.*]] = arith.constant 1 : index
64// CHECK:           %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
65// CHECK:           %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
66// CHECK:           %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
67// CHECK:           %[[VAL_10:.*]] = memref.alloc() : memref<32x16xf32>
68// CHECK:           memref.copy %[[VAL_9]], %[[VAL_10]] : memref<32x16xf32> to memref<32x16xf32>
69// CHECK:           scf.for %[[VAL_11:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] {
70// CHECK:             scf.for %[[VAL_12:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] {
71// CHECK:               %[[VAL_13:.*]] = arith.muli %[[VAL_11]], %[[VAL_4]] : index
72// CHECK:               %[[VAL_14:.*]] = arith.addi %[[VAL_13]], %[[VAL_12]] : index
73// CHECK:               %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_14]]] : memref<?xf32>
74// CHECK:               %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_11]], %[[VAL_12]]] : memref<32x16xf32>
75// CHECK:               %[[VAL_17:.*]] = arith.mulf %[[VAL_15]], %[[VAL_16]] : f32
76// CHECK:               memref.store %[[VAL_17]], %[[VAL_10]]{{\[}}%[[VAL_11]], %[[VAL_12]]] : memref<32x16xf32>
77// CHECK:             }
78// CHECK:           }
79// CHECK:           %[[VAL_18:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<32x16xf32>
80// CHECK:           return %[[VAL_18]] : tensor<32x16xf32>
81// CHECK:         }
82func @mul_dd(%arga: tensor<32x16xf32, #Tdd>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
83  %0 = linalg.generic #trait2
84     ins(%arga, %argb: tensor<32x16xf32, #Tdd>, tensor<32x16xf32>)
85    outs(%argx: tensor<32x16xf32>) {
86      ^bb(%a: f32, %b: f32, %x: f32):
87        %0 = arith.mulf %a, %b : f32
88        linalg.yield %0 : f32
89  } -> tensor<32x16xf32>
90  return %0 : tensor<32x16xf32>
91}
92
93// CHECK-LABEL:   func @add_ds(
94// CHECK-SAME:                 %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
95// CHECK-SAME:                 %[[VAL_1:.*]]: tensor<32x16xf32>,
96// CHECK-SAME:                 %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
97// CHECK-DAG:           %[[VAL_3:.*]] = arith.constant 32 : index
98// CHECK-DAG:           %[[VAL_4:.*]] = arith.constant 16 : index
99// CHECK-DAG:           %[[VAL_5:.*]] = arith.constant 0 : index
100// CHECK-DAG:           %[[VAL_6:.*]] = arith.constant true
101// CHECK-DAG:           %[[VAL_7:.*]] = arith.constant 1 : index
102// CHECK:           %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
103// CHECK:           %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
104// CHECK:           %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
105// CHECK:           %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
106// CHECK:           %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
107// CHECK:           %[[VAL_13:.*]] = memref.alloc() : memref<32x16xf32>
108// CHECK:           memref.copy %[[VAL_12]], %[[VAL_13]] : memref<32x16xf32> to memref<32x16xf32>
109// CHECK:           scf.for %[[VAL_14:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_7]] {
110// CHECK:             %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_14]]] : memref<?xindex>
111// CHECK:             %[[VAL_16:.*]] = arith.addi %[[VAL_14]], %[[VAL_7]] : index
112// CHECK:             %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref<?xindex>
113// CHECK:             %[[VAL_18:.*]]:2 = scf.while (%[[VAL_19:.*]] = %[[VAL_15]], %[[VAL_20:.*]] = %[[VAL_5]]) : (index, index) -> (index, index) {
114// CHECK:               %[[VAL_21:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_17]] : index
115// CHECK:               scf.condition(%[[VAL_21]]) %[[VAL_19]], %[[VAL_20]] : index, index
116// CHECK:             } do {
117// CHECK:             ^bb0(%[[VAL_22:.*]]: index, %[[VAL_23:.*]]: index):
118// CHECK:               %[[VAL_24:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_22]]] : memref<?xindex>
119// CHECK:               %[[VAL_25:.*]] = arith.cmpi eq, %[[VAL_24]], %[[VAL_23]] : index
120// CHECK:               scf.if %[[VAL_25]] {
121// CHECK:                 %[[VAL_26:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_22]]] : memref<?xf32>
122// CHECK:                 %[[VAL_27:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_14]], %[[VAL_23]]] : memref<32x16xf32>
123// CHECK:                 %[[VAL_28:.*]] = arith.addf %[[VAL_26]], %[[VAL_27]] : f32
124// CHECK:                 memref.store %[[VAL_28]], %[[VAL_13]]{{\[}}%[[VAL_14]], %[[VAL_23]]] : memref<32x16xf32>
125// CHECK:               } else {
126// CHECK:                 scf.if %[[VAL_6]] {
127// CHECK:                   %[[VAL_29:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_14]], %[[VAL_23]]] : memref<32x16xf32>
128// CHECK:                   memref.store %[[VAL_29]], %[[VAL_13]]{{\[}}%[[VAL_14]], %[[VAL_23]]] : memref<32x16xf32>
129// CHECK:                 } else {
130// CHECK:                 }
131// CHECK:               }
132// CHECK:               %[[VAL_30:.*]] = arith.cmpi eq, %[[VAL_24]], %[[VAL_23]] : index
133// CHECK:               %[[VAL_31:.*]] = arith.addi %[[VAL_22]], %[[VAL_7]] : index
134// CHECK:               %[[VAL_32:.*]] = select %[[VAL_30]], %[[VAL_31]], %[[VAL_22]] : index
135// CHECK:               %[[VAL_33:.*]] = arith.addi %[[VAL_23]], %[[VAL_7]] : index
136// CHECK:               scf.yield %[[VAL_32]], %[[VAL_33]] : index, index
137// CHECK:             }
138// CHECK:             scf.for %[[VAL_34:.*]] = %[[VAL_35:.*]]#1 to %[[VAL_4]] step %[[VAL_7]] {
139// CHECK:               %[[VAL_36:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_14]], %[[VAL_34]]] : memref<32x16xf32>
140// CHECK:               memref.store %[[VAL_36]], %[[VAL_13]]{{\[}}%[[VAL_14]], %[[VAL_34]]] : memref<32x16xf32>
141// CHECK:             }
142// CHECK:           }
143// CHECK:           %[[VAL_37:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<32x16xf32>
144// CHECK:           return %[[VAL_37]] : tensor<32x16xf32>
145// CHECK:         }
146func @add_ds(%arga: tensor<32x16xf32, #Tds>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
147  %0 = linalg.generic #trait2
148     ins(%arga, %argb: tensor<32x16xf32, #Tds>, tensor<32x16xf32>)
149    outs(%argx: tensor<32x16xf32>) {
150      ^bb(%a: f32, %b: f32, %x: f32):
151        %0 = arith.addf %a, %b : f32
152        linalg.yield %0 : f32
153  } -> tensor<32x16xf32>
154  return %0 : tensor<32x16xf32>
155}
156
157// CHECK-LABEL:   func @mul_ds(
158// CHECK-SAME:                 %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
159// CHECK-SAME:                 %[[VAL_1:.*]]: tensor<32x16xf32>,
160// CHECK-SAME:                 %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
161// CHECK-DAG:           %[[VAL_3:.*]] = arith.constant 32 : index
162// CHECK-DAG:           %[[VAL_4:.*]] = arith.constant 0 : index
163// CHECK-DAG:           %[[VAL_5:.*]] = arith.constant 1 : index
164// CHECK:           %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
165// CHECK:           %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
166// CHECK:           %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
167// CHECK:           %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
168// CHECK:           %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
169// CHECK:           %[[VAL_11:.*]] = memref.alloc() : memref<32x16xf32>
170// CHECK:           memref.copy %[[VAL_10]], %[[VAL_11]] : memref<32x16xf32> to memref<32x16xf32>
171// CHECK:           scf.for %[[VAL_12:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
172// CHECK:             %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref<?xindex>
173// CHECK:             %[[VAL_14:.*]] = arith.addi %[[VAL_12]], %[[VAL_5]] : index
174// CHECK:             %[[VAL_15:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_14]]] : memref<?xindex>
175// CHECK:             scf.for %[[VAL_16:.*]] = %[[VAL_13]] to %[[VAL_15]] step %[[VAL_5]] {
176// CHECK:               %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref<?xindex>
177// CHECK:               %[[VAL_18:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref<?xf32>
178// CHECK:               %[[VAL_19:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_12]], %[[VAL_17]]] : memref<32x16xf32>
179// CHECK:               %[[VAL_20:.*]] = arith.mulf %[[VAL_18]], %[[VAL_19]] : f32
180// CHECK:               memref.store %[[VAL_20]], %[[VAL_11]]{{\[}}%[[VAL_12]], %[[VAL_17]]] : memref<32x16xf32>
181// CHECK:             }
182// CHECK:           }
183// CHECK:           %[[VAL_21:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32x16xf32>
184// CHECK:           return %[[VAL_21]] : tensor<32x16xf32>
185// CHECK:         }
186func @mul_ds(%arga: tensor<32x16xf32, #Tds>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
187  %0 = linalg.generic #trait2
188     ins(%arga, %argb: tensor<32x16xf32, #Tds>, tensor<32x16xf32>)
189    outs(%argx: tensor<32x16xf32>) {
190      ^bb(%a: f32, %b: f32, %x: f32):
191        %0 = arith.mulf %a, %b : f32
192        linalg.yield %0 : f32
193  } -> tensor<32x16xf32>
194  return %0 : tensor<32x16xf32>
195}
196
197// CHECK-LABEL:   func @add_sd(
198// CHECK-SAME:                 %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
199// CHECK-SAME:                 %[[VAL_1:.*]]: tensor<32x16xf32>,
200// CHECK-SAME:                 %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
201// CHECK-DAG:           %[[VAL_3:.*]] = arith.constant 32 : index
202// CHECK-DAG:           %[[VAL_4:.*]] = arith.constant 16 : index
203// CHECK-DAG:           %[[VAL_5:.*]] = arith.constant true
204// CHECK-DAG:           %[[VAL_6:.*]] = arith.constant 0 : index
205// CHECK-DAG:           %[[VAL_7:.*]] = arith.constant 1 : index
206// CHECK:           %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
207// CHECK:           %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
208// CHECK:           %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
209// CHECK:           %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
210// CHECK:           %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
211// CHECK:           %[[VAL_13:.*]] = memref.alloc() : memref<32x16xf32>
212// CHECK:           memref.copy %[[VAL_12]], %[[VAL_13]] : memref<32x16xf32> to memref<32x16xf32>
213// CHECK:           %[[VAL_14:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_6]]] : memref<?xindex>
214// CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_7]]] : memref<?xindex>
215// CHECK:           %[[VAL_16:.*]]:2 = scf.while (%[[VAL_17:.*]] = %[[VAL_14]], %[[VAL_18:.*]] = %[[VAL_6]]) : (index, index) -> (index, index) {
216// CHECK:             %[[VAL_19:.*]] = arith.cmpi ult, %[[VAL_17]], %[[VAL_15]] : index
217// CHECK:             scf.condition(%[[VAL_19]]) %[[VAL_17]], %[[VAL_18]] : index, index
218// CHECK:           } do {
219// CHECK:           ^bb0(%[[VAL_20:.*]]: index, %[[VAL_21:.*]]: index):
220// CHECK:             %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_20]]] : memref<?xindex>
221// CHECK:             %[[VAL_23:.*]] = arith.cmpi eq, %[[VAL_22]], %[[VAL_21]] : index
222// CHECK:             scf.if %[[VAL_23]] {
223// CHECK:               scf.for %[[VAL_24:.*]] = %[[VAL_6]] to %[[VAL_4]] step %[[VAL_7]] {
224// CHECK:                 %[[VAL_25:.*]] = arith.muli %[[VAL_20]], %[[VAL_4]] : index
225// CHECK:                 %[[VAL_26:.*]] = arith.addi %[[VAL_25]], %[[VAL_24]] : index
226// CHECK:                 %[[VAL_27:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_26]]] : memref<?xf32>
227// CHECK:                 %[[VAL_28:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_21]], %[[VAL_24]]] : memref<32x16xf32>
228// CHECK:                 %[[VAL_29:.*]] = arith.addf %[[VAL_27]], %[[VAL_28]] : f32
229// CHECK:                 memref.store %[[VAL_29]], %[[VAL_13]]{{\[}}%[[VAL_21]], %[[VAL_24]]] : memref<32x16xf32>
230// CHECK:               }
231// CHECK:             } else {
232// CHECK:               scf.if %[[VAL_5]] {
233// CHECK:                 scf.for %[[VAL_30:.*]] = %[[VAL_6]] to %[[VAL_4]] step %[[VAL_7]] {
234// CHECK:                   %[[VAL_31:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_21]], %[[VAL_30]]] : memref<32x16xf32>
235// CHECK:                   memref.store %[[VAL_31]], %[[VAL_13]]{{\[}}%[[VAL_21]], %[[VAL_30]]] : memref<32x16xf32>
236// CHECK:                 }
237// CHECK:               } else {
238// CHECK:               }
239// CHECK:             }
240// CHECK:             %[[VAL_32:.*]] = arith.cmpi eq, %[[VAL_22]], %[[VAL_21]] : index
241// CHECK:             %[[VAL_33:.*]] = arith.addi %[[VAL_20]], %[[VAL_7]] : index
242// CHECK:             %[[VAL_34:.*]] = select %[[VAL_32]], %[[VAL_33]], %[[VAL_20]] : index
243// CHECK:             %[[VAL_35:.*]] = arith.addi %[[VAL_21]], %[[VAL_7]] : index
244// CHECK:             scf.yield %[[VAL_34]], %[[VAL_35]] : index, index
245// CHECK:           }
246// CHECK:           scf.for %[[VAL_36:.*]] = %[[VAL_37:.*]]#1 to %[[VAL_3]] step %[[VAL_7]] {
247// CHECK:             scf.for %[[VAL_38:.*]] = %[[VAL_6]] to %[[VAL_4]] step %[[VAL_7]] {
248// CHECK:               %[[VAL_39:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_36]], %[[VAL_38]]] : memref<32x16xf32>
249// CHECK:               memref.store %[[VAL_39]], %[[VAL_13]]{{\[}}%[[VAL_36]], %[[VAL_38]]] : memref<32x16xf32>
250// CHECK:             }
251// CHECK:           }
252// CHECK:           %[[VAL_40:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<32x16xf32>
253// CHECK:           return %[[VAL_40]] : tensor<32x16xf32>
254// CHECK:         }
255func @add_sd(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
256  %0 = linalg.generic #trait2
257     ins(%arga, %argb: tensor<32x16xf32, #Tsd>, tensor<32x16xf32>)
258    outs(%argx: tensor<32x16xf32>) {
259      ^bb(%a: f32, %b: f32, %x: f32):
260        %0 = arith.addf %a, %b : f32
261        linalg.yield %0 : f32
262  } -> tensor<32x16xf32>
263  return %0 : tensor<32x16xf32>
264}
265
266// CHECK-LABEL:   func @mul_sd(
267// CHECK-SAME:                 %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
268// CHECK-SAME:                 %[[VAL_1:.*]]: tensor<32x16xf32>,
269// CHECK-SAME:                 %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
270// CHECK-DAG:           %[[VAL_3:.*]] = arith.constant 16 : index
271// CHECK-DAG:           %[[VAL_4:.*]] = arith.constant 0 : index
272// CHECK-DAG:           %[[VAL_5:.*]] = arith.constant 1 : index
273// CHECK:           %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
274// CHECK:           %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
275// CHECK:           %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
276// CHECK:           %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
277// CHECK:           %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
278// CHECK:           %[[VAL_11:.*]] = memref.alloc() : memref<32x16xf32>
279// CHECK:           memref.copy %[[VAL_10]], %[[VAL_11]] : memref<32x16xf32> to memref<32x16xf32>
280// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
281// CHECK:           %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
282// CHECK:           scf.for %[[VAL_14:.*]] = %[[VAL_12]] to %[[VAL_13]] step %[[VAL_5]] {
283// CHECK:             %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_14]]] : memref<?xindex>
284// CHECK:             scf.for %[[VAL_16:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
285// CHECK:               %[[VAL_17:.*]] = arith.muli %[[VAL_14]], %[[VAL_3]] : index
286// CHECK:               %[[VAL_18:.*]] = arith.addi %[[VAL_17]], %[[VAL_16]] : index
287// CHECK:               %[[VAL_19:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xf32>
288// CHECK:               %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_15]], %[[VAL_16]]] : memref<32x16xf32>
289// CHECK:               %[[VAL_21:.*]] = arith.mulf %[[VAL_19]], %[[VAL_20]] : f32
290// CHECK:               memref.store %[[VAL_21]], %[[VAL_11]]{{\[}}%[[VAL_15]], %[[VAL_16]]] : memref<32x16xf32>
291// CHECK:             }
292// CHECK:           }
293// CHECK:           %[[VAL_22:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32x16xf32>
294// CHECK:           return %[[VAL_22]] : tensor<32x16xf32>
295// CHECK:         }
296func @mul_sd(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
297  %0 = linalg.generic #trait2
298     ins(%arga, %argb: tensor<32x16xf32, #Tsd>, tensor<32x16xf32>)
299    outs(%argx: tensor<32x16xf32>) {
300      ^bb(%a: f32, %b: f32, %x: f32):
301        %0 = arith.mulf %a, %b : f32
302        linalg.yield %0 : f32
303  } -> tensor<32x16xf32>
304  return %0 : tensor<32x16xf32>
305}
306
307// CHECK-LABEL:   func @add_ss(
308// CHECK-SAME:                 %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
309// CHECK-SAME:                 %[[VAL_1:.*]]: tensor<32x16xf32>,
310// CHECK-SAME:                 %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
311// CHECK-DAG:           %[[VAL_3:.*]] = arith.constant 32 : index
312// CHECK-DAG:           %[[VAL_4:.*]] = arith.constant 16 : index
313// CHECK-DAG:           %[[VAL_5:.*]] = arith.constant true
314// CHECK-DAG:           %[[VAL_6:.*]] = arith.constant 0 : index
315// CHECK-DAG:           %[[VAL_7:.*]] = arith.constant 1 : index
316// CHECK:           %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
317// CHECK:           %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
318// CHECK:           %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
319// CHECK:           %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
320// CHECK:           %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
321// CHECK:           %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
322// CHECK:           %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
323// CHECK:           %[[VAL_15:.*]] = memref.alloc() : memref<32x16xf32>
324// CHECK:           memref.copy %[[VAL_14]], %[[VAL_15]] : memref<32x16xf32> to memref<32x16xf32>
325// CHECK:           %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_6]]] : memref<?xindex>
326// CHECK:           %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_7]]] : memref<?xindex>
327// CHECK:           %[[VAL_18:.*]]:2 = scf.while (%[[VAL_19:.*]] = %[[VAL_16]], %[[VAL_20:.*]] = %[[VAL_6]]) : (index, index) -> (index, index) {
328// CHECK:             %[[VAL_21:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_17]] : index
329// CHECK:             scf.condition(%[[VAL_21]]) %[[VAL_19]], %[[VAL_20]] : index, index
330// CHECK:           } do {
331// CHECK:           ^bb0(%[[VAL_22:.*]]: index, %[[VAL_23:.*]]: index):
332// CHECK:             %[[VAL_24:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_22]]] : memref<?xindex>
333// CHECK:             %[[VAL_25:.*]] = arith.cmpi eq, %[[VAL_24]], %[[VAL_23]] : index
334// CHECK:             scf.if %[[VAL_25]] {
335// CHECK:               %[[VAL_26:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_22]]] : memref<?xindex>
336// CHECK:               %[[VAL_27:.*]] = arith.addi %[[VAL_22]], %[[VAL_7]] : index
337// CHECK:               %[[VAL_28:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_27]]] : memref<?xindex>
338// CHECK:               %[[VAL_29:.*]]:2 = scf.while (%[[VAL_30:.*]] = %[[VAL_26]], %[[VAL_31:.*]] = %[[VAL_6]]) : (index, index) -> (index, index) {
339// CHECK:                 %[[VAL_32:.*]] = arith.cmpi ult, %[[VAL_30]], %[[VAL_28]] : index
340// CHECK:                 scf.condition(%[[VAL_32]]) %[[VAL_30]], %[[VAL_31]] : index, index
341// CHECK:               } do {
342// CHECK:               ^bb0(%[[VAL_33:.*]]: index, %[[VAL_34:.*]]: index):
343// CHECK:                 %[[VAL_35:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_33]]] : memref<?xindex>
344// CHECK:                 %[[VAL_36:.*]] = arith.cmpi eq, %[[VAL_35]], %[[VAL_34]] : index
345// CHECK:                 scf.if %[[VAL_36]] {
346// CHECK:                   %[[VAL_37:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_33]]] : memref<?xf32>
347// CHECK:                   %[[VAL_38:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_23]], %[[VAL_34]]] : memref<32x16xf32>
348// CHECK:                   %[[VAL_39:.*]] = arith.addf %[[VAL_37]], %[[VAL_38]] : f32
349// CHECK:                   memref.store %[[VAL_39]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_34]]] : memref<32x16xf32>
350// CHECK:                 } else {
351// CHECK:                   scf.if %[[VAL_5]] {
352// CHECK:                     %[[VAL_40:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_23]], %[[VAL_34]]] : memref<32x16xf32>
353// CHECK:                     memref.store %[[VAL_40]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_34]]] : memref<32x16xf32>
354// CHECK:                   } else {
355// CHECK:                   }
356// CHECK:                 }
357// CHECK:                 %[[VAL_41:.*]] = arith.cmpi eq, %[[VAL_35]], %[[VAL_34]] : index
358// CHECK:                 %[[VAL_42:.*]] = arith.addi %[[VAL_33]], %[[VAL_7]] : index
359// CHECK:                 %[[VAL_43:.*]] = select %[[VAL_41]], %[[VAL_42]], %[[VAL_33]] : index
360// CHECK:                 %[[VAL_44:.*]] = arith.addi %[[VAL_34]], %[[VAL_7]] : index
361// CHECK:                 scf.yield %[[VAL_43]], %[[VAL_44]] : index, index
362// CHECK:               }
363// CHECK:               scf.for %[[VAL_45:.*]] = %[[VAL_46:.*]]#1 to %[[VAL_4]] step %[[VAL_7]] {
364// CHECK:                 %[[VAL_47:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_23]], %[[VAL_45]]] : memref<32x16xf32>
365// CHECK:                 memref.store %[[VAL_47]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_45]]] : memref<32x16xf32>
366// CHECK:               }
367// CHECK:             } else {
368// CHECK:               scf.if %[[VAL_5]] {
369// CHECK:                 scf.for %[[VAL_48:.*]] = %[[VAL_6]] to %[[VAL_4]] step %[[VAL_7]] {
370// CHECK:                   %[[VAL_49:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_23]], %[[VAL_48]]] : memref<32x16xf32>
371// CHECK:                   memref.store %[[VAL_49]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_48]]] : memref<32x16xf32>
372// CHECK:                 }
373// CHECK:               } else {
374// CHECK:               }
375// CHECK:             }
376// CHECK:             %[[VAL_50:.*]] = arith.cmpi eq, %[[VAL_24]], %[[VAL_23]] : index
377// CHECK:             %[[VAL_51:.*]] = arith.addi %[[VAL_22]], %[[VAL_7]] : index
378// CHECK:             %[[VAL_52:.*]] = select %[[VAL_50]], %[[VAL_51]], %[[VAL_22]] : index
379// CHECK:             %[[VAL_53:.*]] = arith.addi %[[VAL_23]], %[[VAL_7]] : index
380// CHECK:             scf.yield %[[VAL_52]], %[[VAL_53]] : index, index
381// CHECK:           }
382// CHECK:           scf.for %[[VAL_54:.*]] = %[[VAL_55:.*]]#1 to %[[VAL_3]] step %[[VAL_7]] {
383// CHECK:             scf.for %[[VAL_56:.*]] = %[[VAL_6]] to %[[VAL_4]] step %[[VAL_7]] {
384// CHECK:               %[[VAL_57:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_54]], %[[VAL_56]]] : memref<32x16xf32>
385// CHECK:               memref.store %[[VAL_57]], %[[VAL_15]]{{\[}}%[[VAL_54]], %[[VAL_56]]] : memref<32x16xf32>
386// CHECK:             }
387// CHECK:           }
388// CHECK:           %[[VAL_58:.*]] = bufferization.to_tensor %[[VAL_15]] : memref<32x16xf32>
389// CHECK:           return %[[VAL_58]] : tensor<32x16xf32>
390// CHECK:         }
391func @add_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
392  %0 = linalg.generic #trait2
393     ins(%arga, %argb: tensor<32x16xf32, #Tss>, tensor<32x16xf32>)
394    outs(%argx: tensor<32x16xf32>) {
395      ^bb(%a: f32, %b: f32, %x: f32):
396        %0 = arith.addf %a, %b : f32
397        linalg.yield %0 : f32
398  } -> tensor<32x16xf32>
399  return %0 : tensor<32x16xf32>
400}
401
402// CHECK-LABEL:   func @mul_ss(
403// CHECK-SAME:                 %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
404// CHECK-SAME:                 %[[VAL_1:.*]]: tensor<32x16xf32>,
405// CHECK-SAME:                 %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
406// CHECK:           %[[VAL_3:.*]] = arith.constant 0 : index
407// CHECK:           %[[VAL_4:.*]] = arith.constant 1 : index
408// CHECK:           %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
409// CHECK:           %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
410// CHECK:           %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
411// CHECK:           %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
412// CHECK:           %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
413// CHECK:           %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
414// CHECK:           %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
415// CHECK:           %[[VAL_12:.*]] = memref.alloc() : memref<32x16xf32>
416// CHECK:           memref.copy %[[VAL_11]], %[[VAL_12]] : memref<32x16xf32> to memref<32x16xf32>
417// CHECK:           %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
418// CHECK:           %[[VAL_14:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
419// CHECK:           scf.for %[[VAL_15:.*]] = %[[VAL_13]] to %[[VAL_14]] step %[[VAL_4]] {
420// CHECK:             %[[VAL_16:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_15]]] : memref<?xindex>
421// CHECK:             %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_15]]] : memref<?xindex>
422// CHECK:             %[[VAL_18:.*]] = arith.addi %[[VAL_15]], %[[VAL_4]] : index
423// CHECK:             %[[VAL_19:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_18]]] : memref<?xindex>
424// CHECK:             scf.for %[[VAL_20:.*]] = %[[VAL_17]] to %[[VAL_19]] step %[[VAL_4]] {
425// CHECK:               %[[VAL_21:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_20]]] : memref<?xindex>
426// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_20]]] : memref<?xf32>
427// CHECK:               %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_16]], %[[VAL_21]]] : memref<32x16xf32>
428// CHECK:               %[[VAL_24:.*]] = arith.mulf %[[VAL_22]], %[[VAL_23]] : f32
429// CHECK:               memref.store %[[VAL_24]], %[[VAL_12]]{{\[}}%[[VAL_16]], %[[VAL_21]]] : memref<32x16xf32>
430// CHECK:             }
431// CHECK:           }
432// CHECK:           %[[VAL_25:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32x16xf32>
433// CHECK:           return %[[VAL_25]] : tensor<32x16xf32>
434// CHECK:         }
435func @mul_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
436  %0 = linalg.generic #trait2
437     ins(%arga, %argb: tensor<32x16xf32, #Tss>, tensor<32x16xf32>)
438    outs(%argx: tensor<32x16xf32>) {
439      ^bb(%a: f32, %b: f32, %x: f32):
440        %0 = arith.mulf %a, %b : f32
441        linalg.yield %0 : f32
442  } -> tensor<32x16xf32>
443  return %0 : tensor<32x16xf32>
444}
445
446// CHECK-LABEL:   func @add_ss_ss(
447// CHECK-SAME:                    %[[VAL_0:.*0]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
448// CHECK-SAME:                    %[[VAL_1:.*1]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
449// CHECK-SAME:                    %[[VAL_2:.*2]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
450// CHECK:           %[[VAL_3:.*]] = arith.constant 0 : index
451// CHECK:           %[[VAL_4:.*]] = arith.constant 1 : index
452// CHECK:           %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
453// CHECK:           %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
454// CHECK:           %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
455// CHECK:           %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
456// CHECK:           %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
457// CHECK:           %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
458// CHECK:           %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
459// CHECK:           %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
460// CHECK:           %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
461// CHECK:           %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
462// CHECK:           %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
463// CHECK:           %[[VAL_16:.*]] = memref.alloc() : memref<32x16xf32>
464// CHECK:           memref.copy %[[VAL_15]], %[[VAL_16]] : memref<32x16xf32> to memref<32x16xf32>
465// CHECK:           %[[VAL_17:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
466// CHECK:           %[[VAL_18:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
467// CHECK:           %[[VAL_19:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_3]]] : memref<?xindex>
468// CHECK:           %[[VAL_20:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_4]]] : memref<?xindex>
469// CHECK:           %[[VAL_21:.*]]:2 = scf.while (%[[VAL_22:.*]] = %[[VAL_17]], %[[VAL_23:.*]] = %[[VAL_19]]) : (index, index) -> (index, index) {
470// CHECK:             %[[VAL_24:.*]] = arith.cmpi ult, %[[VAL_22]], %[[VAL_18]] : index
471// CHECK:             %[[VAL_25:.*]] = arith.cmpi ult, %[[VAL_23]], %[[VAL_20]] : index
472// CHECK:             %[[VAL_26:.*]] = arith.andi %[[VAL_24]], %[[VAL_25]] : i1
473// CHECK:             scf.condition(%[[VAL_26]]) %[[VAL_22]], %[[VAL_23]] : index, index
474// CHECK:           } do {
475// CHECK:           ^bb0(%[[VAL_27:.*]]: index, %[[VAL_28:.*]]: index):
476// CHECK:             %[[VAL_29:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_27]]] : memref<?xindex>
477// CHECK:             %[[VAL_30:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_28]]] : memref<?xindex>
478// CHECK:             %[[VAL_31:.*]] = arith.cmpi ult, %[[VAL_30]], %[[VAL_29]] : index
479// CHECK:             %[[VAL_32:.*]] = select %[[VAL_31]], %[[VAL_30]], %[[VAL_29]] : index
480// CHECK:             %[[VAL_33:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_32]] : index
481// CHECK:             %[[VAL_34:.*]] = arith.cmpi eq, %[[VAL_30]], %[[VAL_32]] : index
482// CHECK:             %[[VAL_35:.*]] = arith.andi %[[VAL_33]], %[[VAL_34]] : i1
483// CHECK:             scf.if %[[VAL_35]] {
484// CHECK:               %[[VAL_36:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_27]]] : memref<?xindex>
485// CHECK:               %[[VAL_37:.*]] = arith.addi %[[VAL_27]], %[[VAL_4]] : index
486// CHECK:               %[[VAL_38:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_37]]] : memref<?xindex>
487// CHECK:               %[[VAL_39:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<?xindex>
488// CHECK:               %[[VAL_40:.*]] = arith.addi %[[VAL_28]], %[[VAL_4]] : index
489// CHECK:               %[[VAL_41:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_40]]] : memref<?xindex>
490// CHECK:               %[[VAL_42:.*]]:2 = scf.while (%[[VAL_43:.*]] = %[[VAL_36]], %[[VAL_44:.*]] = %[[VAL_39]]) : (index, index) -> (index, index) {
491// CHECK:                 %[[VAL_45:.*]] = arith.cmpi ult, %[[VAL_43]], %[[VAL_38]] : index
492// CHECK:                 %[[VAL_46:.*]] = arith.cmpi ult, %[[VAL_44]], %[[VAL_41]] : index
493// CHECK:                 %[[VAL_47:.*]] = arith.andi %[[VAL_45]], %[[VAL_46]] : i1
494// CHECK:                 scf.condition(%[[VAL_47]]) %[[VAL_43]], %[[VAL_44]] : index, index
495// CHECK:               } do {
496// CHECK:               ^bb0(%[[VAL_48:.*]]: index, %[[VAL_49:.*]]: index):
497// CHECK:                 %[[VAL_50:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_48]]] : memref<?xindex>
498// CHECK:                 %[[VAL_51:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_49]]] : memref<?xindex>
499// CHECK:                 %[[VAL_52:.*]] = arith.cmpi ult, %[[VAL_51]], %[[VAL_50]] : index
500// CHECK:                 %[[VAL_53:.*]] = select %[[VAL_52]], %[[VAL_51]], %[[VAL_50]] : index
501// CHECK:                 %[[VAL_54:.*]] = arith.cmpi eq, %[[VAL_50]], %[[VAL_53]] : index
502// CHECK:                 %[[VAL_55:.*]] = arith.cmpi eq, %[[VAL_51]], %[[VAL_53]] : index
503// CHECK:                 %[[VAL_56:.*]] = arith.andi %[[VAL_54]], %[[VAL_55]] : i1
504// CHECK:                 scf.if %[[VAL_56]] {
505// CHECK:                   %[[VAL_57:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_48]]] : memref<?xf32>
506// CHECK:                   %[[VAL_58:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_49]]] : memref<?xf32>
507// CHECK:                   %[[VAL_59:.*]] = arith.addf %[[VAL_57]], %[[VAL_58]] : f32
508// CHECK:                   memref.store %[[VAL_59]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_53]]] : memref<32x16xf32>
509// CHECK:                 } else {
510// CHECK:                   %[[VAL_60:.*]] = arith.cmpi eq, %[[VAL_50]], %[[VAL_53]] : index
511// CHECK:                   scf.if %[[VAL_60]] {
512// CHECK:                     %[[VAL_61:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_48]]] : memref<?xf32>
513// CHECK:                     memref.store %[[VAL_61]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_53]]] : memref<32x16xf32>
514// CHECK:                   } else {
515// CHECK:                     %[[VAL_62:.*]] = arith.cmpi eq, %[[VAL_51]], %[[VAL_53]] : index
516// CHECK:                     scf.if %[[VAL_62]] {
517// CHECK:                       %[[VAL_63:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_49]]] : memref<?xf32>
518// CHECK:                       memref.store %[[VAL_63]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_53]]] : memref<32x16xf32>
519// CHECK:                     } else {
520// CHECK:                     }
521// CHECK:                   }
522// CHECK:                 }
523// CHECK:                 %[[VAL_64:.*]] = arith.cmpi eq, %[[VAL_50]], %[[VAL_53]] : index
524// CHECK:                 %[[VAL_65:.*]] = arith.addi %[[VAL_48]], %[[VAL_4]] : index
525// CHECK:                 %[[VAL_66:.*]] = select %[[VAL_64]], %[[VAL_65]], %[[VAL_48]] : index
526// CHECK:                 %[[VAL_67:.*]] = arith.cmpi eq, %[[VAL_51]], %[[VAL_53]] : index
527// CHECK:                 %[[VAL_68:.*]] = arith.addi %[[VAL_49]], %[[VAL_4]] : index
528// CHECK:                 %[[VAL_69:.*]] = select %[[VAL_67]], %[[VAL_68]], %[[VAL_49]] : index
529// CHECK:                 scf.yield %[[VAL_66]], %[[VAL_69]] : index, index
530// CHECK:               }
531// CHECK:               scf.for %[[VAL_70:.*]] = %[[VAL_71:.*]]#0 to %[[VAL_38]] step %[[VAL_4]] {
532// CHECK:                 %[[VAL_72:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_70]]] : memref<?xindex>
533// CHECK:                 %[[VAL_73:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_70]]] : memref<?xf32>
534// CHECK:                 memref.store %[[VAL_73]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_72]]] : memref<32x16xf32>
535// CHECK:               }
536// CHECK:               scf.for %[[VAL_74:.*]] = %[[VAL_75:.*]]#1 to %[[VAL_41]] step %[[VAL_4]] {
537// CHECK:                 %[[VAL_76:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_74]]] : memref<?xindex>
538// CHECK:                 %[[VAL_77:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_74]]] : memref<?xf32>
539// CHECK:                 memref.store %[[VAL_77]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_76]]] : memref<32x16xf32>
540// CHECK:               }
541// CHECK:             } else {
542// CHECK:               %[[VAL_78:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_32]] : index
543// CHECK:               scf.if %[[VAL_78]] {
544// CHECK:                 %[[VAL_79:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_27]]] : memref<?xindex>
545// CHECK:                 %[[VAL_80:.*]] = arith.addi %[[VAL_27]], %[[VAL_4]] : index
546// CHECK:                 %[[VAL_81:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_80]]] : memref<?xindex>
547// CHECK:                 scf.for %[[VAL_82:.*]] = %[[VAL_79]] to %[[VAL_81]] step %[[VAL_4]] {
548// CHECK:                   %[[VAL_83:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_82]]] : memref<?xindex>
549// CHECK:                   %[[VAL_84:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_82]]] : memref<?xf32>
550// CHECK:                   memref.store %[[VAL_84]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_83]]] : memref<32x16xf32>
551// CHECK:                 }
552// CHECK:               } else {
553// CHECK:                 %[[VAL_85:.*]] = arith.cmpi eq, %[[VAL_30]], %[[VAL_32]] : index
554// CHECK:                 scf.if %[[VAL_85]] {
555// CHECK:                   %[[VAL_86:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<?xindex>
556// CHECK:                   %[[VAL_87:.*]] = arith.addi %[[VAL_28]], %[[VAL_4]] : index
557// CHECK:                   %[[VAL_88:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_87]]] : memref<?xindex>
558// CHECK:                   scf.for %[[VAL_89:.*]] = %[[VAL_86]] to %[[VAL_88]] step %[[VAL_4]] {
559// CHECK:                     %[[VAL_90:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_89]]] : memref<?xindex>
560// CHECK:                     %[[VAL_91:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_89]]] : memref<?xf32>
561// CHECK:                     memref.store %[[VAL_91]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_90]]] : memref<32x16xf32>
562// CHECK:                   }
563// CHECK:                 } else {
564// CHECK:                 }
565// CHECK:               }
566// CHECK:             }
567// CHECK:             %[[VAL_92:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_32]] : index
568// CHECK:             %[[VAL_93:.*]] = arith.addi %[[VAL_27]], %[[VAL_4]] : index
569// CHECK:             %[[VAL_94:.*]] = select %[[VAL_92]], %[[VAL_93]], %[[VAL_27]] : index
570// CHECK:             %[[VAL_95:.*]] = arith.cmpi eq, %[[VAL_30]], %[[VAL_32]] : index
571// CHECK:             %[[VAL_96:.*]] = arith.addi %[[VAL_28]], %[[VAL_4]] : index
572// CHECK:             %[[VAL_97:.*]] = select %[[VAL_95]], %[[VAL_96]], %[[VAL_28]] : index
573// CHECK:             scf.yield %[[VAL_94]], %[[VAL_97]] : index, index
574// CHECK:           }
575// CHECK:           scf.for %[[VAL_98:.*]] = %[[VAL_99:.*]]#0 to %[[VAL_18]] step %[[VAL_4]] {
576// CHECK:             %[[VAL_100:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_98]]] : memref<?xindex>
577// CHECK:             %[[VAL_101:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_98]]] : memref<?xindex>
578// CHECK:             %[[VAL_102:.*]] = arith.addi %[[VAL_98]], %[[VAL_4]] : index
579// CHECK:             %[[VAL_103:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_102]]] : memref<?xindex>
580// CHECK:             scf.for %[[VAL_104:.*]] = %[[VAL_101]] to %[[VAL_103]] step %[[VAL_4]] {
581// CHECK:               %[[VAL_105:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_104]]] : memref<?xindex>
582// CHECK:               %[[VAL_106:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_104]]] : memref<?xf32>
583// CHECK:               memref.store %[[VAL_106]], %[[VAL_16]]{{\[}}%[[VAL_100]], %[[VAL_105]]] : memref<32x16xf32>
584// CHECK:             }
585// CHECK:           }
586// CHECK:           scf.for %[[VAL_107:.*]] = %[[VAL_108:.*]]#1 to %[[VAL_20]] step %[[VAL_4]] {
587// CHECK:             %[[VAL_109:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_107]]] : memref<?xindex>
588// CHECK:             %[[VAL_110:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_107]]] : memref<?xindex>
589// CHECK:             %[[VAL_111:.*]] = arith.addi %[[VAL_107]], %[[VAL_4]] : index
590// CHECK:             %[[VAL_112:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_111]]] : memref<?xindex>
591// CHECK:             scf.for %[[VAL_113:.*]] = %[[VAL_110]] to %[[VAL_112]] step %[[VAL_4]] {
592// CHECK:               %[[VAL_114:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_113]]] : memref<?xindex>
593// CHECK:               %[[VAL_115:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_113]]] : memref<?xf32>
594// CHECK:               memref.store %[[VAL_115]], %[[VAL_16]]{{\[}}%[[VAL_109]], %[[VAL_114]]] : memref<32x16xf32>
595// CHECK:             }
596// CHECK:           }
597// CHECK:           %[[VAL_116:.*]] = bufferization.to_tensor %[[VAL_16]] : memref<32x16xf32>
598// CHECK:           return %[[VAL_116]] : tensor<32x16xf32>
599// CHECK:         }
600func @add_ss_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32, #Tss>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
601  %0 = linalg.generic #trait2
602     ins(%arga, %argb: tensor<32x16xf32, #Tss>, tensor<32x16xf32, #Tss>)
603    outs(%argx: tensor<32x16xf32>) {
604      ^bb(%a: f32, %b: f32, %x: f32):
605        %0 = arith.addf %a, %b : f32
606        linalg.yield %0 : f32
607  } -> tensor<32x16xf32>
608  return %0 : tensor<32x16xf32>
609}
610
611// CHECK-LABEL:   func @mul_ss_ss(
612// CHECK-SAME:                    %[[VAL_0:.*0]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
613// CHECK-SAME:                    %[[VAL_1:.*1]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
614// CHECK-SAME:                    %[[VAL_2:.*2]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
615// CHECK:           %[[VAL_3:.*]] = arith.constant 0 : index
616// CHECK:           %[[VAL_4:.*]] = arith.constant 1 : index
617// CHECK:           %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
618// CHECK:           %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
619// CHECK:           %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
620// CHECK:           %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
621// CHECK:           %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
622// CHECK:           %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
623// CHECK:           %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
624// CHECK:           %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
625// CHECK:           %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
626// CHECK:           %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
627// CHECK:           %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
628// CHECK:           %[[VAL_16:.*]] = memref.alloc() : memref<32x16xf32>
629// CHECK:           memref.copy %[[VAL_15]], %[[VAL_16]] : memref<32x16xf32> to memref<32x16xf32>
630// CHECK:           %[[VAL_17:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
631// CHECK:           %[[VAL_18:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
632// CHECK:           %[[VAL_19:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_3]]] : memref<?xindex>
633// CHECK:           %[[VAL_20:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_4]]] : memref<?xindex>
634// CHECK:           %[[VAL_21:.*]]:2 = scf.while (%[[VAL_22:.*]] = %[[VAL_17]], %[[VAL_23:.*]] = %[[VAL_19]]) : (index, index) -> (index, index) {
635// CHECK:             %[[VAL_24:.*]] = arith.cmpi ult, %[[VAL_22]], %[[VAL_18]] : index
636// CHECK:             %[[VAL_25:.*]] = arith.cmpi ult, %[[VAL_23]], %[[VAL_20]] : index
637// CHECK:             %[[VAL_26:.*]] = arith.andi %[[VAL_24]], %[[VAL_25]] : i1
638// CHECK:             scf.condition(%[[VAL_26]]) %[[VAL_22]], %[[VAL_23]] : index, index
639// CHECK:           } do {
640// CHECK:           ^bb0(%[[VAL_27:.*]]: index, %[[VAL_28:.*]]: index):
641// CHECK:             %[[VAL_29:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_27]]] : memref<?xindex>
642// CHECK:             %[[VAL_30:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_28]]] : memref<?xindex>
643// CHECK:             %[[VAL_31:.*]] = arith.cmpi ult, %[[VAL_30]], %[[VAL_29]] : index
644// CHECK:             %[[VAL_32:.*]] = select %[[VAL_31]], %[[VAL_30]], %[[VAL_29]] : index
645// CHECK:             %[[VAL_33:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_32]] : index
646// CHECK:             %[[VAL_34:.*]] = arith.cmpi eq, %[[VAL_30]], %[[VAL_32]] : index
647// CHECK:             %[[VAL_35:.*]] = arith.andi %[[VAL_33]], %[[VAL_34]] : i1
648// CHECK:             scf.if %[[VAL_35]] {
649// CHECK:               %[[VAL_36:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_27]]] : memref<?xindex>
650// CHECK:               %[[VAL_37:.*]] = arith.addi %[[VAL_27]], %[[VAL_4]] : index
651// CHECK:               %[[VAL_38:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_37]]] : memref<?xindex>
652// CHECK:               %[[VAL_39:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<?xindex>
653// CHECK:               %[[VAL_40:.*]] = arith.addi %[[VAL_28]], %[[VAL_4]] : index
654// CHECK:               %[[VAL_41:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_40]]] : memref<?xindex>
655// CHECK:               %[[VAL_42:.*]]:2 = scf.while (%[[VAL_43:.*]] = %[[VAL_36]], %[[VAL_44:.*]] = %[[VAL_39]]) : (index, index) -> (index, index) {
656// CHECK:                 %[[VAL_45:.*]] = arith.cmpi ult, %[[VAL_43]], %[[VAL_38]] : index
657// CHECK:                 %[[VAL_46:.*]] = arith.cmpi ult, %[[VAL_44]], %[[VAL_41]] : index
658// CHECK:                 %[[VAL_47:.*]] = arith.andi %[[VAL_45]], %[[VAL_46]] : i1
659// CHECK:                 scf.condition(%[[VAL_47]]) %[[VAL_43]], %[[VAL_44]] : index, index
660// CHECK:               } do {
661// CHECK:               ^bb0(%[[VAL_48:.*]]: index, %[[VAL_49:.*]]: index):
662// CHECK:                 %[[VAL_50:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_48]]] : memref<?xindex>
663// CHECK:                 %[[VAL_51:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_49]]] : memref<?xindex>
664// CHECK:                 %[[VAL_52:.*]] = arith.cmpi ult, %[[VAL_51]], %[[VAL_50]] : index
665// CHECK:                 %[[VAL_53:.*]] = select %[[VAL_52]], %[[VAL_51]], %[[VAL_50]] : index
666// CHECK:                 %[[VAL_54:.*]] = arith.cmpi eq, %[[VAL_50]], %[[VAL_53]] : index
667// CHECK:                 %[[VAL_55:.*]] = arith.cmpi eq, %[[VAL_51]], %[[VAL_53]] : index
668// CHECK:                 %[[VAL_56:.*]] = arith.andi %[[VAL_54]], %[[VAL_55]] : i1
669// CHECK:                 scf.if %[[VAL_56]] {
670// CHECK:                   %[[VAL_57:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_48]]] : memref<?xf32>
671// CHECK:                   %[[VAL_58:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_49]]] : memref<?xf32>
672// CHECK:                   %[[VAL_59:.*]] = arith.mulf %[[VAL_57]], %[[VAL_58]] : f32
673// CHECK:                   memref.store %[[VAL_59]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_53]]] : memref<32x16xf32>
674// CHECK:                 } else {
675// CHECK:                 }
676// CHECK:                 %[[VAL_60:.*]] = arith.cmpi eq, %[[VAL_50]], %[[VAL_53]] : index
677// CHECK:                 %[[VAL_61:.*]] = arith.addi %[[VAL_48]], %[[VAL_4]] : index
678// CHECK:                 %[[VAL_62:.*]] = select %[[VAL_60]], %[[VAL_61]], %[[VAL_48]] : index
679// CHECK:                 %[[VAL_63:.*]] = arith.cmpi eq, %[[VAL_51]], %[[VAL_53]] : index
680// CHECK:                 %[[VAL_64:.*]] = arith.addi %[[VAL_49]], %[[VAL_4]] : index
681// CHECK:                 %[[VAL_65:.*]] = select %[[VAL_63]], %[[VAL_64]], %[[VAL_49]] : index
682// CHECK:                 scf.yield %[[VAL_62]], %[[VAL_65]] : index, index
683// CHECK:               }
684// CHECK:             } else {
685// CHECK:             }
686// CHECK:             %[[VAL_66:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_32]] : index
687// CHECK:             %[[VAL_67:.*]] = arith.addi %[[VAL_27]], %[[VAL_4]] : index
688// CHECK:             %[[VAL_68:.*]] = select %[[VAL_66]], %[[VAL_67]], %[[VAL_27]] : index
689// CHECK:             %[[VAL_69:.*]] = arith.cmpi eq, %[[VAL_30]], %[[VAL_32]] : index
690// CHECK:             %[[VAL_70:.*]] = arith.addi %[[VAL_28]], %[[VAL_4]] : index
691// CHECK:             %[[VAL_71:.*]] = select %[[VAL_69]], %[[VAL_70]], %[[VAL_28]] : index
692// CHECK:             scf.yield %[[VAL_68]], %[[VAL_71]] : index, index
693// CHECK:           }
694// CHECK:           %[[VAL_72:.*]] = bufferization.to_tensor %[[VAL_16]] : memref<32x16xf32>
695// CHECK:           return %[[VAL_72]] : tensor<32x16xf32>
696// CHECK:         }
697func @mul_ss_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32, #Tss>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
698  %0 = linalg.generic #trait2
699     ins(%arga, %argb: tensor<32x16xf32, #Tss>, tensor<32x16xf32, #Tss>)
700    outs(%argx: tensor<32x16xf32>) {
701      ^bb(%a: f32, %b: f32, %x: f32):
702        %0 = arith.mulf %a, %b : f32
703        linalg.yield %0 : f32
704  } -> tensor<32x16xf32>
705  return %0 : tensor<32x16xf32>
706}
707
708// CHECK-LABEL:   func @add_sd_ds(
709// CHECK-SAME:                    %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
710// CHECK-SAME:                    %[[VAL_1:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
711// CHECK-SAME:                    %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
712// CHECK-DAG:           %[[VAL_3:.*]] = arith.constant 32 : index
713// CHECK-DAG:           %[[VAL_4:.*]] = arith.constant 16 : index
714// CHECK-DAG:           %[[VAL_5:.*]] = arith.constant 0 : index
715// CHECK-DAG:           %[[VAL_6:.*]] = arith.constant true
716// CHECK-DAG:           %[[VAL_7:.*]] = arith.constant 1 : index
717// CHECK:           %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
718// CHECK:           %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
719// CHECK:           %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
720// CHECK:           %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
721// CHECK:           %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
722// CHECK:           %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
723// CHECK:           %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
724// CHECK:           %[[VAL_15:.*]] = memref.alloc() : memref<32x16xf32>
725// CHECK:           memref.copy %[[VAL_14]], %[[VAL_15]] : memref<32x16xf32> to memref<32x16xf32>
726// CHECK:           %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_5]]] : memref<?xindex>
727// CHECK:           %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_7]]] : memref<?xindex>
728// CHECK:           %[[VAL_18:.*]]:2 = scf.while (%[[VAL_19:.*]] = %[[VAL_16]], %[[VAL_20:.*]] = %[[VAL_5]]) : (index, index) -> (index, index) {
729// CHECK:             %[[VAL_21:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_17]] : index
730// CHECK:             scf.condition(%[[VAL_21]]) %[[VAL_19]], %[[VAL_20]] : index, index
731// CHECK:           } do {
732// CHECK:           ^bb0(%[[VAL_22:.*]]: index, %[[VAL_23:.*]]: index):
733// CHECK:             %[[VAL_24:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_22]]] : memref<?xindex>
734// CHECK:             %[[VAL_25:.*]] = arith.cmpi eq, %[[VAL_24]], %[[VAL_23]] : index
735// CHECK:             scf.if %[[VAL_25]] {
736// CHECK:               %[[VAL_26:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_23]]] : memref<?xindex>
737// CHECK:               %[[VAL_27:.*]] = arith.addi %[[VAL_23]], %[[VAL_7]] : index
738// CHECK:               %[[VAL_28:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_27]]] : memref<?xindex>
739// CHECK:               %[[VAL_29:.*]]:2 = scf.while (%[[VAL_30:.*]] = %[[VAL_26]], %[[VAL_31:.*]] = %[[VAL_5]]) : (index, index) -> (index, index) {
740// CHECK:                 %[[VAL_32:.*]] = arith.cmpi ult, %[[VAL_30]], %[[VAL_28]] : index
741// CHECK:                 scf.condition(%[[VAL_32]]) %[[VAL_30]], %[[VAL_31]] : index, index
742// CHECK:               } do {
743// CHECK:               ^bb0(%[[VAL_33:.*]]: index, %[[VAL_34:.*]]: index):
744// CHECK:                 %[[VAL_35:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_33]]] : memref<?xindex>
745// CHECK:                 %[[VAL_36:.*]] = arith.muli %[[VAL_22]], %[[VAL_4]] : index
746// CHECK:                 %[[VAL_37:.*]] = arith.addi %[[VAL_36]], %[[VAL_34]] : index
747// CHECK:                 %[[VAL_38:.*]] = arith.cmpi eq, %[[VAL_35]], %[[VAL_34]] : index
748// CHECK:                 scf.if %[[VAL_38]] {
749// CHECK:                   %[[VAL_39:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_37]]] : memref<?xf32>
750// CHECK:                   %[[VAL_40:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_33]]] : memref<?xf32>
751// CHECK:                   %[[VAL_41:.*]] = arith.addf %[[VAL_39]], %[[VAL_40]] : f32
752// CHECK:                   memref.store %[[VAL_41]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_34]]] : memref<32x16xf32>
753// CHECK:                 } else {
754// CHECK:                   scf.if %[[VAL_6]] {
755// CHECK:                     %[[VAL_42:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_37]]] : memref<?xf32>
756// CHECK:                     memref.store %[[VAL_42]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_34]]] : memref<32x16xf32>
757// CHECK:                   } else {
758// CHECK:                   }
759// CHECK:                 }
760// CHECK:                 %[[VAL_43:.*]] = arith.cmpi eq, %[[VAL_35]], %[[VAL_34]] : index
761// CHECK:                 %[[VAL_44:.*]] = arith.addi %[[VAL_33]], %[[VAL_7]] : index
762// CHECK:                 %[[VAL_45:.*]] = select %[[VAL_43]], %[[VAL_44]], %[[VAL_33]] : index
763// CHECK:                 %[[VAL_46:.*]] = arith.addi %[[VAL_34]], %[[VAL_7]] : index
764// CHECK:                 scf.yield %[[VAL_45]], %[[VAL_46]] : index, index
765// CHECK:               }
766// CHECK:               scf.for %[[VAL_47:.*]] = %[[VAL_48:.*]]#1 to %[[VAL_4]] step %[[VAL_7]] {
767// CHECK:                 %[[VAL_49:.*]] = arith.muli %[[VAL_22]], %[[VAL_4]] : index
768// CHECK:                 %[[VAL_50:.*]] = arith.addi %[[VAL_49]], %[[VAL_47]] : index
769// CHECK:                 %[[VAL_51:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_50]]] : memref<?xf32>
770// CHECK:                 memref.store %[[VAL_51]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_47]]] : memref<32x16xf32>
771// CHECK:               }
772// CHECK:             } else {
773// CHECK:               scf.if %[[VAL_6]] {
774// CHECK:                 %[[VAL_52:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_23]]] : memref<?xindex>
775// CHECK:                 %[[VAL_53:.*]] = arith.addi %[[VAL_23]], %[[VAL_7]] : index
776// CHECK:                 %[[VAL_54:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_53]]] : memref<?xindex>
777// CHECK:                 scf.for %[[VAL_55:.*]] = %[[VAL_52]] to %[[VAL_54]] step %[[VAL_7]] {
778// CHECK:                   %[[VAL_56:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_55]]] : memref<?xindex>
779// CHECK:                   %[[VAL_57:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_55]]] : memref<?xf32>
780// CHECK:                   memref.store %[[VAL_57]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_56]]] : memref<32x16xf32>
781// CHECK:                 }
782// CHECK:               } else {
783// CHECK:               }
784// CHECK:             }
785// CHECK:             %[[VAL_58:.*]] = arith.cmpi eq, %[[VAL_24]], %[[VAL_23]] : index
786// CHECK:             %[[VAL_59:.*]] = arith.addi %[[VAL_22]], %[[VAL_7]] : index
787// CHECK:             %[[VAL_60:.*]] = select %[[VAL_58]], %[[VAL_59]], %[[VAL_22]] : index
788// CHECK:             %[[VAL_61:.*]] = arith.addi %[[VAL_23]], %[[VAL_7]] : index
789// CHECK:             scf.yield %[[VAL_60]], %[[VAL_61]] : index, index
790// CHECK:           }
791// CHECK:           scf.for %[[VAL_62:.*]] = %[[VAL_63:.*]]#1 to %[[VAL_3]] step %[[VAL_7]] {
792// CHECK:             %[[VAL_64:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_62]]] : memref<?xindex>
793// CHECK:             %[[VAL_65:.*]] = arith.addi %[[VAL_62]], %[[VAL_7]] : index
794// CHECK:             %[[VAL_66:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_65]]] : memref<?xindex>
795// CHECK:             scf.for %[[VAL_67:.*]] = %[[VAL_64]] to %[[VAL_66]] step %[[VAL_7]] {
796// CHECK:               %[[VAL_68:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_67]]] : memref<?xindex>
797// CHECK:               %[[VAL_69:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_67]]] : memref<?xf32>
798// CHECK:               memref.store %[[VAL_69]], %[[VAL_15]]{{\[}}%[[VAL_62]], %[[VAL_68]]] : memref<32x16xf32>
799// CHECK:             }
800// CHECK:           }
801// CHECK:           %[[VAL_70:.*]] = bufferization.to_tensor %[[VAL_15]] : memref<32x16xf32>
802// CHECK:           return %[[VAL_70]] : tensor<32x16xf32>
803// CHECK:         }
804func @add_sd_ds(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32, #Tds>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
805  %0 = linalg.generic #trait2
806     ins(%arga, %argb: tensor<32x16xf32, #Tsd>, tensor<32x16xf32, #Tds>)
807    outs(%argx: tensor<32x16xf32>) {
808      ^bb(%a: f32, %b: f32, %x: f32):
809        %0 = arith.addf %a, %b : f32
810        linalg.yield %0 : f32
811  } -> tensor<32x16xf32>
812  return %0 : tensor<32x16xf32>
813}
814
815// CHECK-LABEL:   func @mul_sd_ds(
816// CHECK-SAME:                    %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
817// CHECK-SAME:                    %[[VAL_1:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
818// CHECK-SAME:                    %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
819// CHECK-DAG:           %[[VAL_3:.*]] = arith.constant 16 : index
820// CHECK-DAG:           %[[VAL_4:.*]] = arith.constant 0 : index
821// CHECK-DAG:           %[[VAL_5:.*]] = arith.constant 1 : index
822// CHECK:           %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
823// CHECK:           %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
824// CHECK:           %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
825// CHECK:           %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
826// CHECK:           %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
827// CHECK:           %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
828// CHECK:           %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
829// CHECK:           %[[VAL_13:.*]] = memref.alloc() : memref<32x16xf32>
830// CHECK:           memref.copy %[[VAL_12]], %[[VAL_13]] : memref<32x16xf32> to memref<32x16xf32>
831// CHECK:           %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
832// CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
833// CHECK:           scf.for %[[VAL_16:.*]] = %[[VAL_14]] to %[[VAL_15]] step %[[VAL_5]] {
834// CHECK:             %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref<?xindex>
835// CHECK:             %[[VAL_18:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_17]]] : memref<?xindex>
836// CHECK:             %[[VAL_19:.*]] = arith.addi %[[VAL_17]], %[[VAL_5]] : index
837// CHECK:             %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_19]]] : memref<?xindex>
838// CHECK:             scf.for %[[VAL_21:.*]] = %[[VAL_18]] to %[[VAL_20]] step %[[VAL_5]] {
839// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_21]]] : memref<?xindex>
840// CHECK:               %[[VAL_23:.*]] = arith.muli %[[VAL_16]], %[[VAL_3]] : index
841// CHECK:               %[[VAL_24:.*]] = arith.addi %[[VAL_23]], %[[VAL_22]] : index
842// CHECK:               %[[VAL_25:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_24]]] : memref<?xf32>
843// CHECK:               %[[VAL_26:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_21]]] : memref<?xf32>
844// CHECK:               %[[VAL_27:.*]] = arith.mulf %[[VAL_25]], %[[VAL_26]] : f32
845// CHECK:               memref.store %[[VAL_27]], %[[VAL_13]]{{\[}}%[[VAL_17]], %[[VAL_22]]] : memref<32x16xf32>
846// CHECK:             }
847// CHECK:           }
848// CHECK:           %[[VAL_28:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<32x16xf32>
849// CHECK:           return %[[VAL_28]] : tensor<32x16xf32>
850// CHECK:         }
851func @mul_sd_ds(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32, #Tds>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
852  %0 = linalg.generic #trait2
853     ins(%arga, %argb: tensor<32x16xf32, #Tsd>, tensor<32x16xf32, #Tds>)
854    outs(%argx: tensor<32x16xf32>) {
855      ^bb(%a: f32, %b: f32, %x: f32):
856        %0 = arith.mulf %a, %b : f32
857        linalg.yield %0 : f32
858  } -> tensor<32x16xf32>
859  return %0 : tensor<32x16xf32>
860}
861
862#trait_matvec = {
863  indexing_maps = [
864    affine_map<(i,j) -> (i,j)>,  // A
865    affine_map<(i,j) -> (j)>,    // b
866    affine_map<(i,j) -> (i)>     // x (out)
867  ],
868  iterator_types = ["parallel", "reduction"],
869  doc = "x(i) += SUM_j A(i,j) * b(j)"
870}
871
872// CHECK-LABEL:   func @matvec(
873// CHECK-SAME:      %[[VAL_0:.*]]: tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
874// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32xf32>,
875// CHECK-SAME:      %[[VAL_2:.*]]: tensor<16xf32>) -> tensor<16xf32> {
876// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 16 : index
877// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
878// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
879// CHECK:           %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
880// CHECK:           %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
881// CHECK:           %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
882// CHECK:           %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32>
883// CHECK:           %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<16xf32>
884// CHECK:           %[[VAL_11:.*]] = memref.alloc() : memref<16xf32>
885// CHECK:           memref.copy %[[VAL_10]], %[[VAL_11]] : memref<16xf32> to memref<16xf32>
886// CHECK:           scf.for %[[VAL_12:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
887// CHECK-DAG:         %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref<?xindex>
888// CHECK-DAG:         %[[VAL_14:.*]] = arith.addi %[[VAL_12]], %[[VAL_5]] : index
889// CHECK-DAG:         %[[VAL_15:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_14]]] : memref<?xindex>
890// CHECK-DAG:         %[[VAL_16:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_12]]] : memref<16xf32>
891// CHECK:             %[[VAL_17:.*]] = scf.for %[[VAL_18:.*]] = %[[VAL_13]] to %[[VAL_15]] step %[[VAL_5]] iter_args(%[[VAL_19:.*]] = %[[VAL_16]]) -> (f32) {
892// CHECK:               %[[VAL_20:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_18]]] : memref<?xindex>
893// CHECK:               %[[VAL_21:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xf32>
894// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_20]]] : memref<32xf32>
895// CHECK:               %[[VAL_23:.*]] = arith.mulf %[[VAL_21]], %[[VAL_22]] : f32
896// CHECK:               %[[VAL_24:.*]] = arith.addf %[[VAL_23]], %[[VAL_19]] : f32
897// CHECK:               scf.yield %[[VAL_24]] : f32
898// CHECK:             }
899// CHECK:             memref.store %[[VAL_17]], %[[VAL_11]]{{\[}}%[[VAL_12]]] : memref<16xf32>
900// CHECK:           }
901// CHECK:           %[[VAL_26:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<16xf32>
902// CHECK:           return %[[VAL_26]] : tensor<16xf32>
903// CHECK:         }
904func @matvec(%argA: tensor<16x32xf32, #Tds>, %argb: tensor<32xf32>, %argx: tensor<16xf32>) -> tensor<16xf32> {
905  %0 = linalg.generic #trait_matvec
906       ins(%argA, %argb: tensor<16x32xf32, #Tds>, tensor<32xf32>)
907      outs(%argx: tensor<16xf32>) {
908    ^bb(%A: f32, %b: f32, %x: f32):
909      %0 = arith.mulf %A, %b : f32
910      %1 = arith.addf %0, %x : f32
911      linalg.yield %1 : f32
912  } -> tensor<16xf32>
913  return %0 : tensor<16xf32>
914}
915
916#trait_sum_reduction = {
917  indexing_maps = [
918    affine_map<(i,j) -> (i,j)>, // A
919    affine_map<(i,j) -> ()>     // x (scalar out)
920  ],
921  iterator_types = ["reduction", "reduction"],
922  doc = "x += SUM_ij A(i,j)"
923}
924
925// CHECK-LABEL:   func @sum_reduction(
926// CHECK-SAME:      %[[VAL_0:.*]]: tensor<10x20xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
927// CHECK-SAME:      %[[VAL_1:.*]]: tensor<f32>) -> tensor<f32> {
928// CHECK-DAG:       %[[VAL_2:.*]] = arith.constant 10 : index
929// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 1 : index
930// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
931// CHECK:           %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<10x20xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
932// CHECK:           %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
933// CHECK:           %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<f32>
934// CHECK:           %[[VAL_8:.*]] = memref.alloc() : memref<f32>
935// CHECK:           memref.copy %[[VAL_7]], %[[VAL_8]] : memref<f32> to memref<f32>
936// CHECK:           %[[VAL_9:.*]] = memref.load %[[VAL_8]][] : memref<f32>
937// CHECK:           %[[VAL_10:.*]] = scf.for %[[VAL_11:.*]] = %[[VAL_4]] to %[[VAL_2]] step %[[VAL_3]] iter_args(%[[VAL_12:.*]] = %[[VAL_9]]) -> (f32) {
938// CHECK:             %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_11]]] : memref<?xindex>
939// CHECK:             %[[VAL_14:.*]] = arith.addi %[[VAL_11]], %[[VAL_3]] : index
940// CHECK:             %[[VAL_15:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_14]]] : memref<?xindex>
941// CHECK:             %[[VAL_16:.*]] = scf.for %[[VAL_17:.*]] = %[[VAL_13]] to %[[VAL_15]] step %[[VAL_3]] iter_args(%[[VAL_18:.*]] = %[[VAL_12]]) -> (f32) {
942// CHECK:               %[[VAL_19:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_17]]] : memref<?xf32>
943// CHECK:               %[[VAL_20:.*]] = arith.addf %[[VAL_18]], %[[VAL_19]] : f32
944// CHECK:               scf.yield %[[VAL_20]] : f32
945// CHECK:             }
946// CHECK:             scf.yield %[[VAL_16]] : f32
947// CHECK:           }
948// CHECK:           memref.store %[[VAL_10]], %[[VAL_8]][] : memref<f32>
949// CHECK:           %[[VAL_23:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<f32>
950// CHECK:           return %[[VAL_23]] : tensor<f32>
951// CHECK:         }
952func @sum_reduction(%arga: tensor<10x20xf32, #Tds>, %argx: tensor<f32>) -> tensor<f32> {
953  %0 = linalg.generic #trait_sum_reduction
954     ins(%arga: tensor<10x20xf32, #Tds>)
955    outs(%argx: tensor<f32>) {
956      ^bb(%a: f32, %x: f32):
957        %0 = arith.addf %x, %a : f32
958        linalg.yield %0 : f32
959  } -> tensor<f32>
960  return %0 : tensor<f32>
961}
962
963#trait_scale = {
964  indexing_maps = [
965    affine_map<(i,j) -> (i,j)>,  // A
966    affine_map<(i,j) -> (i,j)>   // X (out)
967  ],
968  iterator_types = ["parallel", "parallel"],
969  doc = "X(i,j) = A(i,j) * SCALE"
970}
971
972// CHECK-LABEL:   func @scale(
973// CHECK-SAME:                %[[VAL_0:.*]]: tensor<?x?xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
974// CHECK-SAME:                %[[VAL_1:.*]]: tensor<?x?xf64>) -> tensor<?x?xf64> {
975// CHECK-DAG:           %[[VAL_2:.*]] = arith.constant 2.000000e+00 : f64
976// CHECK-DAG:           %[[VAL_3:.*]] = arith.constant 0 : index
977// CHECK-DAG:           %[[VAL_4:.*]] = arith.constant 1 : index
978// CHECK:           %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<?x?xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
979// CHECK:           %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<?x?xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
980// CHECK:           %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?x?xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf64>
981// CHECK:           %[[VAL_8:.*]] = tensor.dim %[[VAL_1]], %[[VAL_3]] : tensor<?x?xf64>
982// CHECK:           %[[VAL_9:.*]] = tensor.dim %[[VAL_1]], %[[VAL_4]] : tensor<?x?xf64>
983// CHECK:           %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<?x?xf64>
984// CHECK:           %[[VAL_11:.*]] = memref.alloc(%[[VAL_8]], %[[VAL_9]]) : memref<?x?xf64>
985// CHECK:           memref.copy %[[VAL_10]], %[[VAL_11]] : memref<?x?xf64> to memref<?x?xf64>
986// CHECK:           scf.for %[[VAL_12:.*]] = %[[VAL_3]] to %[[VAL_8]] step %[[VAL_4]] {
987// CHECK:             %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_12]]] : memref<?xindex>
988// CHECK:             %[[VAL_14:.*]] = arith.addi %[[VAL_12]], %[[VAL_4]] : index
989// CHECK:             %[[VAL_15:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_14]]] : memref<?xindex>
990// CHECK:             scf.for %[[VAL_16:.*]] = %[[VAL_13]] to %[[VAL_15]] step %[[VAL_4]] {
991// CHECK:               %[[VAL_17:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_16]]] : memref<?xindex>
992// CHECK:               %[[VAL_18:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref<?xf64>
993// CHECK:               %[[VAL_19:.*]] = arith.mulf %[[VAL_18]], %[[VAL_2]] : f64
994// CHECK:               memref.store %[[VAL_19]], %[[VAL_11]]{{\[}}%[[VAL_12]], %[[VAL_17]]] : memref<?x?xf64>
995// CHECK:             }
996// CHECK:           }
997// CHECK:           %[[VAL_20:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<?x?xf64>
998// CHECK:           return %[[VAL_20]] : tensor<?x?xf64>
999// CHECK:         }
1000func @scale(%arga: tensor<?x?xf64, #Tds>, %argx: tensor<?x?xf64>) -> tensor<?x?xf64> {
1001  %0 = arith.constant 2.0 : f64
1002  %1 = linalg.generic #trait_scale
1003     ins(%arga: tensor<?x?xf64, #Tds>)
1004    outs(%argx: tensor<?x?xf64>) {
1005      ^bb(%a: f64, %x: f64):
1006        %2 = arith.mulf %a, %0 : f64
1007        linalg.yield %2 : f64
1008  } -> tensor<?x?xf64>
1009  return %1 : tensor<?x?xf64>
1010}
1011
1012#trait_sampled_dense_dense = {
1013  indexing_maps = [
1014    affine_map<(i,j,k) -> (i,j)>,  // S
1015    affine_map<(i,j,k) -> (i,k)>,  // A
1016    affine_map<(i,j,k) -> (k,j)>,  // B
1017    affine_map<(i,j,k) -> (i,j)>   // X (out)
1018  ],
1019  iterator_types = ["parallel", "parallel", "reduction"],
1020  doc = "X(i,j) += S(i,j) SUM_k A(i,k) B(k,j)"
1021}
1022
1023// CHECK-LABEL:   func @sampled_dense_dense(
1024// CHECK-SAME:      %[[VAL_0:.*0]]: tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
1025// CHECK-SAME:      %[[VAL_1:.*1]]: tensor<?x?xf32>,
1026// CHECK-SAME:      %[[VAL_2:.*2]]: tensor<?x?xf32>,
1027// CHECK-SAME:      %[[VAL_3:.*3]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
1028// CHECK:           %[[VAL_4:.*]] = arith.constant 0 : index
1029// CHECK:           %[[VAL_5:.*]] = arith.constant 1 : index
1030// CHECK:           %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1031// CHECK:           %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1032// CHECK:           %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1033// CHECK:           %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1034// CHECK:           %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
1035// CHECK:           %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<?x?xf32>
1036// CHECK:           %[[VAL_12:.*]] = tensor.dim %[[VAL_2]], %[[VAL_4]] : tensor<?x?xf32>
1037// CHECK:           %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<?x?xf32>
1038// CHECK:           %[[VAL_14:.*]] = tensor.dim %[[VAL_3]], %[[VAL_4]] : tensor<?x?xf32>
1039// CHECK:           %[[VAL_15:.*]] = tensor.dim %[[VAL_3]], %[[VAL_5]] : tensor<?x?xf32>
1040// CHECK:           %[[VAL_16:.*]] = bufferization.to_memref %[[VAL_3]] : memref<?x?xf32>
1041// CHECK:           %[[VAL_17:.*]] = memref.alloc(%[[VAL_14]], %[[VAL_15]]) : memref<?x?xf32>
1042// CHECK:           memref.copy %[[VAL_16]], %[[VAL_17]] : memref<?x?xf32> to memref<?x?xf32>
1043// CHECK:           %[[VAL_18:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
1044// CHECK:           %[[VAL_19:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
1045// CHECK:           scf.for %[[VAL_20:.*]] = %[[VAL_18]] to %[[VAL_19]] step %[[VAL_5]] {
1046// CHECK:             %[[VAL_21:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_20]]] : memref<?xindex>
1047// CHECK:             %[[VAL_22:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_20]]] : memref<?xindex>
1048// CHECK:             %[[VAL_23:.*]] = arith.addi %[[VAL_20]], %[[VAL_5]] : index
1049// CHECK:             %[[VAL_24:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_23]]] : memref<?xindex>
1050// CHECK:             scf.for %[[VAL_25:.*]] = %[[VAL_22]] to %[[VAL_24]] step %[[VAL_5]] {
1051// CHECK-DAG:           %[[VAL_26:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_25]]] : memref<?xindex>
1052// CHECK-DAG:           %[[VAL_27:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_25]]] : memref<?xf32>
1053// CHECK-DAG:           %[[VAL_28:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_21]], %[[VAL_26]]] : memref<?x?xf32>
1054// CHECK:               %[[VAL_29:.*]] = scf.for %[[VAL_30:.*]] = %[[VAL_4]] to %[[VAL_12]] step %[[VAL_5]] iter_args(%[[VAL_31:.*]] = %[[VAL_28]]) -> (f32) {
1055// CHECK:                 %[[VAL_32:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_21]], %[[VAL_30]]] : memref<?x?xf32>
1056// CHECK:                 %[[VAL_33:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_30]], %[[VAL_26]]] : memref<?x?xf32>
1057// CHECK:                 %[[VAL_34:.*]] = arith.mulf %[[VAL_32]], %[[VAL_33]] : f32
1058// CHECK:                 %[[VAL_35:.*]] = arith.mulf %[[VAL_27]], %[[VAL_34]] : f32
1059// CHECK:                 %[[VAL_36:.*]] = arith.addf %[[VAL_31]], %[[VAL_35]] : f32
1060// CHECK:                 scf.yield %[[VAL_36]] : f32
1061// CHECK:               }
1062// CHECK:               memref.store %[[VAL_29]], %[[VAL_17]]{{\[}}%[[VAL_21]], %[[VAL_26]]] : memref<?x?xf32>
1063// CHECK:             }
1064// CHECK:           }
1065// CHECK:           %[[VAL_38:.*]] = bufferization.to_tensor %[[VAL_17]] : memref<?x?xf32>
1066// CHECK:           return %[[VAL_38]] : tensor<?x?xf32>
1067// CHECK:         }
1068func @sampled_dense_dense(%args: tensor<?x?xf32, #Tss>,
1069                          %arga: tensor<?x?xf32>,
1070                          %argb: tensor<?x?xf32>,
1071                          %argx: tensor<?x?xf32>) -> tensor<?x?xf32> {
1072  %0 = linalg.generic #trait_sampled_dense_dense
1073     ins(%args, %arga, %argb: tensor<?x?xf32, #Tss>, tensor<?x?xf32>, tensor<?x?xf32>)
1074    outs(%argx: tensor<?x?xf32>) {
1075      ^bb(%s: f32, %a: f32, %b: f32, %x: f32):
1076        %0 = arith.mulf %a, %b : f32
1077        %1 = arith.mulf %s, %0 : f32
1078        %2 = arith.addf %x, %1 : f32
1079        linalg.yield %2 : f32
1080  } -> tensor<?x?xf32>
1081  return %0 : tensor<?x?xf32>
1082}
1083
1084#trait_sum_kernel_with_inv = {
1085  indexing_maps = [
1086    affine_map<(i,j) -> (i,j)>,  // A
1087    affine_map<(i,j) -> (i,j)>,  // B
1088    affine_map<(i,j) -> (i,j)>,  // C
1089    affine_map<(i,j) -> (i)>,    // d
1090    affine_map<(i,j) -> ()>,     // e
1091    affine_map<(i,j) -> (i)>     // x (out)
1092  ],
1093  iterator_types = ["parallel", "reduction"],
1094  doc = "x(i) = SUM_j A(i,j) * B(i,j) * d(i) * e + C(i,j)"
1095}
1096
1097// CHECK-LABEL:   func @sum_kernel_with_inv(
1098// CHECK-SAME:      %[[VAL_0:.*0]]: tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
1099// CHECK-SAME:      %[[VAL_1:.*1]]: tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
1100// CHECK-SAME:      %[[VAL_2:.*2]]: tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
1101// CHECK-SAME:      %[[VAL_3:.*3]]: tensor<?xf32>,
1102// CHECK-SAME:      %[[VAL_4:.*4]]: tensor<f32>,
1103// CHECK-SAME:      %[[VAL_5:.*5]]: tensor<?xf32>) -> tensor<?xf32> {
1104// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 0 : index
1105// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant 1 : index
1106// CHECK-DAG:       %[[VAL_8:.*]] = arith.constant true
1107// CHECK:           %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1108// CHECK:           %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1109// CHECK:           %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1110// CHECK:           %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1111// CHECK:           %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
1112// CHECK:           %[[VAL_14:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_7]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1113// CHECK:           %[[VAL_15:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_7]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1114// CHECK:           %[[VAL_16:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
1115// CHECK:           %[[VAL_17:.*]] = sparse_tensor.pointers %[[VAL_2]], %[[VAL_7]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1116// CHECK:           %[[VAL_18:.*]] = sparse_tensor.indices %[[VAL_2]], %[[VAL_7]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1117// CHECK:           %[[VAL_19:.*]] = sparse_tensor.values %[[VAL_2]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
1118// CHECK:           %[[VAL_20:.*]] = bufferization.to_memref %[[VAL_3]] : memref<?xf32>
1119// CHECK:           %[[VAL_21:.*]] = bufferization.to_memref %[[VAL_4]] : memref<f32>
1120// CHECK:           %[[VAL_22:.*]] = tensor.dim %[[VAL_5]], %[[VAL_6]] : tensor<?xf32>
1121// CHECK:           %[[VAL_23:.*]] = bufferization.to_memref %[[VAL_5]] : memref<?xf32>
1122// CHECK:           %[[VAL_24:.*]] = memref.alloc(%[[VAL_22]]) : memref<?xf32>
1123// CHECK:           memref.copy %[[VAL_23]], %[[VAL_24]] : memref<?xf32> to memref<?xf32>
1124// CHECK:           %[[VAL_25:.*]] = memref.load %[[VAL_21]][] : memref<f32>
1125// CHECK:           %[[VAL_26:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_6]]] : memref<?xindex>
1126// CHECK:           %[[VAL_27:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_7]]] : memref<?xindex>
1127// CHECK:           %[[VAL_28:.*]]:2 = scf.while (%[[VAL_29:.*]] = %[[VAL_26]], %[[VAL_30:.*]] = %[[VAL_6]]) : (index, index) -> (index, index) {
1128// CHECK:             %[[VAL_31:.*]] = arith.cmpi ult, %[[VAL_29]], %[[VAL_27]] : index
1129// CHECK:             scf.condition(%[[VAL_31]]) %[[VAL_29]], %[[VAL_30]] : index, index
1130// CHECK:           } do {
1131// CHECK:           ^bb0(%[[VAL_32:.*]]: index, %[[VAL_33:.*]]: index):
1132// CHECK:             %[[VAL_34:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_32]]] : memref<?xindex>
1133// CHECK:             %[[VAL_35:.*]] = arith.cmpi eq, %[[VAL_34]], %[[VAL_33]] : index
1134// CHECK:             scf.if %[[VAL_35]] {
1135// CHECK:               %[[VAL_36:.*]] = memref.load %[[VAL_24]]{{\[}}%[[VAL_33]]] : memref<?xf32>
1136// CHECK:               %[[VAL_37:.*]] = memref.load %[[VAL_20]]{{\[}}%[[VAL_33]]] : memref<?xf32>
1137// CHECK:               %[[VAL_38:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_32]]] : memref<?xindex>
1138// CHECK:               %[[VAL_39:.*]] = arith.addi %[[VAL_32]], %[[VAL_7]] : index
1139// CHECK:               %[[VAL_40:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_39]]] : memref<?xindex>
1140// CHECK:               %[[VAL_41:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_33]]] : memref<?xindex>
1141// CHECK:               %[[VAL_42:.*]] = arith.addi %[[VAL_33]], %[[VAL_7]] : index
1142// CHECK:               %[[VAL_43:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_42]]] : memref<?xindex>
1143// CHECK:               %[[VAL_44:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_33]]] : memref<?xindex>
1144// CHECK:               %[[VAL_45:.*]] = arith.addi %[[VAL_33]], %[[VAL_7]] : index
1145// CHECK:               %[[VAL_46:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_45]]] : memref<?xindex>
1146// CHECK:               %[[VAL_47:.*]]:4 = scf.while (%[[VAL_48:.*]] = %[[VAL_38]], %[[VAL_49:.*]] = %[[VAL_41]], %[[VAL_50:.*]] = %[[VAL_44]], %[[VAL_51:.*]] = %[[VAL_36]]) : (index, index, index, f32) -> (index, index, index, f32) {
1147// CHECK:                 %[[VAL_52:.*]] = arith.cmpi ult, %[[VAL_48]], %[[VAL_40]] : index
1148// CHECK:                 %[[VAL_53:.*]] = arith.cmpi ult, %[[VAL_49]], %[[VAL_43]] : index
1149// CHECK:                 %[[VAL_54:.*]] = arith.andi %[[VAL_52]], %[[VAL_53]] : i1
1150// CHECK:                 %[[VAL_55:.*]] = arith.cmpi ult, %[[VAL_50]], %[[VAL_46]] : index
1151// CHECK:                 %[[VAL_56:.*]] = arith.andi %[[VAL_54]], %[[VAL_55]] : i1
1152// CHECK:                 scf.condition(%[[VAL_56]]) %[[VAL_48]], %[[VAL_49]], %[[VAL_50]], %[[VAL_51]] : index, index, index, f32
1153// CHECK:               } do {
1154// CHECK:               ^bb0(%[[VAL_57:.*]]: index, %[[VAL_58:.*]]: index, %[[VAL_59:.*]]: index, %[[VAL_60:.*]]: f32):
1155// CHECK:                 %[[VAL_61:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_57]]] : memref<?xindex>
1156// CHECK:                 %[[VAL_62:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_58]]] : memref<?xindex>
1157// CHECK:                 %[[VAL_63:.*]] = arith.cmpi ult, %[[VAL_62]], %[[VAL_61]] : index
1158// CHECK:                 %[[VAL_64:.*]] = select %[[VAL_63]], %[[VAL_62]], %[[VAL_61]] : index
1159// CHECK:                 %[[VAL_65:.*]] = memref.load %[[VAL_18]]{{\[}}%[[VAL_59]]] : memref<?xindex>
1160// CHECK:                 %[[VAL_66:.*]] = arith.cmpi ult, %[[VAL_65]], %[[VAL_64]] : index
1161// CHECK:                 %[[VAL_67:.*]] = select %[[VAL_66]], %[[VAL_65]], %[[VAL_64]] : index
1162// CHECK:                 %[[VAL_68:.*]] = arith.cmpi eq, %[[VAL_61]], %[[VAL_67]] : index
1163// CHECK:                 %[[VAL_69:.*]] = arith.cmpi eq, %[[VAL_62]], %[[VAL_67]] : index
1164// CHECK:                 %[[VAL_70:.*]] = arith.andi %[[VAL_68]], %[[VAL_69]] : i1
1165// CHECK:                 %[[VAL_71:.*]] = arith.cmpi eq, %[[VAL_65]], %[[VAL_67]] : index
1166// CHECK:                 %[[VAL_72:.*]] = arith.andi %[[VAL_70]], %[[VAL_71]] : i1
1167// CHECK:                 %[[VAL_73:.*]] = scf.if %[[VAL_72]] -> (f32) {
1168// CHECK:                   %[[VAL_74:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_57]]] : memref<?xf32>
1169// CHECK:                   %[[VAL_75:.*]] = memref.load %[[VAL_16]]{{\[}}%[[VAL_58]]] : memref<?xf32>
1170// CHECK:                   %[[VAL_76:.*]] = arith.mulf %[[VAL_74]], %[[VAL_75]] : f32
1171// CHECK:                   %[[VAL_77:.*]] = arith.mulf %[[VAL_76]], %[[VAL_37]] : f32
1172// CHECK:                   %[[VAL_78:.*]] = arith.mulf %[[VAL_77]], %[[VAL_25]] : f32
1173// CHECK:                   %[[VAL_79:.*]] = memref.load %[[VAL_19]]{{\[}}%[[VAL_59]]] : memref<?xf32>
1174// CHECK:                   %[[VAL_80:.*]] = arith.addf %[[VAL_78]], %[[VAL_79]] : f32
1175// CHECK:                   %[[VAL_81:.*]] = arith.addf %[[VAL_60]], %[[VAL_80]] : f32
1176// CHECK:                   scf.yield %[[VAL_81]] : f32
1177// CHECK:                 } else {
1178// CHECK:                   %[[VAL_82:.*]] = arith.cmpi eq, %[[VAL_61]], %[[VAL_67]] : index
1179// CHECK:                   %[[VAL_83:.*]] = arith.cmpi eq, %[[VAL_62]], %[[VAL_67]] : index
1180// CHECK:                   %[[VAL_84:.*]] = arith.andi %[[VAL_82]], %[[VAL_83]] : i1
1181// CHECK:                   %[[VAL_85:.*]] = scf.if %[[VAL_84]] -> (f32) {
1182// CHECK:                     %[[VAL_86:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_57]]] : memref<?xf32>
1183// CHECK:                     %[[VAL_87:.*]] = memref.load %[[VAL_16]]{{\[}}%[[VAL_58]]] : memref<?xf32>
1184// CHECK:                     %[[VAL_88:.*]] = arith.mulf %[[VAL_86]], %[[VAL_87]] : f32
1185// CHECK:                     %[[VAL_89:.*]] = arith.mulf %[[VAL_88]], %[[VAL_37]] : f32
1186// CHECK:                     %[[VAL_90:.*]] = arith.mulf %[[VAL_89]], %[[VAL_25]] : f32
1187// CHECK:                     %[[VAL_91:.*]] = arith.addf %[[VAL_60]], %[[VAL_90]] : f32
1188// CHECK:                     scf.yield %[[VAL_91]] : f32
1189// CHECK:                   } else {
1190// CHECK:                     %[[VAL_92:.*]] = arith.cmpi eq, %[[VAL_65]], %[[VAL_67]] : index
1191// CHECK:                     %[[VAL_93:.*]] = scf.if %[[VAL_92]] -> (f32) {
1192// CHECK:                       %[[VAL_94:.*]] = memref.load %[[VAL_19]]{{\[}}%[[VAL_59]]] : memref<?xf32>
1193// CHECK:                       %[[VAL_95:.*]] = arith.addf %[[VAL_60]], %[[VAL_94]] : f32
1194// CHECK:                       scf.yield %[[VAL_95]] : f32
1195// CHECK:                     } else {
1196// CHECK:                       scf.yield %[[VAL_60]] : f32
1197// CHECK:                     }
1198// CHECK:                     scf.yield %[[VAL_96:.*]] : f32
1199// CHECK:                   }
1200// CHECK:                   scf.yield %[[VAL_97:.*]] : f32
1201// CHECK:                 }
1202// CHECK:                 %[[VAL_98:.*]] = arith.cmpi eq, %[[VAL_61]], %[[VAL_67]] : index
1203// CHECK:                 %[[VAL_99:.*]] = arith.addi %[[VAL_57]], %[[VAL_7]] : index
1204// CHECK:                 %[[VAL_100:.*]] = select %[[VAL_98]], %[[VAL_99]], %[[VAL_57]] : index
1205// CHECK:                 %[[VAL_101:.*]] = arith.cmpi eq, %[[VAL_62]], %[[VAL_67]] : index
1206// CHECK:                 %[[VAL_102:.*]] = arith.addi %[[VAL_58]], %[[VAL_7]] : index
1207// CHECK:                 %[[VAL_103:.*]] = select %[[VAL_101]], %[[VAL_102]], %[[VAL_58]] : index
1208// CHECK:                 %[[VAL_104:.*]] = arith.cmpi eq, %[[VAL_65]], %[[VAL_67]] : index
1209// CHECK:                 %[[VAL_105:.*]] = arith.addi %[[VAL_59]], %[[VAL_7]] : index
1210// CHECK:                 %[[VAL_106:.*]] = select %[[VAL_104]], %[[VAL_105]], %[[VAL_59]] : index
1211// CHECK:                 scf.yield %[[VAL_100]], %[[VAL_103]], %[[VAL_106]], %[[VAL_107:.*]] : index, index, index, f32
1212// CHECK:               }
1213// CHECK:               %[[VAL_108:.*]]:3 = scf.while (%[[VAL_109:.*]] = %[[VAL_110:.*]]#0, %[[VAL_111:.*]] = %[[VAL_110]]#1, %[[VAL_112:.*]] = %[[VAL_110]]#3) : (index, index, f32) -> (index, index, f32) {
1214// CHECK:                 %[[VAL_113:.*]] = arith.cmpi ult, %[[VAL_109]], %[[VAL_40]] : index
1215// CHECK:                 %[[VAL_114:.*]] = arith.cmpi ult, %[[VAL_111]], %[[VAL_43]] : index
1216// CHECK:                 %[[VAL_115:.*]] = arith.andi %[[VAL_113]], %[[VAL_114]] : i1
1217// CHECK:                 scf.condition(%[[VAL_115]]) %[[VAL_109]], %[[VAL_111]], %[[VAL_112]] : index, index, f32
1218// CHECK:               } do {
1219// CHECK:               ^bb0(%[[VAL_116:.*]]: index, %[[VAL_117:.*]]: index, %[[VAL_118:.*]]: f32):
1220// CHECK:                 %[[VAL_119:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_116]]] : memref<?xindex>
1221// CHECK:                 %[[VAL_120:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_117]]] : memref<?xindex>
1222// CHECK:                 %[[VAL_121:.*]] = arith.cmpi ult, %[[VAL_120]], %[[VAL_119]] : index
1223// CHECK:                 %[[VAL_122:.*]] = select %[[VAL_121]], %[[VAL_120]], %[[VAL_119]] : index
1224// CHECK:                 %[[VAL_123:.*]] = arith.cmpi eq, %[[VAL_119]], %[[VAL_122]] : index
1225// CHECK:                 %[[VAL_124:.*]] = arith.cmpi eq, %[[VAL_120]], %[[VAL_122]] : index
1226// CHECK:                 %[[VAL_125:.*]] = arith.andi %[[VAL_123]], %[[VAL_124]] : i1
1227// CHECK:                 %[[VAL_126:.*]] = scf.if %[[VAL_125]] -> (f32) {
1228// CHECK:                   %[[VAL_127:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_116]]] : memref<?xf32>
1229// CHECK:                   %[[VAL_128:.*]] = memref.load %[[VAL_16]]{{\[}}%[[VAL_117]]] : memref<?xf32>
1230// CHECK:                   %[[VAL_129:.*]] = arith.mulf %[[VAL_127]], %[[VAL_128]] : f32
1231// CHECK:                   %[[VAL_130:.*]] = arith.mulf %[[VAL_129]], %[[VAL_37]] : f32
1232// CHECK:                   %[[VAL_131:.*]] = arith.mulf %[[VAL_130]], %[[VAL_25]] : f32
1233// CHECK:                   %[[VAL_132:.*]] = arith.addf %[[VAL_118]], %[[VAL_131]] : f32
1234// CHECK:                   scf.yield %[[VAL_132]] : f32
1235// CHECK:                 } else {
1236// CHECK:                   scf.yield %[[VAL_118]] : f32
1237// CHECK:                 }
1238// CHECK:                 %[[VAL_133:.*]] = arith.cmpi eq, %[[VAL_119]], %[[VAL_122]] : index
1239// CHECK:                 %[[VAL_134:.*]] = arith.addi %[[VAL_116]], %[[VAL_7]] : index
1240// CHECK:                 %[[VAL_135:.*]] = select %[[VAL_133]], %[[VAL_134]], %[[VAL_116]] : index
1241// CHECK:                 %[[VAL_136:.*]] = arith.cmpi eq, %[[VAL_120]], %[[VAL_122]] : index
1242// CHECK:                 %[[VAL_137:.*]] = arith.addi %[[VAL_117]], %[[VAL_7]] : index
1243// CHECK:                 %[[VAL_138:.*]] = select %[[VAL_136]], %[[VAL_137]], %[[VAL_117]] : index
1244// CHECK:                 scf.yield %[[VAL_135]], %[[VAL_138]], %[[VAL_139:.*]] : index, index, f32
1245// CHECK:               }
1246// CHECK:               %[[VAL_140:.*]] = scf.for %[[VAL_141:.*]] = %[[VAL_142:.*]]#2 to %[[VAL_46]] step %[[VAL_7]] iter_args(%[[VAL_143:.*]] = %[[VAL_144:.*]]#2) -> (f32) {
1247// CHECK:                 %[[VAL_145:.*]] = memref.load %[[VAL_19]]{{\[}}%[[VAL_141]]] : memref<?xf32>
1248// CHECK:                 %[[VAL_146:.*]] = arith.addf %[[VAL_143]], %[[VAL_145]] : f32
1249// CHECK:                 scf.yield %[[VAL_146]] : f32
1250// CHECK:               }
1251// CHECK:               memref.store %[[VAL_147:.*]], %[[VAL_24]]{{\[}}%[[VAL_33]]] : memref<?xf32>
1252// CHECK:             } else {
1253// CHECK:               scf.if %[[VAL_8]] {
1254// CHECK:                 %[[VAL_148:.*]] = memref.load %[[VAL_24]]{{\[}}%[[VAL_33]]] : memref<?xf32>
1255// CHECK:                 %[[VAL_149:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_33]]] : memref<?xindex>
1256// CHECK:                 %[[VAL_150:.*]] = arith.addi %[[VAL_33]], %[[VAL_7]] : index
1257// CHECK:                 %[[VAL_151:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_150]]] : memref<?xindex>
1258// CHECK:                 %[[VAL_152:.*]] = scf.for %[[VAL_153:.*]] = %[[VAL_149]] to %[[VAL_151]] step %[[VAL_7]] iter_args(%[[VAL_154:.*]] = %[[VAL_148]]) -> (f32) {
1259// CHECK:                   %[[VAL_155:.*]] = memref.load %[[VAL_19]]{{\[}}%[[VAL_153]]] : memref<?xf32>
1260// CHECK:                   %[[VAL_156:.*]] = arith.addf %[[VAL_154]], %[[VAL_155]] : f32
1261// CHECK:                   scf.yield %[[VAL_156]] : f32
1262// CHECK:                 }
1263// CHECK:                 memref.store %[[VAL_157:.*]], %[[VAL_24]]{{\[}}%[[VAL_33]]] : memref<?xf32>
1264// CHECK:               } else {
1265// CHECK:               }
1266// CHECK:             }
1267// CHECK:             %[[VAL_158:.*]] = arith.cmpi eq, %[[VAL_34]], %[[VAL_33]] : index
1268// CHECK:             %[[VAL_159:.*]] = arith.addi %[[VAL_32]], %[[VAL_7]] : index
1269// CHECK:             %[[VAL_160:.*]] = select %[[VAL_158]], %[[VAL_159]], %[[VAL_32]] : index
1270// CHECK:             %[[VAL_161:.*]] = arith.addi %[[VAL_33]], %[[VAL_7]] : index
1271// CHECK:             scf.yield %[[VAL_160]], %[[VAL_161]] : index, index
1272// CHECK:           }
1273// CHECK:           scf.for %[[VAL_162:.*]] = %[[VAL_163:.*]]#1 to %[[VAL_22]] step %[[VAL_7]] {
1274// CHECK:             %[[VAL_164:.*]] = memref.load %[[VAL_24]]{{\[}}%[[VAL_162]]] : memref<?xf32>
1275// CHECK:             %[[VAL_165:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_162]]] : memref<?xindex>
1276// CHECK:             %[[VAL_166:.*]] = arith.addi %[[VAL_162]], %[[VAL_7]] : index
1277// CHECK:             %[[VAL_167:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_166]]] : memref<?xindex>
1278// CHECK:             %[[VAL_168:.*]] = scf.for %[[VAL_169:.*]] = %[[VAL_165]] to %[[VAL_167]] step %[[VAL_7]] iter_args(%[[VAL_170:.*]] = %[[VAL_164]]) -> (f32) {
1279// CHECK:               %[[VAL_171:.*]] = memref.load %[[VAL_19]]{{\[}}%[[VAL_169]]] : memref<?xf32>
1280// CHECK:               %[[VAL_172:.*]] = arith.addf %[[VAL_170]], %[[VAL_171]] : f32
1281// CHECK:               scf.yield %[[VAL_172]] : f32
1282// CHECK:             }
1283// CHECK:             memref.store %[[VAL_173:.*]], %[[VAL_24]]{{\[}}%[[VAL_162]]] : memref<?xf32>
1284// CHECK:           }
1285// CHECK:           %[[VAL_174:.*]] = bufferization.to_tensor %[[VAL_24]] : memref<?xf32>
1286// CHECK:           return %[[VAL_174]] : tensor<?xf32>
1287// CHECK:         }
1288func @sum_kernel_with_inv(%arga: tensor<?x?xf32, #Tss>,
1289                          %argb: tensor<?x?xf32, #Tds>,
1290                          %argc: tensor<?x?xf32, #Tds>,
1291                          %argd: tensor<?xf32>,
1292                          %arge: tensor<f32>,
1293                          %argx: tensor<?xf32>) -> tensor<?xf32> {
1294  %0 = linalg.generic #trait_sum_kernel_with_inv
1295    ins(%arga, %argb, %argc, %argd, %arge : tensor<?x?xf32, #Tss>,
1296                                            tensor<?x?xf32, #Tds>,
1297                                            tensor<?x?xf32, #Tds>,
1298                                            tensor<?xf32>,
1299                                            tensor<f32>)
1300    outs(%argx: tensor<?xf32>) {
1301      ^bb(%a: f32, %b: f32, %c: f32, %d: f32, %e: f32, %x: f32):
1302        %0 = arith.mulf %a, %b : f32
1303        %1 = arith.mulf %0, %d : f32
1304        %2 = arith.mulf %1, %e : f32
1305        %3 = arith.addf %2, %c : f32
1306        %4 = arith.addf %x, %3 : f32
1307        linalg.yield %4 : f32
1308  } -> tensor<?xf32>
1309  return %0 : tensor<?xf32>
1310}
1311