1// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
2// RUN: mlir-opt %s -sparsification | FileCheck %s
3
4#Tdd = #sparse_tensor.encoding<{ dimLevelType = [ "dense",      "dense"      ] }>
5#Tds = #sparse_tensor.encoding<{ dimLevelType = [ "dense",      "compressed" ] }>
6#Tsd = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense"      ] }>
7#Tss = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>
8
9#trait2 = {
10  indexing_maps = [
11    affine_map<(i,j) -> (i,j)>,  // A
12    affine_map<(i,j) -> (i,j)>,  // B
13    affine_map<(i,j) -> (i,j)>   // X (out)
14  ],
15  iterator_types = ["parallel", "parallel"],
16  doc = "X(i,j) = A(i,j) OP B(i,j)"
17}
18
19// CHECK-LABEL:   func @add_dd(
20// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
21// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16xf32>,
22// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
23// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
24// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 16 : index
25// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
26// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 1 : index
27// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
28// CHECK-DAG:       %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
29// CHECK-DAG:       %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
30// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_10]] : memref<32x16xf32>)
31// CHECK:           scf.for %[[VAL_11:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] {
32// CHECK:             scf.for %[[VAL_12:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] {
33// CHECK:               %[[VAL_13:.*]] = arith.muli %[[VAL_11]], %[[VAL_4]] : index
34// CHECK:               %[[VAL_14:.*]] = arith.addi %[[VAL_13]], %[[VAL_12]] : index
35// CHECK:               %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_14]]] : memref<?xf32>
36// CHECK:               %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_11]], %[[VAL_12]]] : memref<32x16xf32>
37// CHECK:               %[[VAL_17:.*]] = arith.addf %[[VAL_15]], %[[VAL_16]] : f32
38// CHECK:               memref.store %[[VAL_17]], %[[VAL_10]]{{\[}}%[[VAL_11]], %[[VAL_12]]] : memref<32x16xf32>
39// CHECK:             }
40// CHECK:           }
41// CHECK:           %[[VAL_18:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<32x16xf32>
42// CHECK:           return %[[VAL_18]] : tensor<32x16xf32>
43// CHECK:         }
44func.func @add_dd(%arga: tensor<32x16xf32, #Tdd>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
45  %0 = linalg.generic #trait2
46     ins(%arga, %argb: tensor<32x16xf32, #Tdd>, tensor<32x16xf32>)
47    outs(%argx: tensor<32x16xf32>) {
48      ^bb(%a: f32, %b: f32, %x: f32):
49        %0 = arith.addf %a, %b : f32
50        linalg.yield %0 : f32
51  } -> tensor<32x16xf32>
52  return %0 : tensor<32x16xf32>
53}
54
55// CHECK-LABEL:   func @mul_dd(
56// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
57// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16xf32>,
58// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
59// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
60// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 16 : index
61// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
62// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 1 : index
63// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
64// CHECK-DAG:       %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
65// CHECK-DAG:       %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
66// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_10]] : memref<32x16xf32>)
67// CHECK:           scf.for %[[VAL_11:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] {
68// CHECK:             scf.for %[[VAL_12:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] {
69// CHECK:               %[[VAL_13:.*]] = arith.muli %[[VAL_11]], %[[VAL_4]] : index
70// CHECK:               %[[VAL_14:.*]] = arith.addi %[[VAL_13]], %[[VAL_12]] : index
71// CHECK:               %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_14]]] : memref<?xf32>
72// CHECK:               %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_11]], %[[VAL_12]]] : memref<32x16xf32>
73// CHECK:               %[[VAL_17:.*]] = arith.mulf %[[VAL_15]], %[[VAL_16]] : f32
74// CHECK:               memref.store %[[VAL_17]], %[[VAL_10]]{{\[}}%[[VAL_11]], %[[VAL_12]]] : memref<32x16xf32>
75// CHECK:             }
76// CHECK:           }
77// CHECK:           %[[VAL_18:.*]] = bufferization.to_tensor %[[VAL_10]] : memref<32x16xf32>
78// CHECK:           return %[[VAL_18]] : tensor<32x16xf32>
79// CHECK:         }
80func.func @mul_dd(%arga: tensor<32x16xf32, #Tdd>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
81  %0 = linalg.generic #trait2
82     ins(%arga, %argb: tensor<32x16xf32, #Tdd>, tensor<32x16xf32>)
83    outs(%argx: tensor<32x16xf32>) {
84      ^bb(%a: f32, %b: f32, %x: f32):
85        %0 = arith.mulf %a, %b : f32
86        linalg.yield %0 : f32
87  } -> tensor<32x16xf32>
88  return %0 : tensor<32x16xf32>
89}
90
91// CHECK-LABEL:   func @add_ds(
92// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
93// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16xf32>,
94// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
95// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
96// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 16 : index
97// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
98// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant true
99// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant 1 : index
100// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
101// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
102// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
103// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
104// CHECK-DAG:       %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
105// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_13]] : memref<32x16xf32>)
106// CHECK:           scf.for %[[VAL_14:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_7]] {
107// CHECK:             %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_14]]] : memref<?xindex>
108// CHECK:             %[[VAL_16:.*]] = arith.addi %[[VAL_14]], %[[VAL_7]] : index
109// CHECK:             %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref<?xindex>
110// CHECK:             %[[VAL_18:.*]]:2 = scf.while (%[[VAL_19:.*]] = %[[VAL_15]], %[[VAL_20:.*]] = %[[VAL_5]]) : (index, index) -> (index, index) {
111// CHECK:               %[[VAL_21:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_17]] : index
112// CHECK:               scf.condition(%[[VAL_21]]) %[[VAL_19]], %[[VAL_20]] : index, index
113// CHECK:             } do {
114// CHECK:             ^bb0(%[[VAL_22:.*]]: index, %[[VAL_23:.*]]: index):
115// CHECK:               %[[VAL_24:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_22]]] : memref<?xindex>
116// CHECK:               %[[VAL_25:.*]] = arith.cmpi eq, %[[VAL_24]], %[[VAL_23]] : index
117// CHECK:               scf.if %[[VAL_25]] {
118// CHECK:                 %[[VAL_26:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_22]]] : memref<?xf32>
119// CHECK:                 %[[VAL_27:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_14]], %[[VAL_23]]] : memref<32x16xf32>
120// CHECK:                 %[[VAL_28:.*]] = arith.addf %[[VAL_26]], %[[VAL_27]] : f32
121// CHECK:                 memref.store %[[VAL_28]], %[[VAL_13]]{{\[}}%[[VAL_14]], %[[VAL_23]]] : memref<32x16xf32>
122// CHECK:               } else {
123// CHECK:                 scf.if %[[VAL_6]] {
124// CHECK:                   %[[VAL_29:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_14]], %[[VAL_23]]] : memref<32x16xf32>
125// CHECK:                   memref.store %[[VAL_29]], %[[VAL_13]]{{\[}}%[[VAL_14]], %[[VAL_23]]] : memref<32x16xf32>
126// CHECK:                 } else {
127// CHECK:                 }
128// CHECK:               }
129// CHECK:               %[[VAL_30:.*]] = arith.cmpi eq, %[[VAL_24]], %[[VAL_23]] : index
130// CHECK:               %[[VAL_31:.*]] = arith.addi %[[VAL_22]], %[[VAL_7]] : index
131// CHECK:               %[[VAL_32:.*]] = arith.select %[[VAL_30]], %[[VAL_31]], %[[VAL_22]] : index
132// CHECK:               %[[VAL_33:.*]] = arith.addi %[[VAL_23]], %[[VAL_7]] : index
133// CHECK:               scf.yield %[[VAL_32]], %[[VAL_33]] : index, index
134// CHECK:             }
135// CHECK:             scf.for %[[VAL_34:.*]] = %[[VAL_35:.*]]#1 to %[[VAL_4]] step %[[VAL_7]] {
136// CHECK:               %[[VAL_36:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_14]], %[[VAL_34]]] : memref<32x16xf32>
137// CHECK:               memref.store %[[VAL_36]], %[[VAL_13]]{{\[}}%[[VAL_14]], %[[VAL_34]]] : memref<32x16xf32>
138// CHECK:             }
139// CHECK:           }
140// CHECK:           %[[VAL_37:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<32x16xf32>
141// CHECK:           return %[[VAL_37]] : tensor<32x16xf32>
142// CHECK:         }
143func.func @add_ds(%arga: tensor<32x16xf32, #Tds>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
144  %0 = linalg.generic #trait2
145     ins(%arga, %argb: tensor<32x16xf32, #Tds>, tensor<32x16xf32>)
146    outs(%argx: tensor<32x16xf32>) {
147      ^bb(%a: f32, %b: f32, %x: f32):
148        %0 = arith.addf %a, %b : f32
149        linalg.yield %0 : f32
150  } -> tensor<32x16xf32>
151  return %0 : tensor<32x16xf32>
152}
153
154// CHECK-LABEL:   func @mul_ds(
155// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
156// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16xf32>,
157// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
158// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
159// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
160// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
161// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
162// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
163// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
164// CHECK-DAG:       %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
165// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
166// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_11]] : memref<32x16xf32>)
167// CHECK:           scf.for %[[VAL_12:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
168// CHECK:             %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref<?xindex>
169// CHECK:             %[[VAL_14:.*]] = arith.addi %[[VAL_12]], %[[VAL_5]] : index
170// CHECK:             %[[VAL_15:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_14]]] : memref<?xindex>
171// CHECK:             scf.for %[[VAL_16:.*]] = %[[VAL_13]] to %[[VAL_15]] step %[[VAL_5]] {
172// CHECK:               %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref<?xindex>
173// CHECK:               %[[VAL_18:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref<?xf32>
174// CHECK:               %[[VAL_19:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_12]], %[[VAL_17]]] : memref<32x16xf32>
175// CHECK:               %[[VAL_20:.*]] = arith.mulf %[[VAL_18]], %[[VAL_19]] : f32
176// CHECK:               memref.store %[[VAL_20]], %[[VAL_11]]{{\[}}%[[VAL_12]], %[[VAL_17]]] : memref<32x16xf32>
177// CHECK:             }
178// CHECK:           }
179// CHECK:           %[[VAL_21:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32x16xf32>
180// CHECK:           return %[[VAL_21]] : tensor<32x16xf32>
181// CHECK:         }
182func.func @mul_ds(%arga: tensor<32x16xf32, #Tds>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
183  %0 = linalg.generic #trait2
184     ins(%arga, %argb: tensor<32x16xf32, #Tds>, tensor<32x16xf32>)
185    outs(%argx: tensor<32x16xf32>) {
186      ^bb(%a: f32, %b: f32, %x: f32):
187        %0 = arith.mulf %a, %b : f32
188        linalg.yield %0 : f32
189  } -> tensor<32x16xf32>
190  return %0 : tensor<32x16xf32>
191}
192
193// CHECK-LABEL:   func @add_sd(
194// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
195// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16xf32>,
196// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
197// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
198// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 16 : index
199// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant true
200// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 0 : index
201// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant 1 : index
202// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
203// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
204// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
205// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
206// CHECK-DAG:       %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
207// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_13]] : memref<32x16xf32>)
208// CHECK:           %[[VAL_14:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_6]]] : memref<?xindex>
209// CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_7]]] : memref<?xindex>
210// CHECK:           %[[VAL_16:.*]]:2 = scf.while (%[[VAL_17:.*]] = %[[VAL_14]], %[[VAL_18:.*]] = %[[VAL_6]]) : (index, index) -> (index, index) {
211// CHECK:             %[[VAL_19:.*]] = arith.cmpi ult, %[[VAL_17]], %[[VAL_15]] : index
212// CHECK:             scf.condition(%[[VAL_19]]) %[[VAL_17]], %[[VAL_18]] : index, index
213// CHECK:           } do {
214// CHECK:           ^bb0(%[[VAL_20:.*]]: index, %[[VAL_21:.*]]: index):
215// CHECK:             %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_20]]] : memref<?xindex>
216// CHECK:             %[[VAL_23:.*]] = arith.cmpi eq, %[[VAL_22]], %[[VAL_21]] : index
217// CHECK:             scf.if %[[VAL_23]] {
218// CHECK:               scf.for %[[VAL_24:.*]] = %[[VAL_6]] to %[[VAL_4]] step %[[VAL_7]] {
219// CHECK:                 %[[VAL_25:.*]] = arith.muli %[[VAL_20]], %[[VAL_4]] : index
220// CHECK:                 %[[VAL_26:.*]] = arith.addi %[[VAL_25]], %[[VAL_24]] : index
221// CHECK:                 %[[VAL_27:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_26]]] : memref<?xf32>
222// CHECK:                 %[[VAL_28:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_21]], %[[VAL_24]]] : memref<32x16xf32>
223// CHECK:                 %[[VAL_29:.*]] = arith.addf %[[VAL_27]], %[[VAL_28]] : f32
224// CHECK:                 memref.store %[[VAL_29]], %[[VAL_13]]{{\[}}%[[VAL_21]], %[[VAL_24]]] : memref<32x16xf32>
225// CHECK:               }
226// CHECK:             } else {
227// CHECK:               scf.if %[[VAL_5]] {
228// CHECK:                 scf.for %[[VAL_30:.*]] = %[[VAL_6]] to %[[VAL_4]] step %[[VAL_7]] {
229// CHECK:                   %[[VAL_31:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_21]], %[[VAL_30]]] : memref<32x16xf32>
230// CHECK:                   memref.store %[[VAL_31]], %[[VAL_13]]{{\[}}%[[VAL_21]], %[[VAL_30]]] : memref<32x16xf32>
231// CHECK:                 }
232// CHECK:               } else {
233// CHECK:               }
234// CHECK:             }
235// CHECK:             %[[VAL_32:.*]] = arith.cmpi eq, %[[VAL_22]], %[[VAL_21]] : index
236// CHECK:             %[[VAL_33:.*]] = arith.addi %[[VAL_20]], %[[VAL_7]] : index
237// CHECK:             %[[VAL_34:.*]] = arith.select %[[VAL_32]], %[[VAL_33]], %[[VAL_20]] : index
238// CHECK:             %[[VAL_35:.*]] = arith.addi %[[VAL_21]], %[[VAL_7]] : index
239// CHECK:             scf.yield %[[VAL_34]], %[[VAL_35]] : index, index
240// CHECK:           }
241// CHECK:           scf.for %[[VAL_36:.*]] = %[[VAL_37:.*]]#1 to %[[VAL_3]] step %[[VAL_7]] {
242// CHECK:             scf.for %[[VAL_38:.*]] = %[[VAL_6]] to %[[VAL_4]] step %[[VAL_7]] {
243// CHECK:               %[[VAL_39:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_36]], %[[VAL_38]]] : memref<32x16xf32>
244// CHECK:               memref.store %[[VAL_39]], %[[VAL_13]]{{\[}}%[[VAL_36]], %[[VAL_38]]] : memref<32x16xf32>
245// CHECK:             }
246// CHECK:           }
247// CHECK:           %[[VAL_40:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<32x16xf32>
248// CHECK:           return %[[VAL_40]] : tensor<32x16xf32>
249// CHECK:         }
250func.func @add_sd(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
251  %0 = linalg.generic #trait2
252     ins(%arga, %argb: tensor<32x16xf32, #Tsd>, tensor<32x16xf32>)
253    outs(%argx: tensor<32x16xf32>) {
254      ^bb(%a: f32, %b: f32, %x: f32):
255        %0 = arith.addf %a, %b : f32
256        linalg.yield %0 : f32
257  } -> tensor<32x16xf32>
258  return %0 : tensor<32x16xf32>
259}
260
261// CHECK-LABEL:   func @mul_sd(
262// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
263// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16xf32>,
264// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
265// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 16 : index
266// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
267// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
268// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
269// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
270// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
271// CHECK-DAG:       %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
272// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
273// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_11]] : memref<32x16xf32>)
274// CHECK:           %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
275// CHECK:           %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
276// CHECK:           scf.for %[[VAL_14:.*]] = %[[VAL_12]] to %[[VAL_13]] step %[[VAL_5]] {
277// CHECK:             %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_14]]] : memref<?xindex>
278// CHECK:             scf.for %[[VAL_16:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
279// CHECK:               %[[VAL_17:.*]] = arith.muli %[[VAL_14]], %[[VAL_3]] : index
280// CHECK:               %[[VAL_18:.*]] = arith.addi %[[VAL_17]], %[[VAL_16]] : index
281// CHECK:               %[[VAL_19:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xf32>
282// CHECK:               %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_15]], %[[VAL_16]]] : memref<32x16xf32>
283// CHECK:               %[[VAL_21:.*]] = arith.mulf %[[VAL_19]], %[[VAL_20]] : f32
284// CHECK:               memref.store %[[VAL_21]], %[[VAL_11]]{{\[}}%[[VAL_15]], %[[VAL_16]]] : memref<32x16xf32>
285// CHECK:             }
286// CHECK:           }
287// CHECK:           %[[VAL_22:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32x16xf32>
288// CHECK:           return %[[VAL_22]] : tensor<32x16xf32>
289// CHECK:         }
290func.func @mul_sd(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
291  %0 = linalg.generic #trait2
292     ins(%arga, %argb: tensor<32x16xf32, #Tsd>, tensor<32x16xf32>)
293    outs(%argx: tensor<32x16xf32>) {
294      ^bb(%a: f32, %b: f32, %x: f32):
295        %0 = arith.mulf %a, %b : f32
296        linalg.yield %0 : f32
297  } -> tensor<32x16xf32>
298  return %0 : tensor<32x16xf32>
299}
300
301// CHECK-LABEL:   func @add_ss(
302// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
303// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16xf32>,
304// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
305// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
306// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 16 : index
307// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant true
308// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 0 : index
309// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant 1 : index
310// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
311// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
312// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
313// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
314// CHECK-DAG:       %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
315// CHECK-DAG:       %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
316// CHECK-DAG:       %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
317// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_15]] : memref<32x16xf32>)
318// CHECK:           %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_6]]] : memref<?xindex>
319// CHECK:           %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_7]]] : memref<?xindex>
320// CHECK:           %[[VAL_18:.*]]:2 = scf.while (%[[VAL_19:.*]] = %[[VAL_16]], %[[VAL_20:.*]] = %[[VAL_6]]) : (index, index) -> (index, index) {
321// CHECK:             %[[VAL_21:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_17]] : index
322// CHECK:             scf.condition(%[[VAL_21]]) %[[VAL_19]], %[[VAL_20]] : index, index
323// CHECK:           } do {
324// CHECK:           ^bb0(%[[VAL_22:.*]]: index, %[[VAL_23:.*]]: index):
325// CHECK:             %[[VAL_24:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_22]]] : memref<?xindex>
326// CHECK:             %[[VAL_25:.*]] = arith.cmpi eq, %[[VAL_24]], %[[VAL_23]] : index
327// CHECK:             scf.if %[[VAL_25]] {
328// CHECK:               %[[VAL_26:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_22]]] : memref<?xindex>
329// CHECK:               %[[VAL_27:.*]] = arith.addi %[[VAL_22]], %[[VAL_7]] : index
330// CHECK:               %[[VAL_28:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_27]]] : memref<?xindex>
331// CHECK:               %[[VAL_29:.*]]:2 = scf.while (%[[VAL_30:.*]] = %[[VAL_26]], %[[VAL_31:.*]] = %[[VAL_6]]) : (index, index) -> (index, index) {
332// CHECK:                 %[[VAL_32:.*]] = arith.cmpi ult, %[[VAL_30]], %[[VAL_28]] : index
333// CHECK:                 scf.condition(%[[VAL_32]]) %[[VAL_30]], %[[VAL_31]] : index, index
334// CHECK:               } do {
335// CHECK:               ^bb0(%[[VAL_33:.*]]: index, %[[VAL_34:.*]]: index):
336// CHECK:                 %[[VAL_35:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_33]]] : memref<?xindex>
337// CHECK:                 %[[VAL_36:.*]] = arith.cmpi eq, %[[VAL_35]], %[[VAL_34]] : index
338// CHECK:                 scf.if %[[VAL_36]] {
339// CHECK:                   %[[VAL_37:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_33]]] : memref<?xf32>
340// CHECK:                   %[[VAL_38:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_23]], %[[VAL_34]]] : memref<32x16xf32>
341// CHECK:                   %[[VAL_39:.*]] = arith.addf %[[VAL_37]], %[[VAL_38]] : f32
342// CHECK:                   memref.store %[[VAL_39]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_34]]] : memref<32x16xf32>
343// CHECK:                 } else {
344// CHECK:                   scf.if %[[VAL_5]] {
345// CHECK:                     %[[VAL_40:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_23]], %[[VAL_34]]] : memref<32x16xf32>
346// CHECK:                     memref.store %[[VAL_40]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_34]]] : memref<32x16xf32>
347// CHECK:                   } else {
348// CHECK:                   }
349// CHECK:                 }
350// CHECK:                 %[[VAL_41:.*]] = arith.cmpi eq, %[[VAL_35]], %[[VAL_34]] : index
351// CHECK:                 %[[VAL_42:.*]] = arith.addi %[[VAL_33]], %[[VAL_7]] : index
352// CHECK:                 %[[VAL_43:.*]] = arith.select %[[VAL_41]], %[[VAL_42]], %[[VAL_33]] : index
353// CHECK:                 %[[VAL_44:.*]] = arith.addi %[[VAL_34]], %[[VAL_7]] : index
354// CHECK:                 scf.yield %[[VAL_43]], %[[VAL_44]] : index, index
355// CHECK:               }
356// CHECK:               scf.for %[[VAL_45:.*]] = %[[VAL_46:.*]]#1 to %[[VAL_4]] step %[[VAL_7]] {
357// CHECK:                 %[[VAL_47:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_23]], %[[VAL_45]]] : memref<32x16xf32>
358// CHECK:                 memref.store %[[VAL_47]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_45]]] : memref<32x16xf32>
359// CHECK:               }
360// CHECK:             } else {
361// CHECK:               scf.if %[[VAL_5]] {
362// CHECK:                 scf.for %[[VAL_48:.*]] = %[[VAL_6]] to %[[VAL_4]] step %[[VAL_7]] {
363// CHECK:                   %[[VAL_49:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_23]], %[[VAL_48]]] : memref<32x16xf32>
364// CHECK:                   memref.store %[[VAL_49]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_48]]] : memref<32x16xf32>
365// CHECK:                 }
366// CHECK:               } else {
367// CHECK:               }
368// CHECK:             }
369// CHECK:             %[[VAL_50:.*]] = arith.cmpi eq, %[[VAL_24]], %[[VAL_23]] : index
370// CHECK:             %[[VAL_51:.*]] = arith.addi %[[VAL_22]], %[[VAL_7]] : index
371// CHECK:             %[[VAL_52:.*]] = arith.select %[[VAL_50]], %[[VAL_51]], %[[VAL_22]] : index
372// CHECK:             %[[VAL_53:.*]] = arith.addi %[[VAL_23]], %[[VAL_7]] : index
373// CHECK:             scf.yield %[[VAL_52]], %[[VAL_53]] : index, index
374// CHECK:           }
375// CHECK:           scf.for %[[VAL_54:.*]] = %[[VAL_55:.*]]#1 to %[[VAL_3]] step %[[VAL_7]] {
376// CHECK:             scf.for %[[VAL_56:.*]] = %[[VAL_6]] to %[[VAL_4]] step %[[VAL_7]] {
377// CHECK:               %[[VAL_57:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_54]], %[[VAL_56]]] : memref<32x16xf32>
378// CHECK:               memref.store %[[VAL_57]], %[[VAL_15]]{{\[}}%[[VAL_54]], %[[VAL_56]]] : memref<32x16xf32>
379// CHECK:             }
380// CHECK:           }
381// CHECK:           %[[VAL_58:.*]] = bufferization.to_tensor %[[VAL_15]] : memref<32x16xf32>
382// CHECK:           return %[[VAL_58]] : tensor<32x16xf32>
383// CHECK:         }
384func.func @add_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
385  %0 = linalg.generic #trait2
386     ins(%arga, %argb: tensor<32x16xf32, #Tss>, tensor<32x16xf32>)
387    outs(%argx: tensor<32x16xf32>) {
388      ^bb(%a: f32, %b: f32, %x: f32):
389        %0 = arith.addf %a, %b : f32
390        linalg.yield %0 : f32
391  } -> tensor<32x16xf32>
392  return %0 : tensor<32x16xf32>
393}
394
395// CHECK-LABEL:   func @mul_ss(
396// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
397// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16xf32>,
398// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
399// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 0 : index
400// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 1 : index
401// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
402// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
403// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
404// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
405// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
406// CHECK-DAG:       %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
407// CHECK-DAG:       %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
408// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_12]] : memref<32x16xf32>)
409// CHECK:           %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
410// CHECK:           %[[VAL_14:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
411// CHECK:           scf.for %[[VAL_15:.*]] = %[[VAL_13]] to %[[VAL_14]] step %[[VAL_4]] {
412// CHECK:             %[[VAL_16:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_15]]] : memref<?xindex>
413// CHECK:             %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_15]]] : memref<?xindex>
414// CHECK:             %[[VAL_18:.*]] = arith.addi %[[VAL_15]], %[[VAL_4]] : index
415// CHECK:             %[[VAL_19:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_18]]] : memref<?xindex>
416// CHECK:             scf.for %[[VAL_20:.*]] = %[[VAL_17]] to %[[VAL_19]] step %[[VAL_4]] {
417// CHECK:               %[[VAL_21:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_20]]] : memref<?xindex>
418// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_20]]] : memref<?xf32>
419// CHECK:               %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_16]], %[[VAL_21]]] : memref<32x16xf32>
420// CHECK:               %[[VAL_24:.*]] = arith.mulf %[[VAL_22]], %[[VAL_23]] : f32
421// CHECK:               memref.store %[[VAL_24]], %[[VAL_12]]{{\[}}%[[VAL_16]], %[[VAL_21]]] : memref<32x16xf32>
422// CHECK:             }
423// CHECK:           }
424// CHECK:           %[[VAL_25:.*]] = bufferization.to_tensor %[[VAL_12]] : memref<32x16xf32>
425// CHECK:           return %[[VAL_25]] : tensor<32x16xf32>
426// CHECK:         }
427func.func @mul_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
428  %0 = linalg.generic #trait2
429     ins(%arga, %argb: tensor<32x16xf32, #Tss>, tensor<32x16xf32>)
430    outs(%argx: tensor<32x16xf32>) {
431      ^bb(%a: f32, %b: f32, %x: f32):
432        %0 = arith.mulf %a, %b : f32
433        linalg.yield %0 : f32
434  } -> tensor<32x16xf32>
435  return %0 : tensor<32x16xf32>
436}
437
438// CHECK-LABEL:   func @add_ss_ss(
439// CHECK-SAME:      %[[VAL_0:.*0]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
440// CHECK-SAME:      %[[VAL_1:.*1]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
441// CHECK-SAME:      %[[VAL_2:.*2]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
442// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 0 : index
443// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 1 : index
444// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
445// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
446// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
447// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
448// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
449// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
450// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
451// CHECK-DAG:       %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
452// CHECK-DAG:       %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
453// CHECK-DAG:       %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
454// CHECK-DAG:       %[[VAL_16:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
455// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_16]] : memref<32x16xf32>)
456// CHECK:           %[[VAL_17:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
457// CHECK:           %[[VAL_18:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
458// CHECK:           %[[VAL_19:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_3]]] : memref<?xindex>
459// CHECK:           %[[VAL_20:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_4]]] : memref<?xindex>
460// CHECK:           %[[VAL_21:.*]]:2 = scf.while (%[[VAL_22:.*]] = %[[VAL_17]], %[[VAL_23:.*]] = %[[VAL_19]]) : (index, index) -> (index, index) {
461// CHECK:             %[[VAL_24:.*]] = arith.cmpi ult, %[[VAL_22]], %[[VAL_18]] : index
462// CHECK:             %[[VAL_25:.*]] = arith.cmpi ult, %[[VAL_23]], %[[VAL_20]] : index
463// CHECK:             %[[VAL_26:.*]] = arith.andi %[[VAL_24]], %[[VAL_25]] : i1
464// CHECK:             scf.condition(%[[VAL_26]]) %[[VAL_22]], %[[VAL_23]] : index, index
465// CHECK:           } do {
466// CHECK:           ^bb0(%[[VAL_27:.*]]: index, %[[VAL_28:.*]]: index):
467// CHECK:             %[[VAL_29:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_27]]] : memref<?xindex>
468// CHECK:             %[[VAL_30:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_28]]] : memref<?xindex>
469// CHECK:             %[[VAL_31:.*]] = arith.cmpi ult, %[[VAL_30]], %[[VAL_29]] : index
470// CHECK:             %[[VAL_32:.*]] = arith.select %[[VAL_31]], %[[VAL_30]], %[[VAL_29]] : index
471// CHECK:             %[[VAL_33:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_32]] : index
472// CHECK:             %[[VAL_34:.*]] = arith.cmpi eq, %[[VAL_30]], %[[VAL_32]] : index
473// CHECK:             %[[VAL_35:.*]] = arith.andi %[[VAL_33]], %[[VAL_34]] : i1
474// CHECK:             scf.if %[[VAL_35]] {
475// CHECK:               %[[VAL_36:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_27]]] : memref<?xindex>
476// CHECK:               %[[VAL_37:.*]] = arith.addi %[[VAL_27]], %[[VAL_4]] : index
477// CHECK:               %[[VAL_38:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_37]]] : memref<?xindex>
478// CHECK:               %[[VAL_39:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<?xindex>
479// CHECK:               %[[VAL_40:.*]] = arith.addi %[[VAL_28]], %[[VAL_4]] : index
480// CHECK:               %[[VAL_41:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_40]]] : memref<?xindex>
481// CHECK:               %[[VAL_42:.*]]:2 = scf.while (%[[VAL_43:.*]] = %[[VAL_36]], %[[VAL_44:.*]] = %[[VAL_39]]) : (index, index) -> (index, index) {
482// CHECK:                 %[[VAL_45:.*]] = arith.cmpi ult, %[[VAL_43]], %[[VAL_38]] : index
483// CHECK:                 %[[VAL_46:.*]] = arith.cmpi ult, %[[VAL_44]], %[[VAL_41]] : index
484// CHECK:                 %[[VAL_47:.*]] = arith.andi %[[VAL_45]], %[[VAL_46]] : i1
485// CHECK:                 scf.condition(%[[VAL_47]]) %[[VAL_43]], %[[VAL_44]] : index, index
486// CHECK:               } do {
487// CHECK:               ^bb0(%[[VAL_48:.*]]: index, %[[VAL_49:.*]]: index):
488// CHECK:                 %[[VAL_50:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_48]]] : memref<?xindex>
489// CHECK:                 %[[VAL_51:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_49]]] : memref<?xindex>
490// CHECK:                 %[[VAL_52:.*]] = arith.cmpi ult, %[[VAL_51]], %[[VAL_50]] : index
491// CHECK:                 %[[VAL_53:.*]] = arith.select %[[VAL_52]], %[[VAL_51]], %[[VAL_50]] : index
492// CHECK:                 %[[VAL_54:.*]] = arith.cmpi eq, %[[VAL_50]], %[[VAL_53]] : index
493// CHECK:                 %[[VAL_55:.*]] = arith.cmpi eq, %[[VAL_51]], %[[VAL_53]] : index
494// CHECK:                 %[[VAL_56:.*]] = arith.andi %[[VAL_54]], %[[VAL_55]] : i1
495// CHECK:                 scf.if %[[VAL_56]] {
496// CHECK:                   %[[VAL_57:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_48]]] : memref<?xf32>
497// CHECK:                   %[[VAL_58:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_49]]] : memref<?xf32>
498// CHECK:                   %[[VAL_59:.*]] = arith.addf %[[VAL_57]], %[[VAL_58]] : f32
499// CHECK:                   memref.store %[[VAL_59]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_53]]] : memref<32x16xf32>
500// CHECK:                 } else {
501// CHECK:                   %[[VAL_60:.*]] = arith.cmpi eq, %[[VAL_50]], %[[VAL_53]] : index
502// CHECK:                   scf.if %[[VAL_60]] {
503// CHECK:                     %[[VAL_61:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_48]]] : memref<?xf32>
504// CHECK:                     memref.store %[[VAL_61]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_53]]] : memref<32x16xf32>
505// CHECK:                   } else {
506// CHECK:                     %[[VAL_62:.*]] = arith.cmpi eq, %[[VAL_51]], %[[VAL_53]] : index
507// CHECK:                     scf.if %[[VAL_62]] {
508// CHECK:                       %[[VAL_63:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_49]]] : memref<?xf32>
509// CHECK:                       memref.store %[[VAL_63]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_53]]] : memref<32x16xf32>
510// CHECK:                     } else {
511// CHECK:                     }
512// CHECK:                   }
513// CHECK:                 }
514// CHECK:                 %[[VAL_64:.*]] = arith.cmpi eq, %[[VAL_50]], %[[VAL_53]] : index
515// CHECK:                 %[[VAL_65:.*]] = arith.addi %[[VAL_48]], %[[VAL_4]] : index
516// CHECK:                 %[[VAL_66:.*]] = arith.select %[[VAL_64]], %[[VAL_65]], %[[VAL_48]] : index
517// CHECK:                 %[[VAL_67:.*]] = arith.cmpi eq, %[[VAL_51]], %[[VAL_53]] : index
518// CHECK:                 %[[VAL_68:.*]] = arith.addi %[[VAL_49]], %[[VAL_4]] : index
519// CHECK:                 %[[VAL_69:.*]] = arith.select %[[VAL_67]], %[[VAL_68]], %[[VAL_49]] : index
520// CHECK:                 scf.yield %[[VAL_66]], %[[VAL_69]] : index, index
521// CHECK:               }
522// CHECK:               scf.for %[[VAL_70:.*]] = %[[VAL_71:.*]]#0 to %[[VAL_38]] step %[[VAL_4]] {
523// CHECK:                 %[[VAL_72:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_70]]] : memref<?xindex>
524// CHECK:                 %[[VAL_73:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_70]]] : memref<?xf32>
525// CHECK:                 memref.store %[[VAL_73]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_72]]] : memref<32x16xf32>
526// CHECK:               }
527// CHECK:               scf.for %[[VAL_74:.*]] = %[[VAL_75:.*]]#1 to %[[VAL_41]] step %[[VAL_4]] {
528// CHECK:                 %[[VAL_76:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_74]]] : memref<?xindex>
529// CHECK:                 %[[VAL_77:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_74]]] : memref<?xf32>
530// CHECK:                 memref.store %[[VAL_77]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_76]]] : memref<32x16xf32>
531// CHECK:               }
532// CHECK:             } else {
533// CHECK:               %[[VAL_78:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_32]] : index
534// CHECK:               scf.if %[[VAL_78]] {
535// CHECK:                 %[[VAL_79:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_27]]] : memref<?xindex>
536// CHECK:                 %[[VAL_80:.*]] = arith.addi %[[VAL_27]], %[[VAL_4]] : index
537// CHECK:                 %[[VAL_81:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_80]]] : memref<?xindex>
538// CHECK:                 scf.for %[[VAL_82:.*]] = %[[VAL_79]] to %[[VAL_81]] step %[[VAL_4]] {
539// CHECK:                   %[[VAL_83:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_82]]] : memref<?xindex>
540// CHECK:                   %[[VAL_84:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_82]]] : memref<?xf32>
541// CHECK:                   memref.store %[[VAL_84]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_83]]] : memref<32x16xf32>
542// CHECK:                 }
543// CHECK:               } else {
544// CHECK:                 %[[VAL_85:.*]] = arith.cmpi eq, %[[VAL_30]], %[[VAL_32]] : index
545// CHECK:                 scf.if %[[VAL_85]] {
546// CHECK:                   %[[VAL_86:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<?xindex>
547// CHECK:                   %[[VAL_87:.*]] = arith.addi %[[VAL_28]], %[[VAL_4]] : index
548// CHECK:                   %[[VAL_88:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_87]]] : memref<?xindex>
549// CHECK:                   scf.for %[[VAL_89:.*]] = %[[VAL_86]] to %[[VAL_88]] step %[[VAL_4]] {
550// CHECK:                     %[[VAL_90:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_89]]] : memref<?xindex>
551// CHECK:                     %[[VAL_91:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_89]]] : memref<?xf32>
552// CHECK:                     memref.store %[[VAL_91]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_90]]] : memref<32x16xf32>
553// CHECK:                   }
554// CHECK:                 } else {
555// CHECK:                 }
556// CHECK:               }
557// CHECK:             }
558// CHECK:             %[[VAL_92:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_32]] : index
559// CHECK:             %[[VAL_93:.*]] = arith.addi %[[VAL_27]], %[[VAL_4]] : index
560// CHECK:             %[[VAL_94:.*]] = arith.select %[[VAL_92]], %[[VAL_93]], %[[VAL_27]] : index
561// CHECK:             %[[VAL_95:.*]] = arith.cmpi eq, %[[VAL_30]], %[[VAL_32]] : index
562// CHECK:             %[[VAL_96:.*]] = arith.addi %[[VAL_28]], %[[VAL_4]] : index
563// CHECK:             %[[VAL_97:.*]] = arith.select %[[VAL_95]], %[[VAL_96]], %[[VAL_28]] : index
564// CHECK:             scf.yield %[[VAL_94]], %[[VAL_97]] : index, index
565// CHECK:           }
566// CHECK:           scf.for %[[VAL_98:.*]] = %[[VAL_99:.*]]#0 to %[[VAL_18]] step %[[VAL_4]] {
567// CHECK:             %[[VAL_100:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_98]]] : memref<?xindex>
568// CHECK:             %[[VAL_101:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_98]]] : memref<?xindex>
569// CHECK:             %[[VAL_102:.*]] = arith.addi %[[VAL_98]], %[[VAL_4]] : index
570// CHECK:             %[[VAL_103:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_102]]] : memref<?xindex>
571// CHECK:             scf.for %[[VAL_104:.*]] = %[[VAL_101]] to %[[VAL_103]] step %[[VAL_4]] {
572// CHECK:               %[[VAL_105:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_104]]] : memref<?xindex>
573// CHECK:               %[[VAL_106:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_104]]] : memref<?xf32>
574// CHECK:               memref.store %[[VAL_106]], %[[VAL_16]]{{\[}}%[[VAL_100]], %[[VAL_105]]] : memref<32x16xf32>
575// CHECK:             }
576// CHECK:           }
577// CHECK:           scf.for %[[VAL_107:.*]] = %[[VAL_108:.*]]#1 to %[[VAL_20]] step %[[VAL_4]] {
578// CHECK:             %[[VAL_109:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_107]]] : memref<?xindex>
579// CHECK:             %[[VAL_110:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_107]]] : memref<?xindex>
580// CHECK:             %[[VAL_111:.*]] = arith.addi %[[VAL_107]], %[[VAL_4]] : index
581// CHECK:             %[[VAL_112:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_111]]] : memref<?xindex>
582// CHECK:             scf.for %[[VAL_113:.*]] = %[[VAL_110]] to %[[VAL_112]] step %[[VAL_4]] {
583// CHECK:               %[[VAL_114:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_113]]] : memref<?xindex>
584// CHECK:               %[[VAL_115:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_113]]] : memref<?xf32>
585// CHECK:               memref.store %[[VAL_115]], %[[VAL_16]]{{\[}}%[[VAL_109]], %[[VAL_114]]] : memref<32x16xf32>
586// CHECK:             }
587// CHECK:           }
588// CHECK:           %[[VAL_116:.*]] = bufferization.to_tensor %[[VAL_16]] : memref<32x16xf32>
589// CHECK:           return %[[VAL_116]] : tensor<32x16xf32>
590// CHECK:         }
591func.func @add_ss_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32, #Tss>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
592  %0 = linalg.generic #trait2
593     ins(%arga, %argb: tensor<32x16xf32, #Tss>, tensor<32x16xf32, #Tss>)
594    outs(%argx: tensor<32x16xf32>) {
595      ^bb(%a: f32, %b: f32, %x: f32):
596        %0 = arith.addf %a, %b : f32
597        linalg.yield %0 : f32
598  } -> tensor<32x16xf32>
599  return %0 : tensor<32x16xf32>
600}
601
602// CHECK-LABEL:   func @mul_ss_ss(
603// CHECK-SAME:      %[[VAL_0:.*0]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
604// CHECK-SAME:      %[[VAL_1:.*1]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
605// CHECK-SAME:      %[[VAL_2:.*2]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
606// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 0 : index
607// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 1 : index
608// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
609// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
610// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
611// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
612// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
613// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
614// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
615// CHECK-DAG:       %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
616// CHECK-DAG:       %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
617// CHECK-DAG:       %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
618// CHECK-DAG:       %[[VAL_16:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
619// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_16]] : memref<32x16xf32>)
620// CHECK:           %[[VAL_17:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
621// CHECK:           %[[VAL_18:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
622// CHECK:           %[[VAL_19:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_3]]] : memref<?xindex>
623// CHECK:           %[[VAL_20:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_4]]] : memref<?xindex>
624// CHECK:           %[[VAL_21:.*]]:2 = scf.while (%[[VAL_22:.*]] = %[[VAL_17]], %[[VAL_23:.*]] = %[[VAL_19]]) : (index, index) -> (index, index) {
625// CHECK:             %[[VAL_24:.*]] = arith.cmpi ult, %[[VAL_22]], %[[VAL_18]] : index
626// CHECK:             %[[VAL_25:.*]] = arith.cmpi ult, %[[VAL_23]], %[[VAL_20]] : index
627// CHECK:             %[[VAL_26:.*]] = arith.andi %[[VAL_24]], %[[VAL_25]] : i1
628// CHECK:             scf.condition(%[[VAL_26]]) %[[VAL_22]], %[[VAL_23]] : index, index
629// CHECK:           } do {
630// CHECK:           ^bb0(%[[VAL_27:.*]]: index, %[[VAL_28:.*]]: index):
631// CHECK:             %[[VAL_29:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_27]]] : memref<?xindex>
632// CHECK:             %[[VAL_30:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_28]]] : memref<?xindex>
633// CHECK:             %[[VAL_31:.*]] = arith.cmpi ult, %[[VAL_30]], %[[VAL_29]] : index
634// CHECK:             %[[VAL_32:.*]] = arith.select %[[VAL_31]], %[[VAL_30]], %[[VAL_29]] : index
635// CHECK:             %[[VAL_33:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_32]] : index
636// CHECK:             %[[VAL_34:.*]] = arith.cmpi eq, %[[VAL_30]], %[[VAL_32]] : index
637// CHECK:             %[[VAL_35:.*]] = arith.andi %[[VAL_33]], %[[VAL_34]] : i1
638// CHECK:             scf.if %[[VAL_35]] {
639// CHECK:               %[[VAL_36:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_27]]] : memref<?xindex>
640// CHECK:               %[[VAL_37:.*]] = arith.addi %[[VAL_27]], %[[VAL_4]] : index
641// CHECK:               %[[VAL_38:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_37]]] : memref<?xindex>
642// CHECK:               %[[VAL_39:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_28]]] : memref<?xindex>
643// CHECK:               %[[VAL_40:.*]] = arith.addi %[[VAL_28]], %[[VAL_4]] : index
644// CHECK:               %[[VAL_41:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_40]]] : memref<?xindex>
645// CHECK:               %[[VAL_42:.*]]:2 = scf.while (%[[VAL_43:.*]] = %[[VAL_36]], %[[VAL_44:.*]] = %[[VAL_39]]) : (index, index) -> (index, index) {
646// CHECK:                 %[[VAL_45:.*]] = arith.cmpi ult, %[[VAL_43]], %[[VAL_38]] : index
647// CHECK:                 %[[VAL_46:.*]] = arith.cmpi ult, %[[VAL_44]], %[[VAL_41]] : index
648// CHECK:                 %[[VAL_47:.*]] = arith.andi %[[VAL_45]], %[[VAL_46]] : i1
649// CHECK:                 scf.condition(%[[VAL_47]]) %[[VAL_43]], %[[VAL_44]] : index, index
650// CHECK:               } do {
651// CHECK:               ^bb0(%[[VAL_48:.*]]: index, %[[VAL_49:.*]]: index):
652// CHECK:                 %[[VAL_50:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_48]]] : memref<?xindex>
653// CHECK:                 %[[VAL_51:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_49]]] : memref<?xindex>
654// CHECK:                 %[[VAL_52:.*]] = arith.cmpi ult, %[[VAL_51]], %[[VAL_50]] : index
655// CHECK:                 %[[VAL_53:.*]] = arith.select %[[VAL_52]], %[[VAL_51]], %[[VAL_50]] : index
656// CHECK:                 %[[VAL_54:.*]] = arith.cmpi eq, %[[VAL_50]], %[[VAL_53]] : index
657// CHECK:                 %[[VAL_55:.*]] = arith.cmpi eq, %[[VAL_51]], %[[VAL_53]] : index
658// CHECK:                 %[[VAL_56:.*]] = arith.andi %[[VAL_54]], %[[VAL_55]] : i1
659// CHECK:                 scf.if %[[VAL_56]] {
660// CHECK:                   %[[VAL_57:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_48]]] : memref<?xf32>
661// CHECK:                   %[[VAL_58:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_49]]] : memref<?xf32>
662// CHECK:                   %[[VAL_59:.*]] = arith.mulf %[[VAL_57]], %[[VAL_58]] : f32
663// CHECK:                   memref.store %[[VAL_59]], %[[VAL_16]]{{\[}}%[[VAL_32]], %[[VAL_53]]] : memref<32x16xf32>
664// CHECK:                 } else {
665// CHECK:                 }
666// CHECK:                 %[[VAL_60:.*]] = arith.cmpi eq, %[[VAL_50]], %[[VAL_53]] : index
667// CHECK:                 %[[VAL_61:.*]] = arith.addi %[[VAL_48]], %[[VAL_4]] : index
668// CHECK:                 %[[VAL_62:.*]] = arith.select %[[VAL_60]], %[[VAL_61]], %[[VAL_48]] : index
669// CHECK:                 %[[VAL_63:.*]] = arith.cmpi eq, %[[VAL_51]], %[[VAL_53]] : index
670// CHECK:                 %[[VAL_64:.*]] = arith.addi %[[VAL_49]], %[[VAL_4]] : index
671// CHECK:                 %[[VAL_65:.*]] = arith.select %[[VAL_63]], %[[VAL_64]], %[[VAL_49]] : index
672// CHECK:                 scf.yield %[[VAL_62]], %[[VAL_65]] : index, index
673// CHECK:               }
674// CHECK:             } else {
675// CHECK:             }
676// CHECK:             %[[VAL_66:.*]] = arith.cmpi eq, %[[VAL_29]], %[[VAL_32]] : index
677// CHECK:             %[[VAL_67:.*]] = arith.addi %[[VAL_27]], %[[VAL_4]] : index
678// CHECK:             %[[VAL_68:.*]] = arith.select %[[VAL_66]], %[[VAL_67]], %[[VAL_27]] : index
679// CHECK:             %[[VAL_69:.*]] = arith.cmpi eq, %[[VAL_30]], %[[VAL_32]] : index
680// CHECK:             %[[VAL_70:.*]] = arith.addi %[[VAL_28]], %[[VAL_4]] : index
681// CHECK:             %[[VAL_71:.*]] = arith.select %[[VAL_69]], %[[VAL_70]], %[[VAL_28]] : index
682// CHECK:             scf.yield %[[VAL_68]], %[[VAL_71]] : index, index
683// CHECK:           }
684// CHECK:           %[[VAL_72:.*]] = bufferization.to_tensor %[[VAL_16]] : memref<32x16xf32>
685// CHECK:           return %[[VAL_72]] : tensor<32x16xf32>
686// CHECK:         }
687func.func @mul_ss_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32, #Tss>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
688  %0 = linalg.generic #trait2
689     ins(%arga, %argb: tensor<32x16xf32, #Tss>, tensor<32x16xf32, #Tss>)
690    outs(%argx: tensor<32x16xf32>) {
691      ^bb(%a: f32, %b: f32, %x: f32):
692        %0 = arith.mulf %a, %b : f32
693        linalg.yield %0 : f32
694  } -> tensor<32x16xf32>
695  return %0 : tensor<32x16xf32>
696}
697
698// CHECK-LABEL:   func @add_sd_ds(
699// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
700// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
701// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
702// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
703// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 16 : index
704// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
705// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant true
706// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant 1 : index
707// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
708// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
709// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
710// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
711// CHECK-DAG:       %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
712// CHECK-DAG:       %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
713// CHECK-DAG:       %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
714// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_15]] : memref<32x16xf32>)
715// CHECK:           %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_5]]] : memref<?xindex>
716// CHECK:           %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_7]]] : memref<?xindex>
717// CHECK:           %[[VAL_18:.*]]:2 = scf.while (%[[VAL_19:.*]] = %[[VAL_16]], %[[VAL_20:.*]] = %[[VAL_5]]) : (index, index) -> (index, index) {
718// CHECK:             %[[VAL_21:.*]] = arith.cmpi ult, %[[VAL_19]], %[[VAL_17]] : index
719// CHECK:             scf.condition(%[[VAL_21]]) %[[VAL_19]], %[[VAL_20]] : index, index
720// CHECK:           } do {
721// CHECK:           ^bb0(%[[VAL_22:.*]]: index, %[[VAL_23:.*]]: index):
722// CHECK:             %[[VAL_24:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_22]]] : memref<?xindex>
723// CHECK:             %[[VAL_25:.*]] = arith.cmpi eq, %[[VAL_24]], %[[VAL_23]] : index
724// CHECK:             scf.if %[[VAL_25]] {
725// CHECK:               %[[VAL_26:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_23]]] : memref<?xindex>
726// CHECK:               %[[VAL_27:.*]] = arith.addi %[[VAL_23]], %[[VAL_7]] : index
727// CHECK:               %[[VAL_28:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_27]]] : memref<?xindex>
728// CHECK:               %[[VAL_29:.*]]:2 = scf.while (%[[VAL_30:.*]] = %[[VAL_26]], %[[VAL_31:.*]] = %[[VAL_5]]) : (index, index) -> (index, index) {
729// CHECK:                 %[[VAL_32:.*]] = arith.cmpi ult, %[[VAL_30]], %[[VAL_28]] : index
730// CHECK:                 scf.condition(%[[VAL_32]]) %[[VAL_30]], %[[VAL_31]] : index, index
731// CHECK:               } do {
732// CHECK:               ^bb0(%[[VAL_33:.*]]: index, %[[VAL_34:.*]]: index):
733// CHECK:                 %[[VAL_35:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_33]]] : memref<?xindex>
734// CHECK:                 %[[VAL_36:.*]] = arith.muli %[[VAL_22]], %[[VAL_4]] : index
735// CHECK:                 %[[VAL_37:.*]] = arith.addi %[[VAL_36]], %[[VAL_34]] : index
736// CHECK:                 %[[VAL_38:.*]] = arith.cmpi eq, %[[VAL_35]], %[[VAL_34]] : index
737// CHECK:                 scf.if %[[VAL_38]] {
738// CHECK:                   %[[VAL_39:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_37]]] : memref<?xf32>
739// CHECK:                   %[[VAL_40:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_33]]] : memref<?xf32>
740// CHECK:                   %[[VAL_41:.*]] = arith.addf %[[VAL_39]], %[[VAL_40]] : f32
741// CHECK:                   memref.store %[[VAL_41]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_34]]] : memref<32x16xf32>
742// CHECK:                 } else {
743// CHECK:                   scf.if %[[VAL_6]] {
744// CHECK:                     %[[VAL_42:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_37]]] : memref<?xf32>
745// CHECK:                     memref.store %[[VAL_42]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_34]]] : memref<32x16xf32>
746// CHECK:                   } else {
747// CHECK:                   }
748// CHECK:                 }
749// CHECK:                 %[[VAL_43:.*]] = arith.cmpi eq, %[[VAL_35]], %[[VAL_34]] : index
750// CHECK:                 %[[VAL_44:.*]] = arith.addi %[[VAL_33]], %[[VAL_7]] : index
751// CHECK:                 %[[VAL_45:.*]] = arith.select %[[VAL_43]], %[[VAL_44]], %[[VAL_33]] : index
752// CHECK:                 %[[VAL_46:.*]] = arith.addi %[[VAL_34]], %[[VAL_7]] : index
753// CHECK:                 scf.yield %[[VAL_45]], %[[VAL_46]] : index, index
754// CHECK:               }
755// CHECK:               scf.for %[[VAL_47:.*]] = %[[VAL_48:.*]]#1 to %[[VAL_4]] step %[[VAL_7]] {
756// CHECK:                 %[[VAL_49:.*]] = arith.muli %[[VAL_22]], %[[VAL_4]] : index
757// CHECK:                 %[[VAL_50:.*]] = arith.addi %[[VAL_49]], %[[VAL_47]] : index
758// CHECK:                 %[[VAL_51:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_50]]] : memref<?xf32>
759// CHECK:                 memref.store %[[VAL_51]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_47]]] : memref<32x16xf32>
760// CHECK:               }
761// CHECK:             } else {
762// CHECK:               scf.if %[[VAL_6]] {
763// CHECK:                 %[[VAL_52:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_23]]] : memref<?xindex>
764// CHECK:                 %[[VAL_53:.*]] = arith.addi %[[VAL_23]], %[[VAL_7]] : index
765// CHECK:                 %[[VAL_54:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_53]]] : memref<?xindex>
766// CHECK:                 scf.for %[[VAL_55:.*]] = %[[VAL_52]] to %[[VAL_54]] step %[[VAL_7]] {
767// CHECK:                   %[[VAL_56:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_55]]] : memref<?xindex>
768// CHECK:                   %[[VAL_57:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_55]]] : memref<?xf32>
769// CHECK:                   memref.store %[[VAL_57]], %[[VAL_15]]{{\[}}%[[VAL_23]], %[[VAL_56]]] : memref<32x16xf32>
770// CHECK:                 }
771// CHECK:               } else {
772// CHECK:               }
773// CHECK:             }
774// CHECK:             %[[VAL_58:.*]] = arith.cmpi eq, %[[VAL_24]], %[[VAL_23]] : index
775// CHECK:             %[[VAL_59:.*]] = arith.addi %[[VAL_22]], %[[VAL_7]] : index
776// CHECK:             %[[VAL_60:.*]] = arith.select %[[VAL_58]], %[[VAL_59]], %[[VAL_22]] : index
777// CHECK:             %[[VAL_61:.*]] = arith.addi %[[VAL_23]], %[[VAL_7]] : index
778// CHECK:             scf.yield %[[VAL_60]], %[[VAL_61]] : index, index
779// CHECK:           }
780// CHECK:           scf.for %[[VAL_62:.*]] = %[[VAL_63:.*]]#1 to %[[VAL_3]] step %[[VAL_7]] {
781// CHECK:             %[[VAL_64:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_62]]] : memref<?xindex>
782// CHECK:             %[[VAL_65:.*]] = arith.addi %[[VAL_62]], %[[VAL_7]] : index
783// CHECK:             %[[VAL_66:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_65]]] : memref<?xindex>
784// CHECK:             scf.for %[[VAL_67:.*]] = %[[VAL_64]] to %[[VAL_66]] step %[[VAL_7]] {
785// CHECK:               %[[VAL_68:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_67]]] : memref<?xindex>
786// CHECK:               %[[VAL_69:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_67]]] : memref<?xf32>
787// CHECK:               memref.store %[[VAL_69]], %[[VAL_15]]{{\[}}%[[VAL_62]], %[[VAL_68]]] : memref<32x16xf32>
788// CHECK:             }
789// CHECK:           }
790// CHECK:           %[[VAL_70:.*]] = bufferization.to_tensor %[[VAL_15]] : memref<32x16xf32>
791// CHECK:           return %[[VAL_70]] : tensor<32x16xf32>
792// CHECK:         }
793func.func @add_sd_ds(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32, #Tds>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
794  %0 = linalg.generic #trait2
795     ins(%arga, %argb: tensor<32x16xf32, #Tsd>, tensor<32x16xf32, #Tds>)
796    outs(%argx: tensor<32x16xf32>) {
797      ^bb(%a: f32, %b: f32, %x: f32):
798        %0 = arith.addf %a, %b : f32
799        linalg.yield %0 : f32
800  } -> tensor<32x16xf32>
801  return %0 : tensor<32x16xf32>
802}
803
804// CHECK-LABEL:   func @mul_sd_ds(
805// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
806// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
807// CHECK-SAME:      %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
808// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 16 : index
809// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
810// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
811// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
812// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
813// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
814// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
815// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
816// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
817// CHECK-DAG:       %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32>
818// CHECK:           linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_13]] : memref<32x16xf32>)
819// CHECK:           %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
820// CHECK:           %[[VAL_15:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
821// CHECK:           scf.for %[[VAL_16:.*]] = %[[VAL_14]] to %[[VAL_15]] step %[[VAL_5]] {
822// CHECK:             %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref<?xindex>
823// CHECK:             %[[VAL_18:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_17]]] : memref<?xindex>
824// CHECK:             %[[VAL_19:.*]] = arith.addi %[[VAL_17]], %[[VAL_5]] : index
825// CHECK:             %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_19]]] : memref<?xindex>
826// CHECK:             scf.for %[[VAL_21:.*]] = %[[VAL_18]] to %[[VAL_20]] step %[[VAL_5]] {
827// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_21]]] : memref<?xindex>
828// CHECK:               %[[VAL_23:.*]] = arith.muli %[[VAL_16]], %[[VAL_3]] : index
829// CHECK:               %[[VAL_24:.*]] = arith.addi %[[VAL_23]], %[[VAL_22]] : index
830// CHECK:               %[[VAL_25:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_24]]] : memref<?xf32>
831// CHECK:               %[[VAL_26:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_21]]] : memref<?xf32>
832// CHECK:               %[[VAL_27:.*]] = arith.mulf %[[VAL_25]], %[[VAL_26]] : f32
833// CHECK:               memref.store %[[VAL_27]], %[[VAL_13]]{{\[}}%[[VAL_17]], %[[VAL_22]]] : memref<32x16xf32>
834// CHECK:             }
835// CHECK:           }
836// CHECK:           %[[VAL_28:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<32x16xf32>
837// CHECK:           return %[[VAL_28]] : tensor<32x16xf32>
838// CHECK:         }
839func.func @mul_sd_ds(%arga: tensor<32x16xf32, #Tsd>, %argb: tensor<32x16xf32, #Tds>, %argx: tensor<32x16xf32>) -> tensor<32x16xf32> {
840  %0 = linalg.generic #trait2
841     ins(%arga, %argb: tensor<32x16xf32, #Tsd>, tensor<32x16xf32, #Tds>)
842    outs(%argx: tensor<32x16xf32>) {
843      ^bb(%a: f32, %b: f32, %x: f32):
844        %0 = arith.mulf %a, %b : f32
845        linalg.yield %0 : f32
846  } -> tensor<32x16xf32>
847  return %0 : tensor<32x16xf32>
848}
849
850#trait_matvec = {
851  indexing_maps = [
852    affine_map<(i,j) -> (i,j)>,  // A
853    affine_map<(i,j) -> (j)>,    // b
854    affine_map<(i,j) -> (i)>     // x (out)
855  ],
856  iterator_types = ["parallel", "reduction"],
857  doc = "x(i) += SUM_j A(i,j) * b(j)"
858}
859
860// CHECK-LABEL:   func @matvec(
861// CHECK-SAME:      %[[VAL_0:.*]]: tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
862// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32xf32>,
863// CHECK-SAME:      %[[VAL_2:.*]]: tensor<16xf32>) -> tensor<16xf32> {
864// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 16 : index
865// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
866// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
867// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
868// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
869// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
870// CHECK-DAG:       %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32>
871// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<16xf32>
872// CHECK:           scf.for %[[VAL_12:.*]] = %[[VAL_4]] to %[[VAL_3]] step %[[VAL_5]] {
873// CHECK-DAG:         %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref<?xindex>
874// CHECK-DAG:         %[[VAL_14:.*]] = arith.addi %[[VAL_12]], %[[VAL_5]] : index
875// CHECK-DAG:         %[[VAL_15:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_14]]] : memref<?xindex>
876// CHECK-DAG:         %[[VAL_16:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_12]]] : memref<16xf32>
877// CHECK:             %[[VAL_17:.*]] = scf.for %[[VAL_18:.*]] = %[[VAL_13]] to %[[VAL_15]] step %[[VAL_5]] iter_args(%[[VAL_19:.*]] = %[[VAL_16]]) -> (f32) {
878// CHECK:               %[[VAL_20:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_18]]] : memref<?xindex>
879// CHECK:               %[[VAL_21:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xf32>
880// CHECK:               %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_20]]] : memref<32xf32>
881// CHECK:               %[[VAL_23:.*]] = arith.mulf %[[VAL_21]], %[[VAL_22]] : f32
882// CHECK:               %[[VAL_24:.*]] = arith.addf %[[VAL_23]], %[[VAL_19]] : f32
883// CHECK:               scf.yield %[[VAL_24]] : f32
884// CHECK:             }
885// CHECK:             memref.store %[[VAL_17]], %[[VAL_11]]{{\[}}%[[VAL_12]]] : memref<16xf32>
886// CHECK:           }
887// CHECK:           %[[VAL_26:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<16xf32>
888// CHECK:           return %[[VAL_26]] : tensor<16xf32>
889// CHECK:         }
890func.func @matvec(%argA: tensor<16x32xf32, #Tds>, %argb: tensor<32xf32>, %argx: tensor<16xf32>) -> tensor<16xf32> {
891  %0 = linalg.generic #trait_matvec
892       ins(%argA, %argb: tensor<16x32xf32, #Tds>, tensor<32xf32>)
893      outs(%argx: tensor<16xf32>) {
894    ^bb(%A: f32, %b: f32, %x: f32):
895      %0 = arith.mulf %A, %b : f32
896      %1 = arith.addf %0, %x : f32
897      linalg.yield %1 : f32
898  } -> tensor<16xf32>
899  return %0 : tensor<16xf32>
900}
901
902#trait_sum_reduction = {
903  indexing_maps = [
904    affine_map<(i,j) -> (i,j)>, // A
905    affine_map<(i,j) -> ()>     // x (scalar out)
906  ],
907  iterator_types = ["reduction", "reduction"],
908  doc = "x += SUM_ij A(i,j)"
909}
910
911// CHECK-LABEL:   func @sum_reduction(
912// CHECK-SAME:      %[[VAL_0:.*]]: tensor<10x20xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
913// CHECK-SAME:      %[[VAL_1:.*]]: tensor<f32>) -> tensor<f32> {
914// CHECK-DAG:       %[[VAL_2:.*]] = arith.constant 10 : index
915// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 1 : index
916// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
917// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<10x20xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
918// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
919// CHECK-DAG:       %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<f32>
920// CHECK:           %[[VAL_9:.*]] = memref.load %[[VAL_8]][] : memref<f32>
921// CHECK:           %[[VAL_10:.*]] = scf.for %[[VAL_11:.*]] = %[[VAL_4]] to %[[VAL_2]] step %[[VAL_3]] iter_args(%[[VAL_12:.*]] = %[[VAL_9]]) -> (f32) {
922// CHECK:             %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_11]]] : memref<?xindex>
923// CHECK:             %[[VAL_14:.*]] = arith.addi %[[VAL_11]], %[[VAL_3]] : index
924// CHECK:             %[[VAL_15:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_14]]] : memref<?xindex>
925// CHECK:             %[[VAL_16:.*]] = scf.for %[[VAL_17:.*]] = %[[VAL_13]] to %[[VAL_15]] step %[[VAL_3]] iter_args(%[[VAL_18:.*]] = %[[VAL_12]]) -> (f32) {
926// CHECK:               %[[VAL_19:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_17]]] : memref<?xf32>
927// CHECK:               %[[VAL_20:.*]] = arith.addf %[[VAL_18]], %[[VAL_19]] : f32
928// CHECK:               scf.yield %[[VAL_20]] : f32
929// CHECK:             }
930// CHECK:             scf.yield %[[VAL_16]] : f32
931// CHECK:           }
932// CHECK:           memref.store %[[VAL_10]], %[[VAL_8]][] : memref<f32>
933// CHECK:           %[[VAL_23:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<f32>
934// CHECK:           return %[[VAL_23]] : tensor<f32>
935// CHECK:         }
936func.func @sum_reduction(%arga: tensor<10x20xf32, #Tds>, %argx: tensor<f32>) -> tensor<f32> {
937  %0 = linalg.generic #trait_sum_reduction
938     ins(%arga: tensor<10x20xf32, #Tds>)
939    outs(%argx: tensor<f32>) {
940      ^bb(%a: f32, %x: f32):
941        %0 = arith.addf %x, %a : f32
942        linalg.yield %0 : f32
943  } -> tensor<f32>
944  return %0 : tensor<f32>
945}
946
947#trait_scale = {
948  indexing_maps = [
949    affine_map<(i,j) -> (i,j)>,  // A
950    affine_map<(i,j) -> (i,j)>   // X (out)
951  ],
952  iterator_types = ["parallel", "parallel"],
953  doc = "X(i,j) = A(i,j) * SCALE"
954}
955
956// CHECK-LABEL:   func @scale(
957// CHECK-SAME:      %[[VAL_0:.*]]: tensor<?x?xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
958// CHECK-SAME:      %[[VAL_1:.*]]: tensor<?x?xf64>) -> tensor<?x?xf64> {
959// CHECK-DAG:       %[[VAL_2:.*]] = arith.constant 2.000000e+00 : f64
960// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 0 : index
961// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 1 : index
962// CHECK-DAG:       %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<?x?xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
963// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<?x?xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
964// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?x?xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf64>
965// CHECK-DAG:       %[[VAL_8:.*]] = tensor.dim %[[VAL_1]], %[[VAL_3]] : tensor<?x?xf64>
966// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<?x?xf64>
967// CHECK:           linalg.fill ins(%{{.*}} : f64) outs(%[[VAL_11]] : memref<?x?xf64>)
968// CHECK:           scf.for %[[VAL_12:.*]] = %[[VAL_3]] to %[[VAL_8]] step %[[VAL_4]] {
969// CHECK:             %[[VAL_13:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_12]]] : memref<?xindex>
970// CHECK:             %[[VAL_14:.*]] = arith.addi %[[VAL_12]], %[[VAL_4]] : index
971// CHECK:             %[[VAL_15:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_14]]] : memref<?xindex>
972// CHECK:             scf.for %[[VAL_16:.*]] = %[[VAL_13]] to %[[VAL_15]] step %[[VAL_4]] {
973// CHECK:               %[[VAL_17:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_16]]] : memref<?xindex>
974// CHECK:               %[[VAL_18:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref<?xf64>
975// CHECK:               %[[VAL_19:.*]] = arith.mulf %[[VAL_18]], %[[VAL_2]] : f64
976// CHECK:               memref.store %[[VAL_19]], %[[VAL_11]]{{\[}}%[[VAL_12]], %[[VAL_17]]] : memref<?x?xf64>
977// CHECK:             }
978// CHECK:           }
979// CHECK:           %[[VAL_20:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<?x?xf64>
980// CHECK:           return %[[VAL_20]] : tensor<?x?xf64>
981// CHECK:         }
982func.func @scale(%arga: tensor<?x?xf64, #Tds>, %argx: tensor<?x?xf64>) -> tensor<?x?xf64> {
983  %0 = arith.constant 2.0 : f64
984  %1 = linalg.generic #trait_scale
985     ins(%arga: tensor<?x?xf64, #Tds>)
986    outs(%argx: tensor<?x?xf64>) {
987      ^bb(%a: f64, %x: f64):
988        %2 = arith.mulf %a, %0 : f64
989        linalg.yield %2 : f64
990  } -> tensor<?x?xf64>
991  return %1 : tensor<?x?xf64>
992}
993
994#trait_sampled_dense_dense = {
995  indexing_maps = [
996    affine_map<(i,j,k) -> (i,j)>,  // S
997    affine_map<(i,j,k) -> (i,k)>,  // A
998    affine_map<(i,j,k) -> (k,j)>,  // B
999    affine_map<(i,j,k) -> (i,j)>   // X (out)
1000  ],
1001  iterator_types = ["parallel", "parallel", "reduction"],
1002  doc = "X(i,j) += S(i,j) SUM_k A(i,k) B(k,j)"
1003}
1004
1005// CHECK-LABEL:   func @sampled_dense_dense(
1006// CHECK-SAME:      %[[VAL_0:.*0]]: tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
1007// CHECK-SAME:      %[[VAL_1:.*1]]: tensor<?x?xf32>,
1008// CHECK-SAME:      %[[VAL_2:.*2]]: tensor<?x?xf32>,
1009// CHECK-SAME:      %[[VAL_3:.*3]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
1010// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
1011// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 1 : index
1012// CHECK-DAG:       %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1013// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1014// CHECK-DAG:       %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1015// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1016// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
1017// CHECK-DAG:       %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<?x?xf32>
1018// CHECK-DAG:       %[[VAL_12:.*]] = tensor.dim %[[VAL_2]], %[[VAL_4]] : tensor<?x?xf32>
1019// CHECK-DAG:       %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<?x?xf32>
1020// CHECK-DAG:       %[[VAL_17:.*]] = bufferization.to_memref %[[VAL_3]] : memref<?x?xf32>
1021// CHECK:           %[[VAL_18:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref<?xindex>
1022// CHECK:           %[[VAL_19:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref<?xindex>
1023// CHECK:           scf.for %[[VAL_20:.*]] = %[[VAL_18]] to %[[VAL_19]] step %[[VAL_5]] {
1024// CHECK:             %[[VAL_21:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_20]]] : memref<?xindex>
1025// CHECK:             %[[VAL_22:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_20]]] : memref<?xindex>
1026// CHECK:             %[[VAL_23:.*]] = arith.addi %[[VAL_20]], %[[VAL_5]] : index
1027// CHECK:             %[[VAL_24:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_23]]] : memref<?xindex>
1028// CHECK:             scf.for %[[VAL_25:.*]] = %[[VAL_22]] to %[[VAL_24]] step %[[VAL_5]] {
1029// CHECK-DAG:       %[[VAL_26:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_25]]] : memref<?xindex>
1030// CHECK-DAG:       %[[VAL_27:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_25]]] : memref<?xf32>
1031// CHECK-DAG:       %[[VAL_28:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_21]], %[[VAL_26]]] : memref<?x?xf32>
1032// CHECK:               %[[VAL_29:.*]] = scf.for %[[VAL_30:.*]] = %[[VAL_4]] to %[[VAL_12]] step %[[VAL_5]] iter_args(%[[VAL_31:.*]] = %[[VAL_28]]) -> (f32) {
1033// CHECK:                 %[[VAL_32:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_21]], %[[VAL_30]]] : memref<?x?xf32>
1034// CHECK:                 %[[VAL_33:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_30]], %[[VAL_26]]] : memref<?x?xf32>
1035// CHECK:                 %[[VAL_34:.*]] = arith.mulf %[[VAL_32]], %[[VAL_33]] : f32
1036// CHECK:                 %[[VAL_35:.*]] = arith.mulf %[[VAL_27]], %[[VAL_34]] : f32
1037// CHECK:                 %[[VAL_36:.*]] = arith.addf %[[VAL_31]], %[[VAL_35]] : f32
1038// CHECK:                 scf.yield %[[VAL_36]] : f32
1039// CHECK:               }
1040// CHECK:               memref.store %[[VAL_29]], %[[VAL_17]]{{\[}}%[[VAL_21]], %[[VAL_26]]] : memref<?x?xf32>
1041// CHECK:             }
1042// CHECK:           }
1043// CHECK:           %[[VAL_38:.*]] = bufferization.to_tensor %[[VAL_17]] : memref<?x?xf32>
1044// CHECK:           return %[[VAL_38]] : tensor<?x?xf32>
1045// CHECK:         }
1046func.func @sampled_dense_dense(%args: tensor<?x?xf32, #Tss>,
1047                          %arga: tensor<?x?xf32>,
1048                          %argb: tensor<?x?xf32>,
1049                          %argx: tensor<?x?xf32>) -> tensor<?x?xf32> {
1050  %0 = linalg.generic #trait_sampled_dense_dense
1051     ins(%args, %arga, %argb: tensor<?x?xf32, #Tss>, tensor<?x?xf32>, tensor<?x?xf32>)
1052    outs(%argx: tensor<?x?xf32>) {
1053      ^bb(%s: f32, %a: f32, %b: f32, %x: f32):
1054        %0 = arith.mulf %a, %b : f32
1055        %1 = arith.mulf %s, %0 : f32
1056        %2 = arith.addf %x, %1 : f32
1057        linalg.yield %2 : f32
1058  } -> tensor<?x?xf32>
1059  return %0 : tensor<?x?xf32>
1060}
1061
1062#trait_sum_kernel_with_inv = {
1063  indexing_maps = [
1064    affine_map<(i,j) -> (i,j)>,  // A
1065    affine_map<(i,j) -> (i,j)>,  // B
1066    affine_map<(i,j) -> (i,j)>,  // C
1067    affine_map<(i,j) -> (i)>,    // d
1068    affine_map<(i,j) -> ()>,     // e
1069    affine_map<(i,j) -> (i)>     // x (out)
1070  ],
1071  iterator_types = ["parallel", "reduction"],
1072  doc = "x(i) = SUM_j A(i,j) * B(i,j) * d(i) * e + C(i,j)"
1073}
1074
1075// CHECK-LABEL:   func @sum_kernel_with_inv(
1076// CHECK-SAME:      %[[VAL_0:.*0]]: tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
1077// CHECK-SAME:      %[[VAL_1:.*1]]: tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
1078// CHECK-SAME:      %[[VAL_2:.*2]]: tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>>,
1079// CHECK-SAME:      %[[VAL_3:.*3]]: tensor<?xf32>,
1080// CHECK-SAME:      %[[VAL_4:.*4]]: tensor<f32>,
1081// CHECK-SAME:      %[[VAL_5:.*5]]: tensor<?xf32>) -> tensor<?xf32> {
1082// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 0 : index
1083// CHECK-DAG:       %[[VAL_7:.*]] = arith.constant 1 : index
1084// CHECK-DAG:       %[[VAL_8:.*]] = arith.constant true
1085// CHECK-DAG:       %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1086// CHECK-DAG:       %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1087// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1088// CHECK-DAG:       %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1089// CHECK-DAG:       %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
1090// CHECK-DAG:       %[[VAL_14:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_7]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1091// CHECK-DAG:       %[[VAL_15:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_7]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1092// CHECK:           %[[VAL_16:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
1093// CHECK-DAG:       %[[VAL_17:.*]] = sparse_tensor.pointers %[[VAL_2]], %[[VAL_7]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1094// CHECK-DAG:       %[[VAL_18:.*]] = sparse_tensor.indices %[[VAL_2]], %[[VAL_7]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xindex>
1095// CHECK-DAG:       %[[VAL_19:.*]] = sparse_tensor.values %[[VAL_2]] : tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 0, indexBitWidth = 0 }>> to memref<?xf32>
1096// CHECK-DAG:       %[[VAL_20:.*]] = bufferization.to_memref %[[VAL_3]] : memref<?xf32>
1097// CHECK-DAG:       %[[VAL_21:.*]] = bufferization.to_memref %[[VAL_4]] : memref<f32>
1098// CHECK-DAG:       %[[VAL_22:.*]] = tensor.dim %[[VAL_5]], %[[VAL_6]] : tensor<?xf32>
1099// CHECK-DAG:       %[[VAL_24:.*]] = bufferization.to_memref %[[VAL_5]] : memref<?xf32>
1100// CHECK:           %[[VAL_25:.*]] = memref.load %[[VAL_21]][] : memref<f32>
1101// CHECK:           %[[VAL_26:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_6]]] : memref<?xindex>
1102// CHECK:           %[[VAL_27:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_7]]] : memref<?xindex>
1103// CHECK:           %[[VAL_28:.*]]:2 = scf.while (%[[VAL_29:.*]] = %[[VAL_26]], %[[VAL_30:.*]] = %[[VAL_6]]) : (index, index) -> (index, index) {
1104// CHECK:             %[[VAL_31:.*]] = arith.cmpi ult, %[[VAL_29]], %[[VAL_27]] : index
1105// CHECK:             scf.condition(%[[VAL_31]]) %[[VAL_29]], %[[VAL_30]] : index, index
1106// CHECK:           } do {
1107// CHECK:           ^bb0(%[[VAL_32:.*]]: index, %[[VAL_33:.*]]: index):
1108// CHECK:             %[[VAL_34:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_32]]] : memref<?xindex>
1109// CHECK:             %[[VAL_35:.*]] = arith.cmpi eq, %[[VAL_34]], %[[VAL_33]] : index
1110// CHECK:             scf.if %[[VAL_35]] {
1111// CHECK:               %[[VAL_36:.*]] = memref.load %[[VAL_24]]{{\[}}%[[VAL_33]]] : memref<?xf32>
1112// CHECK:               %[[VAL_37:.*]] = memref.load %[[VAL_20]]{{\[}}%[[VAL_33]]] : memref<?xf32>
1113// CHECK:               %[[VAL_38:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_32]]] : memref<?xindex>
1114// CHECK:               %[[VAL_39:.*]] = arith.addi %[[VAL_32]], %[[VAL_7]] : index
1115// CHECK:               %[[VAL_40:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_39]]] : memref<?xindex>
1116// CHECK:               %[[VAL_41:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_33]]] : memref<?xindex>
1117// CHECK:               %[[VAL_42:.*]] = arith.addi %[[VAL_33]], %[[VAL_7]] : index
1118// CHECK:               %[[VAL_43:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_42]]] : memref<?xindex>
1119// CHECK:               %[[VAL_44:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_33]]] : memref<?xindex>
1120// CHECK:               %[[VAL_45:.*]] = arith.addi %[[VAL_33]], %[[VAL_7]] : index
1121// CHECK:               %[[VAL_46:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_45]]] : memref<?xindex>
1122// CHECK:               %[[VAL_47:.*]]:4 = scf.while (%[[VAL_48:.*]] = %[[VAL_38]], %[[VAL_49:.*]] = %[[VAL_41]], %[[VAL_50:.*]] = %[[VAL_44]], %[[VAL_51:.*]] = %[[VAL_36]]) : (index, index, index, f32) -> (index, index, index, f32) {
1123// CHECK:                 %[[VAL_52:.*]] = arith.cmpi ult, %[[VAL_48]], %[[VAL_40]] : index
1124// CHECK:                 %[[VAL_53:.*]] = arith.cmpi ult, %[[VAL_49]], %[[VAL_43]] : index
1125// CHECK:                 %[[VAL_54:.*]] = arith.andi %[[VAL_52]], %[[VAL_53]] : i1
1126// CHECK:                 %[[VAL_55:.*]] = arith.cmpi ult, %[[VAL_50]], %[[VAL_46]] : index
1127// CHECK:                 %[[VAL_56:.*]] = arith.andi %[[VAL_54]], %[[VAL_55]] : i1
1128// CHECK:                 scf.condition(%[[VAL_56]]) %[[VAL_48]], %[[VAL_49]], %[[VAL_50]], %[[VAL_51]] : index, index, index, f32
1129// CHECK:               } do {
1130// CHECK:               ^bb0(%[[VAL_57:.*]]: index, %[[VAL_58:.*]]: index, %[[VAL_59:.*]]: index, %[[VAL_60:.*]]: f32):
1131// CHECK:                 %[[VAL_61:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_57]]] : memref<?xindex>
1132// CHECK:                 %[[VAL_62:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_58]]] : memref<?xindex>
1133// CHECK:                 %[[VAL_63:.*]] = arith.cmpi ult, %[[VAL_62]], %[[VAL_61]] : index
1134// CHECK:                 %[[VAL_64:.*]] = arith.select %[[VAL_63]], %[[VAL_62]], %[[VAL_61]] : index
1135// CHECK:                 %[[VAL_65:.*]] = memref.load %[[VAL_18]]{{\[}}%[[VAL_59]]] : memref<?xindex>
1136// CHECK:                 %[[VAL_66:.*]] = arith.cmpi ult, %[[VAL_65]], %[[VAL_64]] : index
1137// CHECK:                 %[[VAL_67:.*]] = arith.select %[[VAL_66]], %[[VAL_65]], %[[VAL_64]] : index
1138// CHECK:                 %[[VAL_68:.*]] = arith.cmpi eq, %[[VAL_61]], %[[VAL_67]] : index
1139// CHECK:                 %[[VAL_69:.*]] = arith.cmpi eq, %[[VAL_62]], %[[VAL_67]] : index
1140// CHECK:                 %[[VAL_70:.*]] = arith.andi %[[VAL_68]], %[[VAL_69]] : i1
1141// CHECK:                 %[[VAL_71:.*]] = arith.cmpi eq, %[[VAL_65]], %[[VAL_67]] : index
1142// CHECK:                 %[[VAL_72:.*]] = arith.andi %[[VAL_70]], %[[VAL_71]] : i1
1143// CHECK:                 %[[VAL_73:.*]] = scf.if %[[VAL_72]] -> (f32) {
1144// CHECK:                   %[[VAL_74:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_57]]] : memref<?xf32>
1145// CHECK:                   %[[VAL_75:.*]] = memref.load %[[VAL_16]]{{\[}}%[[VAL_58]]] : memref<?xf32>
1146// CHECK:                   %[[VAL_76:.*]] = arith.mulf %[[VAL_74]], %[[VAL_75]] : f32
1147// CHECK:                   %[[VAL_77:.*]] = arith.mulf %[[VAL_76]], %[[VAL_37]] : f32
1148// CHECK:                   %[[VAL_78:.*]] = arith.mulf %[[VAL_77]], %[[VAL_25]] : f32
1149// CHECK:                   %[[VAL_79:.*]] = memref.load %[[VAL_19]]{{\[}}%[[VAL_59]]] : memref<?xf32>
1150// CHECK:                   %[[VAL_80:.*]] = arith.addf %[[VAL_78]], %[[VAL_79]] : f32
1151// CHECK:                   %[[VAL_81:.*]] = arith.addf %[[VAL_60]], %[[VAL_80]] : f32
1152// CHECK:                   scf.yield %[[VAL_81]] : f32
1153// CHECK:                 } else {
1154// CHECK:                   %[[VAL_82:.*]] = arith.cmpi eq, %[[VAL_61]], %[[VAL_67]] : index
1155// CHECK:                   %[[VAL_83:.*]] = arith.cmpi eq, %[[VAL_62]], %[[VAL_67]] : index
1156// CHECK:                   %[[VAL_84:.*]] = arith.andi %[[VAL_82]], %[[VAL_83]] : i1
1157// CHECK:                   %[[VAL_85:.*]] = scf.if %[[VAL_84]] -> (f32) {
1158// CHECK:                     %[[VAL_86:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_57]]] : memref<?xf32>
1159// CHECK:                     %[[VAL_87:.*]] = memref.load %[[VAL_16]]{{\[}}%[[VAL_58]]] : memref<?xf32>
1160// CHECK:                     %[[VAL_88:.*]] = arith.mulf %[[VAL_86]], %[[VAL_87]] : f32
1161// CHECK:                     %[[VAL_89:.*]] = arith.mulf %[[VAL_88]], %[[VAL_37]] : f32
1162// CHECK:                     %[[VAL_90:.*]] = arith.mulf %[[VAL_89]], %[[VAL_25]] : f32
1163// CHECK:                     %[[VAL_91:.*]] = arith.addf %[[VAL_60]], %[[VAL_90]] : f32
1164// CHECK:                     scf.yield %[[VAL_91]] : f32
1165// CHECK:                   } else {
1166// CHECK:                     %[[VAL_92:.*]] = arith.cmpi eq, %[[VAL_65]], %[[VAL_67]] : index
1167// CHECK:                     %[[VAL_93:.*]] = scf.if %[[VAL_92]] -> (f32) {
1168// CHECK:                       %[[VAL_94:.*]] = memref.load %[[VAL_19]]{{\[}}%[[VAL_59]]] : memref<?xf32>
1169// CHECK:                       %[[VAL_95:.*]] = arith.addf %[[VAL_60]], %[[VAL_94]] : f32
1170// CHECK:                       scf.yield %[[VAL_95]] : f32
1171// CHECK:                     } else {
1172// CHECK:                       scf.yield %[[VAL_60]] : f32
1173// CHECK:                     }
1174// CHECK:                     scf.yield %[[VAL_96:.*]] : f32
1175// CHECK:                   }
1176// CHECK:                   scf.yield %[[VAL_97:.*]] : f32
1177// CHECK:                 }
1178// CHECK:                 %[[VAL_98:.*]] = arith.cmpi eq, %[[VAL_61]], %[[VAL_67]] : index
1179// CHECK:                 %[[VAL_99:.*]] = arith.addi %[[VAL_57]], %[[VAL_7]] : index
1180// CHECK:                 %[[VAL_100:.*]] = arith.select %[[VAL_98]], %[[VAL_99]], %[[VAL_57]] : index
1181// CHECK:                 %[[VAL_101:.*]] = arith.cmpi eq, %[[VAL_62]], %[[VAL_67]] : index
1182// CHECK:                 %[[VAL_102:.*]] = arith.addi %[[VAL_58]], %[[VAL_7]] : index
1183// CHECK:                 %[[VAL_103:.*]] = arith.select %[[VAL_101]], %[[VAL_102]], %[[VAL_58]] : index
1184// CHECK:                 %[[VAL_104:.*]] = arith.cmpi eq, %[[VAL_65]], %[[VAL_67]] : index
1185// CHECK:                 %[[VAL_105:.*]] = arith.addi %[[VAL_59]], %[[VAL_7]] : index
1186// CHECK:                 %[[VAL_106:.*]] = arith.select %[[VAL_104]], %[[VAL_105]], %[[VAL_59]] : index
1187// CHECK:                 scf.yield %[[VAL_100]], %[[VAL_103]], %[[VAL_106]], %[[VAL_107:.*]] : index, index, index, f32
1188// CHECK:               }
1189// CHECK:               %[[VAL_108:.*]]:3 = scf.while (%[[VAL_109:.*]] = %[[VAL_110:.*]]#0, %[[VAL_111:.*]] = %[[VAL_110]]#1, %[[VAL_112:.*]] = %[[VAL_110]]#3) : (index, index, f32) -> (index, index, f32) {
1190// CHECK:                 %[[VAL_113:.*]] = arith.cmpi ult, %[[VAL_109]], %[[VAL_40]] : index
1191// CHECK:                 %[[VAL_114:.*]] = arith.cmpi ult, %[[VAL_111]], %[[VAL_43]] : index
1192// CHECK:                 %[[VAL_115:.*]] = arith.andi %[[VAL_113]], %[[VAL_114]] : i1
1193// CHECK:                 scf.condition(%[[VAL_115]]) %[[VAL_109]], %[[VAL_111]], %[[VAL_112]] : index, index, f32
1194// CHECK:               } do {
1195// CHECK:               ^bb0(%[[VAL_116:.*]]: index, %[[VAL_117:.*]]: index, %[[VAL_118:.*]]: f32):
1196// CHECK:                 %[[VAL_119:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_116]]] : memref<?xindex>
1197// CHECK:                 %[[VAL_120:.*]] = memref.load %[[VAL_15]]{{\[}}%[[VAL_117]]] : memref<?xindex>
1198// CHECK:                 %[[VAL_121:.*]] = arith.cmpi ult, %[[VAL_120]], %[[VAL_119]] : index
1199// CHECK:                 %[[VAL_122:.*]] = arith.select %[[VAL_121]], %[[VAL_120]], %[[VAL_119]] : index
1200// CHECK:                 %[[VAL_123:.*]] = arith.cmpi eq, %[[VAL_119]], %[[VAL_122]] : index
1201// CHECK:                 %[[VAL_124:.*]] = arith.cmpi eq, %[[VAL_120]], %[[VAL_122]] : index
1202// CHECK:                 %[[VAL_125:.*]] = arith.andi %[[VAL_123]], %[[VAL_124]] : i1
1203// CHECK:                 %[[VAL_126:.*]] = scf.if %[[VAL_125]] -> (f32) {
1204// CHECK:                   %[[VAL_127:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_116]]] : memref<?xf32>
1205// CHECK:                   %[[VAL_128:.*]] = memref.load %[[VAL_16]]{{\[}}%[[VAL_117]]] : memref<?xf32>
1206// CHECK:                   %[[VAL_129:.*]] = arith.mulf %[[VAL_127]], %[[VAL_128]] : f32
1207// CHECK:                   %[[VAL_130:.*]] = arith.mulf %[[VAL_129]], %[[VAL_37]] : f32
1208// CHECK:                   %[[VAL_131:.*]] = arith.mulf %[[VAL_130]], %[[VAL_25]] : f32
1209// CHECK:                   %[[VAL_132:.*]] = arith.addf %[[VAL_118]], %[[VAL_131]] : f32
1210// CHECK:                   scf.yield %[[VAL_132]] : f32
1211// CHECK:                 } else {
1212// CHECK:                   scf.yield %[[VAL_118]] : f32
1213// CHECK:                 }
1214// CHECK:                 %[[VAL_133:.*]] = arith.cmpi eq, %[[VAL_119]], %[[VAL_122]] : index
1215// CHECK:                 %[[VAL_134:.*]] = arith.addi %[[VAL_116]], %[[VAL_7]] : index
1216// CHECK:                 %[[VAL_135:.*]] = arith.select %[[VAL_133]], %[[VAL_134]], %[[VAL_116]] : index
1217// CHECK:                 %[[VAL_136:.*]] = arith.cmpi eq, %[[VAL_120]], %[[VAL_122]] : index
1218// CHECK:                 %[[VAL_137:.*]] = arith.addi %[[VAL_117]], %[[VAL_7]] : index
1219// CHECK:                 %[[VAL_138:.*]] = arith.select %[[VAL_136]], %[[VAL_137]], %[[VAL_117]] : index
1220// CHECK:                 scf.yield %[[VAL_135]], %[[VAL_138]], %[[VAL_139:.*]] : index, index, f32
1221// CHECK:               }
1222// CHECK:               %[[VAL_140:.*]] = scf.for %[[VAL_141:.*]] = %[[VAL_142:.*]]#2 to %[[VAL_46]] step %[[VAL_7]] iter_args(%[[VAL_143:.*]] = %[[VAL_144:.*]]#2) -> (f32) {
1223// CHECK:                 %[[VAL_145:.*]] = memref.load %[[VAL_19]]{{\[}}%[[VAL_141]]] : memref<?xf32>
1224// CHECK:                 %[[VAL_146:.*]] = arith.addf %[[VAL_143]], %[[VAL_145]] : f32
1225// CHECK:                 scf.yield %[[VAL_146]] : f32
1226// CHECK:               }
1227// CHECK:               memref.store %[[VAL_147:.*]], %[[VAL_24]]{{\[}}%[[VAL_33]]] : memref<?xf32>
1228// CHECK:             } else {
1229// CHECK:               scf.if %[[VAL_8]] {
1230// CHECK:                 %[[VAL_148:.*]] = memref.load %[[VAL_24]]{{\[}}%[[VAL_33]]] : memref<?xf32>
1231// CHECK:                 %[[VAL_149:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_33]]] : memref<?xindex>
1232// CHECK:                 %[[VAL_150:.*]] = arith.addi %[[VAL_33]], %[[VAL_7]] : index
1233// CHECK:                 %[[VAL_151:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_150]]] : memref<?xindex>
1234// CHECK:                 %[[VAL_152:.*]] = scf.for %[[VAL_153:.*]] = %[[VAL_149]] to %[[VAL_151]] step %[[VAL_7]] iter_args(%[[VAL_154:.*]] = %[[VAL_148]]) -> (f32) {
1235// CHECK:                   %[[VAL_155:.*]] = memref.load %[[VAL_19]]{{\[}}%[[VAL_153]]] : memref<?xf32>
1236// CHECK:                   %[[VAL_156:.*]] = arith.addf %[[VAL_154]], %[[VAL_155]] : f32
1237// CHECK:                   scf.yield %[[VAL_156]] : f32
1238// CHECK:                 }
1239// CHECK:                 memref.store %[[VAL_157:.*]], %[[VAL_24]]{{\[}}%[[VAL_33]]] : memref<?xf32>
1240// CHECK:               } else {
1241// CHECK:               }
1242// CHECK:             }
1243// CHECK:             %[[VAL_158:.*]] = arith.cmpi eq, %[[VAL_34]], %[[VAL_33]] : index
1244// CHECK:             %[[VAL_159:.*]] = arith.addi %[[VAL_32]], %[[VAL_7]] : index
1245// CHECK:             %[[VAL_160:.*]] = arith.select %[[VAL_158]], %[[VAL_159]], %[[VAL_32]] : index
1246// CHECK:             %[[VAL_161:.*]] = arith.addi %[[VAL_33]], %[[VAL_7]] : index
1247// CHECK:             scf.yield %[[VAL_160]], %[[VAL_161]] : index, index
1248// CHECK:           }
1249// CHECK:           scf.for %[[VAL_162:.*]] = %[[VAL_163:.*]]#1 to %[[VAL_22]] step %[[VAL_7]] {
1250// CHECK:             %[[VAL_164:.*]] = memref.load %[[VAL_24]]{{\[}}%[[VAL_162]]] : memref<?xf32>
1251// CHECK:             %[[VAL_165:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_162]]] : memref<?xindex>
1252// CHECK:             %[[VAL_166:.*]] = arith.addi %[[VAL_162]], %[[VAL_7]] : index
1253// CHECK:             %[[VAL_167:.*]] = memref.load %[[VAL_17]]{{\[}}%[[VAL_166]]] : memref<?xindex>
1254// CHECK:             %[[VAL_168:.*]] = scf.for %[[VAL_169:.*]] = %[[VAL_165]] to %[[VAL_167]] step %[[VAL_7]] iter_args(%[[VAL_170:.*]] = %[[VAL_164]]) -> (f32) {
1255// CHECK:               %[[VAL_171:.*]] = memref.load %[[VAL_19]]{{\[}}%[[VAL_169]]] : memref<?xf32>
1256// CHECK:               %[[VAL_172:.*]] = arith.addf %[[VAL_170]], %[[VAL_171]] : f32
1257// CHECK:               scf.yield %[[VAL_172]] : f32
1258// CHECK:             }
1259// CHECK:             memref.store %[[VAL_173:.*]], %[[VAL_24]]{{\[}}%[[VAL_162]]] : memref<?xf32>
1260// CHECK:           }
1261// CHECK:           %[[VAL_174:.*]] = bufferization.to_tensor %[[VAL_24]] : memref<?xf32>
1262// CHECK:           return %[[VAL_174]] : tensor<?xf32>
1263// CHECK:         }
1264func.func @sum_kernel_with_inv(%arga: tensor<?x?xf32, #Tss>,
1265                          %argb: tensor<?x?xf32, #Tds>,
1266                          %argc: tensor<?x?xf32, #Tds>,
1267                          %argd: tensor<?xf32>,
1268                          %arge: tensor<f32>,
1269                          %argx: tensor<?xf32>) -> tensor<?xf32> {
1270  %0 = linalg.generic #trait_sum_kernel_with_inv
1271    ins(%arga, %argb, %argc, %argd, %arge : tensor<?x?xf32, #Tss>,
1272                                            tensor<?x?xf32, #Tds>,
1273                                            tensor<?x?xf32, #Tds>,
1274                                            tensor<?xf32>,
1275                                            tensor<f32>)
1276    outs(%argx: tensor<?xf32>) {
1277      ^bb(%a: f32, %b: f32, %c: f32, %d: f32, %e: f32, %x: f32):
1278        %0 = arith.mulf %a, %b : f32
1279        %1 = arith.mulf %0, %d : f32
1280        %2 = arith.mulf %1, %e : f32
1281        %3 = arith.addf %2, %c : f32
1282        %4 = arith.addf %x, %3 : f32
1283        linalg.yield %4 : f32
1284  } -> tensor<?xf32>
1285  return %0 : tensor<?xf32>
1286}
1287