1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Transforms/DialectConversion.h"
10 #include "mlir/IR/Block.h"
11 #include "mlir/IR/BlockAndValueMapping.h"
12 #include "mlir/IR/Builders.h"
13 #include "mlir/IR/BuiltinOps.h"
14 #include "mlir/IR/FunctionSupport.h"
15 #include "mlir/Rewrite/PatternApplicator.h"
16 #include "mlir/Transforms/Utils.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/FormatVariadic.h"
22 #include "llvm/Support/SaveAndRestore.h"
23 #include "llvm/Support/ScopedPrinter.h"
24 
25 using namespace mlir;
26 using namespace mlir::detail;
27 
28 #define DEBUG_TYPE "dialect-conversion"
29 
30 /// Recursively collect all of the operations to convert from within 'region'.
31 /// If 'target' is nonnull, operations that are recursively legal have their
32 /// regions pre-filtered to avoid considering them for legalization.
33 static LogicalResult
34 computeConversionSet(iterator_range<Region::iterator> region,
35                      Location regionLoc,
36                      SmallVectorImpl<Operation *> &toConvert,
37                      ConversionTarget *target = nullptr) {
38   if (llvm::empty(region))
39     return success();
40 
41   // Traverse starting from the entry block.
42   SmallVector<Block *, 16> worklist(1, &*region.begin());
43   DenseSet<Block *> visitedBlocks;
44   visitedBlocks.insert(worklist.front());
45   while (!worklist.empty()) {
46     Block *block = worklist.pop_back_val();
47 
48     // Compute the conversion set of each of the nested operations.
49     for (Operation &op : *block) {
50       toConvert.emplace_back(&op);
51 
52       // Don't check this operation's children for conversion if the operation
53       // is recursively legal.
54       auto legalityInfo = target ? target->isLegal(&op)
55                                  : Optional<ConversionTarget::LegalOpDetails>();
56       if (legalityInfo && legalityInfo->isRecursivelyLegal)
57         continue;
58       for (auto &region : op.getRegions()) {
59         if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
60                                         toConvert, target)))
61           return failure();
62       }
63     }
64 
65     // Recurse to children that haven't been visited.
66     for (Block *succ : block->getSuccessors())
67       if (visitedBlocks.insert(succ).second)
68         worklist.push_back(succ);
69   }
70 
71   // Check that all blocks in the region were visited.
72   if (llvm::any_of(llvm::drop_begin(region, 1),
73                    [&](Block &block) { return !visitedBlocks.count(&block); }))
74     return emitError(regionLoc, "unreachable blocks were not converted");
75   return success();
76 }
77 
78 /// A utility function to log a successful result for the given reason.
79 template <typename... Args>
80 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
81   LLVM_DEBUG({
82     os.unindent();
83     os.startLine() << "} -> SUCCESS";
84     if (!fmt.empty())
85       os.getOStream() << " : "
86                       << llvm::formatv(fmt.data(), std::forward<Args>(args)...);
87     os.getOStream() << "\n";
88   });
89 }
90 
91 /// A utility function to log a failure result for the given reason.
92 template <typename... Args>
93 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
94   LLVM_DEBUG({
95     os.unindent();
96     os.startLine() << "} -> FAILURE : "
97                    << llvm::formatv(fmt.data(), std::forward<Args>(args)...)
98                    << "\n";
99   });
100 }
101 
102 //===----------------------------------------------------------------------===//
103 // ConversionValueMapping
104 //===----------------------------------------------------------------------===//
105 
106 namespace {
107 /// This class wraps a BlockAndValueMapping to provide recursive lookup
108 /// functionality, i.e. we will traverse if the mapped value also has a mapping.
109 struct ConversionValueMapping {
110   /// Lookup a mapped value within the map. If a mapping for the provided value
111   /// does not exist then return the provided value. If `desiredType` is
112   /// non-null, returns the most recently mapped value with that type. If an
113   /// operand of that type does not exist, defaults to normal behavior.
114   Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
115 
116   /// Lookup a mapped value within the map, or return null if a mapping does not
117   /// exist. If a mapping exists, this follows the same behavior of
118   /// `lookupOrDefault`.
119   Value lookupOrNull(Value from, Type desiredType = nullptr) const;
120 
121   /// Map a value to the one provided.
122   void map(Value oldVal, Value newVal) {
123     LLVM_DEBUG({
124       for (Value it = newVal; it; it = mapping.lookupOrNull(it))
125         assert(it != oldVal && "inserting cyclic mapping");
126     });
127     mapping.map(oldVal, newVal);
128   }
129 
130   /// Try to map a value to the one provided. Returns false if a transitive
131   /// mapping from the new value to the old value already exists, true if the
132   /// map was updated.
133   bool tryMap(Value oldVal, Value newVal);
134 
135   /// Drop the last mapping for the given value.
136   void erase(Value value) { mapping.erase(value); }
137 
138   /// Returns the inverse raw value mapping (without recursive query support).
139   DenseMap<Value, SmallVector<Value>> getInverse() const {
140     DenseMap<Value, SmallVector<Value>> inverse;
141     for (auto &it : mapping.getValueMap())
142       inverse[it.second].push_back(it.first);
143     return inverse;
144   }
145 
146 private:
147   /// Current value mappings.
148   BlockAndValueMapping mapping;
149 };
150 } // end anonymous namespace
151 
152 Value ConversionValueMapping::lookupOrDefault(Value from,
153                                               Type desiredType) const {
154   // If there was no desired type, simply find the leaf value.
155   if (!desiredType) {
156     // If this value had a valid mapping, unmap that value as well in the case
157     // that it was also replaced.
158     while (auto mappedValue = mapping.lookupOrNull(from))
159       from = mappedValue;
160     return from;
161   }
162 
163   // Otherwise, try to find the deepest value that has the desired type.
164   Value desiredValue;
165   do {
166     if (from.getType() == desiredType)
167       desiredValue = from;
168 
169     Value mappedValue = mapping.lookupOrNull(from);
170     if (!mappedValue)
171       break;
172     from = mappedValue;
173   } while (true);
174 
175   // If the desired value was found use it, otherwise default to the leaf value.
176   return desiredValue ? desiredValue : from;
177 }
178 
179 Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const {
180   Value result = lookupOrDefault(from, desiredType);
181   if (result == from || (desiredType && result.getType() != desiredType))
182     return nullptr;
183   return result;
184 }
185 
186 bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) {
187   for (Value it = newVal; it; it = mapping.lookupOrNull(it))
188     if (it == oldVal)
189       return false;
190   map(oldVal, newVal);
191   return true;
192 }
193 
194 //===----------------------------------------------------------------------===//
195 // Rewriter and Translation State
196 //===----------------------------------------------------------------------===//
197 namespace {
198 /// This class contains a snapshot of the current conversion rewriter state.
199 /// This is useful when saving and undoing a set of rewrites.
200 struct RewriterState {
201   RewriterState(unsigned numCreatedOps, unsigned numUnresolvedMaterializations,
202                 unsigned numReplacements, unsigned numArgReplacements,
203                 unsigned numBlockActions, unsigned numIgnoredOperations,
204                 unsigned numRootUpdates)
205       : numCreatedOps(numCreatedOps),
206         numUnresolvedMaterializations(numUnresolvedMaterializations),
207         numReplacements(numReplacements),
208         numArgReplacements(numArgReplacements),
209         numBlockActions(numBlockActions),
210         numIgnoredOperations(numIgnoredOperations),
211         numRootUpdates(numRootUpdates) {}
212 
213   /// The current number of created operations.
214   unsigned numCreatedOps;
215 
216   /// The current number of unresolved materializations.
217   unsigned numUnresolvedMaterializations;
218 
219   /// The current number of replacements queued.
220   unsigned numReplacements;
221 
222   /// The current number of argument replacements queued.
223   unsigned numArgReplacements;
224 
225   /// The current number of block actions performed.
226   unsigned numBlockActions;
227 
228   /// The current number of ignored operations.
229   unsigned numIgnoredOperations;
230 
231   /// The current number of operations that were updated in place.
232   unsigned numRootUpdates;
233 };
234 
235 //===----------------------------------------------------------------------===//
236 // OperationTransactionState
237 
238 /// The state of an operation that was updated by a pattern in-place. This
239 /// contains all of the necessary information to reconstruct an operation that
240 /// was updated in place.
241 class OperationTransactionState {
242 public:
243   OperationTransactionState() = default;
244   OperationTransactionState(Operation *op)
245       : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()),
246         operands(op->operand_begin(), op->operand_end()),
247         successors(op->successor_begin(), op->successor_end()) {}
248 
249   /// Discard the transaction state and reset the state of the original
250   /// operation.
251   void resetOperation() const {
252     op->setLoc(loc);
253     op->setAttrs(attrs);
254     op->setOperands(operands);
255     for (auto it : llvm::enumerate(successors))
256       op->setSuccessor(it.value(), it.index());
257   }
258 
259   /// Return the original operation of this state.
260   Operation *getOperation() const { return op; }
261 
262 private:
263   Operation *op;
264   LocationAttr loc;
265   DictionaryAttr attrs;
266   SmallVector<Value, 8> operands;
267   SmallVector<Block *, 2> successors;
268 };
269 
270 //===----------------------------------------------------------------------===//
271 // OpReplacement
272 
273 /// This class represents one requested operation replacement via 'replaceOp' or
274 /// 'eraseOp`.
275 struct OpReplacement {
276   OpReplacement(TypeConverter *converter = nullptr) : converter(converter) {}
277 
278   /// An optional type converter that can be used to materialize conversions
279   /// between the new and old values if necessary.
280   TypeConverter *converter;
281 };
282 
283 //===----------------------------------------------------------------------===//
284 // BlockAction
285 
286 /// The kind of the block action performed during the rewrite.  Actions can be
287 /// undone if the conversion fails.
288 enum class BlockActionKind {
289   Create,
290   Erase,
291   Merge,
292   Move,
293   Split,
294   TypeConversion
295 };
296 
297 /// Original position of the given block in its parent region. During undo
298 /// actions, the block needs to be placed after `insertAfterBlock`.
299 struct BlockPosition {
300   Region *region;
301   Block *insertAfterBlock;
302 };
303 
304 /// Information needed to undo the merge actions.
305 /// - the source block, and
306 /// - the Operation that was the last operation in the dest block before the
307 ///   merge (could be null if the dest block was empty).
308 struct MergeInfo {
309   Block *sourceBlock;
310   Operation *destBlockLastInst;
311 };
312 
313 /// The storage class for an undoable block action (one of BlockActionKind),
314 /// contains the information necessary to undo this action.
315 struct BlockAction {
316   static BlockAction getCreate(Block *block) {
317     return {BlockActionKind::Create, block, {}};
318   }
319   static BlockAction getErase(Block *block, BlockPosition originalPosition) {
320     return {BlockActionKind::Erase, block, {originalPosition}};
321   }
322   static BlockAction getMerge(Block *block, Block *sourceBlock) {
323     BlockAction action{BlockActionKind::Merge, block, {}};
324     action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()};
325     return action;
326   }
327   static BlockAction getMove(Block *block, BlockPosition originalPosition) {
328     return {BlockActionKind::Move, block, {originalPosition}};
329   }
330   static BlockAction getSplit(Block *block, Block *originalBlock) {
331     BlockAction action{BlockActionKind::Split, block, {}};
332     action.originalBlock = originalBlock;
333     return action;
334   }
335   static BlockAction getTypeConversion(Block *block) {
336     return BlockAction{BlockActionKind::TypeConversion, block, {}};
337   }
338 
339   // The action kind.
340   BlockActionKind kind;
341 
342   // A pointer to the block that was created by the action.
343   Block *block;
344 
345   union {
346     // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and
347     // contains a pointer to the region that originally contained the block as
348     // well as the position of the block in that region.
349     BlockPosition originalPosition;
350     // In use if kind == BlockActionKind::Split and contains a pointer to the
351     // block that was split into two parts.
352     Block *originalBlock;
353     // In use if kind == BlockActionKind::Merge, and contains the information
354     // needed to undo the merge.
355     MergeInfo mergeInfo;
356   };
357 };
358 
359 //===----------------------------------------------------------------------===//
360 // UnresolvedMaterialization
361 
362 /// This class represents an unresolved materialization, i.e. a materialization
363 /// that was inserted during conversion that needs to be legalized at the end of
364 /// the conversion process.
365 class UnresolvedMaterialization {
366 public:
367   /// The type of materialization.
368   enum Kind {
369     /// This materialization materializes a conversion for an illegal block
370     /// argument type, to a legal one.
371     Argument,
372 
373     /// This materialization materializes a conversion from an illegal type to a
374     /// legal one.
375     Target
376   };
377 
378   UnresolvedMaterialization(UnrealizedConversionCastOp op = nullptr,
379                             TypeConverter *converter = nullptr,
380                             Kind kind = Target, Type origOutputType = nullptr)
381       : op(op), converterAndKind(converter, kind),
382         origOutputType(origOutputType) {}
383 
384   /// Return the temporary conversion operation inserted for this
385   /// materialization.
386   UnrealizedConversionCastOp getOp() const { return op; }
387 
388   /// Return the type converter of this materialization (which may be null).
389   TypeConverter *getConverter() const { return converterAndKind.getPointer(); }
390 
391   /// Return the kind of this materialization.
392   Kind getKind() const { return converterAndKind.getInt(); }
393 
394   /// Set the kind of this materialization.
395   void setKind(Kind kind) { converterAndKind.setInt(kind); }
396 
397   /// Return the original illegal output type of the input values.
398   Type getOrigOutputType() const { return origOutputType; }
399 
400 private:
401   /// The unresolved materialization operation created during conversion.
402   UnrealizedConversionCastOp op;
403 
404   /// The corresponding type converter to use when resolving this
405   /// materialization, and the kind of this materialization.
406   llvm::PointerIntPair<TypeConverter *, 1, Kind> converterAndKind;
407 
408   /// The original output type. This is only used for argument conversions.
409   Type origOutputType;
410 };
411 } // end anonymous namespace
412 
413 /// Build an unresolved materialization operation given an output type and set
414 /// of input operands.
415 static Value buildUnresolvedMaterialization(
416     UnresolvedMaterialization::Kind kind, Block *insertBlock,
417     Block::iterator insertPt, Location loc, ValueRange inputs, Type outputType,
418     Type origOutputType, TypeConverter *converter,
419     SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
420   // Avoid materializing an unnecessary cast.
421   if (inputs.size() == 1 && inputs.front().getType() == outputType)
422     return inputs.front();
423 
424   // Create an unresolved materialization. We use a new OpBuilder to avoid
425   // tracking the materialization like we do for other operations.
426   OpBuilder builder(insertBlock, insertPt);
427   auto convertOp =
428       builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs);
429   unresolvedMaterializations.emplace_back(convertOp, converter, kind,
430                                           origOutputType);
431   return convertOp.getResult(0);
432 }
433 static Value buildUnresolvedArgumentMaterialization(
434     PatternRewriter &rewriter, Location loc, ValueRange inputs,
435     Type origOutputType, Type outputType, TypeConverter *converter,
436     SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
437   return buildUnresolvedMaterialization(
438       UnresolvedMaterialization::Argument, rewriter.getInsertionBlock(),
439       rewriter.getInsertionPoint(), loc, inputs, outputType, origOutputType,
440       converter, unresolvedMaterializations);
441 }
442 static Value buildUnresolvedTargetMaterialization(
443     Location loc, Value input, Type outputType, TypeConverter *converter,
444     SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
445   Block *insertBlock = input.getParentBlock();
446   Block::iterator insertPt = insertBlock->begin();
447   if (OpResult inputRes = input.dyn_cast<OpResult>())
448     insertPt = ++inputRes.getOwner()->getIterator();
449 
450   return buildUnresolvedMaterialization(
451       UnresolvedMaterialization::Target, insertBlock, insertPt, loc, input,
452       outputType, outputType, converter, unresolvedMaterializations);
453 }
454 
455 //===----------------------------------------------------------------------===//
456 // ArgConverter
457 //===----------------------------------------------------------------------===//
458 namespace {
459 /// This class provides a simple interface for converting the types of block
460 /// arguments. This is done by creating a new block that contains the new legal
461 /// types and extracting the block that contains the old illegal types to allow
462 /// for undoing pending rewrites in the case of failure.
463 struct ArgConverter {
464   ArgConverter(
465       PatternRewriter &rewriter,
466       SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations)
467       : rewriter(rewriter),
468         unresolvedMaterializations(unresolvedMaterializations) {}
469 
470   /// This structure contains the information pertaining to an argument that has
471   /// been converted.
472   struct ConvertedArgInfo {
473     ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
474                      Value castValue = nullptr)
475         : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
476 
477     /// The start index of in the new argument list that contains arguments that
478     /// replace the original.
479     unsigned newArgIdx;
480 
481     /// The number of arguments that replaced the original argument.
482     unsigned newArgSize;
483 
484     /// The cast value that was created to cast from the new arguments to the
485     /// old. This only used if 'newArgSize' > 1.
486     Value castValue;
487   };
488 
489   /// This structure contains information pertaining to a block that has had its
490   /// signature converted.
491   struct ConvertedBlockInfo {
492     ConvertedBlockInfo(Block *origBlock, TypeConverter *converter)
493         : origBlock(origBlock), converter(converter) {}
494 
495     /// The original block that was requested to have its signature converted.
496     Block *origBlock;
497 
498     /// The conversion information for each of the arguments. The information is
499     /// None if the argument was dropped during conversion.
500     SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
501 
502     /// The type converter used to convert the arguments.
503     TypeConverter *converter;
504   };
505 
506   /// Return if the signature of the given block has already been converted.
507   bool hasBeenConverted(Block *block) const {
508     return conversionInfo.count(block) || convertedBlocks.count(block);
509   }
510 
511   /// Set the type converter to use for the given region.
512   void setConverter(Region *region, TypeConverter *typeConverter) {
513     assert(typeConverter && "expected valid type converter");
514     regionToConverter[region] = typeConverter;
515   }
516 
517   /// Return the type converter to use for the given region, or null if there
518   /// isn't one.
519   TypeConverter *getConverter(Region *region) {
520     return regionToConverter.lookup(region);
521   }
522 
523   //===--------------------------------------------------------------------===//
524   // Rewrite Application
525   //===--------------------------------------------------------------------===//
526 
527   /// Erase any rewrites registered for the blocks within the given operation
528   /// which is about to be removed. This merely drops the rewrites without
529   /// undoing them.
530   void notifyOpRemoved(Operation *op);
531 
532   /// Cleanup and undo any generated conversions for the arguments of block.
533   /// This method replaces the new block with the original, reverting the IR to
534   /// its original state.
535   void discardRewrites(Block *block);
536 
537   /// Fully replace uses of the old arguments with the new.
538   void applyRewrites(ConversionValueMapping &mapping);
539 
540   /// Materialize any necessary conversions for converted arguments that have
541   /// live users, using the provided `findLiveUser` to search for a user that
542   /// survives the conversion process.
543   LogicalResult
544   materializeLiveConversions(ConversionValueMapping &mapping,
545                              OpBuilder &builder,
546                              function_ref<Operation *(Value)> findLiveUser);
547 
548   //===--------------------------------------------------------------------===//
549   // Conversion
550   //===--------------------------------------------------------------------===//
551 
552   /// Attempt to convert the signature of the given block, if successful a new
553   /// block is returned containing the new arguments. Returns `block` if it did
554   /// not require conversion.
555   FailureOr<Block *>
556   convertSignature(Block *block, TypeConverter *converter,
557                    ConversionValueMapping &mapping,
558                    SmallVectorImpl<BlockArgument> &argReplacements);
559 
560   /// Apply the given signature conversion on the given block. The new block
561   /// containing the updated signature is returned. If no conversions were
562   /// necessary, e.g. if the block has no arguments, `block` is returned.
563   /// `converter` is used to generate any necessary cast operations that
564   /// translate between the origin argument types and those specified in the
565   /// signature conversion.
566   Block *applySignatureConversion(
567       Block *block, TypeConverter *converter,
568       TypeConverter::SignatureConversion &signatureConversion,
569       ConversionValueMapping &mapping,
570       SmallVectorImpl<BlockArgument> &argReplacements);
571 
572   /// Insert a new conversion into the cache.
573   void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
574 
575   /// A collection of blocks that have had their arguments converted. This is a
576   /// map from the new replacement block, back to the original block.
577   llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
578 
579   /// The set of original blocks that were converted.
580   DenseSet<Block *> convertedBlocks;
581 
582   /// A mapping from valid regions, to those containing the original blocks of a
583   /// conversion.
584   DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
585 
586   /// A mapping of regions to type converters that should be used when
587   /// converting the arguments of blocks within that region.
588   DenseMap<Region *, TypeConverter *> regionToConverter;
589 
590   /// The pattern rewriter to use when materializing conversions.
591   PatternRewriter &rewriter;
592 
593   /// An ordered set of unresolved materializations during conversion.
594   SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations;
595 };
596 } // end anonymous namespace
597 
598 //===----------------------------------------------------------------------===//
599 // Rewrite Application
600 
601 void ArgConverter::notifyOpRemoved(Operation *op) {
602   if (conversionInfo.empty())
603     return;
604 
605   for (Region &region : op->getRegions()) {
606     for (Block &block : region) {
607       // Drop any rewrites from within.
608       for (Operation &nestedOp : block)
609         if (nestedOp.getNumRegions())
610           notifyOpRemoved(&nestedOp);
611 
612       // Check if this block was converted.
613       auto it = conversionInfo.find(&block);
614       if (it == conversionInfo.end())
615         continue;
616 
617       // Drop all uses of the original arguments and delete the original block.
618       Block *origBlock = it->second.origBlock;
619       for (BlockArgument arg : origBlock->getArguments())
620         arg.dropAllUses();
621       conversionInfo.erase(it);
622     }
623   }
624 }
625 
626 void ArgConverter::discardRewrites(Block *block) {
627   auto it = conversionInfo.find(block);
628   if (it == conversionInfo.end())
629     return;
630   Block *origBlock = it->second.origBlock;
631 
632   // Drop all uses of the new block arguments and replace uses of the new block.
633   for (int i = block->getNumArguments() - 1; i >= 0; --i)
634     block->getArgument(i).dropAllUses();
635   block->replaceAllUsesWith(origBlock);
636 
637   // Move the operations back the original block and the delete the new block.
638   origBlock->getOperations().splice(origBlock->end(), block->getOperations());
639   origBlock->moveBefore(block);
640   block->erase();
641 
642   convertedBlocks.erase(origBlock);
643   conversionInfo.erase(it);
644 }
645 
646 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
647   for (auto &info : conversionInfo) {
648     ConvertedBlockInfo &blockInfo = info.second;
649     Block *origBlock = blockInfo.origBlock;
650 
651     // Process the remapping for each of the original arguments.
652     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
653       Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
654       BlockArgument origArg = origBlock->getArgument(i);
655 
656       // Handle the case of a 1->0 value mapping.
657       if (!argInfo) {
658         if (Value newArg = mapping.lookupOrNull(origArg, origArg.getType()))
659           origArg.replaceAllUsesWith(newArg);
660         continue;
661       }
662 
663       // Otherwise this is a 1->1+ value mapping.
664       Value castValue = argInfo->castValue;
665       assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
666 
667       // If the argument is still used, replace it with the generated cast.
668       if (!origArg.use_empty()) {
669         origArg.replaceAllUsesWith(
670             mapping.lookupOrDefault(castValue, origArg.getType()));
671       }
672     }
673   }
674 }
675 
676 LogicalResult ArgConverter::materializeLiveConversions(
677     ConversionValueMapping &mapping, OpBuilder &builder,
678     function_ref<Operation *(Value)> findLiveUser) {
679   for (auto &info : conversionInfo) {
680     Block *newBlock = info.first;
681     ConvertedBlockInfo &blockInfo = info.second;
682     Block *origBlock = blockInfo.origBlock;
683 
684     // Process the remapping for each of the original arguments.
685     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
686       // If the type of this argument changed and the argument is still live, we
687       // need to materialize a conversion.
688       BlockArgument origArg = origBlock->getArgument(i);
689       if (mapping.lookupOrNull(origArg, origArg.getType()))
690         continue;
691       Operation *liveUser = findLiveUser(origArg);
692       if (!liveUser)
693         continue;
694 
695       Value replacementValue = mapping.lookupOrDefault(origArg);
696       bool isDroppedArg = replacementValue == origArg;
697       if (isDroppedArg)
698         rewriter.setInsertionPointToStart(newBlock);
699       else
700         rewriter.setInsertionPointAfterValue(replacementValue);
701       Value newArg;
702       if (blockInfo.converter) {
703         newArg = blockInfo.converter->materializeSourceConversion(
704             rewriter, origArg.getLoc(), origArg.getType(),
705             isDroppedArg ? ValueRange() : ValueRange(replacementValue));
706         assert((!newArg || newArg.getType() == origArg.getType()) &&
707                "materialization hook did not provide a value of the expected "
708                "type");
709       }
710       if (!newArg) {
711         InFlightDiagnostic diag =
712             emitError(origArg.getLoc())
713             << "failed to materialize conversion for block argument #" << i
714             << " that remained live after conversion, type was "
715             << origArg.getType();
716         if (!isDroppedArg)
717           diag << ", with target type " << replacementValue.getType();
718         diag.attachNote(liveUser->getLoc())
719             << "see existing live user here: " << *liveUser;
720         return failure();
721       }
722       mapping.map(origArg, newArg);
723     }
724   }
725   return success();
726 }
727 
728 //===----------------------------------------------------------------------===//
729 // Conversion
730 
731 FailureOr<Block *> ArgConverter::convertSignature(
732     Block *block, TypeConverter *converter, ConversionValueMapping &mapping,
733     SmallVectorImpl<BlockArgument> &argReplacements) {
734   // Check if the block was already converted. If the block is detached,
735   // conservatively assume it is going to be deleted.
736   if (hasBeenConverted(block) || !block->getParent())
737     return block;
738   // If a converter wasn't provided, and the block wasn't already converted,
739   // there is nothing we can do.
740   if (!converter)
741     return failure();
742 
743   // Try to convert the signature for the block with the provided converter.
744   if (auto conversion = converter->convertBlockSignature(block))
745     return applySignatureConversion(block, converter, *conversion, mapping,
746                                     argReplacements);
747   return failure();
748 }
749 
750 Block *ArgConverter::applySignatureConversion(
751     Block *block, TypeConverter *converter,
752     TypeConverter::SignatureConversion &signatureConversion,
753     ConversionValueMapping &mapping,
754     SmallVectorImpl<BlockArgument> &argReplacements) {
755   // If no arguments are being changed or added, there is nothing to do.
756   unsigned origArgCount = block->getNumArguments();
757   auto convertedTypes = signatureConversion.getConvertedTypes();
758   if (origArgCount == 0 && convertedTypes.empty())
759     return block;
760 
761   // Split the block at the beginning to get a new block to use for the updated
762   // signature.
763   Block *newBlock = block->splitBlock(block->begin());
764   block->replaceAllUsesWith(newBlock);
765 
766   SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes));
767   ArrayRef<Value> newArgs(newArgRange);
768 
769   // Remap each of the original arguments as determined by the signature
770   // conversion.
771   ConvertedBlockInfo info(block, converter);
772   info.argInfo.resize(origArgCount);
773 
774   OpBuilder::InsertionGuard guard(rewriter);
775   rewriter.setInsertionPointToStart(newBlock);
776   for (unsigned i = 0; i != origArgCount; ++i) {
777     auto inputMap = signatureConversion.getInputMapping(i);
778     if (!inputMap)
779       continue;
780     BlockArgument origArg = block->getArgument(i);
781 
782     // If inputMap->replacementValue is not nullptr, then the argument is
783     // dropped and a replacement value is provided to be the remappedValue.
784     if (inputMap->replacementValue) {
785       assert(inputMap->size == 0 &&
786              "invalid to provide a replacement value when the argument isn't "
787              "dropped");
788       mapping.map(origArg, inputMap->replacementValue);
789       argReplacements.push_back(origArg);
790       continue;
791     }
792 
793     // Otherwise, this is a 1->1+ mapping.
794     auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
795     Value newArg;
796 
797     // If this is a 1->1 mapping and the types of new and replacement arguments
798     // match (i.e. it's an identity map), then the argument is mapped to its
799     // original type.
800     // FIXME: We simply pass through the replacement argument if there wasn't a
801     // converter, which isn't great as it allows implicit type conversions to
802     // appear. We should properly restructure this code to handle cases where a
803     // converter isn't provided and also to properly handle the case where an
804     // argument materialization is actually a temporary source materialization
805     // (e.g. in the case of 1->N).
806     if (replArgs.size() == 1 &&
807         (!converter || replArgs[0].getType() == origArg.getType())) {
808       newArg = replArgs.front();
809     } else {
810       Type origOutputType = origArg.getType();
811 
812       // Legalize the argument output type.
813       Type outputType = origOutputType;
814       if (Type legalOutputType = converter->convertType(outputType))
815         outputType = legalOutputType;
816 
817       newArg = buildUnresolvedArgumentMaterialization(
818           rewriter, origArg.getLoc(), replArgs, origOutputType, outputType,
819           converter, unresolvedMaterializations);
820     }
821 
822     mapping.map(origArg, newArg);
823     argReplacements.push_back(origArg);
824     info.argInfo[i] =
825         ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
826   }
827 
828   // Remove the original block from the region and return the new one.
829   insertConversion(newBlock, std::move(info));
830   return newBlock;
831 }
832 
833 void ArgConverter::insertConversion(Block *newBlock,
834                                     ConvertedBlockInfo &&info) {
835   // Get a region to insert the old block.
836   Region *region = newBlock->getParent();
837   std::unique_ptr<Region> &mappedRegion = regionMapping[region];
838   if (!mappedRegion)
839     mappedRegion = std::make_unique<Region>(region->getParentOp());
840 
841   // Move the original block to the mapped region and emplace the conversion.
842   mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
843                                    info.origBlock->getIterator());
844   convertedBlocks.insert(info.origBlock);
845   conversionInfo.insert({newBlock, std::move(info)});
846 }
847 
848 //===----------------------------------------------------------------------===//
849 // ConversionPatternRewriterImpl
850 //===----------------------------------------------------------------------===//
851 namespace mlir {
852 namespace detail {
853 struct ConversionPatternRewriterImpl {
854   ConversionPatternRewriterImpl(PatternRewriter &rewriter)
855       : argConverter(rewriter, unresolvedMaterializations) {}
856 
857   /// Cleanup and destroy any generated rewrite operations. This method is
858   /// invoked when the conversion process fails.
859   void discardRewrites();
860 
861   /// Apply all requested operation rewrites. This method is invoked when the
862   /// conversion process succeeds.
863   void applyRewrites();
864 
865   //===--------------------------------------------------------------------===//
866   // State Management
867   //===--------------------------------------------------------------------===//
868 
869   /// Return the current state of the rewriter.
870   RewriterState getCurrentState();
871 
872   /// Reset the state of the rewriter to a previously saved point.
873   void resetState(RewriterState state);
874 
875   /// Erase any blocks that were unlinked from their regions and stored in block
876   /// actions.
877   void eraseDanglingBlocks();
878 
879   /// Undo the block actions (motions, splits) one by one in reverse order until
880   /// "numActionsToKeep" actions remains.
881   void undoBlockActions(unsigned numActionsToKeep = 0);
882 
883   /// Remap the given values to those with potentially different types. Returns
884   /// success if the values could be remapped, failure otherwise. `valueDiagTag`
885   /// is the tag used when describing a value within a diagnostic, e.g.
886   /// "operand".
887   LogicalResult remapValues(StringRef valueDiagTag, Optional<Location> inputLoc,
888                             PatternRewriter &rewriter, ValueRange values,
889                             SmallVectorImpl<Value> &remapped);
890 
891   /// Returns true if the given operation is ignored, and does not need to be
892   /// converted.
893   bool isOpIgnored(Operation *op) const;
894 
895   /// Recursively marks the nested operations under 'op' as ignored. This
896   /// removes them from being considered for legalization.
897   void markNestedOpsIgnored(Operation *op);
898 
899   //===--------------------------------------------------------------------===//
900   // Type Conversion
901   //===--------------------------------------------------------------------===//
902 
903   /// Convert the signature of the given block.
904   FailureOr<Block *> convertBlockSignature(
905       Block *block, TypeConverter *converter,
906       TypeConverter::SignatureConversion *conversion = nullptr);
907 
908   /// Apply a signature conversion on the given region, using `converter` for
909   /// materializations if not null.
910   Block *
911   applySignatureConversion(Region *region,
912                            TypeConverter::SignatureConversion &conversion,
913                            TypeConverter *converter);
914 
915   /// Convert the types of block arguments within the given region.
916   FailureOr<Block *>
917   convertRegionTypes(Region *region, TypeConverter &converter,
918                      TypeConverter::SignatureConversion *entryConversion);
919 
920   /// Convert the types of non-entry block arguments within the given region.
921   LogicalResult convertNonEntryRegionTypes(
922       Region *region, TypeConverter &converter,
923       ArrayRef<TypeConverter::SignatureConversion> blockConversions = {});
924 
925   //===--------------------------------------------------------------------===//
926   // Rewriter Notification Hooks
927   //===--------------------------------------------------------------------===//
928 
929   /// PatternRewriter hook for replacing the results of an operation.
930   void notifyOpReplaced(Operation *op, ValueRange newValues);
931 
932   /// Notifies that a block is about to be erased.
933   void notifyBlockIsBeingErased(Block *block);
934 
935   /// Notifies that a block was created.
936   void notifyCreatedBlock(Block *block);
937 
938   /// Notifies that a block was split.
939   void notifySplitBlock(Block *block, Block *continuation);
940 
941   /// Notifies that `block` is being merged with `srcBlock`.
942   void notifyBlocksBeingMerged(Block *block, Block *srcBlock);
943 
944   /// Notifies that the blocks of a region are about to be moved.
945   void notifyRegionIsBeingInlinedBefore(Region &region, Region &parent,
946                                         Region::iterator before);
947 
948   /// Notifies that the blocks of a region were cloned into another.
949   void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
950                                    Location origRegionLoc);
951 
952   /// Notifies that a pattern match failed for the given reason.
953   LogicalResult
954   notifyMatchFailure(Location loc,
955                      function_ref<void(Diagnostic &)> reasonCallback);
956 
957   //===--------------------------------------------------------------------===//
958   // State
959   //===--------------------------------------------------------------------===//
960 
961   // Mapping between replaced values that differ in type. This happens when
962   // replacing a value with one of a different type.
963   ConversionValueMapping mapping;
964 
965   /// Utility used to convert block arguments.
966   ArgConverter argConverter;
967 
968   /// Ordered vector of all of the newly created operations during conversion.
969   SmallVector<Operation *> createdOps;
970 
971   /// Ordered vector of all unresolved type conversion materializations during
972   /// conversion.
973   SmallVector<UnresolvedMaterialization> unresolvedMaterializations;
974 
975   /// Ordered map of requested operation replacements.
976   llvm::MapVector<Operation *, OpReplacement> replacements;
977 
978   /// Ordered vector of any requested block argument replacements.
979   SmallVector<BlockArgument, 4> argReplacements;
980 
981   /// Ordered list of block operations (creations, splits, motions).
982   SmallVector<BlockAction, 4> blockActions;
983 
984   /// A set of operations that should no longer be considered for legalization,
985   /// but were not directly replace/erased/etc. by a pattern. These are
986   /// generally child operations of other operations who were
987   /// replaced/erased/etc. This is not meant to be an exhaustive list of all
988   /// operations, but the minimal set that can be used to detect if a given
989   /// operation should be `ignored`. For example, we may add the operations that
990   /// define non-empty regions to the set, but not any of the others. This
991   /// simplifies the amount of memory needed as we can query if the parent
992   /// operation was ignored.
993   SetVector<Operation *> ignoredOps;
994 
995   /// A transaction state for each of operations that were updated in-place.
996   SmallVector<OperationTransactionState, 4> rootUpdates;
997 
998   /// A vector of indices into `replacements` of operations that were replaced
999   /// with values with different result types than the original operation, e.g.
1000   /// 1->N conversion of some kind.
1001   SmallVector<unsigned, 4> operationsWithChangedResults;
1002 
1003   /// The current type converter, or nullptr if no type converter is currently
1004   /// active.
1005   TypeConverter *currentTypeConverter = nullptr;
1006 
1007 #ifndef NDEBUG
1008   /// A set of operations that have pending updates. This tracking isn't
1009   /// strictly necessary, and is thus only active during debug builds for extra
1010   /// verification.
1011   SmallPtrSet<Operation *, 1> pendingRootUpdates;
1012 
1013   /// A logger used to emit diagnostics during the conversion process.
1014   llvm::ScopedPrinter logger{llvm::dbgs()};
1015 #endif
1016 };
1017 } // end namespace detail
1018 } // end namespace mlir
1019 
1020 /// Detach any operations nested in the given operation from their parent
1021 /// blocks, and erase the given operation. This can be used when the nested
1022 /// operations are scheduled for erasure themselves, so deleting the regions of
1023 /// the given operation together with their content would result in double-free.
1024 /// This happens, for example, when rolling back op creation in the reverse
1025 /// order and if the nested ops were created before the parent op. This function
1026 /// does not need to collect nested ops recursively because it is expected to
1027 /// also be called for each nested op when it is about to be deleted.
1028 static void detachNestedAndErase(Operation *op) {
1029   for (Region &region : op->getRegions()) {
1030     for (Block &block : region.getBlocks()) {
1031       while (!block.getOperations().empty())
1032         block.getOperations().remove(block.getOperations().begin());
1033       block.dropAllDefinedValueUses();
1034     }
1035   }
1036   op->dropAllUses();
1037   op->erase();
1038 }
1039 
1040 void ConversionPatternRewriterImpl::discardRewrites() {
1041   // Reset any operations that were updated in place.
1042   for (auto &state : rootUpdates)
1043     state.resetOperation();
1044 
1045   undoBlockActions();
1046 
1047   // Remove any newly created ops.
1048   for (UnresolvedMaterialization &materialization : unresolvedMaterializations)
1049     detachNestedAndErase(materialization.getOp());
1050   for (auto *op : llvm::reverse(createdOps))
1051     detachNestedAndErase(op);
1052 }
1053 
1054 void ConversionPatternRewriterImpl::applyRewrites() {
1055   // Apply all of the rewrites replacements requested during conversion.
1056   for (auto &repl : replacements) {
1057     for (OpResult result : repl.first->getResults())
1058       if (Value newValue = mapping.lookupOrNull(result, result.getType()))
1059         result.replaceAllUsesWith(newValue);
1060 
1061     // If this operation defines any regions, drop any pending argument
1062     // rewrites.
1063     if (repl.first->getNumRegions())
1064       argConverter.notifyOpRemoved(repl.first);
1065   }
1066 
1067   // Apply all of the requested argument replacements.
1068   for (BlockArgument arg : argReplacements) {
1069     Value repl = mapping.lookupOrNull(arg, arg.getType());
1070     if (!repl)
1071       continue;
1072 
1073     if (repl.isa<BlockArgument>()) {
1074       arg.replaceAllUsesWith(repl);
1075       continue;
1076     }
1077 
1078     // If the replacement value is an operation, we check to make sure that we
1079     // don't replace uses that are within the parent operation of the
1080     // replacement value.
1081     Operation *replOp = repl.cast<OpResult>().getOwner();
1082     Block *replBlock = replOp->getBlock();
1083     arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
1084       Operation *user = operand.getOwner();
1085       return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
1086     });
1087   }
1088 
1089   // Drop all of the unresolved materialization operations created during
1090   // conversion.
1091   for (auto &mat : unresolvedMaterializations) {
1092     mat.getOp()->dropAllUses();
1093     mat.getOp()->erase();
1094   }
1095 
1096   // In a second pass, erase all of the replaced operations in reverse. This
1097   // allows processing nested operations before their parent region is
1098   // destroyed. Because we process in reverse order, producers may be deleted
1099   // before their users (a pattern deleting a producer and then the consumer)
1100   // so we first drop all uses explicitly.
1101   for (auto &repl : llvm::reverse(replacements)) {
1102     repl.first->dropAllUses();
1103     repl.first->erase();
1104   }
1105 
1106   argConverter.applyRewrites(mapping);
1107 
1108   // Now that the ops have been erased, also erase dangling blocks.
1109   eraseDanglingBlocks();
1110 }
1111 
1112 //===----------------------------------------------------------------------===//
1113 // State Management
1114 
1115 RewriterState ConversionPatternRewriterImpl::getCurrentState() {
1116   return RewriterState(createdOps.size(), unresolvedMaterializations.size(),
1117                        replacements.size(), argReplacements.size(),
1118                        blockActions.size(), ignoredOps.size(),
1119                        rootUpdates.size());
1120 }
1121 
1122 void ConversionPatternRewriterImpl::resetState(RewriterState state) {
1123   // Reset any operations that were updated in place.
1124   for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
1125     rootUpdates[i].resetOperation();
1126   rootUpdates.resize(state.numRootUpdates);
1127 
1128   // Reset any replaced arguments.
1129   for (BlockArgument replacedArg :
1130        llvm::drop_begin(argReplacements, state.numArgReplacements))
1131     mapping.erase(replacedArg);
1132   argReplacements.resize(state.numArgReplacements);
1133 
1134   // Undo any block actions.
1135   undoBlockActions(state.numBlockActions);
1136 
1137   // Reset any replaced operations and undo any saved mappings.
1138   for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
1139     for (auto result : repl.first->getResults())
1140       mapping.erase(result);
1141   while (replacements.size() != state.numReplacements)
1142     replacements.pop_back();
1143 
1144   // Pop all of the newly inserted materializations.
1145   while (unresolvedMaterializations.size() !=
1146          state.numUnresolvedMaterializations) {
1147     UnresolvedMaterialization mat = unresolvedMaterializations.pop_back_val();
1148     UnrealizedConversionCastOp op = mat.getOp();
1149 
1150     // If this was a target materialization, drop the mapping that was inserted.
1151     if (mat.getKind() == UnresolvedMaterialization::Target) {
1152       for (Value input : op->getOperands())
1153         mapping.erase(input);
1154     }
1155     detachNestedAndErase(op);
1156   }
1157 
1158   // Pop all of the newly created operations.
1159   while (createdOps.size() != state.numCreatedOps) {
1160     detachNestedAndErase(createdOps.back());
1161     createdOps.pop_back();
1162   }
1163 
1164   // Pop all of the recorded ignored operations that are no longer valid.
1165   while (ignoredOps.size() != state.numIgnoredOperations)
1166     ignoredOps.pop_back();
1167 
1168   // Reset operations with changed results.
1169   while (!operationsWithChangedResults.empty() &&
1170          operationsWithChangedResults.back() >= state.numReplacements)
1171     operationsWithChangedResults.pop_back();
1172 }
1173 
1174 void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
1175   for (auto &action : blockActions)
1176     if (action.kind == BlockActionKind::Erase)
1177       delete action.block;
1178 }
1179 
1180 void ConversionPatternRewriterImpl::undoBlockActions(
1181     unsigned numActionsToKeep) {
1182   for (auto &action :
1183        llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
1184     switch (action.kind) {
1185     // Delete the created block.
1186     case BlockActionKind::Create: {
1187       // Unlink all of the operations within this block, they will be deleted
1188       // separately.
1189       auto &blockOps = action.block->getOperations();
1190       while (!blockOps.empty())
1191         blockOps.remove(blockOps.begin());
1192       action.block->dropAllDefinedValueUses();
1193       action.block->erase();
1194       break;
1195     }
1196     // Put the block (owned by action) back into its original position.
1197     case BlockActionKind::Erase: {
1198       auto &blockList = action.originalPosition.region->getBlocks();
1199       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1200       blockList.insert((insertAfterBlock
1201                             ? std::next(Region::iterator(insertAfterBlock))
1202                             : blockList.begin()),
1203                        action.block);
1204       break;
1205     }
1206     // Split the block at the position which was originally the end of the
1207     // destination block (owned by action), and put the instructions back into
1208     // the block used before the merge.
1209     case BlockActionKind::Merge: {
1210       Block *sourceBlock = action.mergeInfo.sourceBlock;
1211       Block::iterator splitPoint =
1212           (action.mergeInfo.destBlockLastInst
1213                ? ++Block::iterator(action.mergeInfo.destBlockLastInst)
1214                : action.block->begin());
1215       sourceBlock->getOperations().splice(sourceBlock->begin(),
1216                                           action.block->getOperations(),
1217                                           splitPoint, action.block->end());
1218       break;
1219     }
1220     // Move the block back to its original position.
1221     case BlockActionKind::Move: {
1222       Region *originalRegion = action.originalPosition.region;
1223       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1224       originalRegion->getBlocks().splice(
1225           (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
1226                             : originalRegion->end()),
1227           action.block->getParent()->getBlocks(), action.block);
1228       break;
1229     }
1230     // Merge back the block that was split out.
1231     case BlockActionKind::Split: {
1232       action.originalBlock->getOperations().splice(
1233           action.originalBlock->end(), action.block->getOperations());
1234       action.block->dropAllDefinedValueUses();
1235       action.block->erase();
1236       break;
1237     }
1238     // Undo the type conversion.
1239     case BlockActionKind::TypeConversion: {
1240       argConverter.discardRewrites(action.block);
1241       break;
1242     }
1243     }
1244   }
1245   blockActions.resize(numActionsToKeep);
1246 }
1247 
1248 LogicalResult ConversionPatternRewriterImpl::remapValues(
1249     StringRef valueDiagTag, Optional<Location> inputLoc,
1250     PatternRewriter &rewriter, ValueRange values,
1251     SmallVectorImpl<Value> &remapped) {
1252   remapped.reserve(llvm::size(values));
1253 
1254   SmallVector<Type, 1> legalTypes;
1255   for (auto it : llvm::enumerate(values)) {
1256     Value operand = it.value();
1257     Type origType = operand.getType();
1258 
1259     // If a converter was provided, get the desired legal types for this
1260     // operand.
1261     Type desiredType;
1262     if (currentTypeConverter) {
1263       // If there is no legal conversion, fail to match this pattern.
1264       legalTypes.clear();
1265       if (failed(currentTypeConverter->convertType(origType, legalTypes))) {
1266         Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
1267         return notifyMatchFailure(operandLoc, [=](Diagnostic &diag) {
1268           diag << "unable to convert type for " << valueDiagTag << " #"
1269                << it.index() << ", type was " << origType;
1270         });
1271       }
1272       // TODO: There currently isn't any mechanism to do 1->N type conversion
1273       // via the PatternRewriter replacement API, so for now we just ignore it.
1274       if (legalTypes.size() == 1)
1275         desiredType = legalTypes.front();
1276     } else {
1277       // TODO: What we should do here is just set `desiredType` to `origType`
1278       // and then handle the necessary type conversions after the conversion
1279       // process has finished. Unfortunately a lot of patterns currently rely on
1280       // receiving the new operands even if the types change, so we keep the
1281       // original behavior here for now until all of the patterns relying on
1282       // this get updated.
1283     }
1284     Value newOperand = mapping.lookupOrDefault(operand, desiredType);
1285 
1286     // Handle the case where the conversion was 1->1 and the new operand type
1287     // isn't legal.
1288     Type newOperandType = newOperand.getType();
1289     if (currentTypeConverter && desiredType && newOperandType != desiredType) {
1290       Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
1291       Value castValue = buildUnresolvedTargetMaterialization(
1292           operandLoc, newOperand, desiredType, currentTypeConverter,
1293           unresolvedMaterializations);
1294       mapping.map(mapping.lookupOrDefault(newOperand), castValue);
1295       newOperand = castValue;
1296     }
1297     remapped.push_back(newOperand);
1298   }
1299   return success();
1300 }
1301 
1302 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
1303   // Check to see if this operation was replaced or its parent ignored.
1304   return replacements.count(op) || ignoredOps.count(op->getParentOp());
1305 }
1306 
1307 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
1308   // Walk this operation and collect nested operations that define non-empty
1309   // regions. We mark such operations as 'ignored' so that we know we don't have
1310   // to convert them, or their nested ops.
1311   if (op->getNumRegions() == 0)
1312     return;
1313   op->walk([&](Operation *op) {
1314     if (llvm::any_of(op->getRegions(),
1315                      [](Region &region) { return !region.empty(); }))
1316       ignoredOps.insert(op);
1317   });
1318 }
1319 
1320 //===----------------------------------------------------------------------===//
1321 // Type Conversion
1322 
1323 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
1324     Block *block, TypeConverter *converter,
1325     TypeConverter::SignatureConversion *conversion) {
1326   FailureOr<Block *> result =
1327       conversion ? argConverter.applySignatureConversion(
1328                        block, converter, *conversion, mapping, argReplacements)
1329                  : argConverter.convertSignature(block, converter, mapping,
1330                                                  argReplacements);
1331   if (failed(result))
1332     return failure();
1333   if (Block *newBlock = result.getValue()) {
1334     if (newBlock != block)
1335       blockActions.push_back(BlockAction::getTypeConversion(newBlock));
1336   }
1337   return result;
1338 }
1339 
1340 Block *ConversionPatternRewriterImpl::applySignatureConversion(
1341     Region *region, TypeConverter::SignatureConversion &conversion,
1342     TypeConverter *converter) {
1343   if (!region->empty())
1344     return *convertBlockSignature(&region->front(), converter, &conversion);
1345   return nullptr;
1346 }
1347 
1348 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
1349     Region *region, TypeConverter &converter,
1350     TypeConverter::SignatureConversion *entryConversion) {
1351   argConverter.setConverter(region, &converter);
1352   if (region->empty())
1353     return nullptr;
1354 
1355   if (failed(convertNonEntryRegionTypes(region, converter)))
1356     return failure();
1357 
1358   FailureOr<Block *> newEntry =
1359       convertBlockSignature(&region->front(), &converter, entryConversion);
1360   return newEntry;
1361 }
1362 
1363 LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes(
1364     Region *region, TypeConverter &converter,
1365     ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1366   argConverter.setConverter(region, &converter);
1367   if (region->empty())
1368     return success();
1369 
1370   // Convert the arguments of each block within the region.
1371   int blockIdx = 0;
1372   assert((blockConversions.empty() ||
1373           blockConversions.size() == region->getBlocks().size() - 1) &&
1374          "expected either to provide no SignatureConversions at all or to "
1375          "provide a SignatureConversion for each non-entry block");
1376 
1377   for (Block &block :
1378        llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
1379     TypeConverter::SignatureConversion *blockConversion =
1380         blockConversions.empty()
1381             ? nullptr
1382             : const_cast<TypeConverter::SignatureConversion *>(
1383                   &blockConversions[blockIdx++]);
1384 
1385     if (failed(convertBlockSignature(&block, &converter, blockConversion)))
1386       return failure();
1387   }
1388   return success();
1389 }
1390 
1391 //===----------------------------------------------------------------------===//
1392 // Rewriter Notification Hooks
1393 
1394 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
1395                                                      ValueRange newValues) {
1396   assert(newValues.size() == op->getNumResults());
1397   assert(!replacements.count(op) && "operation was already replaced");
1398 
1399   // Track if any of the results changed, e.g. erased and replaced with null.
1400   bool resultChanged = false;
1401 
1402   // Create mappings for each of the new result values.
1403   Value newValue, result;
1404   for (auto it : llvm::zip(newValues, op->getResults())) {
1405     std::tie(newValue, result) = it;
1406     if (!newValue) {
1407       resultChanged = true;
1408       continue;
1409     }
1410     // Remap, and check for any result type changes.
1411     mapping.map(result, newValue);
1412     resultChanged |= (newValue.getType() != result.getType());
1413   }
1414   if (resultChanged)
1415     operationsWithChangedResults.push_back(replacements.size());
1416 
1417   // Record the requested operation replacement.
1418   replacements.insert(std::make_pair(op, OpReplacement(currentTypeConverter)));
1419 
1420   // Mark this operation as recursively ignored so that we don't need to
1421   // convert any nested operations.
1422   markNestedOpsIgnored(op);
1423 }
1424 
1425 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
1426   Region *region = block->getParent();
1427   Block *origPrevBlock = block->getPrevNode();
1428   blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
1429 }
1430 
1431 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
1432   blockActions.push_back(BlockAction::getCreate(block));
1433 }
1434 
1435 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
1436                                                      Block *continuation) {
1437   blockActions.push_back(BlockAction::getSplit(continuation, block));
1438 }
1439 
1440 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block,
1441                                                             Block *srcBlock) {
1442   blockActions.push_back(BlockAction::getMerge(block, srcBlock));
1443 }
1444 
1445 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
1446     Region &region, Region &parent, Region::iterator before) {
1447   if (region.empty())
1448     return;
1449   Block *laterBlock = &region.back();
1450   for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) {
1451     blockActions.push_back(
1452         BlockAction::getMove(laterBlock, {&region, &earlierBlock}));
1453     laterBlock = &earlierBlock;
1454   }
1455   blockActions.push_back(BlockAction::getMove(laterBlock, {&region, nullptr}));
1456 }
1457 
1458 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
1459     iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
1460   for (Block &block : blocks)
1461     blockActions.push_back(BlockAction::getCreate(&block));
1462 
1463   // Compute the conversion set for the inlined region.
1464   auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
1465 
1466   // This original region has already had its conversion set computed, so there
1467   // shouldn't be any new failures.
1468   (void)result;
1469   assert(succeeded(result) && "expected region to have no unreachable blocks");
1470 }
1471 
1472 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
1473     Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
1474   LLVM_DEBUG({
1475     Diagnostic diag(loc, DiagnosticSeverity::Remark);
1476     reasonCallback(diag);
1477     logger.startLine() << "** Failure : " << diag.str() << "\n";
1478   });
1479   return failure();
1480 }
1481 
1482 //===----------------------------------------------------------------------===//
1483 // ConversionPatternRewriter
1484 //===----------------------------------------------------------------------===//
1485 
1486 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
1487     : PatternRewriter(ctx),
1488       impl(new detail::ConversionPatternRewriterImpl(*this)) {}
1489 ConversionPatternRewriter::~ConversionPatternRewriter() {}
1490 
1491 void ConversionPatternRewriter::replaceOpWithIf(
1492     Operation *op, ValueRange newValues, bool *allUsesReplaced,
1493     llvm::unique_function<bool(OpOperand &) const> functor) {
1494   // TODO: To support this we will need to rework a bit of how replacements are
1495   // tracked, given that this isn't guranteed to replace all of the uses of an
1496   // operation. The main change is that now an operation can be replaced
1497   // multiple times, in parts. The current "set" based tracking is mainly useful
1498   // for tracking if a replaced operation should be ignored, i.e. if all of the
1499   // uses will be replaced.
1500   llvm_unreachable(
1501       "replaceOpWithIf is currently not supported by DialectConversion");
1502 }
1503 
1504 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
1505   LLVM_DEBUG({
1506     impl->logger.startLine()
1507         << "** Replace : '" << op->getName() << "'(" << op << ")\n";
1508   });
1509   impl->notifyOpReplaced(op, newValues);
1510 }
1511 
1512 void ConversionPatternRewriter::eraseOp(Operation *op) {
1513   LLVM_DEBUG({
1514     impl->logger.startLine()
1515         << "** Erase   : '" << op->getName() << "'(" << op << ")\n";
1516   });
1517   SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
1518   impl->notifyOpReplaced(op, nullRepls);
1519 }
1520 
1521 void ConversionPatternRewriter::eraseBlock(Block *block) {
1522   impl->notifyBlockIsBeingErased(block);
1523 
1524   // Mark all ops for erasure.
1525   for (Operation &op : *block)
1526     eraseOp(&op);
1527 
1528   // Unlink the block from its parent region. The block is kept in the block
1529   // action and will be actually destroyed when rewrites are applied. This
1530   // allows us to keep the operations in the block live and undo the removal by
1531   // re-inserting the block.
1532   block->getParent()->getBlocks().remove(block);
1533 }
1534 
1535 Block *ConversionPatternRewriter::applySignatureConversion(
1536     Region *region, TypeConverter::SignatureConversion &conversion,
1537     TypeConverter *converter) {
1538   return impl->applySignatureConversion(region, conversion, converter);
1539 }
1540 
1541 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
1542     Region *region, TypeConverter &converter,
1543     TypeConverter::SignatureConversion *entryConversion) {
1544   return impl->convertRegionTypes(region, converter, entryConversion);
1545 }
1546 
1547 LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes(
1548     Region *region, TypeConverter &converter,
1549     ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1550   return impl->convertNonEntryRegionTypes(region, converter, blockConversions);
1551 }
1552 
1553 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
1554                                                            Value to) {
1555   LLVM_DEBUG({
1556     Operation *parentOp = from.getOwner()->getParentOp();
1557     impl->logger.startLine() << "** Replace Argument : '" << from
1558                              << "'(in region of '" << parentOp->getName()
1559                              << "'(" << from.getOwner()->getParentOp() << ")\n";
1560   });
1561   impl->argReplacements.push_back(from);
1562   impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
1563 }
1564 
1565 Value ConversionPatternRewriter::getRemappedValue(Value key) {
1566   SmallVector<Value> remappedValues;
1567   if (failed(impl->remapValues("value", /*inputLoc=*/llvm::None, *this, key,
1568                                remappedValues)))
1569     return nullptr;
1570   return remappedValues.front();
1571 }
1572 
1573 LogicalResult
1574 ConversionPatternRewriter::getRemappedValues(ValueRange keys,
1575                                              SmallVectorImpl<Value> &results) {
1576   if (keys.empty())
1577     return success();
1578   return impl->remapValues("value", /*inputLoc=*/llvm::None, *this, keys,
1579                            results);
1580 }
1581 
1582 void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
1583   impl->notifyCreatedBlock(block);
1584 }
1585 
1586 Block *ConversionPatternRewriter::splitBlock(Block *block,
1587                                              Block::iterator before) {
1588   auto *continuation = PatternRewriter::splitBlock(block, before);
1589   impl->notifySplitBlock(block, continuation);
1590   return continuation;
1591 }
1592 
1593 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
1594                                             ValueRange argValues) {
1595   impl->notifyBlocksBeingMerged(dest, source);
1596   assert(llvm::all_of(source->getPredecessors(),
1597                       [dest](Block *succ) { return succ == dest; }) &&
1598          "expected 'source' to have no predecessors or only 'dest'");
1599   assert(argValues.size() == source->getNumArguments() &&
1600          "incorrect # of argument replacement values");
1601   for (auto it : llvm::zip(source->getArguments(), argValues))
1602     replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
1603   dest->getOperations().splice(dest->end(), source->getOperations());
1604   eraseBlock(source);
1605 }
1606 
1607 void ConversionPatternRewriter::inlineRegionBefore(Region &region,
1608                                                    Region &parent,
1609                                                    Region::iterator before) {
1610   impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
1611   PatternRewriter::inlineRegionBefore(region, parent, before);
1612 }
1613 
1614 void ConversionPatternRewriter::cloneRegionBefore(
1615     Region &region, Region &parent, Region::iterator before,
1616     BlockAndValueMapping &mapping) {
1617   if (region.empty())
1618     return;
1619   PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
1620 
1621   // Collect the range of the cloned blocks.
1622   auto clonedBeginIt = mapping.lookup(&region.front())->getIterator();
1623   auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
1624   impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
1625 }
1626 
1627 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
1628   LLVM_DEBUG({
1629     impl->logger.startLine()
1630         << "** Insert  : '" << op->getName() << "'(" << op << ")\n";
1631   });
1632   impl->createdOps.push_back(op);
1633 }
1634 
1635 void ConversionPatternRewriter::startRootUpdate(Operation *op) {
1636 #ifndef NDEBUG
1637   impl->pendingRootUpdates.insert(op);
1638 #endif
1639   impl->rootUpdates.emplace_back(op);
1640 }
1641 
1642 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
1643   // There is nothing to do here, we only need to track the operation at the
1644   // start of the update.
1645 #ifndef NDEBUG
1646   assert(impl->pendingRootUpdates.erase(op) &&
1647          "operation did not have a pending in-place update");
1648 #endif
1649 }
1650 
1651 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
1652 #ifndef NDEBUG
1653   assert(impl->pendingRootUpdates.erase(op) &&
1654          "operation did not have a pending in-place update");
1655 #endif
1656   // Erase the last update for this operation.
1657   auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
1658   auto &rootUpdates = impl->rootUpdates;
1659   auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
1660   assert(it != rootUpdates.rend() && "no root update started on op");
1661   (*it).resetOperation();
1662   int updateIdx = std::prev(rootUpdates.rend()) - it;
1663   rootUpdates.erase(rootUpdates.begin() + updateIdx);
1664 }
1665 
1666 LogicalResult ConversionPatternRewriter::notifyMatchFailure(
1667     Operation *op, function_ref<void(Diagnostic &)> reasonCallback) {
1668   return impl->notifyMatchFailure(op->getLoc(), reasonCallback);
1669 }
1670 
1671 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
1672   return *impl;
1673 }
1674 
1675 //===----------------------------------------------------------------------===//
1676 // ConversionPattern
1677 //===----------------------------------------------------------------------===//
1678 
1679 LogicalResult
1680 ConversionPattern::matchAndRewrite(Operation *op,
1681                                    PatternRewriter &rewriter) const {
1682   auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
1683   auto &rewriterImpl = dialectRewriter.getImpl();
1684 
1685   // Track the current conversion pattern type converter in the rewriter.
1686   llvm::SaveAndRestore<TypeConverter *> currentConverterGuard(
1687       rewriterImpl.currentTypeConverter, getTypeConverter());
1688 
1689   // Remap the operands of the operation.
1690   SmallVector<Value, 4> operands;
1691   if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter,
1692                                       op->getOperands(), operands))) {
1693     return failure();
1694   }
1695   return matchAndRewrite(op, operands, dialectRewriter);
1696 }
1697 
1698 //===----------------------------------------------------------------------===//
1699 // OperationLegalizer
1700 //===----------------------------------------------------------------------===//
1701 
1702 namespace {
1703 /// A set of rewrite patterns that can be used to legalize a given operation.
1704 using LegalizationPatterns = SmallVector<const Pattern *, 1>;
1705 
1706 /// This class defines a recursive operation legalizer.
1707 class OperationLegalizer {
1708 public:
1709   using LegalizationAction = ConversionTarget::LegalizationAction;
1710 
1711   OperationLegalizer(ConversionTarget &targetInfo,
1712                      const FrozenRewritePatternSet &patterns);
1713 
1714   /// Returns true if the given operation is known to be illegal on the target.
1715   bool isIllegal(Operation *op) const;
1716 
1717   /// Attempt to legalize the given operation. Returns success if the operation
1718   /// was legalized, failure otherwise.
1719   LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
1720 
1721   /// Returns the conversion target in use by the legalizer.
1722   ConversionTarget &getTarget() { return target; }
1723 
1724 private:
1725   /// Attempt to legalize the given operation by folding it.
1726   LogicalResult legalizeWithFold(Operation *op,
1727                                  ConversionPatternRewriter &rewriter);
1728 
1729   /// Attempt to legalize the given operation by applying a pattern. Returns
1730   /// success if the operation was legalized, failure otherwise.
1731   LogicalResult legalizeWithPattern(Operation *op,
1732                                     ConversionPatternRewriter &rewriter);
1733 
1734   /// Return true if the given pattern may be applied to the given operation,
1735   /// false otherwise.
1736   bool canApplyPattern(Operation *op, const Pattern &pattern,
1737                        ConversionPatternRewriter &rewriter);
1738 
1739   /// Legalize the resultant IR after successfully applying the given pattern.
1740   LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
1741                                       ConversionPatternRewriter &rewriter,
1742                                       RewriterState &curState);
1743 
1744   /// Legalizes the actions registered during the execution of a pattern.
1745   LogicalResult legalizePatternBlockActions(Operation *op,
1746                                             ConversionPatternRewriter &rewriter,
1747                                             ConversionPatternRewriterImpl &impl,
1748                                             RewriterState &state,
1749                                             RewriterState &newState);
1750   LogicalResult legalizePatternCreatedOperations(
1751       ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1752       RewriterState &state, RewriterState &newState);
1753   LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
1754                                            ConversionPatternRewriterImpl &impl,
1755                                            RewriterState &state,
1756                                            RewriterState &newState);
1757 
1758   //===--------------------------------------------------------------------===//
1759   // Cost Model
1760   //===--------------------------------------------------------------------===//
1761 
1762   /// Build an optimistic legalization graph given the provided patterns. This
1763   /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
1764   /// patterns for operations that are not directly legal, but may be
1765   /// transitively legal for the current target given the provided patterns.
1766   void buildLegalizationGraph(
1767       LegalizationPatterns &anyOpLegalizerPatterns,
1768       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1769 
1770   /// Compute the benefit of each node within the computed legalization graph.
1771   /// This orders the patterns within 'legalizerPatterns' based upon two
1772   /// criteria:
1773   ///  1) Prefer patterns that have the lowest legalization depth, i.e.
1774   ///     represent the more direct mapping to the target.
1775   ///  2) When comparing patterns with the same legalization depth, prefer the
1776   ///     pattern with the highest PatternBenefit. This allows for users to
1777   ///     prefer specific legalizations over others.
1778   void computeLegalizationGraphBenefit(
1779       LegalizationPatterns &anyOpLegalizerPatterns,
1780       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1781 
1782   /// Compute the legalization depth when legalizing an operation of the given
1783   /// type.
1784   unsigned computeOpLegalizationDepth(
1785       OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
1786       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1787 
1788   /// Apply the conversion cost model to the given set of patterns, and return
1789   /// the smallest legalization depth of any of the patterns. See
1790   /// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
1791   unsigned applyCostModelToPatterns(
1792       LegalizationPatterns &patterns,
1793       DenseMap<OperationName, unsigned> &minOpPatternDepth,
1794       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1795 
1796   /// The current set of patterns that have been applied.
1797   SmallPtrSet<const Pattern *, 8> appliedPatterns;
1798 
1799   /// The legalization information provided by the target.
1800   ConversionTarget &target;
1801 
1802   /// The pattern applicator to use for conversions.
1803   PatternApplicator applicator;
1804 };
1805 } // namespace
1806 
1807 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo,
1808                                        const FrozenRewritePatternSet &patterns)
1809     : target(targetInfo), applicator(patterns) {
1810   // The set of patterns that can be applied to illegal operations to transform
1811   // them into legal ones.
1812   DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
1813   LegalizationPatterns anyOpLegalizerPatterns;
1814 
1815   buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
1816   computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
1817 }
1818 
1819 bool OperationLegalizer::isIllegal(Operation *op) const {
1820   return target.isIllegal(op);
1821 }
1822 
1823 LogicalResult
1824 OperationLegalizer::legalize(Operation *op,
1825                              ConversionPatternRewriter &rewriter) {
1826 #ifndef NDEBUG
1827   const char *logLineComment =
1828       "//===-------------------------------------------===//\n";
1829 
1830   auto &logger = rewriter.getImpl().logger;
1831 #endif
1832   LLVM_DEBUG({
1833     logger.getOStream() << "\n";
1834     logger.startLine() << logLineComment;
1835     logger.startLine() << "Legalizing operation : '" << op->getName() << "'("
1836                        << op << ") {\n";
1837     logger.indent();
1838 
1839     // If the operation has no regions, just print it here.
1840     if (op->getNumRegions() == 0) {
1841       op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm());
1842       logger.getOStream() << "\n\n";
1843     }
1844   });
1845 
1846   // Check if this operation is legal on the target.
1847   if (auto legalityInfo = target.isLegal(op)) {
1848     LLVM_DEBUG({
1849       logSuccess(
1850           logger, "operation marked legal by the target{0}",
1851           legalityInfo->isRecursivelyLegal
1852               ? "; NOTE: operation is recursively legal; skipping internals"
1853               : "");
1854       logger.startLine() << logLineComment;
1855     });
1856 
1857     // If this operation is recursively legal, mark its children as ignored so
1858     // that we don't consider them for legalization.
1859     if (legalityInfo->isRecursivelyLegal)
1860       rewriter.getImpl().markNestedOpsIgnored(op);
1861     return success();
1862   }
1863 
1864   // Check to see if the operation is ignored and doesn't need to be converted.
1865   if (rewriter.getImpl().isOpIgnored(op)) {
1866     LLVM_DEBUG({
1867       logSuccess(logger, "operation marked 'ignored' during conversion");
1868       logger.startLine() << logLineComment;
1869     });
1870     return success();
1871   }
1872 
1873   // If the operation isn't legal, try to fold it in-place.
1874   // TODO: Should we always try to do this, even if the op is
1875   // already legal?
1876   if (succeeded(legalizeWithFold(op, rewriter))) {
1877     LLVM_DEBUG({
1878       logSuccess(logger, "operation was folded");
1879       logger.startLine() << logLineComment;
1880     });
1881     return success();
1882   }
1883 
1884   // Otherwise, we need to apply a legalization pattern to this operation.
1885   if (succeeded(legalizeWithPattern(op, rewriter))) {
1886     LLVM_DEBUG({
1887       logSuccess(logger, "");
1888       logger.startLine() << logLineComment;
1889     });
1890     return success();
1891   }
1892 
1893   LLVM_DEBUG({
1894     logFailure(logger, "no matched legalization pattern");
1895     logger.startLine() << logLineComment;
1896   });
1897   return failure();
1898 }
1899 
1900 LogicalResult
1901 OperationLegalizer::legalizeWithFold(Operation *op,
1902                                      ConversionPatternRewriter &rewriter) {
1903   auto &rewriterImpl = rewriter.getImpl();
1904   RewriterState curState = rewriterImpl.getCurrentState();
1905 
1906   LLVM_DEBUG({
1907     rewriterImpl.logger.startLine() << "* Fold {\n";
1908     rewriterImpl.logger.indent();
1909   });
1910 
1911   // Try to fold the operation.
1912   SmallVector<Value, 2> replacementValues;
1913   rewriter.setInsertionPoint(op);
1914   if (failed(rewriter.tryFold(op, replacementValues))) {
1915     LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
1916     return failure();
1917   }
1918 
1919   // Insert a replacement for 'op' with the folded replacement values.
1920   rewriter.replaceOp(op, replacementValues);
1921 
1922   // Recursively legalize any new constant operations.
1923   for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
1924        i != e; ++i) {
1925     Operation *cstOp = rewriterImpl.createdOps[i];
1926     if (failed(legalize(cstOp, rewriter))) {
1927       LLVM_DEBUG(logFailure(rewriterImpl.logger,
1928                             "generated constant '{0}' was illegal",
1929                             cstOp->getName()));
1930       rewriterImpl.resetState(curState);
1931       return failure();
1932     }
1933   }
1934 
1935   LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
1936   return success();
1937 }
1938 
1939 LogicalResult
1940 OperationLegalizer::legalizeWithPattern(Operation *op,
1941                                         ConversionPatternRewriter &rewriter) {
1942   auto &rewriterImpl = rewriter.getImpl();
1943 
1944   // Functor that returns if the given pattern may be applied.
1945   auto canApply = [&](const Pattern &pattern) {
1946     return canApplyPattern(op, pattern, rewriter);
1947   };
1948 
1949   // Functor that cleans up the rewriter state after a pattern failed to match.
1950   RewriterState curState = rewriterImpl.getCurrentState();
1951   auto onFailure = [&](const Pattern &pattern) {
1952     LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match"));
1953     rewriterImpl.resetState(curState);
1954     appliedPatterns.erase(&pattern);
1955   };
1956 
1957   // Functor that performs additional legalization when a pattern is
1958   // successfully applied.
1959   auto onSuccess = [&](const Pattern &pattern) {
1960     auto result = legalizePatternResult(op, pattern, rewriter, curState);
1961     appliedPatterns.erase(&pattern);
1962     if (failed(result))
1963       rewriterImpl.resetState(curState);
1964     return result;
1965   };
1966 
1967   // Try to match and rewrite a pattern on this operation.
1968   return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
1969                                     onSuccess);
1970 }
1971 
1972 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
1973                                          ConversionPatternRewriter &rewriter) {
1974   LLVM_DEBUG({
1975     auto &os = rewriter.getImpl().logger;
1976     os.getOStream() << "\n";
1977     os.startLine() << "* Pattern : '" << op->getName() << " -> (";
1978     llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream());
1979     os.getOStream() << ")' {\n";
1980     os.indent();
1981   });
1982 
1983   // Ensure that we don't cycle by not allowing the same pattern to be
1984   // applied twice in the same recursion stack if it is not known to be safe.
1985   if (!pattern.hasBoundedRewriteRecursion() &&
1986       !appliedPatterns.insert(&pattern).second) {
1987     LLVM_DEBUG(
1988         logFailure(rewriter.getImpl().logger, "pattern was already applied"));
1989     return false;
1990   }
1991   return true;
1992 }
1993 
1994 LogicalResult
1995 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
1996                                           ConversionPatternRewriter &rewriter,
1997                                           RewriterState &curState) {
1998   auto &impl = rewriter.getImpl();
1999 
2000 #ifndef NDEBUG
2001   assert(impl.pendingRootUpdates.empty() && "dangling root updates");
2002 #endif
2003 
2004   // Check that the root was either replaced or updated in place.
2005   auto replacedRoot = [&] {
2006     return llvm::any_of(
2007         llvm::drop_begin(impl.replacements, curState.numReplacements),
2008         [op](auto &it) { return it.first == op; });
2009   };
2010   auto updatedRootInPlace = [&] {
2011     return llvm::any_of(
2012         llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
2013         [op](auto &state) { return state.getOperation() == op; });
2014   };
2015   (void)replacedRoot;
2016   (void)updatedRootInPlace;
2017   assert((replacedRoot() || updatedRootInPlace()) &&
2018          "expected pattern to replace the root operation");
2019 
2020   // Legalize each of the actions registered during application.
2021   RewriterState newState = impl.getCurrentState();
2022   if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
2023                                          newState)) ||
2024       failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
2025       failed(legalizePatternCreatedOperations(rewriter, impl, curState,
2026                                               newState))) {
2027     return failure();
2028   }
2029 
2030   LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
2031   return success();
2032 }
2033 
2034 LogicalResult OperationLegalizer::legalizePatternBlockActions(
2035     Operation *op, ConversionPatternRewriter &rewriter,
2036     ConversionPatternRewriterImpl &impl, RewriterState &state,
2037     RewriterState &newState) {
2038   SmallPtrSet<Operation *, 16> operationsToIgnore;
2039 
2040   // If the pattern moved or created any blocks, make sure the types of block
2041   // arguments get legalized.
2042   for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
2043        ++i) {
2044     auto &action = impl.blockActions[i];
2045     if (action.kind == BlockActionKind::TypeConversion ||
2046         action.kind == BlockActionKind::Erase)
2047       continue;
2048     // Only check blocks outside of the current operation.
2049     Operation *parentOp = action.block->getParentOp();
2050     if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
2051       continue;
2052 
2053     // If the region of the block has a type converter, try to convert the block
2054     // directly.
2055     if (auto *converter =
2056             impl.argConverter.getConverter(action.block->getParent())) {
2057       if (failed(impl.convertBlockSignature(action.block, converter))) {
2058         LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
2059                                            "block"));
2060         return failure();
2061       }
2062       continue;
2063     }
2064 
2065     // Otherwise, check that this operation isn't one generated by this pattern.
2066     // This is because we will attempt to legalize the parent operation, and
2067     // blocks in regions created by this pattern will already be legalized later
2068     // on. If we haven't built the set yet, build it now.
2069     if (operationsToIgnore.empty()) {
2070       auto createdOps = ArrayRef<Operation *>(impl.createdOps)
2071                             .drop_front(state.numCreatedOps);
2072       operationsToIgnore.insert(createdOps.begin(), createdOps.end());
2073     }
2074 
2075     // If this operation should be considered for re-legalization, try it.
2076     if (operationsToIgnore.insert(parentOp).second &&
2077         failed(legalize(parentOp, rewriter))) {
2078       LLVM_DEBUG(logFailure(
2079           impl.logger, "operation '{0}'({1}) became illegal after block action",
2080           parentOp->getName(), parentOp));
2081       return failure();
2082     }
2083   }
2084   return success();
2085 }
2086 
2087 LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
2088     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
2089     RewriterState &state, RewriterState &newState) {
2090   for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
2091     Operation *op = impl.createdOps[i];
2092     if (failed(legalize(op, rewriter))) {
2093       LLVM_DEBUG(logFailure(impl.logger,
2094                             "generated operation '{0}'({1}) was illegal",
2095                             op->getName(), op));
2096       return failure();
2097     }
2098   }
2099   return success();
2100 }
2101 
2102 LogicalResult OperationLegalizer::legalizePatternRootUpdates(
2103     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
2104     RewriterState &state, RewriterState &newState) {
2105   for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
2106     Operation *op = impl.rootUpdates[i].getOperation();
2107     if (failed(legalize(op, rewriter))) {
2108       LLVM_DEBUG(logFailure(impl.logger,
2109                             "operation updated in-place '{0}' was illegal",
2110                             op->getName()));
2111       return failure();
2112     }
2113   }
2114   return success();
2115 }
2116 
2117 //===----------------------------------------------------------------------===//
2118 // Cost Model
2119 
2120 void OperationLegalizer::buildLegalizationGraph(
2121     LegalizationPatterns &anyOpLegalizerPatterns,
2122     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2123   // A mapping between an operation and a set of operations that can be used to
2124   // generate it.
2125   DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
2126   // A mapping between an operation and any currently invalid patterns it has.
2127   DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
2128   // A worklist of patterns to consider for legality.
2129   SetVector<const Pattern *> patternWorklist;
2130 
2131   // Build the mapping from operations to the parent ops that may generate them.
2132   applicator.walkAllPatterns([&](const Pattern &pattern) {
2133     Optional<OperationName> root = pattern.getRootKind();
2134 
2135     // If the pattern has no specific root, we can't analyze the relationship
2136     // between the root op and generated operations. Given that, add all such
2137     // patterns to the legalization set.
2138     if (!root) {
2139       anyOpLegalizerPatterns.push_back(&pattern);
2140       return;
2141     }
2142 
2143     // Skip operations that are always known to be legal.
2144     if (target.getOpAction(*root) == LegalizationAction::Legal)
2145       return;
2146 
2147     // Add this pattern to the invalid set for the root op and record this root
2148     // as a parent for any generated operations.
2149     invalidPatterns[*root].insert(&pattern);
2150     for (auto op : pattern.getGeneratedOps())
2151       parentOps[op].insert(*root);
2152 
2153     // Add this pattern to the worklist.
2154     patternWorklist.insert(&pattern);
2155   });
2156 
2157   // If there are any patterns that don't have a specific root kind, we can't
2158   // make direct assumptions about what operations will never be legalized.
2159   // Note: Technically we could, but it would require an analysis that may
2160   // recurse into itself. It would be better to perform this kind of filtering
2161   // at a higher level than here anyways.
2162   if (!anyOpLegalizerPatterns.empty()) {
2163     for (const Pattern *pattern : patternWorklist)
2164       legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2165     return;
2166   }
2167 
2168   while (!patternWorklist.empty()) {
2169     auto *pattern = patternWorklist.pop_back_val();
2170 
2171     // Check to see if any of the generated operations are invalid.
2172     if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
2173           Optional<LegalizationAction> action = target.getOpAction(op);
2174           return !legalizerPatterns.count(op) &&
2175                  (!action || action == LegalizationAction::Illegal);
2176         }))
2177       continue;
2178 
2179     // Otherwise, if all of the generated operation are valid, this op is now
2180     // legal so add all of the child patterns to the worklist.
2181     legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2182     invalidPatterns[*pattern->getRootKind()].erase(pattern);
2183 
2184     // Add any invalid patterns of the parent operations to see if they have now
2185     // become legal.
2186     for (auto op : parentOps[*pattern->getRootKind()])
2187       patternWorklist.set_union(invalidPatterns[op]);
2188   }
2189 }
2190 
2191 void OperationLegalizer::computeLegalizationGraphBenefit(
2192     LegalizationPatterns &anyOpLegalizerPatterns,
2193     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2194   // The smallest pattern depth, when legalizing an operation.
2195   DenseMap<OperationName, unsigned> minOpPatternDepth;
2196 
2197   // For each operation that is transitively legal, compute a cost for it.
2198   for (auto &opIt : legalizerPatterns)
2199     if (!minOpPatternDepth.count(opIt.first))
2200       computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
2201                                  legalizerPatterns);
2202 
2203   // Apply the cost model to the patterns that can match any operation. Those
2204   // with a specific operation type are already resolved when computing the op
2205   // legalization depth.
2206   if (!anyOpLegalizerPatterns.empty())
2207     applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
2208                              legalizerPatterns);
2209 
2210   // Apply a cost model to the pattern applicator. We order patterns first by
2211   // depth then benefit. `legalizerPatterns` contains per-op patterns by
2212   // decreasing benefit.
2213   applicator.applyCostModel([&](const Pattern &pattern) {
2214     ArrayRef<const Pattern *> orderedPatternList;
2215     if (Optional<OperationName> rootName = pattern.getRootKind())
2216       orderedPatternList = legalizerPatterns[*rootName];
2217     else
2218       orderedPatternList = anyOpLegalizerPatterns;
2219 
2220     // If the pattern is not found, then it was removed and cannot be matched.
2221     auto *it = llvm::find(orderedPatternList, &pattern);
2222     if (it == orderedPatternList.end())
2223       return PatternBenefit::impossibleToMatch();
2224 
2225     // Patterns found earlier in the list have higher benefit.
2226     return PatternBenefit(std::distance(it, orderedPatternList.end()));
2227   });
2228 }
2229 
2230 unsigned OperationLegalizer::computeOpLegalizationDepth(
2231     OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
2232     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2233   // Check for existing depth.
2234   auto depthIt = minOpPatternDepth.find(op);
2235   if (depthIt != minOpPatternDepth.end())
2236     return depthIt->second;
2237 
2238   // If a mapping for this operation does not exist, then this operation
2239   // is always legal. Return 0 as the depth for a directly legal operation.
2240   auto opPatternsIt = legalizerPatterns.find(op);
2241   if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
2242     return 0u;
2243 
2244   // Record this initial depth in case we encounter this op again when
2245   // recursively computing the depth.
2246   minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
2247 
2248   // Apply the cost model to the operation patterns, and update the minimum
2249   // depth.
2250   unsigned minDepth = applyCostModelToPatterns(
2251       opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
2252   minOpPatternDepth[op] = minDepth;
2253   return minDepth;
2254 }
2255 
2256 unsigned OperationLegalizer::applyCostModelToPatterns(
2257     LegalizationPatterns &patterns,
2258     DenseMap<OperationName, unsigned> &minOpPatternDepth,
2259     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2260   unsigned minDepth = std::numeric_limits<unsigned>::max();
2261 
2262   // Compute the depth for each pattern within the set.
2263   SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
2264   patternsByDepth.reserve(patterns.size());
2265   for (const Pattern *pattern : patterns) {
2266     unsigned depth = 1;
2267     for (auto generatedOp : pattern->getGeneratedOps()) {
2268       unsigned generatedOpDepth = computeOpLegalizationDepth(
2269           generatedOp, minOpPatternDepth, legalizerPatterns);
2270       depth = std::max(depth, generatedOpDepth + 1);
2271     }
2272     patternsByDepth.emplace_back(pattern, depth);
2273 
2274     // Update the minimum depth of the pattern list.
2275     minDepth = std::min(minDepth, depth);
2276   }
2277 
2278   // If the operation only has one legalization pattern, there is no need to
2279   // sort them.
2280   if (patternsByDepth.size() == 1)
2281     return minDepth;
2282 
2283   // Sort the patterns by those likely to be the most beneficial.
2284   llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(),
2285                        [](const std::pair<const Pattern *, unsigned> *lhs,
2286                           const std::pair<const Pattern *, unsigned> *rhs) {
2287                          // First sort by the smaller pattern legalization
2288                          // depth.
2289                          if (lhs->second != rhs->second)
2290                            return llvm::array_pod_sort_comparator<unsigned>(
2291                                &lhs->second, &rhs->second);
2292 
2293                          // Then sort by the larger pattern benefit.
2294                          auto lhsBenefit = lhs->first->getBenefit();
2295                          auto rhsBenefit = rhs->first->getBenefit();
2296                          return llvm::array_pod_sort_comparator<PatternBenefit>(
2297                              &rhsBenefit, &lhsBenefit);
2298                        });
2299 
2300   // Update the legalization pattern to use the new sorted list.
2301   patterns.clear();
2302   for (auto &patternIt : patternsByDepth)
2303     patterns.push_back(patternIt.first);
2304   return minDepth;
2305 }
2306 
2307 //===----------------------------------------------------------------------===//
2308 // OperationConverter
2309 //===----------------------------------------------------------------------===//
2310 namespace {
2311 enum OpConversionMode {
2312   /// In this mode, the conversion will ignore failed conversions to allow
2313   /// illegal operations to co-exist in the IR.
2314   Partial,
2315 
2316   /// In this mode, all operations must be legal for the given target for the
2317   /// conversion to succeed.
2318   Full,
2319 
2320   /// In this mode, operations are analyzed for legality. No actual rewrites are
2321   /// applied to the operations on success.
2322   Analysis,
2323 };
2324 
2325 // This class converts operations to a given conversion target via a set of
2326 // rewrite patterns. The conversion behaves differently depending on the
2327 // conversion mode.
2328 struct OperationConverter {
2329   explicit OperationConverter(ConversionTarget &target,
2330                               const FrozenRewritePatternSet &patterns,
2331                               OpConversionMode mode,
2332                               DenseSet<Operation *> *trackedOps = nullptr)
2333       : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}
2334 
2335   /// Converts the given operations to the conversion target.
2336   LogicalResult convertOperations(ArrayRef<Operation *> ops);
2337 
2338 private:
2339   /// Converts an operation with the given rewriter.
2340   LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
2341 
2342   /// This method is called after the conversion process to legalize any
2343   /// remaining artifacts and complete the conversion.
2344   LogicalResult finalize(ConversionPatternRewriter &rewriter);
2345 
2346   /// Legalize the types of converted block arguments.
2347   LogicalResult
2348   legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
2349                                  ConversionPatternRewriterImpl &rewriterImpl);
2350 
2351   /// Legalize any unresolved type materializations.
2352   LogicalResult legalizeUnresolvedMaterializations(
2353       ConversionPatternRewriter &rewriter,
2354       ConversionPatternRewriterImpl &rewriterImpl,
2355       Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping);
2356 
2357   /// Legalize an operation result that was marked as "erased".
2358   LogicalResult
2359   legalizeErasedResult(Operation *op, OpResult result,
2360                        ConversionPatternRewriterImpl &rewriterImpl);
2361 
2362   /// Legalize an operation result that was replaced with a value of a different
2363   /// type.
2364   LogicalResult legalizeChangedResultType(
2365       Operation *op, OpResult result, Value newValue,
2366       TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2367       ConversionPatternRewriterImpl &rewriterImpl,
2368       const DenseMap<Value, SmallVector<Value>> &inverseMapping);
2369 
2370   /// The legalizer to use when converting operations.
2371   OperationLegalizer opLegalizer;
2372 
2373   /// The conversion mode to use when legalizing operations.
2374   OpConversionMode mode;
2375 
2376   /// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
2377   /// this is populated with ops found to be legalizable to the target.
2378   /// When mode == OpConversionMode::Partial, this is populated with ops found
2379   /// *not* to be legalizable to the target.
2380   DenseSet<Operation *> *trackedOps;
2381 };
2382 } // end anonymous namespace
2383 
2384 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
2385                                           Operation *op) {
2386   // Legalize the given operation.
2387   if (failed(opLegalizer.legalize(op, rewriter))) {
2388     // Handle the case of a failed conversion for each of the different modes.
2389     // Full conversions expect all operations to be converted.
2390     if (mode == OpConversionMode::Full)
2391       return op->emitError()
2392              << "failed to legalize operation '" << op->getName() << "'";
2393     // Partial conversions allow conversions to fail iff the operation was not
2394     // explicitly marked as illegal. If the user provided a nonlegalizableOps
2395     // set, non-legalizable ops are included.
2396     if (mode == OpConversionMode::Partial) {
2397       if (opLegalizer.isIllegal(op))
2398         return op->emitError()
2399                << "failed to legalize operation '" << op->getName()
2400                << "' that was explicitly marked illegal";
2401       if (trackedOps)
2402         trackedOps->insert(op);
2403     }
2404   } else if (mode == OpConversionMode::Analysis) {
2405     // Analysis conversions don't fail if any operations fail to legalize,
2406     // they are only interested in the operations that were successfully
2407     // legalized.
2408     trackedOps->insert(op);
2409   }
2410   return success();
2411 }
2412 
2413 LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
2414   if (ops.empty())
2415     return success();
2416   ConversionTarget &target = opLegalizer.getTarget();
2417 
2418   // Compute the set of operations and blocks to convert.
2419   SmallVector<Operation *> toConvert;
2420   for (auto *op : ops) {
2421     toConvert.emplace_back(op);
2422     for (auto &region : op->getRegions())
2423       if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
2424                                       toConvert, &target)))
2425         return failure();
2426   }
2427 
2428   // Convert each operation and discard rewrites on failure.
2429   ConversionPatternRewriter rewriter(ops.front()->getContext());
2430   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2431   for (auto *op : toConvert)
2432     if (failed(convert(rewriter, op)))
2433       return rewriterImpl.discardRewrites(), failure();
2434 
2435   // Now that all of the operations have been converted, finalize the conversion
2436   // process to ensure any lingering conversion artifacts are cleaned up and
2437   // legalized.
2438   if (failed(finalize(rewriter)))
2439     return rewriterImpl.discardRewrites(), failure();
2440 
2441   // After a successful conversion, apply rewrites if this is not an analysis
2442   // conversion.
2443   if (mode == OpConversionMode::Analysis) {
2444     rewriterImpl.discardRewrites();
2445   } else {
2446     rewriterImpl.applyRewrites();
2447 
2448     // It is possible for a later pattern to erase an op that was originally
2449     // identified as illegal and added to the trackedOps, remove it now after
2450     // replacements have been computed.
2451     if (trackedOps)
2452       for (auto &repl : rewriterImpl.replacements)
2453         trackedOps->erase(repl.first);
2454   }
2455   return success();
2456 }
2457 
2458 LogicalResult
2459 OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
2460   Optional<DenseMap<Value, SmallVector<Value>>> inverseMapping;
2461   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2462   if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl,
2463                                                 inverseMapping)) ||
2464       failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
2465     return failure();
2466 
2467   if (rewriterImpl.operationsWithChangedResults.empty())
2468     return success();
2469 
2470   // Process requested operation replacements.
2471   for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
2472        i != e; ++i) {
2473     unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
2474     auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
2475     for (OpResult result : repl.first->getResults()) {
2476       Value newValue = rewriterImpl.mapping.lookupOrNull(result);
2477 
2478       // If the operation result was replaced with null, all of the uses of this
2479       // value should be replaced.
2480       if (!newValue) {
2481         if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
2482           return failure();
2483         continue;
2484       }
2485 
2486       // Otherwise, check to see if the type of the result changed.
2487       if (result.getType() == newValue.getType())
2488         continue;
2489 
2490       // Compute the inverse mapping only if it is really needed.
2491       if (!inverseMapping)
2492         inverseMapping = rewriterImpl.mapping.getInverse();
2493 
2494       // Legalize this result.
2495       rewriter.setInsertionPoint(repl.first);
2496       if (failed(legalizeChangedResultType(repl.first, result, newValue,
2497                                            repl.second.converter, rewriter,
2498                                            rewriterImpl, *inverseMapping)))
2499         return failure();
2500 
2501       // Update the end iterator for this loop in the case it was updated
2502       // when legalizing generated conversion operations.
2503       e = rewriterImpl.operationsWithChangedResults.size();
2504     }
2505   }
2506   return success();
2507 }
2508 
2509 LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
2510     ConversionPatternRewriter &rewriter,
2511     ConversionPatternRewriterImpl &rewriterImpl) {
2512   // Functor used to check if all users of a value will be dead after
2513   // conversion.
2514   auto findLiveUser = [&](Value val) {
2515     auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
2516       return rewriterImpl.isOpIgnored(user);
2517     });
2518     return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
2519   };
2520   return rewriterImpl.argConverter.materializeLiveConversions(
2521       rewriterImpl.mapping, rewriter, findLiveUser);
2522 }
2523 
2524 /// Replace the results of a materialization operation with the given values.
2525 static void
2526 replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl,
2527                        ResultRange matResults, ValueRange values,
2528                        DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2529   matResults.replaceAllUsesWith(values);
2530 
2531   // For each of the materialization results, update the inverse mappings to
2532   // point to the replacement values.
2533   for (auto it : llvm::zip(matResults, values)) {
2534     Value matResult, newValue;
2535     std::tie(matResult, newValue) = it;
2536     auto inverseMapIt = inverseMapping.find(matResult);
2537     if (inverseMapIt == inverseMapping.end())
2538       continue;
2539 
2540     // Update the reverse mapping, or remove the mapping if we couldn't update
2541     // it. Not being able to update signals that the mapping would have become
2542     // circular (i.e. %foo -> newValue -> %foo), which may occur as values are
2543     // propagated through temporary materializations. We simply drop the
2544     // mapping, and let the post-conversion replacement logic handle updating
2545     // uses.
2546     for (Value inverseMapVal : inverseMapIt->second)
2547       if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue))
2548         rewriterImpl.mapping.erase(inverseMapVal);
2549   }
2550 }
2551 
2552 /// Compute all of the unresolved materializations that will persist beyond the
2553 /// conversion process, and require inserting a proper user materialization for.
2554 static void computeNecessaryMaterializations(
2555     DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
2556     ConversionPatternRewriter &rewriter,
2557     ConversionPatternRewriterImpl &rewriterImpl,
2558     DenseMap<Value, SmallVector<Value>> &inverseMapping,
2559     SetVector<UnresolvedMaterialization *> &necessaryMaterializations) {
2560   auto isLive = [&](Value value) {
2561     auto findFn = [&](Operation *user) {
2562       auto matIt = materializationOps.find(user);
2563       if (matIt != materializationOps.end())
2564         return !necessaryMaterializations.count(matIt->second);
2565       return rewriterImpl.isOpIgnored(user);
2566     };
2567     return llvm::find_if_not(value.getUsers(), findFn) != value.user_end();
2568   };
2569 
2570   llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue =
2571       [&](Value invalidRoot, Value value, Type type) {
2572         // Check to see if the input operation was remapped to a variant of the
2573         // output.
2574         Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
2575         if (remappedValue.getType() == type && remappedValue != invalidRoot)
2576           return remappedValue;
2577 
2578         // Check to see if the input is a materialization operation that
2579         // provides an inverse conversion. We just check blindly for
2580         // UnrealizedConversionCastOp here, but it has no effect on correctness.
2581         auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>();
2582         if (inputCastOp && inputCastOp->getNumOperands() == 1)
2583           return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0),
2584                                      type);
2585 
2586         return Value();
2587       };
2588 
2589   SetVector<UnresolvedMaterialization *> worklist;
2590   for (auto &mat : rewriterImpl.unresolvedMaterializations) {
2591     materializationOps.try_emplace(mat.getOp(), &mat);
2592     worklist.insert(&mat);
2593   }
2594   while (!worklist.empty()) {
2595     UnresolvedMaterialization *mat = worklist.pop_back_val();
2596     UnrealizedConversionCastOp op = mat->getOp();
2597 
2598     // We currently only handle target materializations here.
2599     assert(op->getNumResults() == 1 && "unexpected materialization type");
2600     OpResult opResult = op->getOpResult(0);
2601     Type outputType = opResult.getType();
2602     Operation::operand_range inputOperands = op.getOperands();
2603 
2604     // Try to forward propagate operands for user conversion casts that result
2605     // in the input types of the current cast.
2606     for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) {
2607       auto castOp = dyn_cast<UnrealizedConversionCastOp>(user);
2608       if (!castOp)
2609         continue;
2610       if (castOp->getResultTypes() == inputOperands.getTypes()) {
2611         replaceMaterialization(rewriterImpl, opResult, inputOperands,
2612                                inverseMapping);
2613         necessaryMaterializations.remove(materializationOps.lookup(user));
2614       }
2615     }
2616 
2617     // Try to avoid materializing a resolved materialization if possible.
2618     // Handle the case of a 1-1 materialization.
2619     if (inputOperands.size() == 1) {
2620       // Check to see if the input operation was remapped to a variant of the
2621       // output.
2622       Value remappedValue =
2623           lookupRemappedValue(opResult, inputOperands[0], outputType);
2624       if (remappedValue && remappedValue != opResult) {
2625         replaceMaterialization(rewriterImpl, opResult, remappedValue,
2626                                inverseMapping);
2627         necessaryMaterializations.remove(mat);
2628         continue;
2629       }
2630     } else {
2631       // TODO: Avoid materializing other types of conversions here.
2632     }
2633 
2634     // Check to see if this is an argument materialization.
2635     auto isBlockArg = [](Value v) { return v.isa<BlockArgument>(); };
2636     if (llvm::any_of(op->getOperands(), isBlockArg) ||
2637         llvm::any_of(inverseMapping[op->getResult(0)], isBlockArg)) {
2638       mat->setKind(UnresolvedMaterialization::Argument);
2639     }
2640 
2641     // If the materialization does not have any live users, we don't need to
2642     // generate a user materialization for it.
2643     // FIXME: For argument materializations, we currently need to check if any
2644     // of the inverse mapped values are used because some patterns expect blind
2645     // value replacement even if the types differ in some cases. When those
2646     // patterns are fixed, we can drop the argument special case here.
2647     bool isMaterializationLive = isLive(opResult);
2648     if (mat->getKind() == UnresolvedMaterialization::Argument)
2649       isMaterializationLive |= llvm::any_of(inverseMapping[opResult], isLive);
2650     if (!isMaterializationLive)
2651       continue;
2652     if (!necessaryMaterializations.insert(mat))
2653       continue;
2654 
2655     // Reprocess input materializations to see if they have an updated status.
2656     for (Value input : inputOperands) {
2657       if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) {
2658         if (auto *mat = materializationOps.lookup(parentOp))
2659           worklist.insert(mat);
2660       }
2661     }
2662   }
2663 }
2664 
2665 /// Legalize the given unresolved materialization. Returns success if the
2666 /// materialization was legalized, failure otherise.
2667 static LogicalResult legalizeUnresolvedMaterialization(
2668     UnresolvedMaterialization &mat,
2669     DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
2670     ConversionPatternRewriter &rewriter,
2671     ConversionPatternRewriterImpl &rewriterImpl,
2672     DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2673   auto findLiveUser = [&](auto &&users) {
2674     auto liveUserIt = llvm::find_if_not(
2675         users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); });
2676     return liveUserIt == users.end() ? nullptr : *liveUserIt;
2677   };
2678 
2679   llvm::unique_function<Value(Value, Type)> lookupRemappedValue =
2680       [&](Value value, Type type) {
2681         // Check to see if the input operation was remapped to a variant of the
2682         // output.
2683         Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
2684         if (remappedValue.getType() == type)
2685           return remappedValue;
2686         return Value();
2687       };
2688 
2689   UnrealizedConversionCastOp op = mat.getOp();
2690   if (!rewriterImpl.ignoredOps.insert(op))
2691     return success();
2692 
2693   // We currently only handle target materializations here.
2694   OpResult opResult = op->getOpResult(0);
2695   Operation::operand_range inputOperands = op.getOperands();
2696   Type outputType = opResult.getType();
2697 
2698   // If any input to this materialization is another materialization, resolve
2699   // the input first.
2700   for (Value value : op->getOperands()) {
2701     auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>();
2702     if (!valueCast)
2703       continue;
2704 
2705     auto matIt = materializationOps.find(valueCast);
2706     if (matIt != materializationOps.end())
2707       if (failed(legalizeUnresolvedMaterialization(
2708               *matIt->second, materializationOps, rewriter, rewriterImpl,
2709               inverseMapping)))
2710         return failure();
2711   }
2712 
2713   // Perform a last ditch attempt to avoid materializing a resolved
2714   // materialization if possible.
2715   // Handle the case of a 1-1 materialization.
2716   if (inputOperands.size() == 1) {
2717     // Check to see if the input operation was remapped to a variant of the
2718     // output.
2719     Value remappedValue = lookupRemappedValue(inputOperands[0], outputType);
2720     if (remappedValue && remappedValue != opResult) {
2721       replaceMaterialization(rewriterImpl, opResult, remappedValue,
2722                              inverseMapping);
2723       return success();
2724     }
2725   } else {
2726     // TODO: Avoid materializing other types of conversions here.
2727   }
2728 
2729   // Try to materialize the conversion.
2730   if (TypeConverter *converter = mat.getConverter()) {
2731     // FIXME: Determine a suitable insertion location when there are multiple
2732     // inputs.
2733     if (inputOperands.size() == 1)
2734       rewriter.setInsertionPointAfterValue(inputOperands.front());
2735     else
2736       rewriter.setInsertionPoint(op);
2737 
2738     Value newMaterialization;
2739     switch (mat.getKind()) {
2740     case UnresolvedMaterialization::Argument:
2741       // Try to materialize an argument conversion.
2742       // FIXME: The current argument materialization hook expects the original
2743       // output type, even though it doesn't use that as the actual output type
2744       // of the generated IR. The output type is just used as an indicator of
2745       // the type of materialization to do. This behavior is really awkward in
2746       // that it diverges from the behavior of the other hooks, and can be
2747       // easily misunderstood. We should clean up the argument hooks to better
2748       // represent the desired invariants we actually care about.
2749       newMaterialization = converter->materializeArgumentConversion(
2750           rewriter, op->getLoc(), mat.getOrigOutputType(), inputOperands);
2751       if (newMaterialization)
2752         break;
2753 
2754       // If an argument materialization failed, fallback to trying a target
2755       // materialization.
2756       LLVM_FALLTHROUGH;
2757     case UnresolvedMaterialization::Target:
2758       newMaterialization = converter->materializeTargetConversion(
2759           rewriter, op->getLoc(), outputType, inputOperands);
2760       break;
2761     }
2762     if (newMaterialization) {
2763       replaceMaterialization(rewriterImpl, opResult, newMaterialization,
2764                              inverseMapping);
2765       return success();
2766     }
2767   }
2768 
2769   InFlightDiagnostic diag = op->emitError()
2770                             << "failed to legalize unresolved materialization "
2771                                "from "
2772                             << inputOperands.getTypes() << " to " << outputType
2773                             << " that remained live after conversion";
2774   if (Operation *liveUser = findLiveUser(op->getUsers())) {
2775     diag.attachNote(liveUser->getLoc())
2776         << "see existing live user here: " << *liveUser;
2777   }
2778   return failure();
2779 }
2780 
2781 LogicalResult OperationConverter::legalizeUnresolvedMaterializations(
2782     ConversionPatternRewriter &rewriter,
2783     ConversionPatternRewriterImpl &rewriterImpl,
2784     Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) {
2785   if (rewriterImpl.unresolvedMaterializations.empty())
2786     return success();
2787   inverseMapping = rewriterImpl.mapping.getInverse();
2788 
2789   // As an initial step, compute all of the inserted materializations that we
2790   // expect to persist beyond the conversion process.
2791   DenseMap<Operation *, UnresolvedMaterialization *> materializationOps;
2792   SetVector<UnresolvedMaterialization *> necessaryMaterializations;
2793   computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl,
2794                                    *inverseMapping, necessaryMaterializations);
2795 
2796   // Once computed, legalize any necessary materializations.
2797   for (auto *mat : necessaryMaterializations) {
2798     if (failed(legalizeUnresolvedMaterialization(
2799             *mat, materializationOps, rewriter, rewriterImpl, *inverseMapping)))
2800       return failure();
2801   }
2802   return success();
2803 }
2804 
2805 LogicalResult OperationConverter::legalizeErasedResult(
2806     Operation *op, OpResult result,
2807     ConversionPatternRewriterImpl &rewriterImpl) {
2808   // If the operation result was replaced with null, all of the uses of this
2809   // value should be replaced.
2810   auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
2811     return rewriterImpl.isOpIgnored(user);
2812   });
2813   if (liveUserIt != result.user_end()) {
2814     InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
2815                               << op->getName() << "' marked as erased";
2816     diag.attachNote(liveUserIt->getLoc())
2817         << "found live user of result #" << result.getResultNumber() << ": "
2818         << *liveUserIt;
2819     return failure();
2820   }
2821   return success();
2822 }
2823 
2824 /// Finds a user of the given value, or of any other value that the given value
2825 /// replaced, that was not replaced in the conversion process.
2826 static Operation *findLiveUserOfReplaced(
2827     Value initialValue, ConversionPatternRewriterImpl &rewriterImpl,
2828     const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2829   SmallVector<Value> worklist(1, initialValue);
2830   while (!worklist.empty()) {
2831     Value value = worklist.pop_back_val();
2832 
2833     // Walk the users of this value to see if there are any live users that
2834     // weren't replaced during conversion.
2835     auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
2836       return rewriterImpl.isOpIgnored(user);
2837     });
2838     if (liveUserIt != value.user_end())
2839       return *liveUserIt;
2840     auto mapIt = inverseMapping.find(value);
2841     if (mapIt != inverseMapping.end())
2842       worklist.append(mapIt->second);
2843   }
2844   return nullptr;
2845 }
2846 
2847 LogicalResult OperationConverter::legalizeChangedResultType(
2848     Operation *op, OpResult result, Value newValue,
2849     TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2850     ConversionPatternRewriterImpl &rewriterImpl,
2851     const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2852   Operation *liveUser =
2853       findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
2854   if (!liveUser)
2855     return success();
2856 
2857   // Functor used to emit a conversion error for a failed materialization.
2858   auto emitConversionError = [&] {
2859     InFlightDiagnostic diag = op->emitError()
2860                               << "failed to materialize conversion for result #"
2861                               << result.getResultNumber() << " of operation '"
2862                               << op->getName()
2863                               << "' that remained live after conversion";
2864     diag.attachNote(liveUser->getLoc())
2865         << "see existing live user here: " << *liveUser;
2866     return failure();
2867   };
2868 
2869   // If the replacement has a type converter, attempt to materialize a
2870   // conversion back to the original type.
2871   if (!replConverter)
2872     return emitConversionError();
2873 
2874   // Materialize a conversion for this live result value.
2875   Type resultType = result.getType();
2876   Value convertedValue = replConverter->materializeSourceConversion(
2877       rewriter, op->getLoc(), resultType, newValue);
2878   if (!convertedValue)
2879     return emitConversionError();
2880 
2881   rewriterImpl.mapping.map(result, convertedValue);
2882   return success();
2883 }
2884 
2885 //===----------------------------------------------------------------------===//
2886 // Type Conversion
2887 //===----------------------------------------------------------------------===//
2888 
2889 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
2890                                                    ArrayRef<Type> types) {
2891   assert(!types.empty() && "expected valid types");
2892   remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
2893   addInputs(types);
2894 }
2895 
2896 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
2897   assert(!types.empty() &&
2898          "1->0 type remappings don't need to be added explicitly");
2899   argTypes.append(types.begin(), types.end());
2900 }
2901 
2902 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2903                                                     unsigned newInputNo,
2904                                                     unsigned newInputCount) {
2905   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2906   assert(newInputCount != 0 && "expected valid input count");
2907   remappedInputs[origInputNo] =
2908       InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
2909 }
2910 
2911 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2912                                                     Value replacementValue) {
2913   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2914   remappedInputs[origInputNo] =
2915       InputMapping{origInputNo, /*size=*/0, replacementValue};
2916 }
2917 
2918 LogicalResult TypeConverter::convertType(Type t,
2919                                          SmallVectorImpl<Type> &results) {
2920   auto existingIt = cachedDirectConversions.find(t);
2921   if (existingIt != cachedDirectConversions.end()) {
2922     if (existingIt->second)
2923       results.push_back(existingIt->second);
2924     return success(existingIt->second != nullptr);
2925   }
2926   auto multiIt = cachedMultiConversions.find(t);
2927   if (multiIt != cachedMultiConversions.end()) {
2928     results.append(multiIt->second.begin(), multiIt->second.end());
2929     return success();
2930   }
2931 
2932   // Walk the added converters in reverse order to apply the most recently
2933   // registered first.
2934   size_t currentCount = results.size();
2935   conversionCallStack.push_back(t);
2936   auto popConversionCallStack =
2937       llvm::make_scope_exit([this]() { conversionCallStack.pop_back(); });
2938   for (ConversionCallbackFn &converter : llvm::reverse(conversions)) {
2939     if (Optional<LogicalResult> result =
2940             converter(t, results, conversionCallStack)) {
2941       if (!succeeded(*result)) {
2942         cachedDirectConversions.try_emplace(t, nullptr);
2943         return failure();
2944       }
2945       auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
2946       if (newTypes.size() == 1)
2947         cachedDirectConversions.try_emplace(t, newTypes.front());
2948       else
2949         cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
2950       return success();
2951     }
2952   }
2953   return failure();
2954 }
2955 
2956 Type TypeConverter::convertType(Type t) {
2957   // Use the multi-type result version to convert the type.
2958   SmallVector<Type, 1> results;
2959   if (failed(convertType(t, results)))
2960     return nullptr;
2961 
2962   // Check to ensure that only one type was produced.
2963   return results.size() == 1 ? results.front() : nullptr;
2964 }
2965 
2966 LogicalResult TypeConverter::convertTypes(TypeRange types,
2967                                           SmallVectorImpl<Type> &results) {
2968   for (Type type : types)
2969     if (failed(convertType(type, results)))
2970       return failure();
2971   return success();
2972 }
2973 
2974 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; }
2975 bool TypeConverter::isLegal(Operation *op) {
2976   return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
2977 }
2978 
2979 bool TypeConverter::isLegal(Region *region) {
2980   return llvm::all_of(*region, [this](Block &block) {
2981     return isLegal(block.getArgumentTypes());
2982   });
2983 }
2984 
2985 bool TypeConverter::isSignatureLegal(FunctionType ty) {
2986   return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
2987 }
2988 
2989 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
2990                                                  SignatureConversion &result) {
2991   // Try to convert the given input type.
2992   SmallVector<Type, 1> convertedTypes;
2993   if (failed(convertType(type, convertedTypes)))
2994     return failure();
2995 
2996   // If this argument is being dropped, there is nothing left to do.
2997   if (convertedTypes.empty())
2998     return success();
2999 
3000   // Otherwise, add the new inputs.
3001   result.addInputs(inputNo, convertedTypes);
3002   return success();
3003 }
3004 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types,
3005                                                   SignatureConversion &result,
3006                                                   unsigned origInputOffset) {
3007   for (unsigned i = 0, e = types.size(); i != e; ++i)
3008     if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
3009       return failure();
3010   return success();
3011 }
3012 
3013 Value TypeConverter::materializeConversion(
3014     MutableArrayRef<MaterializationCallbackFn> materializations,
3015     OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) {
3016   for (MaterializationCallbackFn &fn : llvm::reverse(materializations))
3017     if (Optional<Value> result = fn(builder, resultType, inputs, loc))
3018       return result.getValue();
3019   return nullptr;
3020 }
3021 
3022 auto TypeConverter::convertBlockSignature(Block *block)
3023     -> Optional<SignatureConversion> {
3024   SignatureConversion conversion(block->getNumArguments());
3025   if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
3026     return llvm::None;
3027   return conversion;
3028 }
3029 
3030 //===----------------------------------------------------------------------===//
3031 // FunctionLikeSignatureConversion
3032 //===----------------------------------------------------------------------===//
3033 
3034 /// Create a default conversion pattern that rewrites the type signature of a
3035 /// FunctionLike op. This only supports FunctionLike ops which use FunctionType
3036 /// to represent their type.
3037 namespace {
3038 struct FunctionLikeSignatureConversion : public ConversionPattern {
3039   FunctionLikeSignatureConversion(StringRef functionLikeOpName,
3040                                   MLIRContext *ctx, TypeConverter &converter)
3041       : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
3042 
3043   /// Hook to implement combined matching and rewriting for FunctionLike ops.
3044   LogicalResult
3045   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
3046                   ConversionPatternRewriter &rewriter) const override {
3047     FunctionType type = function_like_impl::getFunctionType(op);
3048 
3049     // Convert the original function types.
3050     TypeConverter::SignatureConversion result(type.getNumInputs());
3051     SmallVector<Type, 1> newResults;
3052     if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) ||
3053         failed(typeConverter->convertTypes(type.getResults(), newResults)) ||
3054         failed(rewriter.convertRegionTypes(
3055             &function_like_impl::getFunctionBody(op), *typeConverter, &result)))
3056       return failure();
3057 
3058     // Update the function signature in-place.
3059     auto newType = FunctionType::get(rewriter.getContext(),
3060                                      result.getConvertedTypes(), newResults);
3061 
3062     rewriter.updateRootInPlace(
3063         op, [&] { function_like_impl::setFunctionType(op, newType); });
3064 
3065     return success();
3066   }
3067 };
3068 } // end anonymous namespace
3069 
3070 void mlir::populateFunctionLikeTypeConversionPattern(
3071     StringRef functionLikeOpName, RewritePatternSet &patterns,
3072     TypeConverter &converter) {
3073   patterns.add<FunctionLikeSignatureConversion>(
3074       functionLikeOpName, patterns.getContext(), converter);
3075 }
3076 
3077 void mlir::populateFuncOpTypeConversionPattern(RewritePatternSet &patterns,
3078                                                TypeConverter &converter) {
3079   populateFunctionLikeTypeConversionPattern<FuncOp>(patterns, converter);
3080 }
3081 
3082 //===----------------------------------------------------------------------===//
3083 // ConversionTarget
3084 //===----------------------------------------------------------------------===//
3085 
3086 void ConversionTarget::setOpAction(OperationName op,
3087                                    LegalizationAction action) {
3088   legalOperations[op].action = action;
3089 }
3090 
3091 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
3092                                         LegalizationAction action) {
3093   for (StringRef dialect : dialectNames)
3094     legalDialects[dialect] = action;
3095 }
3096 
3097 auto ConversionTarget::getOpAction(OperationName op) const
3098     -> Optional<LegalizationAction> {
3099   Optional<LegalizationInfo> info = getOpInfo(op);
3100   return info ? info->action : Optional<LegalizationAction>();
3101 }
3102 
3103 auto ConversionTarget::isLegal(Operation *op) const
3104     -> Optional<LegalOpDetails> {
3105   Optional<LegalizationInfo> info = getOpInfo(op->getName());
3106   if (!info)
3107     return llvm::None;
3108 
3109   // Returns true if this operation instance is known to be legal.
3110   auto isOpLegal = [&] {
3111     // Handle dynamic legality either with the provided legality function.
3112     if (info->action == LegalizationAction::Dynamic) {
3113       Optional<bool> result = info->legalityFn(op);
3114       if (result)
3115         return *result;
3116     }
3117 
3118     // Otherwise, the operation is only legal if it was marked 'Legal'.
3119     return info->action == LegalizationAction::Legal;
3120   };
3121   if (!isOpLegal())
3122     return llvm::None;
3123 
3124   // This operation is legal, compute any additional legality information.
3125   LegalOpDetails legalityDetails;
3126   if (info->isRecursivelyLegal) {
3127     auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
3128     if (legalityFnIt != opRecursiveLegalityFns.end()) {
3129       legalityDetails.isRecursivelyLegal =
3130           legalityFnIt->second(op).getValueOr(true);
3131     } else {
3132       legalityDetails.isRecursivelyLegal = true;
3133     }
3134   }
3135   return legalityDetails;
3136 }
3137 
3138 bool ConversionTarget::isIllegal(Operation *op) const {
3139   Optional<LegalizationInfo> info = getOpInfo(op->getName());
3140   if (!info)
3141     return false;
3142 
3143   if (info->action == LegalizationAction::Dynamic) {
3144     Optional<bool> result = info->legalityFn(op);
3145     if (!result)
3146       return false;
3147 
3148     return !(*result);
3149   }
3150 
3151   return info->action == LegalizationAction::Illegal;
3152 }
3153 
3154 static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks(
3155     ConversionTarget::DynamicLegalityCallbackFn oldCallback,
3156     ConversionTarget::DynamicLegalityCallbackFn newCallback) {
3157   if (!oldCallback)
3158     return newCallback;
3159 
3160   auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)](
3161                    Operation *op) -> Optional<bool> {
3162     if (Optional<bool> result = newCl(op))
3163       return *result;
3164 
3165     return oldCl(op);
3166   };
3167   return chain;
3168 }
3169 
3170 void ConversionTarget::setLegalityCallback(
3171     OperationName name, const DynamicLegalityCallbackFn &callback) {
3172   assert(callback && "expected valid legality callback");
3173   auto infoIt = legalOperations.find(name);
3174   assert(infoIt != legalOperations.end() &&
3175          infoIt->second.action == LegalizationAction::Dynamic &&
3176          "expected operation to already be marked as dynamically legal");
3177   infoIt->second.legalityFn =
3178       composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback);
3179 }
3180 
3181 void ConversionTarget::markOpRecursivelyLegal(
3182     OperationName name, const DynamicLegalityCallbackFn &callback) {
3183   auto infoIt = legalOperations.find(name);
3184   assert(infoIt != legalOperations.end() &&
3185          infoIt->second.action != LegalizationAction::Illegal &&
3186          "expected operation to already be marked as legal");
3187   infoIt->second.isRecursivelyLegal = true;
3188   if (callback)
3189     opRecursiveLegalityFns[name] = composeLegalityCallbacks(
3190         std::move(opRecursiveLegalityFns[name]), callback);
3191   else
3192     opRecursiveLegalityFns.erase(name);
3193 }
3194 
3195 void ConversionTarget::setLegalityCallback(
3196     ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
3197   assert(callback && "expected valid legality callback");
3198   for (StringRef dialect : dialects)
3199     dialectLegalityFns[dialect] = composeLegalityCallbacks(
3200         std::move(dialectLegalityFns[dialect]), callback);
3201 }
3202 
3203 void ConversionTarget::setLegalityCallback(
3204     const DynamicLegalityCallbackFn &callback) {
3205   assert(callback && "expected valid legality callback");
3206   unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback);
3207 }
3208 
3209 auto ConversionTarget::getOpInfo(OperationName op) const
3210     -> Optional<LegalizationInfo> {
3211   // Check for info for this specific operation.
3212   auto it = legalOperations.find(op);
3213   if (it != legalOperations.end())
3214     return it->second;
3215   // Check for info for the parent dialect.
3216   auto dialectIt = legalDialects.find(op.getDialectNamespace());
3217   if (dialectIt != legalDialects.end()) {
3218     DynamicLegalityCallbackFn callback;
3219     auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
3220     if (dialectFn != dialectLegalityFns.end())
3221       callback = dialectFn->second;
3222     return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
3223                             callback};
3224   }
3225   // Otherwise, check if we mark unknown operations as dynamic.
3226   if (unknownLegalityFn)
3227     return LegalizationInfo{LegalizationAction::Dynamic,
3228                             /*isRecursivelyLegal=*/false, unknownLegalityFn};
3229   return llvm::None;
3230 }
3231 
3232 //===----------------------------------------------------------------------===//
3233 // Op Conversion Entry Points
3234 //===----------------------------------------------------------------------===//
3235 
3236 //===----------------------------------------------------------------------===//
3237 // Partial Conversion
3238 
3239 LogicalResult
3240 mlir::applyPartialConversion(ArrayRef<Operation *> ops,
3241                              ConversionTarget &target,
3242                              const FrozenRewritePatternSet &patterns,
3243                              DenseSet<Operation *> *unconvertedOps) {
3244   OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
3245                                  unconvertedOps);
3246   return opConverter.convertOperations(ops);
3247 }
3248 LogicalResult
3249 mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
3250                              const FrozenRewritePatternSet &patterns,
3251                              DenseSet<Operation *> *unconvertedOps) {
3252   return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
3253                                 unconvertedOps);
3254 }
3255 
3256 //===----------------------------------------------------------------------===//
3257 // Full Conversion
3258 
3259 LogicalResult
3260 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
3261                           const FrozenRewritePatternSet &patterns) {
3262   OperationConverter opConverter(target, patterns, OpConversionMode::Full);
3263   return opConverter.convertOperations(ops);
3264 }
3265 LogicalResult
3266 mlir::applyFullConversion(Operation *op, ConversionTarget &target,
3267                           const FrozenRewritePatternSet &patterns) {
3268   return applyFullConversion(llvm::makeArrayRef(op), target, patterns);
3269 }
3270 
3271 //===----------------------------------------------------------------------===//
3272 // Analysis Conversion
3273 
3274 LogicalResult
3275 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
3276                               ConversionTarget &target,
3277                               const FrozenRewritePatternSet &patterns,
3278                               DenseSet<Operation *> &convertedOps) {
3279   OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
3280                                  &convertedOps);
3281   return opConverter.convertOperations(ops);
3282 }
3283 LogicalResult
3284 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
3285                               const FrozenRewritePatternSet &patterns,
3286                               DenseSet<Operation *> &convertedOps) {
3287   return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
3288                                  convertedOps);
3289 }
3290