1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "mlir/Transforms/DialectConversion.h"
10 #include "mlir/IR/Block.h"
11 #include "mlir/IR/BlockAndValueMapping.h"
12 #include "mlir/IR/Builders.h"
13 #include "mlir/IR/BuiltinOps.h"
14 #include "mlir/IR/FunctionInterfaces.h"
15 #include "mlir/Rewrite/PatternApplicator.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/FormatVariadic.h"
21 #include "llvm/Support/SaveAndRestore.h"
22 #include "llvm/Support/ScopedPrinter.h"
23
24 using namespace mlir;
25 using namespace mlir::detail;
26
27 #define DEBUG_TYPE "dialect-conversion"
28
29 /// Recursively collect all of the operations to convert from within 'region'.
30 /// If 'target' is nonnull, operations that are recursively legal have their
31 /// regions pre-filtered to avoid considering them for legalization.
32 static LogicalResult
computeConversionSet(iterator_range<Region::iterator> region,Location regionLoc,SmallVectorImpl<Operation * > & toConvert,ConversionTarget * target=nullptr)33 computeConversionSet(iterator_range<Region::iterator> region,
34 Location regionLoc,
35 SmallVectorImpl<Operation *> &toConvert,
36 ConversionTarget *target = nullptr) {
37 if (llvm::empty(region))
38 return success();
39
40 // Traverse starting from the entry block.
41 SmallVector<Block *, 16> worklist(1, &*region.begin());
42 DenseSet<Block *> visitedBlocks;
43 visitedBlocks.insert(worklist.front());
44 while (!worklist.empty()) {
45 Block *block = worklist.pop_back_val();
46
47 // Compute the conversion set of each of the nested operations.
48 for (Operation &op : *block) {
49 toConvert.emplace_back(&op);
50
51 // Don't check this operation's children for conversion if the operation
52 // is recursively legal.
53 auto legalityInfo = target ? target->isLegal(&op)
54 : Optional<ConversionTarget::LegalOpDetails>();
55 if (legalityInfo && legalityInfo->isRecursivelyLegal)
56 continue;
57 for (auto ®ion : op.getRegions()) {
58 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
59 toConvert, target)))
60 return failure();
61 }
62 }
63
64 // Recurse to children that haven't been visited.
65 for (Block *succ : block->getSuccessors())
66 if (visitedBlocks.insert(succ).second)
67 worklist.push_back(succ);
68 }
69
70 // Check that all blocks in the region were visited.
71 if (llvm::any_of(llvm::drop_begin(region, 1),
72 [&](Block &block) { return !visitedBlocks.count(&block); }))
73 return emitError(regionLoc, "unreachable blocks were not converted");
74 return success();
75 }
76
77 /// A utility function to log a successful result for the given reason.
78 template <typename... Args>
logSuccess(llvm::ScopedPrinter & os,StringRef fmt,Args &&...args)79 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
80 LLVM_DEBUG({
81 os.unindent();
82 os.startLine() << "} -> SUCCESS";
83 if (!fmt.empty())
84 os.getOStream() << " : "
85 << llvm::formatv(fmt.data(), std::forward<Args>(args)...);
86 os.getOStream() << "\n";
87 });
88 }
89
90 /// A utility function to log a failure result for the given reason.
91 template <typename... Args>
logFailure(llvm::ScopedPrinter & os,StringRef fmt,Args &&...args)92 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
93 LLVM_DEBUG({
94 os.unindent();
95 os.startLine() << "} -> FAILURE : "
96 << llvm::formatv(fmt.data(), std::forward<Args>(args)...)
97 << "\n";
98 });
99 }
100
101 //===----------------------------------------------------------------------===//
102 // ConversionValueMapping
103 //===----------------------------------------------------------------------===//
104
105 namespace {
106 /// This class wraps a BlockAndValueMapping to provide recursive lookup
107 /// functionality, i.e. we will traverse if the mapped value also has a mapping.
108 struct ConversionValueMapping {
109 /// Lookup a mapped value within the map. If a mapping for the provided value
110 /// does not exist then return the provided value. If `desiredType` is
111 /// non-null, returns the most recently mapped value with that type. If an
112 /// operand of that type does not exist, defaults to normal behavior.
113 Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
114
115 /// Lookup a mapped value within the map, or return null if a mapping does not
116 /// exist. If a mapping exists, this follows the same behavior of
117 /// `lookupOrDefault`.
118 Value lookupOrNull(Value from, Type desiredType = nullptr) const;
119
120 /// Map a value to the one provided.
map__anonef530a330211::ConversionValueMapping121 void map(Value oldVal, Value newVal) {
122 LLVM_DEBUG({
123 for (Value it = newVal; it; it = mapping.lookupOrNull(it))
124 assert(it != oldVal && "inserting cyclic mapping");
125 });
126 mapping.map(oldVal, newVal);
127 }
128
129 /// Try to map a value to the one provided. Returns false if a transitive
130 /// mapping from the new value to the old value already exists, true if the
131 /// map was updated.
132 bool tryMap(Value oldVal, Value newVal);
133
134 /// Drop the last mapping for the given value.
erase__anonef530a330211::ConversionValueMapping135 void erase(Value value) { mapping.erase(value); }
136
137 /// Returns the inverse raw value mapping (without recursive query support).
getInverse__anonef530a330211::ConversionValueMapping138 DenseMap<Value, SmallVector<Value>> getInverse() const {
139 DenseMap<Value, SmallVector<Value>> inverse;
140 for (auto &it : mapping.getValueMap())
141 inverse[it.second].push_back(it.first);
142 return inverse;
143 }
144
145 private:
146 /// Current value mappings.
147 BlockAndValueMapping mapping;
148 };
149 } // namespace
150
lookupOrDefault(Value from,Type desiredType) const151 Value ConversionValueMapping::lookupOrDefault(Value from,
152 Type desiredType) const {
153 // If there was no desired type, simply find the leaf value.
154 if (!desiredType) {
155 // If this value had a valid mapping, unmap that value as well in the case
156 // that it was also replaced.
157 while (auto mappedValue = mapping.lookupOrNull(from))
158 from = mappedValue;
159 return from;
160 }
161
162 // Otherwise, try to find the deepest value that has the desired type.
163 Value desiredValue;
164 do {
165 if (from.getType() == desiredType)
166 desiredValue = from;
167
168 Value mappedValue = mapping.lookupOrNull(from);
169 if (!mappedValue)
170 break;
171 from = mappedValue;
172 } while (true);
173
174 // If the desired value was found use it, otherwise default to the leaf value.
175 return desiredValue ? desiredValue : from;
176 }
177
lookupOrNull(Value from,Type desiredType) const178 Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const {
179 Value result = lookupOrDefault(from, desiredType);
180 if (result == from || (desiredType && result.getType() != desiredType))
181 return nullptr;
182 return result;
183 }
184
tryMap(Value oldVal,Value newVal)185 bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) {
186 for (Value it = newVal; it; it = mapping.lookupOrNull(it))
187 if (it == oldVal)
188 return false;
189 map(oldVal, newVal);
190 return true;
191 }
192
193 //===----------------------------------------------------------------------===//
194 // Rewriter and Translation State
195 //===----------------------------------------------------------------------===//
196 namespace {
197 /// This class contains a snapshot of the current conversion rewriter state.
198 /// This is useful when saving and undoing a set of rewrites.
199 struct RewriterState {
RewriterState__anonef530a330311::RewriterState200 RewriterState(unsigned numCreatedOps, unsigned numUnresolvedMaterializations,
201 unsigned numReplacements, unsigned numArgReplacements,
202 unsigned numBlockActions, unsigned numIgnoredOperations,
203 unsigned numRootUpdates)
204 : numCreatedOps(numCreatedOps),
205 numUnresolvedMaterializations(numUnresolvedMaterializations),
206 numReplacements(numReplacements),
207 numArgReplacements(numArgReplacements),
208 numBlockActions(numBlockActions),
209 numIgnoredOperations(numIgnoredOperations),
210 numRootUpdates(numRootUpdates) {}
211
212 /// The current number of created operations.
213 unsigned numCreatedOps;
214
215 /// The current number of unresolved materializations.
216 unsigned numUnresolvedMaterializations;
217
218 /// The current number of replacements queued.
219 unsigned numReplacements;
220
221 /// The current number of argument replacements queued.
222 unsigned numArgReplacements;
223
224 /// The current number of block actions performed.
225 unsigned numBlockActions;
226
227 /// The current number of ignored operations.
228 unsigned numIgnoredOperations;
229
230 /// The current number of operations that were updated in place.
231 unsigned numRootUpdates;
232 };
233
234 //===----------------------------------------------------------------------===//
235 // OperationTransactionState
236
237 /// The state of an operation that was updated by a pattern in-place. This
238 /// contains all of the necessary information to reconstruct an operation that
239 /// was updated in place.
240 class OperationTransactionState {
241 public:
242 OperationTransactionState() = default;
OperationTransactionState(Operation * op)243 OperationTransactionState(Operation *op)
244 : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()),
245 operands(op->operand_begin(), op->operand_end()),
246 successors(op->successor_begin(), op->successor_end()) {}
247
248 /// Discard the transaction state and reset the state of the original
249 /// operation.
resetOperation() const250 void resetOperation() const {
251 op->setLoc(loc);
252 op->setAttrs(attrs);
253 op->setOperands(operands);
254 for (const auto &it : llvm::enumerate(successors))
255 op->setSuccessor(it.value(), it.index());
256 }
257
258 /// Return the original operation of this state.
getOperation() const259 Operation *getOperation() const { return op; }
260
261 private:
262 Operation *op;
263 LocationAttr loc;
264 DictionaryAttr attrs;
265 SmallVector<Value, 8> operands;
266 SmallVector<Block *, 2> successors;
267 };
268
269 //===----------------------------------------------------------------------===//
270 // OpReplacement
271
272 /// This class represents one requested operation replacement via 'replaceOp' or
273 /// 'eraseOp`.
274 struct OpReplacement {
OpReplacement__anonef530a330311::OpReplacement275 OpReplacement(TypeConverter *converter = nullptr) : converter(converter) {}
276
277 /// An optional type converter that can be used to materialize conversions
278 /// between the new and old values if necessary.
279 TypeConverter *converter;
280 };
281
282 //===----------------------------------------------------------------------===//
283 // BlockAction
284
285 /// The kind of the block action performed during the rewrite. Actions can be
286 /// undone if the conversion fails.
287 enum class BlockActionKind {
288 Create,
289 Erase,
290 Merge,
291 Move,
292 Split,
293 TypeConversion
294 };
295
296 /// Original position of the given block in its parent region. During undo
297 /// actions, the block needs to be placed after `insertAfterBlock`.
298 struct BlockPosition {
299 Region *region;
300 Block *insertAfterBlock;
301 };
302
303 /// Information needed to undo the merge actions.
304 /// - the source block, and
305 /// - the Operation that was the last operation in the dest block before the
306 /// merge (could be null if the dest block was empty).
307 struct MergeInfo {
308 Block *sourceBlock;
309 Operation *destBlockLastInst;
310 };
311
312 /// The storage class for an undoable block action (one of BlockActionKind),
313 /// contains the information necessary to undo this action.
314 struct BlockAction {
getCreate__anonef530a330311::BlockAction315 static BlockAction getCreate(Block *block) {
316 return {BlockActionKind::Create, block, {}};
317 }
getErase__anonef530a330311::BlockAction318 static BlockAction getErase(Block *block, BlockPosition originalPosition) {
319 return {BlockActionKind::Erase, block, {originalPosition}};
320 }
getMerge__anonef530a330311::BlockAction321 static BlockAction getMerge(Block *block, Block *sourceBlock) {
322 BlockAction action{BlockActionKind::Merge, block, {}};
323 action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()};
324 return action;
325 }
getMove__anonef530a330311::BlockAction326 static BlockAction getMove(Block *block, BlockPosition originalPosition) {
327 return {BlockActionKind::Move, block, {originalPosition}};
328 }
getSplit__anonef530a330311::BlockAction329 static BlockAction getSplit(Block *block, Block *originalBlock) {
330 BlockAction action{BlockActionKind::Split, block, {}};
331 action.originalBlock = originalBlock;
332 return action;
333 }
getTypeConversion__anonef530a330311::BlockAction334 static BlockAction getTypeConversion(Block *block) {
335 return BlockAction{BlockActionKind::TypeConversion, block, {}};
336 }
337
338 // The action kind.
339 BlockActionKind kind;
340
341 // A pointer to the block that was created by the action.
342 Block *block;
343
344 union {
345 // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and
346 // contains a pointer to the region that originally contained the block as
347 // well as the position of the block in that region.
348 BlockPosition originalPosition;
349 // In use if kind == BlockActionKind::Split and contains a pointer to the
350 // block that was split into two parts.
351 Block *originalBlock;
352 // In use if kind == BlockActionKind::Merge, and contains the information
353 // needed to undo the merge.
354 MergeInfo mergeInfo;
355 };
356 };
357
358 //===----------------------------------------------------------------------===//
359 // UnresolvedMaterialization
360
361 /// This class represents an unresolved materialization, i.e. a materialization
362 /// that was inserted during conversion that needs to be legalized at the end of
363 /// the conversion process.
364 class UnresolvedMaterialization {
365 public:
366 /// The type of materialization.
367 enum Kind {
368 /// This materialization materializes a conversion for an illegal block
369 /// argument type, to a legal one.
370 Argument,
371
372 /// This materialization materializes a conversion from an illegal type to a
373 /// legal one.
374 Target
375 };
376
UnresolvedMaterialization(UnrealizedConversionCastOp op=nullptr,TypeConverter * converter=nullptr,Kind kind=Target,Type origOutputType=nullptr)377 UnresolvedMaterialization(UnrealizedConversionCastOp op = nullptr,
378 TypeConverter *converter = nullptr,
379 Kind kind = Target, Type origOutputType = nullptr)
380 : op(op), converterAndKind(converter, kind),
381 origOutputType(origOutputType) {}
382
383 /// Return the temporary conversion operation inserted for this
384 /// materialization.
getOp() const385 UnrealizedConversionCastOp getOp() const { return op; }
386
387 /// Return the type converter of this materialization (which may be null).
getConverter() const388 TypeConverter *getConverter() const { return converterAndKind.getPointer(); }
389
390 /// Return the kind of this materialization.
getKind() const391 Kind getKind() const { return converterAndKind.getInt(); }
392
393 /// Set the kind of this materialization.
setKind(Kind kind)394 void setKind(Kind kind) { converterAndKind.setInt(kind); }
395
396 /// Return the original illegal output type of the input values.
getOrigOutputType() const397 Type getOrigOutputType() const { return origOutputType; }
398
399 private:
400 /// The unresolved materialization operation created during conversion.
401 UnrealizedConversionCastOp op;
402
403 /// The corresponding type converter to use when resolving this
404 /// materialization, and the kind of this materialization.
405 llvm::PointerIntPair<TypeConverter *, 1, Kind> converterAndKind;
406
407 /// The original output type. This is only used for argument conversions.
408 Type origOutputType;
409 };
410 } // namespace
411
412 /// Build an unresolved materialization operation given an output type and set
413 /// of input operands.
buildUnresolvedMaterialization(UnresolvedMaterialization::Kind kind,Block * insertBlock,Block::iterator insertPt,Location loc,ValueRange inputs,Type outputType,Type origOutputType,TypeConverter * converter,SmallVectorImpl<UnresolvedMaterialization> & unresolvedMaterializations)414 static Value buildUnresolvedMaterialization(
415 UnresolvedMaterialization::Kind kind, Block *insertBlock,
416 Block::iterator insertPt, Location loc, ValueRange inputs, Type outputType,
417 Type origOutputType, TypeConverter *converter,
418 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
419 // Avoid materializing an unnecessary cast.
420 if (inputs.size() == 1 && inputs.front().getType() == outputType)
421 return inputs.front();
422
423 // Create an unresolved materialization. We use a new OpBuilder to avoid
424 // tracking the materialization like we do for other operations.
425 OpBuilder builder(insertBlock, insertPt);
426 auto convertOp =
427 builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs);
428 unresolvedMaterializations.emplace_back(convertOp, converter, kind,
429 origOutputType);
430 return convertOp.getResult(0);
431 }
buildUnresolvedArgumentMaterialization(PatternRewriter & rewriter,Location loc,ValueRange inputs,Type origOutputType,Type outputType,TypeConverter * converter,SmallVectorImpl<UnresolvedMaterialization> & unresolvedMaterializations)432 static Value buildUnresolvedArgumentMaterialization(
433 PatternRewriter &rewriter, Location loc, ValueRange inputs,
434 Type origOutputType, Type outputType, TypeConverter *converter,
435 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
436 return buildUnresolvedMaterialization(
437 UnresolvedMaterialization::Argument, rewriter.getInsertionBlock(),
438 rewriter.getInsertionPoint(), loc, inputs, outputType, origOutputType,
439 converter, unresolvedMaterializations);
440 }
buildUnresolvedTargetMaterialization(Location loc,Value input,Type outputType,TypeConverter * converter,SmallVectorImpl<UnresolvedMaterialization> & unresolvedMaterializations)441 static Value buildUnresolvedTargetMaterialization(
442 Location loc, Value input, Type outputType, TypeConverter *converter,
443 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
444 Block *insertBlock = input.getParentBlock();
445 Block::iterator insertPt = insertBlock->begin();
446 if (OpResult inputRes = input.dyn_cast<OpResult>())
447 insertPt = ++inputRes.getOwner()->getIterator();
448
449 return buildUnresolvedMaterialization(
450 UnresolvedMaterialization::Target, insertBlock, insertPt, loc, input,
451 outputType, outputType, converter, unresolvedMaterializations);
452 }
453
454 //===----------------------------------------------------------------------===//
455 // ArgConverter
456 //===----------------------------------------------------------------------===//
457 namespace {
458 /// This class provides a simple interface for converting the types of block
459 /// arguments. This is done by creating a new block that contains the new legal
460 /// types and extracting the block that contains the old illegal types to allow
461 /// for undoing pending rewrites in the case of failure.
462 struct ArgConverter {
ArgConverter__anonef530a330511::ArgConverter463 ArgConverter(
464 PatternRewriter &rewriter,
465 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations)
466 : rewriter(rewriter),
467 unresolvedMaterializations(unresolvedMaterializations) {}
468
469 /// This structure contains the information pertaining to an argument that has
470 /// been converted.
471 struct ConvertedArgInfo {
ConvertedArgInfo__anonef530a330511::ArgConverter::ConvertedArgInfo472 ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
473 Value castValue = nullptr)
474 : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
475
476 /// The start index of in the new argument list that contains arguments that
477 /// replace the original.
478 unsigned newArgIdx;
479
480 /// The number of arguments that replaced the original argument.
481 unsigned newArgSize;
482
483 /// The cast value that was created to cast from the new arguments to the
484 /// old. This only used if 'newArgSize' > 1.
485 Value castValue;
486 };
487
488 /// This structure contains information pertaining to a block that has had its
489 /// signature converted.
490 struct ConvertedBlockInfo {
ConvertedBlockInfo__anonef530a330511::ArgConverter::ConvertedBlockInfo491 ConvertedBlockInfo(Block *origBlock, TypeConverter *converter)
492 : origBlock(origBlock), converter(converter) {}
493
494 /// The original block that was requested to have its signature converted.
495 Block *origBlock;
496
497 /// The conversion information for each of the arguments. The information is
498 /// None if the argument was dropped during conversion.
499 SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
500
501 /// The type converter used to convert the arguments.
502 TypeConverter *converter;
503 };
504
505 /// Return if the signature of the given block has already been converted.
hasBeenConverted__anonef530a330511::ArgConverter506 bool hasBeenConverted(Block *block) const {
507 return conversionInfo.count(block) || convertedBlocks.count(block);
508 }
509
510 /// Set the type converter to use for the given region.
setConverter__anonef530a330511::ArgConverter511 void setConverter(Region *region, TypeConverter *typeConverter) {
512 assert(typeConverter && "expected valid type converter");
513 regionToConverter[region] = typeConverter;
514 }
515
516 /// Return the type converter to use for the given region, or null if there
517 /// isn't one.
getConverter__anonef530a330511::ArgConverter518 TypeConverter *getConverter(Region *region) {
519 return regionToConverter.lookup(region);
520 }
521
522 //===--------------------------------------------------------------------===//
523 // Rewrite Application
524 //===--------------------------------------------------------------------===//
525
526 /// Erase any rewrites registered for the blocks within the given operation
527 /// which is about to be removed. This merely drops the rewrites without
528 /// undoing them.
529 void notifyOpRemoved(Operation *op);
530
531 /// Cleanup and undo any generated conversions for the arguments of block.
532 /// This method replaces the new block with the original, reverting the IR to
533 /// its original state.
534 void discardRewrites(Block *block);
535
536 /// Fully replace uses of the old arguments with the new.
537 void applyRewrites(ConversionValueMapping &mapping);
538
539 /// Materialize any necessary conversions for converted arguments that have
540 /// live users, using the provided `findLiveUser` to search for a user that
541 /// survives the conversion process.
542 LogicalResult
543 materializeLiveConversions(ConversionValueMapping &mapping,
544 OpBuilder &builder,
545 function_ref<Operation *(Value)> findLiveUser);
546
547 //===--------------------------------------------------------------------===//
548 // Conversion
549 //===--------------------------------------------------------------------===//
550
551 /// Attempt to convert the signature of the given block, if successful a new
552 /// block is returned containing the new arguments. Returns `block` if it did
553 /// not require conversion.
554 FailureOr<Block *>
555 convertSignature(Block *block, TypeConverter *converter,
556 ConversionValueMapping &mapping,
557 SmallVectorImpl<BlockArgument> &argReplacements);
558
559 /// Apply the given signature conversion on the given block. The new block
560 /// containing the updated signature is returned. If no conversions were
561 /// necessary, e.g. if the block has no arguments, `block` is returned.
562 /// `converter` is used to generate any necessary cast operations that
563 /// translate between the origin argument types and those specified in the
564 /// signature conversion.
565 Block *applySignatureConversion(
566 Block *block, TypeConverter *converter,
567 TypeConverter::SignatureConversion &signatureConversion,
568 ConversionValueMapping &mapping,
569 SmallVectorImpl<BlockArgument> &argReplacements);
570
571 /// Insert a new conversion into the cache.
572 void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
573
574 /// A collection of blocks that have had their arguments converted. This is a
575 /// map from the new replacement block, back to the original block.
576 llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
577
578 /// The set of original blocks that were converted.
579 DenseSet<Block *> convertedBlocks;
580
581 /// A mapping from valid regions, to those containing the original blocks of a
582 /// conversion.
583 DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
584
585 /// A mapping of regions to type converters that should be used when
586 /// converting the arguments of blocks within that region.
587 DenseMap<Region *, TypeConverter *> regionToConverter;
588
589 /// The pattern rewriter to use when materializing conversions.
590 PatternRewriter &rewriter;
591
592 /// An ordered set of unresolved materializations during conversion.
593 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations;
594 };
595 } // namespace
596
597 //===----------------------------------------------------------------------===//
598 // Rewrite Application
599
notifyOpRemoved(Operation * op)600 void ArgConverter::notifyOpRemoved(Operation *op) {
601 if (conversionInfo.empty())
602 return;
603
604 for (Region ®ion : op->getRegions()) {
605 for (Block &block : region) {
606 // Drop any rewrites from within.
607 for (Operation &nestedOp : block)
608 if (nestedOp.getNumRegions())
609 notifyOpRemoved(&nestedOp);
610
611 // Check if this block was converted.
612 auto it = conversionInfo.find(&block);
613 if (it == conversionInfo.end())
614 continue;
615
616 // Drop all uses of the original arguments and delete the original block.
617 Block *origBlock = it->second.origBlock;
618 for (BlockArgument arg : origBlock->getArguments())
619 arg.dropAllUses();
620 conversionInfo.erase(it);
621 }
622 }
623 }
624
discardRewrites(Block * block)625 void ArgConverter::discardRewrites(Block *block) {
626 auto it = conversionInfo.find(block);
627 if (it == conversionInfo.end())
628 return;
629 Block *origBlock = it->second.origBlock;
630
631 // Drop all uses of the new block arguments and replace uses of the new block.
632 for (int i = block->getNumArguments() - 1; i >= 0; --i)
633 block->getArgument(i).dropAllUses();
634 block->replaceAllUsesWith(origBlock);
635
636 // Move the operations back the original block and the delete the new block.
637 origBlock->getOperations().splice(origBlock->end(), block->getOperations());
638 origBlock->moveBefore(block);
639 block->erase();
640
641 convertedBlocks.erase(origBlock);
642 conversionInfo.erase(it);
643 }
644
applyRewrites(ConversionValueMapping & mapping)645 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
646 for (auto &info : conversionInfo) {
647 ConvertedBlockInfo &blockInfo = info.second;
648 Block *origBlock = blockInfo.origBlock;
649
650 // Process the remapping for each of the original arguments.
651 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
652 Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
653 BlockArgument origArg = origBlock->getArgument(i);
654
655 // Handle the case of a 1->0 value mapping.
656 if (!argInfo) {
657 if (Value newArg = mapping.lookupOrNull(origArg, origArg.getType()))
658 origArg.replaceAllUsesWith(newArg);
659 continue;
660 }
661
662 // Otherwise this is a 1->1+ value mapping.
663 Value castValue = argInfo->castValue;
664 assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
665
666 // If the argument is still used, replace it with the generated cast.
667 if (!origArg.use_empty()) {
668 origArg.replaceAllUsesWith(
669 mapping.lookupOrDefault(castValue, origArg.getType()));
670 }
671 }
672 }
673 }
674
materializeLiveConversions(ConversionValueMapping & mapping,OpBuilder & builder,function_ref<Operation * (Value)> findLiveUser)675 LogicalResult ArgConverter::materializeLiveConversions(
676 ConversionValueMapping &mapping, OpBuilder &builder,
677 function_ref<Operation *(Value)> findLiveUser) {
678 for (auto &info : conversionInfo) {
679 Block *newBlock = info.first;
680 ConvertedBlockInfo &blockInfo = info.second;
681 Block *origBlock = blockInfo.origBlock;
682
683 // Process the remapping for each of the original arguments.
684 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
685 // If the type of this argument changed and the argument is still live, we
686 // need to materialize a conversion.
687 BlockArgument origArg = origBlock->getArgument(i);
688 if (mapping.lookupOrNull(origArg, origArg.getType()))
689 continue;
690 Operation *liveUser = findLiveUser(origArg);
691 if (!liveUser)
692 continue;
693
694 Value replacementValue = mapping.lookupOrDefault(origArg);
695 bool isDroppedArg = replacementValue == origArg;
696 if (isDroppedArg)
697 rewriter.setInsertionPointToStart(newBlock);
698 else
699 rewriter.setInsertionPointAfterValue(replacementValue);
700 Value newArg;
701 if (blockInfo.converter) {
702 newArg = blockInfo.converter->materializeSourceConversion(
703 rewriter, origArg.getLoc(), origArg.getType(),
704 isDroppedArg ? ValueRange() : ValueRange(replacementValue));
705 assert((!newArg || newArg.getType() == origArg.getType()) &&
706 "materialization hook did not provide a value of the expected "
707 "type");
708 }
709 if (!newArg) {
710 InFlightDiagnostic diag =
711 emitError(origArg.getLoc())
712 << "failed to materialize conversion for block argument #" << i
713 << " that remained live after conversion, type was "
714 << origArg.getType();
715 if (!isDroppedArg)
716 diag << ", with target type " << replacementValue.getType();
717 diag.attachNote(liveUser->getLoc())
718 << "see existing live user here: " << *liveUser;
719 return failure();
720 }
721 mapping.map(origArg, newArg);
722 }
723 }
724 return success();
725 }
726
727 //===----------------------------------------------------------------------===//
728 // Conversion
729
convertSignature(Block * block,TypeConverter * converter,ConversionValueMapping & mapping,SmallVectorImpl<BlockArgument> & argReplacements)730 FailureOr<Block *> ArgConverter::convertSignature(
731 Block *block, TypeConverter *converter, ConversionValueMapping &mapping,
732 SmallVectorImpl<BlockArgument> &argReplacements) {
733 // Check if the block was already converted. If the block is detached,
734 // conservatively assume it is going to be deleted.
735 if (hasBeenConverted(block) || !block->getParent())
736 return block;
737 // If a converter wasn't provided, and the block wasn't already converted,
738 // there is nothing we can do.
739 if (!converter)
740 return failure();
741
742 // Try to convert the signature for the block with the provided converter.
743 if (auto conversion = converter->convertBlockSignature(block))
744 return applySignatureConversion(block, converter, *conversion, mapping,
745 argReplacements);
746 return failure();
747 }
748
applySignatureConversion(Block * block,TypeConverter * converter,TypeConverter::SignatureConversion & signatureConversion,ConversionValueMapping & mapping,SmallVectorImpl<BlockArgument> & argReplacements)749 Block *ArgConverter::applySignatureConversion(
750 Block *block, TypeConverter *converter,
751 TypeConverter::SignatureConversion &signatureConversion,
752 ConversionValueMapping &mapping,
753 SmallVectorImpl<BlockArgument> &argReplacements) {
754 // If no arguments are being changed or added, there is nothing to do.
755 unsigned origArgCount = block->getNumArguments();
756 auto convertedTypes = signatureConversion.getConvertedTypes();
757 if (origArgCount == 0 && convertedTypes.empty())
758 return block;
759
760 // Split the block at the beginning to get a new block to use for the updated
761 // signature.
762 Block *newBlock = block->splitBlock(block->begin());
763 block->replaceAllUsesWith(newBlock);
764
765 // FIXME: We should map the new arguments to proper locations.
766 SmallVector<Location> newLocs(convertedTypes.size(),
767 rewriter.getUnknownLoc());
768 SmallVector<Value, 4> newArgRange(
769 newBlock->addArguments(convertedTypes, newLocs));
770 ArrayRef<Value> newArgs(newArgRange);
771
772 // Remap each of the original arguments as determined by the signature
773 // conversion.
774 ConvertedBlockInfo info(block, converter);
775 info.argInfo.resize(origArgCount);
776
777 OpBuilder::InsertionGuard guard(rewriter);
778 rewriter.setInsertionPointToStart(newBlock);
779 for (unsigned i = 0; i != origArgCount; ++i) {
780 auto inputMap = signatureConversion.getInputMapping(i);
781 if (!inputMap)
782 continue;
783 BlockArgument origArg = block->getArgument(i);
784
785 // If inputMap->replacementValue is not nullptr, then the argument is
786 // dropped and a replacement value is provided to be the remappedValue.
787 if (inputMap->replacementValue) {
788 assert(inputMap->size == 0 &&
789 "invalid to provide a replacement value when the argument isn't "
790 "dropped");
791 mapping.map(origArg, inputMap->replacementValue);
792 argReplacements.push_back(origArg);
793 continue;
794 }
795
796 // Otherwise, this is a 1->1+ mapping.
797 auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
798 Value newArg;
799
800 // If this is a 1->1 mapping and the types of new and replacement arguments
801 // match (i.e. it's an identity map), then the argument is mapped to its
802 // original type.
803 // FIXME: We simply pass through the replacement argument if there wasn't a
804 // converter, which isn't great as it allows implicit type conversions to
805 // appear. We should properly restructure this code to handle cases where a
806 // converter isn't provided and also to properly handle the case where an
807 // argument materialization is actually a temporary source materialization
808 // (e.g. in the case of 1->N).
809 if (replArgs.size() == 1 &&
810 (!converter || replArgs[0].getType() == origArg.getType())) {
811 newArg = replArgs.front();
812 } else {
813 Type origOutputType = origArg.getType();
814
815 // Legalize the argument output type.
816 Type outputType = origOutputType;
817 if (Type legalOutputType = converter->convertType(outputType))
818 outputType = legalOutputType;
819
820 newArg = buildUnresolvedArgumentMaterialization(
821 rewriter, origArg.getLoc(), replArgs, origOutputType, outputType,
822 converter, unresolvedMaterializations);
823 }
824
825 mapping.map(origArg, newArg);
826 argReplacements.push_back(origArg);
827 info.argInfo[i] =
828 ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
829 }
830
831 // Remove the original block from the region and return the new one.
832 insertConversion(newBlock, std::move(info));
833 return newBlock;
834 }
835
insertConversion(Block * newBlock,ConvertedBlockInfo && info)836 void ArgConverter::insertConversion(Block *newBlock,
837 ConvertedBlockInfo &&info) {
838 // Get a region to insert the old block.
839 Region *region = newBlock->getParent();
840 std::unique_ptr<Region> &mappedRegion = regionMapping[region];
841 if (!mappedRegion)
842 mappedRegion = std::make_unique<Region>(region->getParentOp());
843
844 // Move the original block to the mapped region and emplace the conversion.
845 mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
846 info.origBlock->getIterator());
847 convertedBlocks.insert(info.origBlock);
848 conversionInfo.insert({newBlock, std::move(info)});
849 }
850
851 //===----------------------------------------------------------------------===//
852 // ConversionPatternRewriterImpl
853 //===----------------------------------------------------------------------===//
854 namespace mlir {
855 namespace detail {
856 struct ConversionPatternRewriterImpl {
ConversionPatternRewriterImplmlir::detail::ConversionPatternRewriterImpl857 explicit ConversionPatternRewriterImpl(PatternRewriter &rewriter)
858 : argConverter(rewriter, unresolvedMaterializations),
859 notifyCallback(nullptr) {}
860
861 /// Cleanup and destroy any generated rewrite operations. This method is
862 /// invoked when the conversion process fails.
863 void discardRewrites();
864
865 /// Apply all requested operation rewrites. This method is invoked when the
866 /// conversion process succeeds.
867 void applyRewrites();
868
869 //===--------------------------------------------------------------------===//
870 // State Management
871 //===--------------------------------------------------------------------===//
872
873 /// Return the current state of the rewriter.
874 RewriterState getCurrentState();
875
876 /// Reset the state of the rewriter to a previously saved point.
877 void resetState(RewriterState state);
878
879 /// Erase any blocks that were unlinked from their regions and stored in block
880 /// actions.
881 void eraseDanglingBlocks();
882
883 /// Undo the block actions (motions, splits) one by one in reverse order until
884 /// "numActionsToKeep" actions remains.
885 void undoBlockActions(unsigned numActionsToKeep = 0);
886
887 /// Remap the given values to those with potentially different types. Returns
888 /// success if the values could be remapped, failure otherwise. `valueDiagTag`
889 /// is the tag used when describing a value within a diagnostic, e.g.
890 /// "operand".
891 LogicalResult remapValues(StringRef valueDiagTag, Optional<Location> inputLoc,
892 PatternRewriter &rewriter, ValueRange values,
893 SmallVectorImpl<Value> &remapped);
894
895 /// Returns true if the given operation is ignored, and does not need to be
896 /// converted.
897 bool isOpIgnored(Operation *op) const;
898
899 /// Recursively marks the nested operations under 'op' as ignored. This
900 /// removes them from being considered for legalization.
901 void markNestedOpsIgnored(Operation *op);
902
903 //===--------------------------------------------------------------------===//
904 // Type Conversion
905 //===--------------------------------------------------------------------===//
906
907 /// Convert the signature of the given block.
908 FailureOr<Block *> convertBlockSignature(
909 Block *block, TypeConverter *converter,
910 TypeConverter::SignatureConversion *conversion = nullptr);
911
912 /// Apply a signature conversion on the given region, using `converter` for
913 /// materializations if not null.
914 Block *
915 applySignatureConversion(Region *region,
916 TypeConverter::SignatureConversion &conversion,
917 TypeConverter *converter);
918
919 /// Convert the types of block arguments within the given region.
920 FailureOr<Block *>
921 convertRegionTypes(Region *region, TypeConverter &converter,
922 TypeConverter::SignatureConversion *entryConversion);
923
924 /// Convert the types of non-entry block arguments within the given region.
925 LogicalResult convertNonEntryRegionTypes(
926 Region *region, TypeConverter &converter,
927 ArrayRef<TypeConverter::SignatureConversion> blockConversions = {});
928
929 //===--------------------------------------------------------------------===//
930 // Rewriter Notification Hooks
931 //===--------------------------------------------------------------------===//
932
933 /// PatternRewriter hook for replacing the results of an operation.
934 void notifyOpReplaced(Operation *op, ValueRange newValues);
935
936 /// Notifies that a block is about to be erased.
937 void notifyBlockIsBeingErased(Block *block);
938
939 /// Notifies that a block was created.
940 void notifyCreatedBlock(Block *block);
941
942 /// Notifies that a block was split.
943 void notifySplitBlock(Block *block, Block *continuation);
944
945 /// Notifies that `block` is being merged with `srcBlock`.
946 void notifyBlocksBeingMerged(Block *block, Block *srcBlock);
947
948 /// Notifies that the blocks of a region are about to be moved.
949 void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent,
950 Region::iterator before);
951
952 /// Notifies that the blocks of a region were cloned into another.
953 void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
954 Location origRegionLoc);
955
956 /// Notifies that a pattern match failed for the given reason.
957 LogicalResult
958 notifyMatchFailure(Location loc,
959 function_ref<void(Diagnostic &)> reasonCallback);
960
961 //===--------------------------------------------------------------------===//
962 // State
963 //===--------------------------------------------------------------------===//
964
965 // Mapping between replaced values that differ in type. This happens when
966 // replacing a value with one of a different type.
967 ConversionValueMapping mapping;
968
969 /// Utility used to convert block arguments.
970 ArgConverter argConverter;
971
972 /// Ordered vector of all of the newly created operations during conversion.
973 SmallVector<Operation *> createdOps;
974
975 /// Ordered vector of all unresolved type conversion materializations during
976 /// conversion.
977 SmallVector<UnresolvedMaterialization> unresolvedMaterializations;
978
979 /// Ordered map of requested operation replacements.
980 llvm::MapVector<Operation *, OpReplacement> replacements;
981
982 /// Ordered vector of any requested block argument replacements.
983 SmallVector<BlockArgument, 4> argReplacements;
984
985 /// Ordered list of block operations (creations, splits, motions).
986 SmallVector<BlockAction, 4> blockActions;
987
988 /// A set of operations that should no longer be considered for legalization,
989 /// but were not directly replace/erased/etc. by a pattern. These are
990 /// generally child operations of other operations who were
991 /// replaced/erased/etc. This is not meant to be an exhaustive list of all
992 /// operations, but the minimal set that can be used to detect if a given
993 /// operation should be `ignored`. For example, we may add the operations that
994 /// define non-empty regions to the set, but not any of the others. This
995 /// simplifies the amount of memory needed as we can query if the parent
996 /// operation was ignored.
997 SetVector<Operation *> ignoredOps;
998
999 /// A transaction state for each of operations that were updated in-place.
1000 SmallVector<OperationTransactionState, 4> rootUpdates;
1001
1002 /// A vector of indices into `replacements` of operations that were replaced
1003 /// with values with different result types than the original operation, e.g.
1004 /// 1->N conversion of some kind.
1005 SmallVector<unsigned, 4> operationsWithChangedResults;
1006
1007 /// The current type converter, or nullptr if no type converter is currently
1008 /// active.
1009 TypeConverter *currentTypeConverter = nullptr;
1010
1011 /// This allows the user to collect the match failure message.
1012 function_ref<void(Diagnostic &)> notifyCallback;
1013
1014 #ifndef NDEBUG
1015 /// A set of operations that have pending updates. This tracking isn't
1016 /// strictly necessary, and is thus only active during debug builds for extra
1017 /// verification.
1018 SmallPtrSet<Operation *, 1> pendingRootUpdates;
1019
1020 /// A logger used to emit diagnostics during the conversion process.
1021 llvm::ScopedPrinter logger{llvm::dbgs()};
1022 #endif
1023 };
1024 } // namespace detail
1025 } // namespace mlir
1026
1027 /// Detach any operations nested in the given operation from their parent
1028 /// blocks, and erase the given operation. This can be used when the nested
1029 /// operations are scheduled for erasure themselves, so deleting the regions of
1030 /// the given operation together with their content would result in double-free.
1031 /// This happens, for example, when rolling back op creation in the reverse
1032 /// order and if the nested ops were created before the parent op. This function
1033 /// does not need to collect nested ops recursively because it is expected to
1034 /// also be called for each nested op when it is about to be deleted.
detachNestedAndErase(Operation * op)1035 static void detachNestedAndErase(Operation *op) {
1036 for (Region ®ion : op->getRegions()) {
1037 for (Block &block : region.getBlocks()) {
1038 while (!block.getOperations().empty())
1039 block.getOperations().remove(block.getOperations().begin());
1040 block.dropAllDefinedValueUses();
1041 }
1042 }
1043 op->dropAllUses();
1044 op->erase();
1045 }
1046
discardRewrites()1047 void ConversionPatternRewriterImpl::discardRewrites() {
1048 // Reset any operations that were updated in place.
1049 for (auto &state : rootUpdates)
1050 state.resetOperation();
1051
1052 undoBlockActions();
1053
1054 // Remove any newly created ops.
1055 for (UnresolvedMaterialization &materialization : unresolvedMaterializations)
1056 detachNestedAndErase(materialization.getOp());
1057 for (auto *op : llvm::reverse(createdOps))
1058 detachNestedAndErase(op);
1059 }
1060
applyRewrites()1061 void ConversionPatternRewriterImpl::applyRewrites() {
1062 // Apply all of the rewrites replacements requested during conversion.
1063 for (auto &repl : replacements) {
1064 for (OpResult result : repl.first->getResults())
1065 if (Value newValue = mapping.lookupOrNull(result, result.getType()))
1066 result.replaceAllUsesWith(newValue);
1067
1068 // If this operation defines any regions, drop any pending argument
1069 // rewrites.
1070 if (repl.first->getNumRegions())
1071 argConverter.notifyOpRemoved(repl.first);
1072 }
1073
1074 // Apply all of the requested argument replacements.
1075 for (BlockArgument arg : argReplacements) {
1076 Value repl = mapping.lookupOrNull(arg, arg.getType());
1077 if (!repl)
1078 continue;
1079
1080 if (repl.isa<BlockArgument>()) {
1081 arg.replaceAllUsesWith(repl);
1082 continue;
1083 }
1084
1085 // If the replacement value is an operation, we check to make sure that we
1086 // don't replace uses that are within the parent operation of the
1087 // replacement value.
1088 Operation *replOp = repl.cast<OpResult>().getOwner();
1089 Block *replBlock = replOp->getBlock();
1090 arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
1091 Operation *user = operand.getOwner();
1092 return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
1093 });
1094 }
1095
1096 // Drop all of the unresolved materialization operations created during
1097 // conversion.
1098 for (auto &mat : unresolvedMaterializations) {
1099 mat.getOp()->dropAllUses();
1100 mat.getOp()->erase();
1101 }
1102
1103 // In a second pass, erase all of the replaced operations in reverse. This
1104 // allows processing nested operations before their parent region is
1105 // destroyed. Because we process in reverse order, producers may be deleted
1106 // before their users (a pattern deleting a producer and then the consumer)
1107 // so we first drop all uses explicitly.
1108 for (auto &repl : llvm::reverse(replacements)) {
1109 repl.first->dropAllUses();
1110 repl.first->erase();
1111 }
1112
1113 argConverter.applyRewrites(mapping);
1114
1115 // Now that the ops have been erased, also erase dangling blocks.
1116 eraseDanglingBlocks();
1117 }
1118
1119 //===----------------------------------------------------------------------===//
1120 // State Management
1121
getCurrentState()1122 RewriterState ConversionPatternRewriterImpl::getCurrentState() {
1123 return RewriterState(createdOps.size(), unresolvedMaterializations.size(),
1124 replacements.size(), argReplacements.size(),
1125 blockActions.size(), ignoredOps.size(),
1126 rootUpdates.size());
1127 }
1128
resetState(RewriterState state)1129 void ConversionPatternRewriterImpl::resetState(RewriterState state) {
1130 // Reset any operations that were updated in place.
1131 for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
1132 rootUpdates[i].resetOperation();
1133 rootUpdates.resize(state.numRootUpdates);
1134
1135 // Reset any replaced arguments.
1136 for (BlockArgument replacedArg :
1137 llvm::drop_begin(argReplacements, state.numArgReplacements))
1138 mapping.erase(replacedArg);
1139 argReplacements.resize(state.numArgReplacements);
1140
1141 // Undo any block actions.
1142 undoBlockActions(state.numBlockActions);
1143
1144 // Reset any replaced operations and undo any saved mappings.
1145 for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
1146 for (auto result : repl.first->getResults())
1147 mapping.erase(result);
1148 while (replacements.size() != state.numReplacements)
1149 replacements.pop_back();
1150
1151 // Pop all of the newly inserted materializations.
1152 while (unresolvedMaterializations.size() !=
1153 state.numUnresolvedMaterializations) {
1154 UnresolvedMaterialization mat = unresolvedMaterializations.pop_back_val();
1155 UnrealizedConversionCastOp op = mat.getOp();
1156
1157 // If this was a target materialization, drop the mapping that was inserted.
1158 if (mat.getKind() == UnresolvedMaterialization::Target) {
1159 for (Value input : op->getOperands())
1160 mapping.erase(input);
1161 }
1162 detachNestedAndErase(op);
1163 }
1164
1165 // Pop all of the newly created operations.
1166 while (createdOps.size() != state.numCreatedOps) {
1167 detachNestedAndErase(createdOps.back());
1168 createdOps.pop_back();
1169 }
1170
1171 // Pop all of the recorded ignored operations that are no longer valid.
1172 while (ignoredOps.size() != state.numIgnoredOperations)
1173 ignoredOps.pop_back();
1174
1175 // Reset operations with changed results.
1176 while (!operationsWithChangedResults.empty() &&
1177 operationsWithChangedResults.back() >= state.numReplacements)
1178 operationsWithChangedResults.pop_back();
1179 }
1180
eraseDanglingBlocks()1181 void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
1182 for (auto &action : blockActions)
1183 if (action.kind == BlockActionKind::Erase)
1184 delete action.block;
1185 }
1186
undoBlockActions(unsigned numActionsToKeep)1187 void ConversionPatternRewriterImpl::undoBlockActions(
1188 unsigned numActionsToKeep) {
1189 for (auto &action :
1190 llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
1191 switch (action.kind) {
1192 // Delete the created block.
1193 case BlockActionKind::Create: {
1194 // Unlink all of the operations within this block, they will be deleted
1195 // separately.
1196 auto &blockOps = action.block->getOperations();
1197 while (!blockOps.empty())
1198 blockOps.remove(blockOps.begin());
1199 action.block->dropAllDefinedValueUses();
1200 action.block->erase();
1201 break;
1202 }
1203 // Put the block (owned by action) back into its original position.
1204 case BlockActionKind::Erase: {
1205 auto &blockList = action.originalPosition.region->getBlocks();
1206 Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1207 blockList.insert((insertAfterBlock
1208 ? std::next(Region::iterator(insertAfterBlock))
1209 : blockList.begin()),
1210 action.block);
1211 break;
1212 }
1213 // Split the block at the position which was originally the end of the
1214 // destination block (owned by action), and put the instructions back into
1215 // the block used before the merge.
1216 case BlockActionKind::Merge: {
1217 Block *sourceBlock = action.mergeInfo.sourceBlock;
1218 Block::iterator splitPoint =
1219 (action.mergeInfo.destBlockLastInst
1220 ? ++Block::iterator(action.mergeInfo.destBlockLastInst)
1221 : action.block->begin());
1222 sourceBlock->getOperations().splice(sourceBlock->begin(),
1223 action.block->getOperations(),
1224 splitPoint, action.block->end());
1225 break;
1226 }
1227 // Move the block back to its original position.
1228 case BlockActionKind::Move: {
1229 Region *originalRegion = action.originalPosition.region;
1230 Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1231 originalRegion->getBlocks().splice(
1232 (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
1233 : originalRegion->end()),
1234 action.block->getParent()->getBlocks(), action.block);
1235 break;
1236 }
1237 // Merge back the block that was split out.
1238 case BlockActionKind::Split: {
1239 action.originalBlock->getOperations().splice(
1240 action.originalBlock->end(), action.block->getOperations());
1241 action.block->dropAllDefinedValueUses();
1242 action.block->erase();
1243 break;
1244 }
1245 // Undo the type conversion.
1246 case BlockActionKind::TypeConversion: {
1247 argConverter.discardRewrites(action.block);
1248 break;
1249 }
1250 }
1251 }
1252 blockActions.resize(numActionsToKeep);
1253 }
1254
remapValues(StringRef valueDiagTag,Optional<Location> inputLoc,PatternRewriter & rewriter,ValueRange values,SmallVectorImpl<Value> & remapped)1255 LogicalResult ConversionPatternRewriterImpl::remapValues(
1256 StringRef valueDiagTag, Optional<Location> inputLoc,
1257 PatternRewriter &rewriter, ValueRange values,
1258 SmallVectorImpl<Value> &remapped) {
1259 remapped.reserve(llvm::size(values));
1260
1261 SmallVector<Type, 1> legalTypes;
1262 for (const auto &it : llvm::enumerate(values)) {
1263 Value operand = it.value();
1264 Type origType = operand.getType();
1265
1266 // If a converter was provided, get the desired legal types for this
1267 // operand.
1268 Type desiredType;
1269 if (currentTypeConverter) {
1270 // If there is no legal conversion, fail to match this pattern.
1271 legalTypes.clear();
1272 if (failed(currentTypeConverter->convertType(origType, legalTypes))) {
1273 Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
1274 return notifyMatchFailure(operandLoc, [=](Diagnostic &diag) {
1275 diag << "unable to convert type for " << valueDiagTag << " #"
1276 << it.index() << ", type was " << origType;
1277 });
1278 }
1279 // TODO: There currently isn't any mechanism to do 1->N type conversion
1280 // via the PatternRewriter replacement API, so for now we just ignore it.
1281 if (legalTypes.size() == 1)
1282 desiredType = legalTypes.front();
1283 } else {
1284 // TODO: What we should do here is just set `desiredType` to `origType`
1285 // and then handle the necessary type conversions after the conversion
1286 // process has finished. Unfortunately a lot of patterns currently rely on
1287 // receiving the new operands even if the types change, so we keep the
1288 // original behavior here for now until all of the patterns relying on
1289 // this get updated.
1290 }
1291 Value newOperand = mapping.lookupOrDefault(operand, desiredType);
1292
1293 // Handle the case where the conversion was 1->1 and the new operand type
1294 // isn't legal.
1295 Type newOperandType = newOperand.getType();
1296 if (currentTypeConverter && desiredType && newOperandType != desiredType) {
1297 Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
1298 Value castValue = buildUnresolvedTargetMaterialization(
1299 operandLoc, newOperand, desiredType, currentTypeConverter,
1300 unresolvedMaterializations);
1301 mapping.map(mapping.lookupOrDefault(newOperand), castValue);
1302 newOperand = castValue;
1303 }
1304 remapped.push_back(newOperand);
1305 }
1306 return success();
1307 }
1308
isOpIgnored(Operation * op) const1309 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
1310 // Check to see if this operation was replaced or its parent ignored.
1311 return replacements.count(op) || ignoredOps.count(op->getParentOp());
1312 }
1313
markNestedOpsIgnored(Operation * op)1314 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
1315 // Walk this operation and collect nested operations that define non-empty
1316 // regions. We mark such operations as 'ignored' so that we know we don't have
1317 // to convert them, or their nested ops.
1318 if (op->getNumRegions() == 0)
1319 return;
1320 op->walk([&](Operation *op) {
1321 if (llvm::any_of(op->getRegions(),
1322 [](Region ®ion) { return !region.empty(); }))
1323 ignoredOps.insert(op);
1324 });
1325 }
1326
1327 //===----------------------------------------------------------------------===//
1328 // Type Conversion
1329
convertBlockSignature(Block * block,TypeConverter * converter,TypeConverter::SignatureConversion * conversion)1330 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
1331 Block *block, TypeConverter *converter,
1332 TypeConverter::SignatureConversion *conversion) {
1333 FailureOr<Block *> result =
1334 conversion ? argConverter.applySignatureConversion(
1335 block, converter, *conversion, mapping, argReplacements)
1336 : argConverter.convertSignature(block, converter, mapping,
1337 argReplacements);
1338 if (failed(result))
1339 return failure();
1340 if (Block *newBlock = *result) {
1341 if (newBlock != block)
1342 blockActions.push_back(BlockAction::getTypeConversion(newBlock));
1343 }
1344 return result;
1345 }
1346
applySignatureConversion(Region * region,TypeConverter::SignatureConversion & conversion,TypeConverter * converter)1347 Block *ConversionPatternRewriterImpl::applySignatureConversion(
1348 Region *region, TypeConverter::SignatureConversion &conversion,
1349 TypeConverter *converter) {
1350 if (!region->empty())
1351 return *convertBlockSignature(®ion->front(), converter, &conversion);
1352 return nullptr;
1353 }
1354
convertRegionTypes(Region * region,TypeConverter & converter,TypeConverter::SignatureConversion * entryConversion)1355 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
1356 Region *region, TypeConverter &converter,
1357 TypeConverter::SignatureConversion *entryConversion) {
1358 argConverter.setConverter(region, &converter);
1359 if (region->empty())
1360 return nullptr;
1361
1362 if (failed(convertNonEntryRegionTypes(region, converter)))
1363 return failure();
1364
1365 FailureOr<Block *> newEntry =
1366 convertBlockSignature(®ion->front(), &converter, entryConversion);
1367 return newEntry;
1368 }
1369
convertNonEntryRegionTypes(Region * region,TypeConverter & converter,ArrayRef<TypeConverter::SignatureConversion> blockConversions)1370 LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes(
1371 Region *region, TypeConverter &converter,
1372 ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1373 argConverter.setConverter(region, &converter);
1374 if (region->empty())
1375 return success();
1376
1377 // Convert the arguments of each block within the region.
1378 int blockIdx = 0;
1379 assert((blockConversions.empty() ||
1380 blockConversions.size() == region->getBlocks().size() - 1) &&
1381 "expected either to provide no SignatureConversions at all or to "
1382 "provide a SignatureConversion for each non-entry block");
1383
1384 for (Block &block :
1385 llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
1386 TypeConverter::SignatureConversion *blockConversion =
1387 blockConversions.empty()
1388 ? nullptr
1389 : const_cast<TypeConverter::SignatureConversion *>(
1390 &blockConversions[blockIdx++]);
1391
1392 if (failed(convertBlockSignature(&block, &converter, blockConversion)))
1393 return failure();
1394 }
1395 return success();
1396 }
1397
1398 //===----------------------------------------------------------------------===//
1399 // Rewriter Notification Hooks
1400
notifyOpReplaced(Operation * op,ValueRange newValues)1401 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
1402 ValueRange newValues) {
1403 assert(newValues.size() == op->getNumResults());
1404 assert(!replacements.count(op) && "operation was already replaced");
1405
1406 // Track if any of the results changed, e.g. erased and replaced with null.
1407 bool resultChanged = false;
1408
1409 // Create mappings for each of the new result values.
1410 Value newValue, result;
1411 for (auto it : llvm::zip(newValues, op->getResults())) {
1412 std::tie(newValue, result) = it;
1413 if (!newValue) {
1414 resultChanged = true;
1415 continue;
1416 }
1417 // Remap, and check for any result type changes.
1418 mapping.map(result, newValue);
1419 resultChanged |= (newValue.getType() != result.getType());
1420 }
1421 if (resultChanged)
1422 operationsWithChangedResults.push_back(replacements.size());
1423
1424 // Record the requested operation replacement.
1425 replacements.insert(std::make_pair(op, OpReplacement(currentTypeConverter)));
1426
1427 // Mark this operation as recursively ignored so that we don't need to
1428 // convert any nested operations.
1429 markNestedOpsIgnored(op);
1430 }
1431
notifyBlockIsBeingErased(Block * block)1432 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
1433 Region *region = block->getParent();
1434 Block *origPrevBlock = block->getPrevNode();
1435 blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
1436 }
1437
notifyCreatedBlock(Block * block)1438 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
1439 blockActions.push_back(BlockAction::getCreate(block));
1440 }
1441
notifySplitBlock(Block * block,Block * continuation)1442 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
1443 Block *continuation) {
1444 blockActions.push_back(BlockAction::getSplit(continuation, block));
1445 }
1446
notifyBlocksBeingMerged(Block * block,Block * srcBlock)1447 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block,
1448 Block *srcBlock) {
1449 blockActions.push_back(BlockAction::getMerge(block, srcBlock));
1450 }
1451
notifyRegionIsBeingInlinedBefore(Region & region,Region & parent,Region::iterator before)1452 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
1453 Region ®ion, Region &parent, Region::iterator before) {
1454 if (region.empty())
1455 return;
1456 Block *laterBlock = ®ion.back();
1457 for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) {
1458 blockActions.push_back(
1459 BlockAction::getMove(laterBlock, {®ion, &earlierBlock}));
1460 laterBlock = &earlierBlock;
1461 }
1462 blockActions.push_back(BlockAction::getMove(laterBlock, {®ion, nullptr}));
1463 }
1464
notifyRegionWasClonedBefore(iterator_range<Region::iterator> & blocks,Location origRegionLoc)1465 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
1466 iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
1467 for (Block &block : blocks)
1468 blockActions.push_back(BlockAction::getCreate(&block));
1469
1470 // Compute the conversion set for the inlined region.
1471 auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
1472
1473 // This original region has already had its conversion set computed, so there
1474 // shouldn't be any new failures.
1475 (void)result;
1476 assert(succeeded(result) && "expected region to have no unreachable blocks");
1477 }
1478
notifyMatchFailure(Location loc,function_ref<void (Diagnostic &)> reasonCallback)1479 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
1480 Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
1481 LLVM_DEBUG({
1482 Diagnostic diag(loc, DiagnosticSeverity::Remark);
1483 reasonCallback(diag);
1484 logger.startLine() << "** Failure : " << diag.str() << "\n";
1485 if (notifyCallback)
1486 notifyCallback(diag);
1487 });
1488 return failure();
1489 }
1490
1491 //===----------------------------------------------------------------------===//
1492 // ConversionPatternRewriter
1493 //===----------------------------------------------------------------------===//
1494
ConversionPatternRewriter(MLIRContext * ctx)1495 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
1496 : PatternRewriter(ctx),
1497 impl(new detail::ConversionPatternRewriterImpl(*this)) {}
1498 ConversionPatternRewriter::~ConversionPatternRewriter() = default;
1499
replaceOpWithIf(Operation * op,ValueRange newValues,bool * allUsesReplaced,llvm::unique_function<bool (OpOperand &)const> functor)1500 void ConversionPatternRewriter::replaceOpWithIf(
1501 Operation *op, ValueRange newValues, bool *allUsesReplaced,
1502 llvm::unique_function<bool(OpOperand &) const> functor) {
1503 // TODO: To support this we will need to rework a bit of how replacements are
1504 // tracked, given that this isn't guranteed to replace all of the uses of an
1505 // operation. The main change is that now an operation can be replaced
1506 // multiple times, in parts. The current "set" based tracking is mainly useful
1507 // for tracking if a replaced operation should be ignored, i.e. if all of the
1508 // uses will be replaced.
1509 llvm_unreachable(
1510 "replaceOpWithIf is currently not supported by DialectConversion");
1511 }
1512
replaceOp(Operation * op,ValueRange newValues)1513 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
1514 LLVM_DEBUG({
1515 impl->logger.startLine()
1516 << "** Replace : '" << op->getName() << "'(" << op << ")\n";
1517 });
1518 impl->notifyOpReplaced(op, newValues);
1519 }
1520
eraseOp(Operation * op)1521 void ConversionPatternRewriter::eraseOp(Operation *op) {
1522 LLVM_DEBUG({
1523 impl->logger.startLine()
1524 << "** Erase : '" << op->getName() << "'(" << op << ")\n";
1525 });
1526 SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
1527 impl->notifyOpReplaced(op, nullRepls);
1528 }
1529
eraseBlock(Block * block)1530 void ConversionPatternRewriter::eraseBlock(Block *block) {
1531 impl->notifyBlockIsBeingErased(block);
1532
1533 // Mark all ops for erasure.
1534 for (Operation &op : *block)
1535 eraseOp(&op);
1536
1537 // Unlink the block from its parent region. The block is kept in the block
1538 // action and will be actually destroyed when rewrites are applied. This
1539 // allows us to keep the operations in the block live and undo the removal by
1540 // re-inserting the block.
1541 block->getParent()->getBlocks().remove(block);
1542 }
1543
applySignatureConversion(Region * region,TypeConverter::SignatureConversion & conversion,TypeConverter * converter)1544 Block *ConversionPatternRewriter::applySignatureConversion(
1545 Region *region, TypeConverter::SignatureConversion &conversion,
1546 TypeConverter *converter) {
1547 return impl->applySignatureConversion(region, conversion, converter);
1548 }
1549
convertRegionTypes(Region * region,TypeConverter & converter,TypeConverter::SignatureConversion * entryConversion)1550 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
1551 Region *region, TypeConverter &converter,
1552 TypeConverter::SignatureConversion *entryConversion) {
1553 return impl->convertRegionTypes(region, converter, entryConversion);
1554 }
1555
convertNonEntryRegionTypes(Region * region,TypeConverter & converter,ArrayRef<TypeConverter::SignatureConversion> blockConversions)1556 LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes(
1557 Region *region, TypeConverter &converter,
1558 ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1559 return impl->convertNonEntryRegionTypes(region, converter, blockConversions);
1560 }
1561
replaceUsesOfBlockArgument(BlockArgument from,Value to)1562 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
1563 Value to) {
1564 LLVM_DEBUG({
1565 Operation *parentOp = from.getOwner()->getParentOp();
1566 impl->logger.startLine() << "** Replace Argument : '" << from
1567 << "'(in region of '" << parentOp->getName()
1568 << "'(" << from.getOwner()->getParentOp() << ")\n";
1569 });
1570 impl->argReplacements.push_back(from);
1571 impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
1572 }
1573
getRemappedValue(Value key)1574 Value ConversionPatternRewriter::getRemappedValue(Value key) {
1575 SmallVector<Value> remappedValues;
1576 if (failed(impl->remapValues("value", /*inputLoc=*/llvm::None, *this, key,
1577 remappedValues)))
1578 return nullptr;
1579 return remappedValues.front();
1580 }
1581
1582 LogicalResult
getRemappedValues(ValueRange keys,SmallVectorImpl<Value> & results)1583 ConversionPatternRewriter::getRemappedValues(ValueRange keys,
1584 SmallVectorImpl<Value> &results) {
1585 if (keys.empty())
1586 return success();
1587 return impl->remapValues("value", /*inputLoc=*/llvm::None, *this, keys,
1588 results);
1589 }
1590
notifyBlockCreated(Block * block)1591 void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
1592 impl->notifyCreatedBlock(block);
1593 }
1594
splitBlock(Block * block,Block::iterator before)1595 Block *ConversionPatternRewriter::splitBlock(Block *block,
1596 Block::iterator before) {
1597 auto *continuation = PatternRewriter::splitBlock(block, before);
1598 impl->notifySplitBlock(block, continuation);
1599 return continuation;
1600 }
1601
mergeBlocks(Block * source,Block * dest,ValueRange argValues)1602 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
1603 ValueRange argValues) {
1604 impl->notifyBlocksBeingMerged(dest, source);
1605 assert(llvm::all_of(source->getPredecessors(),
1606 [dest](Block *succ) { return succ == dest; }) &&
1607 "expected 'source' to have no predecessors or only 'dest'");
1608 assert(argValues.size() == source->getNumArguments() &&
1609 "incorrect # of argument replacement values");
1610 for (auto it : llvm::zip(source->getArguments(), argValues))
1611 replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
1612 dest->getOperations().splice(dest->end(), source->getOperations());
1613 eraseBlock(source);
1614 }
1615
inlineRegionBefore(Region & region,Region & parent,Region::iterator before)1616 void ConversionPatternRewriter::inlineRegionBefore(Region ®ion,
1617 Region &parent,
1618 Region::iterator before) {
1619 impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
1620 PatternRewriter::inlineRegionBefore(region, parent, before);
1621 }
1622
cloneRegionBefore(Region & region,Region & parent,Region::iterator before,BlockAndValueMapping & mapping)1623 void ConversionPatternRewriter::cloneRegionBefore(
1624 Region ®ion, Region &parent, Region::iterator before,
1625 BlockAndValueMapping &mapping) {
1626 if (region.empty())
1627 return;
1628 PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
1629
1630 // Collect the range of the cloned blocks.
1631 auto clonedBeginIt = mapping.lookup(®ion.front())->getIterator();
1632 auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
1633 impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
1634 }
1635
notifyOperationInserted(Operation * op)1636 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
1637 LLVM_DEBUG({
1638 impl->logger.startLine()
1639 << "** Insert : '" << op->getName() << "'(" << op << ")\n";
1640 });
1641 impl->createdOps.push_back(op);
1642 }
1643
startRootUpdate(Operation * op)1644 void ConversionPatternRewriter::startRootUpdate(Operation *op) {
1645 #ifndef NDEBUG
1646 impl->pendingRootUpdates.insert(op);
1647 #endif
1648 impl->rootUpdates.emplace_back(op);
1649 }
1650
finalizeRootUpdate(Operation * op)1651 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
1652 // There is nothing to do here, we only need to track the operation at the
1653 // start of the update.
1654 #ifndef NDEBUG
1655 assert(impl->pendingRootUpdates.erase(op) &&
1656 "operation did not have a pending in-place update");
1657 #endif
1658 }
1659
cancelRootUpdate(Operation * op)1660 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
1661 #ifndef NDEBUG
1662 assert(impl->pendingRootUpdates.erase(op) &&
1663 "operation did not have a pending in-place update");
1664 #endif
1665 // Erase the last update for this operation.
1666 auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
1667 auto &rootUpdates = impl->rootUpdates;
1668 auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
1669 assert(it != rootUpdates.rend() && "no root update started on op");
1670 (*it).resetOperation();
1671 int updateIdx = std::prev(rootUpdates.rend()) - it;
1672 rootUpdates.erase(rootUpdates.begin() + updateIdx);
1673 }
1674
notifyMatchFailure(Location loc,function_ref<void (Diagnostic &)> reasonCallback)1675 LogicalResult ConversionPatternRewriter::notifyMatchFailure(
1676 Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
1677 return impl->notifyMatchFailure(loc, reasonCallback);
1678 }
1679
getImpl()1680 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
1681 return *impl;
1682 }
1683
1684 //===----------------------------------------------------------------------===//
1685 // ConversionPattern
1686 //===----------------------------------------------------------------------===//
1687
1688 LogicalResult
matchAndRewrite(Operation * op,PatternRewriter & rewriter) const1689 ConversionPattern::matchAndRewrite(Operation *op,
1690 PatternRewriter &rewriter) const {
1691 auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
1692 auto &rewriterImpl = dialectRewriter.getImpl();
1693
1694 // Track the current conversion pattern type converter in the rewriter.
1695 llvm::SaveAndRestore<TypeConverter *> currentConverterGuard(
1696 rewriterImpl.currentTypeConverter, getTypeConverter());
1697
1698 // Remap the operands of the operation.
1699 SmallVector<Value, 4> operands;
1700 if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter,
1701 op->getOperands(), operands))) {
1702 return failure();
1703 }
1704 return matchAndRewrite(op, operands, dialectRewriter);
1705 }
1706
1707 //===----------------------------------------------------------------------===//
1708 // OperationLegalizer
1709 //===----------------------------------------------------------------------===//
1710
1711 namespace {
1712 /// A set of rewrite patterns that can be used to legalize a given operation.
1713 using LegalizationPatterns = SmallVector<const Pattern *, 1>;
1714
1715 /// This class defines a recursive operation legalizer.
1716 class OperationLegalizer {
1717 public:
1718 using LegalizationAction = ConversionTarget::LegalizationAction;
1719
1720 OperationLegalizer(ConversionTarget &targetInfo,
1721 const FrozenRewritePatternSet &patterns);
1722
1723 /// Returns true if the given operation is known to be illegal on the target.
1724 bool isIllegal(Operation *op) const;
1725
1726 /// Attempt to legalize the given operation. Returns success if the operation
1727 /// was legalized, failure otherwise.
1728 LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
1729
1730 /// Returns the conversion target in use by the legalizer.
getTarget()1731 ConversionTarget &getTarget() { return target; }
1732
1733 private:
1734 /// Attempt to legalize the given operation by folding it.
1735 LogicalResult legalizeWithFold(Operation *op,
1736 ConversionPatternRewriter &rewriter);
1737
1738 /// Attempt to legalize the given operation by applying a pattern. Returns
1739 /// success if the operation was legalized, failure otherwise.
1740 LogicalResult legalizeWithPattern(Operation *op,
1741 ConversionPatternRewriter &rewriter);
1742
1743 /// Return true if the given pattern may be applied to the given operation,
1744 /// false otherwise.
1745 bool canApplyPattern(Operation *op, const Pattern &pattern,
1746 ConversionPatternRewriter &rewriter);
1747
1748 /// Legalize the resultant IR after successfully applying the given pattern.
1749 LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
1750 ConversionPatternRewriter &rewriter,
1751 RewriterState &curState);
1752
1753 /// Legalizes the actions registered during the execution of a pattern.
1754 LogicalResult legalizePatternBlockActions(Operation *op,
1755 ConversionPatternRewriter &rewriter,
1756 ConversionPatternRewriterImpl &impl,
1757 RewriterState &state,
1758 RewriterState &newState);
1759 LogicalResult legalizePatternCreatedOperations(
1760 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1761 RewriterState &state, RewriterState &newState);
1762 LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
1763 ConversionPatternRewriterImpl &impl,
1764 RewriterState &state,
1765 RewriterState &newState);
1766
1767 //===--------------------------------------------------------------------===//
1768 // Cost Model
1769 //===--------------------------------------------------------------------===//
1770
1771 /// Build an optimistic legalization graph given the provided patterns. This
1772 /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
1773 /// patterns for operations that are not directly legal, but may be
1774 /// transitively legal for the current target given the provided patterns.
1775 void buildLegalizationGraph(
1776 LegalizationPatterns &anyOpLegalizerPatterns,
1777 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1778
1779 /// Compute the benefit of each node within the computed legalization graph.
1780 /// This orders the patterns within 'legalizerPatterns' based upon two
1781 /// criteria:
1782 /// 1) Prefer patterns that have the lowest legalization depth, i.e.
1783 /// represent the more direct mapping to the target.
1784 /// 2) When comparing patterns with the same legalization depth, prefer the
1785 /// pattern with the highest PatternBenefit. This allows for users to
1786 /// prefer specific legalizations over others.
1787 void computeLegalizationGraphBenefit(
1788 LegalizationPatterns &anyOpLegalizerPatterns,
1789 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1790
1791 /// Compute the legalization depth when legalizing an operation of the given
1792 /// type.
1793 unsigned computeOpLegalizationDepth(
1794 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
1795 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1796
1797 /// Apply the conversion cost model to the given set of patterns, and return
1798 /// the smallest legalization depth of any of the patterns. See
1799 /// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
1800 unsigned applyCostModelToPatterns(
1801 LegalizationPatterns &patterns,
1802 DenseMap<OperationName, unsigned> &minOpPatternDepth,
1803 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1804
1805 /// The current set of patterns that have been applied.
1806 SmallPtrSet<const Pattern *, 8> appliedPatterns;
1807
1808 /// The legalization information provided by the target.
1809 ConversionTarget ⌖
1810
1811 /// The pattern applicator to use for conversions.
1812 PatternApplicator applicator;
1813 };
1814 } // namespace
1815
OperationLegalizer(ConversionTarget & targetInfo,const FrozenRewritePatternSet & patterns)1816 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo,
1817 const FrozenRewritePatternSet &patterns)
1818 : target(targetInfo), applicator(patterns) {
1819 // The set of patterns that can be applied to illegal operations to transform
1820 // them into legal ones.
1821 DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
1822 LegalizationPatterns anyOpLegalizerPatterns;
1823
1824 buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
1825 computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
1826 }
1827
isIllegal(Operation * op) const1828 bool OperationLegalizer::isIllegal(Operation *op) const {
1829 return target.isIllegal(op);
1830 }
1831
1832 LogicalResult
legalize(Operation * op,ConversionPatternRewriter & rewriter)1833 OperationLegalizer::legalize(Operation *op,
1834 ConversionPatternRewriter &rewriter) {
1835 #ifndef NDEBUG
1836 const char *logLineComment =
1837 "//===-------------------------------------------===//\n";
1838
1839 auto &logger = rewriter.getImpl().logger;
1840 #endif
1841 LLVM_DEBUG({
1842 logger.getOStream() << "\n";
1843 logger.startLine() << logLineComment;
1844 logger.startLine() << "Legalizing operation : '" << op->getName() << "'("
1845 << op << ") {\n";
1846 logger.indent();
1847
1848 // If the operation has no regions, just print it here.
1849 if (op->getNumRegions() == 0) {
1850 op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm());
1851 logger.getOStream() << "\n\n";
1852 }
1853 });
1854
1855 // Check if this operation is legal on the target.
1856 if (auto legalityInfo = target.isLegal(op)) {
1857 LLVM_DEBUG({
1858 logSuccess(
1859 logger, "operation marked legal by the target{0}",
1860 legalityInfo->isRecursivelyLegal
1861 ? "; NOTE: operation is recursively legal; skipping internals"
1862 : "");
1863 logger.startLine() << logLineComment;
1864 });
1865
1866 // If this operation is recursively legal, mark its children as ignored so
1867 // that we don't consider them for legalization.
1868 if (legalityInfo->isRecursivelyLegal)
1869 rewriter.getImpl().markNestedOpsIgnored(op);
1870 return success();
1871 }
1872
1873 // Check to see if the operation is ignored and doesn't need to be converted.
1874 if (rewriter.getImpl().isOpIgnored(op)) {
1875 LLVM_DEBUG({
1876 logSuccess(logger, "operation marked 'ignored' during conversion");
1877 logger.startLine() << logLineComment;
1878 });
1879 return success();
1880 }
1881
1882 // If the operation isn't legal, try to fold it in-place.
1883 // TODO: Should we always try to do this, even if the op is
1884 // already legal?
1885 if (succeeded(legalizeWithFold(op, rewriter))) {
1886 LLVM_DEBUG({
1887 logSuccess(logger, "operation was folded");
1888 logger.startLine() << logLineComment;
1889 });
1890 return success();
1891 }
1892
1893 // Otherwise, we need to apply a legalization pattern to this operation.
1894 if (succeeded(legalizeWithPattern(op, rewriter))) {
1895 LLVM_DEBUG({
1896 logSuccess(logger, "");
1897 logger.startLine() << logLineComment;
1898 });
1899 return success();
1900 }
1901
1902 LLVM_DEBUG({
1903 logFailure(logger, "no matched legalization pattern");
1904 logger.startLine() << logLineComment;
1905 });
1906 return failure();
1907 }
1908
1909 LogicalResult
legalizeWithFold(Operation * op,ConversionPatternRewriter & rewriter)1910 OperationLegalizer::legalizeWithFold(Operation *op,
1911 ConversionPatternRewriter &rewriter) {
1912 auto &rewriterImpl = rewriter.getImpl();
1913 RewriterState curState = rewriterImpl.getCurrentState();
1914
1915 LLVM_DEBUG({
1916 rewriterImpl.logger.startLine() << "* Fold {\n";
1917 rewriterImpl.logger.indent();
1918 });
1919
1920 // Try to fold the operation.
1921 SmallVector<Value, 2> replacementValues;
1922 rewriter.setInsertionPoint(op);
1923 if (failed(rewriter.tryFold(op, replacementValues))) {
1924 LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
1925 return failure();
1926 }
1927
1928 // Insert a replacement for 'op' with the folded replacement values.
1929 rewriter.replaceOp(op, replacementValues);
1930
1931 // Recursively legalize any new constant operations.
1932 for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
1933 i != e; ++i) {
1934 Operation *cstOp = rewriterImpl.createdOps[i];
1935 if (failed(legalize(cstOp, rewriter))) {
1936 LLVM_DEBUG(logFailure(rewriterImpl.logger,
1937 "failed to legalize generated constant '{0}'",
1938 cstOp->getName()));
1939 rewriterImpl.resetState(curState);
1940 return failure();
1941 }
1942 }
1943
1944 LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
1945 return success();
1946 }
1947
1948 LogicalResult
legalizeWithPattern(Operation * op,ConversionPatternRewriter & rewriter)1949 OperationLegalizer::legalizeWithPattern(Operation *op,
1950 ConversionPatternRewriter &rewriter) {
1951 auto &rewriterImpl = rewriter.getImpl();
1952
1953 // Functor that returns if the given pattern may be applied.
1954 auto canApply = [&](const Pattern &pattern) {
1955 return canApplyPattern(op, pattern, rewriter);
1956 };
1957
1958 // Functor that cleans up the rewriter state after a pattern failed to match.
1959 RewriterState curState = rewriterImpl.getCurrentState();
1960 auto onFailure = [&](const Pattern &pattern) {
1961 LLVM_DEBUG({
1962 logFailure(rewriterImpl.logger, "pattern failed to match");
1963 if (rewriterImpl.notifyCallback) {
1964 Diagnostic diag(op->getLoc(), DiagnosticSeverity::Remark);
1965 diag << "Failed to apply pattern \"" << pattern.getDebugName()
1966 << "\" on op:\n"
1967 << *op;
1968 rewriterImpl.notifyCallback(diag);
1969 }
1970 });
1971 rewriterImpl.resetState(curState);
1972 appliedPatterns.erase(&pattern);
1973 };
1974
1975 // Functor that performs additional legalization when a pattern is
1976 // successfully applied.
1977 auto onSuccess = [&](const Pattern &pattern) {
1978 auto result = legalizePatternResult(op, pattern, rewriter, curState);
1979 appliedPatterns.erase(&pattern);
1980 if (failed(result))
1981 rewriterImpl.resetState(curState);
1982 return result;
1983 };
1984
1985 // Try to match and rewrite a pattern on this operation.
1986 return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
1987 onSuccess);
1988 }
1989
canApplyPattern(Operation * op,const Pattern & pattern,ConversionPatternRewriter & rewriter)1990 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
1991 ConversionPatternRewriter &rewriter) {
1992 LLVM_DEBUG({
1993 auto &os = rewriter.getImpl().logger;
1994 os.getOStream() << "\n";
1995 os.startLine() << "* Pattern : '" << op->getName() << " -> (";
1996 llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream());
1997 os.getOStream() << ")' {\n";
1998 os.indent();
1999 });
2000
2001 // Ensure that we don't cycle by not allowing the same pattern to be
2002 // applied twice in the same recursion stack if it is not known to be safe.
2003 if (!pattern.hasBoundedRewriteRecursion() &&
2004 !appliedPatterns.insert(&pattern).second) {
2005 LLVM_DEBUG(
2006 logFailure(rewriter.getImpl().logger, "pattern was already applied"));
2007 return false;
2008 }
2009 return true;
2010 }
2011
2012 LogicalResult
legalizePatternResult(Operation * op,const Pattern & pattern,ConversionPatternRewriter & rewriter,RewriterState & curState)2013 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
2014 ConversionPatternRewriter &rewriter,
2015 RewriterState &curState) {
2016 auto &impl = rewriter.getImpl();
2017
2018 #ifndef NDEBUG
2019 assert(impl.pendingRootUpdates.empty() && "dangling root updates");
2020 #endif
2021
2022 // Check that the root was either replaced or updated in place.
2023 auto replacedRoot = [&] {
2024 return llvm::any_of(
2025 llvm::drop_begin(impl.replacements, curState.numReplacements),
2026 [op](auto &it) { return it.first == op; });
2027 };
2028 auto updatedRootInPlace = [&] {
2029 return llvm::any_of(
2030 llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
2031 [op](auto &state) { return state.getOperation() == op; });
2032 };
2033 (void)replacedRoot;
2034 (void)updatedRootInPlace;
2035 assert((replacedRoot() || updatedRootInPlace()) &&
2036 "expected pattern to replace the root operation");
2037
2038 // Legalize each of the actions registered during application.
2039 RewriterState newState = impl.getCurrentState();
2040 if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
2041 newState)) ||
2042 failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
2043 failed(legalizePatternCreatedOperations(rewriter, impl, curState,
2044 newState))) {
2045 return failure();
2046 }
2047
2048 LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
2049 return success();
2050 }
2051
legalizePatternBlockActions(Operation * op,ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & impl,RewriterState & state,RewriterState & newState)2052 LogicalResult OperationLegalizer::legalizePatternBlockActions(
2053 Operation *op, ConversionPatternRewriter &rewriter,
2054 ConversionPatternRewriterImpl &impl, RewriterState &state,
2055 RewriterState &newState) {
2056 SmallPtrSet<Operation *, 16> operationsToIgnore;
2057
2058 // If the pattern moved or created any blocks, make sure the types of block
2059 // arguments get legalized.
2060 for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
2061 ++i) {
2062 auto &action = impl.blockActions[i];
2063 if (action.kind == BlockActionKind::TypeConversion ||
2064 action.kind == BlockActionKind::Erase)
2065 continue;
2066 // Only check blocks outside of the current operation.
2067 Operation *parentOp = action.block->getParentOp();
2068 if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
2069 continue;
2070
2071 // If the region of the block has a type converter, try to convert the block
2072 // directly.
2073 if (auto *converter =
2074 impl.argConverter.getConverter(action.block->getParent())) {
2075 if (failed(impl.convertBlockSignature(action.block, converter))) {
2076 LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
2077 "block"));
2078 return failure();
2079 }
2080 continue;
2081 }
2082
2083 // Otherwise, check that this operation isn't one generated by this pattern.
2084 // This is because we will attempt to legalize the parent operation, and
2085 // blocks in regions created by this pattern will already be legalized later
2086 // on. If we haven't built the set yet, build it now.
2087 if (operationsToIgnore.empty()) {
2088 auto createdOps = ArrayRef<Operation *>(impl.createdOps)
2089 .drop_front(state.numCreatedOps);
2090 operationsToIgnore.insert(createdOps.begin(), createdOps.end());
2091 }
2092
2093 // If this operation should be considered for re-legalization, try it.
2094 if (operationsToIgnore.insert(parentOp).second &&
2095 failed(legalize(parentOp, rewriter))) {
2096 LLVM_DEBUG(logFailure(
2097 impl.logger, "operation '{0}'({1}) became illegal after block action",
2098 parentOp->getName(), parentOp));
2099 return failure();
2100 }
2101 }
2102 return success();
2103 }
2104
legalizePatternCreatedOperations(ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & impl,RewriterState & state,RewriterState & newState)2105 LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
2106 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
2107 RewriterState &state, RewriterState &newState) {
2108 for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
2109 Operation *op = impl.createdOps[i];
2110 if (failed(legalize(op, rewriter))) {
2111 LLVM_DEBUG(logFailure(impl.logger,
2112 "failed to legalize generated operation '{0}'({1})",
2113 op->getName(), op));
2114 return failure();
2115 }
2116 }
2117 return success();
2118 }
2119
legalizePatternRootUpdates(ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & impl,RewriterState & state,RewriterState & newState)2120 LogicalResult OperationLegalizer::legalizePatternRootUpdates(
2121 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
2122 RewriterState &state, RewriterState &newState) {
2123 for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
2124 Operation *op = impl.rootUpdates[i].getOperation();
2125 if (failed(legalize(op, rewriter))) {
2126 LLVM_DEBUG(logFailure(
2127 impl.logger, "failed to legalize operation updated in-place '{0}'",
2128 op->getName()));
2129 return failure();
2130 }
2131 }
2132 return success();
2133 }
2134
2135 //===----------------------------------------------------------------------===//
2136 // Cost Model
2137
buildLegalizationGraph(LegalizationPatterns & anyOpLegalizerPatterns,DenseMap<OperationName,LegalizationPatterns> & legalizerPatterns)2138 void OperationLegalizer::buildLegalizationGraph(
2139 LegalizationPatterns &anyOpLegalizerPatterns,
2140 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2141 // A mapping between an operation and a set of operations that can be used to
2142 // generate it.
2143 DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
2144 // A mapping between an operation and any currently invalid patterns it has.
2145 DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
2146 // A worklist of patterns to consider for legality.
2147 SetVector<const Pattern *> patternWorklist;
2148
2149 // Build the mapping from operations to the parent ops that may generate them.
2150 applicator.walkAllPatterns([&](const Pattern &pattern) {
2151 Optional<OperationName> root = pattern.getRootKind();
2152
2153 // If the pattern has no specific root, we can't analyze the relationship
2154 // between the root op and generated operations. Given that, add all such
2155 // patterns to the legalization set.
2156 if (!root) {
2157 anyOpLegalizerPatterns.push_back(&pattern);
2158 return;
2159 }
2160
2161 // Skip operations that are always known to be legal.
2162 if (target.getOpAction(*root) == LegalizationAction::Legal)
2163 return;
2164
2165 // Add this pattern to the invalid set for the root op and record this root
2166 // as a parent for any generated operations.
2167 invalidPatterns[*root].insert(&pattern);
2168 for (auto op : pattern.getGeneratedOps())
2169 parentOps[op].insert(*root);
2170
2171 // Add this pattern to the worklist.
2172 patternWorklist.insert(&pattern);
2173 });
2174
2175 // If there are any patterns that don't have a specific root kind, we can't
2176 // make direct assumptions about what operations will never be legalized.
2177 // Note: Technically we could, but it would require an analysis that may
2178 // recurse into itself. It would be better to perform this kind of filtering
2179 // at a higher level than here anyways.
2180 if (!anyOpLegalizerPatterns.empty()) {
2181 for (const Pattern *pattern : patternWorklist)
2182 legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2183 return;
2184 }
2185
2186 while (!patternWorklist.empty()) {
2187 auto *pattern = patternWorklist.pop_back_val();
2188
2189 // Check to see if any of the generated operations are invalid.
2190 if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
2191 Optional<LegalizationAction> action = target.getOpAction(op);
2192 return !legalizerPatterns.count(op) &&
2193 (!action || action == LegalizationAction::Illegal);
2194 }))
2195 continue;
2196
2197 // Otherwise, if all of the generated operation are valid, this op is now
2198 // legal so add all of the child patterns to the worklist.
2199 legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2200 invalidPatterns[*pattern->getRootKind()].erase(pattern);
2201
2202 // Add any invalid patterns of the parent operations to see if they have now
2203 // become legal.
2204 for (auto op : parentOps[*pattern->getRootKind()])
2205 patternWorklist.set_union(invalidPatterns[op]);
2206 }
2207 }
2208
computeLegalizationGraphBenefit(LegalizationPatterns & anyOpLegalizerPatterns,DenseMap<OperationName,LegalizationPatterns> & legalizerPatterns)2209 void OperationLegalizer::computeLegalizationGraphBenefit(
2210 LegalizationPatterns &anyOpLegalizerPatterns,
2211 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2212 // The smallest pattern depth, when legalizing an operation.
2213 DenseMap<OperationName, unsigned> minOpPatternDepth;
2214
2215 // For each operation that is transitively legal, compute a cost for it.
2216 for (auto &opIt : legalizerPatterns)
2217 if (!minOpPatternDepth.count(opIt.first))
2218 computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
2219 legalizerPatterns);
2220
2221 // Apply the cost model to the patterns that can match any operation. Those
2222 // with a specific operation type are already resolved when computing the op
2223 // legalization depth.
2224 if (!anyOpLegalizerPatterns.empty())
2225 applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
2226 legalizerPatterns);
2227
2228 // Apply a cost model to the pattern applicator. We order patterns first by
2229 // depth then benefit. `legalizerPatterns` contains per-op patterns by
2230 // decreasing benefit.
2231 applicator.applyCostModel([&](const Pattern &pattern) {
2232 ArrayRef<const Pattern *> orderedPatternList;
2233 if (Optional<OperationName> rootName = pattern.getRootKind())
2234 orderedPatternList = legalizerPatterns[*rootName];
2235 else
2236 orderedPatternList = anyOpLegalizerPatterns;
2237
2238 // If the pattern is not found, then it was removed and cannot be matched.
2239 auto *it = llvm::find(orderedPatternList, &pattern);
2240 if (it == orderedPatternList.end())
2241 return PatternBenefit::impossibleToMatch();
2242
2243 // Patterns found earlier in the list have higher benefit.
2244 return PatternBenefit(std::distance(it, orderedPatternList.end()));
2245 });
2246 }
2247
computeOpLegalizationDepth(OperationName op,DenseMap<OperationName,unsigned> & minOpPatternDepth,DenseMap<OperationName,LegalizationPatterns> & legalizerPatterns)2248 unsigned OperationLegalizer::computeOpLegalizationDepth(
2249 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
2250 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2251 // Check for existing depth.
2252 auto depthIt = minOpPatternDepth.find(op);
2253 if (depthIt != minOpPatternDepth.end())
2254 return depthIt->second;
2255
2256 // If a mapping for this operation does not exist, then this operation
2257 // is always legal. Return 0 as the depth for a directly legal operation.
2258 auto opPatternsIt = legalizerPatterns.find(op);
2259 if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
2260 return 0u;
2261
2262 // Record this initial depth in case we encounter this op again when
2263 // recursively computing the depth.
2264 minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
2265
2266 // Apply the cost model to the operation patterns, and update the minimum
2267 // depth.
2268 unsigned minDepth = applyCostModelToPatterns(
2269 opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
2270 minOpPatternDepth[op] = minDepth;
2271 return minDepth;
2272 }
2273
applyCostModelToPatterns(LegalizationPatterns & patterns,DenseMap<OperationName,unsigned> & minOpPatternDepth,DenseMap<OperationName,LegalizationPatterns> & legalizerPatterns)2274 unsigned OperationLegalizer::applyCostModelToPatterns(
2275 LegalizationPatterns &patterns,
2276 DenseMap<OperationName, unsigned> &minOpPatternDepth,
2277 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2278 unsigned minDepth = std::numeric_limits<unsigned>::max();
2279
2280 // Compute the depth for each pattern within the set.
2281 SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
2282 patternsByDepth.reserve(patterns.size());
2283 for (const Pattern *pattern : patterns) {
2284 unsigned depth = 1;
2285 for (auto generatedOp : pattern->getGeneratedOps()) {
2286 unsigned generatedOpDepth = computeOpLegalizationDepth(
2287 generatedOp, minOpPatternDepth, legalizerPatterns);
2288 depth = std::max(depth, generatedOpDepth + 1);
2289 }
2290 patternsByDepth.emplace_back(pattern, depth);
2291
2292 // Update the minimum depth of the pattern list.
2293 minDepth = std::min(minDepth, depth);
2294 }
2295
2296 // If the operation only has one legalization pattern, there is no need to
2297 // sort them.
2298 if (patternsByDepth.size() == 1)
2299 return minDepth;
2300
2301 // Sort the patterns by those likely to be the most beneficial.
2302 llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(),
2303 [](const std::pair<const Pattern *, unsigned> *lhs,
2304 const std::pair<const Pattern *, unsigned> *rhs) {
2305 // First sort by the smaller pattern legalization
2306 // depth.
2307 if (lhs->second != rhs->second)
2308 return llvm::array_pod_sort_comparator<unsigned>(
2309 &lhs->second, &rhs->second);
2310
2311 // Then sort by the larger pattern benefit.
2312 auto lhsBenefit = lhs->first->getBenefit();
2313 auto rhsBenefit = rhs->first->getBenefit();
2314 return llvm::array_pod_sort_comparator<PatternBenefit>(
2315 &rhsBenefit, &lhsBenefit);
2316 });
2317
2318 // Update the legalization pattern to use the new sorted list.
2319 patterns.clear();
2320 for (auto &patternIt : patternsByDepth)
2321 patterns.push_back(patternIt.first);
2322 return minDepth;
2323 }
2324
2325 //===----------------------------------------------------------------------===//
2326 // OperationConverter
2327 //===----------------------------------------------------------------------===//
2328 namespace {
2329 enum OpConversionMode {
2330 /// In this mode, the conversion will ignore failed conversions to allow
2331 /// illegal operations to co-exist in the IR.
2332 Partial,
2333
2334 /// In this mode, all operations must be legal for the given target for the
2335 /// conversion to succeed.
2336 Full,
2337
2338 /// In this mode, operations are analyzed for legality. No actual rewrites are
2339 /// applied to the operations on success.
2340 Analysis,
2341 };
2342
2343 // This class converts operations to a given conversion target via a set of
2344 // rewrite patterns. The conversion behaves differently depending on the
2345 // conversion mode.
2346 struct OperationConverter {
OperationConverter__anonef530a331811::OperationConverter2347 explicit OperationConverter(ConversionTarget &target,
2348 const FrozenRewritePatternSet &patterns,
2349 OpConversionMode mode,
2350 DenseSet<Operation *> *trackedOps = nullptr)
2351 : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}
2352
2353 /// Converts the given operations to the conversion target.
2354 LogicalResult
2355 convertOperations(ArrayRef<Operation *> ops,
2356 function_ref<void(Diagnostic &)> notifyCallback = nullptr);
2357
2358 private:
2359 /// Converts an operation with the given rewriter.
2360 LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
2361
2362 /// This method is called after the conversion process to legalize any
2363 /// remaining artifacts and complete the conversion.
2364 LogicalResult finalize(ConversionPatternRewriter &rewriter);
2365
2366 /// Legalize the types of converted block arguments.
2367 LogicalResult
2368 legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
2369 ConversionPatternRewriterImpl &rewriterImpl);
2370
2371 /// Legalize any unresolved type materializations.
2372 LogicalResult legalizeUnresolvedMaterializations(
2373 ConversionPatternRewriter &rewriter,
2374 ConversionPatternRewriterImpl &rewriterImpl,
2375 Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping);
2376
2377 /// Legalize an operation result that was marked as "erased".
2378 LogicalResult
2379 legalizeErasedResult(Operation *op, OpResult result,
2380 ConversionPatternRewriterImpl &rewriterImpl);
2381
2382 /// Legalize an operation result that was replaced with a value of a different
2383 /// type.
2384 LogicalResult legalizeChangedResultType(
2385 Operation *op, OpResult result, Value newValue,
2386 TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2387 ConversionPatternRewriterImpl &rewriterImpl,
2388 const DenseMap<Value, SmallVector<Value>> &inverseMapping);
2389
2390 /// The legalizer to use when converting operations.
2391 OperationLegalizer opLegalizer;
2392
2393 /// The conversion mode to use when legalizing operations.
2394 OpConversionMode mode;
2395
2396 /// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
2397 /// this is populated with ops found to be legalizable to the target.
2398 /// When mode == OpConversionMode::Partial, this is populated with ops found
2399 /// *not* to be legalizable to the target.
2400 DenseSet<Operation *> *trackedOps;
2401 };
2402 } // namespace
2403
convert(ConversionPatternRewriter & rewriter,Operation * op)2404 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
2405 Operation *op) {
2406 // Legalize the given operation.
2407 if (failed(opLegalizer.legalize(op, rewriter))) {
2408 // Handle the case of a failed conversion for each of the different modes.
2409 // Full conversions expect all operations to be converted.
2410 if (mode == OpConversionMode::Full)
2411 return op->emitError()
2412 << "failed to legalize operation '" << op->getName() << "'";
2413 // Partial conversions allow conversions to fail iff the operation was not
2414 // explicitly marked as illegal. If the user provided a nonlegalizableOps
2415 // set, non-legalizable ops are included.
2416 if (mode == OpConversionMode::Partial) {
2417 if (opLegalizer.isIllegal(op))
2418 return op->emitError()
2419 << "failed to legalize operation '" << op->getName()
2420 << "' that was explicitly marked illegal";
2421 if (trackedOps)
2422 trackedOps->insert(op);
2423 }
2424 } else if (mode == OpConversionMode::Analysis) {
2425 // Analysis conversions don't fail if any operations fail to legalize,
2426 // they are only interested in the operations that were successfully
2427 // legalized.
2428 trackedOps->insert(op);
2429 }
2430 return success();
2431 }
2432
convertOperations(ArrayRef<Operation * > ops,function_ref<void (Diagnostic &)> notifyCallback)2433 LogicalResult OperationConverter::convertOperations(
2434 ArrayRef<Operation *> ops,
2435 function_ref<void(Diagnostic &)> notifyCallback) {
2436 if (ops.empty())
2437 return success();
2438 ConversionTarget &target = opLegalizer.getTarget();
2439
2440 // Compute the set of operations and blocks to convert.
2441 SmallVector<Operation *> toConvert;
2442 for (auto *op : ops) {
2443 toConvert.emplace_back(op);
2444 for (auto ®ion : op->getRegions())
2445 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
2446 toConvert, &target)))
2447 return failure();
2448 }
2449
2450 // Convert each operation and discard rewrites on failure.
2451 ConversionPatternRewriter rewriter(ops.front()->getContext());
2452 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2453 rewriterImpl.notifyCallback = notifyCallback;
2454
2455 for (auto *op : toConvert)
2456 if (failed(convert(rewriter, op)))
2457 return rewriterImpl.discardRewrites(), failure();
2458
2459 // Now that all of the operations have been converted, finalize the conversion
2460 // process to ensure any lingering conversion artifacts are cleaned up and
2461 // legalized.
2462 if (failed(finalize(rewriter)))
2463 return rewriterImpl.discardRewrites(), failure();
2464
2465 // After a successful conversion, apply rewrites if this is not an analysis
2466 // conversion.
2467 if (mode == OpConversionMode::Analysis) {
2468 rewriterImpl.discardRewrites();
2469 } else {
2470 rewriterImpl.applyRewrites();
2471
2472 // It is possible for a later pattern to erase an op that was originally
2473 // identified as illegal and added to the trackedOps, remove it now after
2474 // replacements have been computed.
2475 if (trackedOps)
2476 for (auto &repl : rewriterImpl.replacements)
2477 trackedOps->erase(repl.first);
2478 }
2479 return success();
2480 }
2481
2482 LogicalResult
finalize(ConversionPatternRewriter & rewriter)2483 OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
2484 Optional<DenseMap<Value, SmallVector<Value>>> inverseMapping;
2485 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2486 if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl,
2487 inverseMapping)) ||
2488 failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
2489 return failure();
2490
2491 if (rewriterImpl.operationsWithChangedResults.empty())
2492 return success();
2493
2494 // Process requested operation replacements.
2495 for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
2496 i != e; ++i) {
2497 unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
2498 auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
2499 for (OpResult result : repl.first->getResults()) {
2500 Value newValue = rewriterImpl.mapping.lookupOrNull(result);
2501
2502 // If the operation result was replaced with null, all of the uses of this
2503 // value should be replaced.
2504 if (!newValue) {
2505 if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
2506 return failure();
2507 continue;
2508 }
2509
2510 // Otherwise, check to see if the type of the result changed.
2511 if (result.getType() == newValue.getType())
2512 continue;
2513
2514 // Compute the inverse mapping only if it is really needed.
2515 if (!inverseMapping)
2516 inverseMapping = rewriterImpl.mapping.getInverse();
2517
2518 // Legalize this result.
2519 rewriter.setInsertionPoint(repl.first);
2520 if (failed(legalizeChangedResultType(repl.first, result, newValue,
2521 repl.second.converter, rewriter,
2522 rewriterImpl, *inverseMapping)))
2523 return failure();
2524
2525 // Update the end iterator for this loop in the case it was updated
2526 // when legalizing generated conversion operations.
2527 e = rewriterImpl.operationsWithChangedResults.size();
2528 }
2529 }
2530 return success();
2531 }
2532
legalizeConvertedArgumentTypes(ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & rewriterImpl)2533 LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
2534 ConversionPatternRewriter &rewriter,
2535 ConversionPatternRewriterImpl &rewriterImpl) {
2536 // Functor used to check if all users of a value will be dead after
2537 // conversion.
2538 auto findLiveUser = [&](Value val) {
2539 auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
2540 return rewriterImpl.isOpIgnored(user);
2541 });
2542 return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
2543 };
2544 return rewriterImpl.argConverter.materializeLiveConversions(
2545 rewriterImpl.mapping, rewriter, findLiveUser);
2546 }
2547
2548 /// Replace the results of a materialization operation with the given values.
2549 static void
replaceMaterialization(ConversionPatternRewriterImpl & rewriterImpl,ResultRange matResults,ValueRange values,DenseMap<Value,SmallVector<Value>> & inverseMapping)2550 replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl,
2551 ResultRange matResults, ValueRange values,
2552 DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2553 matResults.replaceAllUsesWith(values);
2554
2555 // For each of the materialization results, update the inverse mappings to
2556 // point to the replacement values.
2557 for (auto it : llvm::zip(matResults, values)) {
2558 Value matResult, newValue;
2559 std::tie(matResult, newValue) = it;
2560 auto inverseMapIt = inverseMapping.find(matResult);
2561 if (inverseMapIt == inverseMapping.end())
2562 continue;
2563
2564 // Update the reverse mapping, or remove the mapping if we couldn't update
2565 // it. Not being able to update signals that the mapping would have become
2566 // circular (i.e. %foo -> newValue -> %foo), which may occur as values are
2567 // propagated through temporary materializations. We simply drop the
2568 // mapping, and let the post-conversion replacement logic handle updating
2569 // uses.
2570 for (Value inverseMapVal : inverseMapIt->second)
2571 if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue))
2572 rewriterImpl.mapping.erase(inverseMapVal);
2573 }
2574 }
2575
2576 /// Compute all of the unresolved materializations that will persist beyond the
2577 /// conversion process, and require inserting a proper user materialization for.
computeNecessaryMaterializations(DenseMap<Operation *,UnresolvedMaterialization * > & materializationOps,ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & rewriterImpl,DenseMap<Value,SmallVector<Value>> & inverseMapping,SetVector<UnresolvedMaterialization * > & necessaryMaterializations)2578 static void computeNecessaryMaterializations(
2579 DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
2580 ConversionPatternRewriter &rewriter,
2581 ConversionPatternRewriterImpl &rewriterImpl,
2582 DenseMap<Value, SmallVector<Value>> &inverseMapping,
2583 SetVector<UnresolvedMaterialization *> &necessaryMaterializations) {
2584 auto isLive = [&](Value value) {
2585 auto findFn = [&](Operation *user) {
2586 auto matIt = materializationOps.find(user);
2587 if (matIt != materializationOps.end())
2588 return !necessaryMaterializations.count(matIt->second);
2589 return rewriterImpl.isOpIgnored(user);
2590 };
2591 // This value may be replacing another value that has a live user.
2592 for (Value inv : inverseMapping.lookup(value))
2593 if (llvm::find_if_not(inv.getUsers(), findFn) != inv.user_end())
2594 return true;
2595 // Or have live users itself.
2596 return llvm::find_if_not(value.getUsers(), findFn) != value.user_end();
2597 };
2598
2599 llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue =
2600 [&](Value invalidRoot, Value value, Type type) {
2601 // Check to see if the input operation was remapped to a variant of the
2602 // output.
2603 Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
2604 if (remappedValue.getType() == type && remappedValue != invalidRoot)
2605 return remappedValue;
2606
2607 // Check to see if the input is a materialization operation that
2608 // provides an inverse conversion. We just check blindly for
2609 // UnrealizedConversionCastOp here, but it has no effect on correctness.
2610 auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>();
2611 if (inputCastOp && inputCastOp->getNumOperands() == 1)
2612 return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0),
2613 type);
2614
2615 return Value();
2616 };
2617
2618 SetVector<UnresolvedMaterialization *> worklist;
2619 for (auto &mat : rewriterImpl.unresolvedMaterializations) {
2620 materializationOps.try_emplace(mat.getOp(), &mat);
2621 worklist.insert(&mat);
2622 }
2623 while (!worklist.empty()) {
2624 UnresolvedMaterialization *mat = worklist.pop_back_val();
2625 UnrealizedConversionCastOp op = mat->getOp();
2626
2627 // We currently only handle target materializations here.
2628 assert(op->getNumResults() == 1 && "unexpected materialization type");
2629 OpResult opResult = op->getOpResult(0);
2630 Type outputType = opResult.getType();
2631 Operation::operand_range inputOperands = op.getOperands();
2632
2633 // Try to forward propagate operands for user conversion casts that result
2634 // in the input types of the current cast.
2635 for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) {
2636 auto castOp = dyn_cast<UnrealizedConversionCastOp>(user);
2637 if (!castOp)
2638 continue;
2639 if (castOp->getResultTypes() == inputOperands.getTypes()) {
2640 replaceMaterialization(rewriterImpl, opResult, inputOperands,
2641 inverseMapping);
2642 necessaryMaterializations.remove(materializationOps.lookup(user));
2643 }
2644 }
2645
2646 // Try to avoid materializing a resolved materialization if possible.
2647 // Handle the case of a 1-1 materialization.
2648 if (inputOperands.size() == 1) {
2649 // Check to see if the input operation was remapped to a variant of the
2650 // output.
2651 Value remappedValue =
2652 lookupRemappedValue(opResult, inputOperands[0], outputType);
2653 if (remappedValue && remappedValue != opResult) {
2654 replaceMaterialization(rewriterImpl, opResult, remappedValue,
2655 inverseMapping);
2656 necessaryMaterializations.remove(mat);
2657 continue;
2658 }
2659 } else {
2660 // TODO: Avoid materializing other types of conversions here.
2661 }
2662
2663 // Check to see if this is an argument materialization.
2664 auto isBlockArg = [](Value v) { return v.isa<BlockArgument>(); };
2665 if (llvm::any_of(op->getOperands(), isBlockArg) ||
2666 llvm::any_of(inverseMapping[op->getResult(0)], isBlockArg)) {
2667 mat->setKind(UnresolvedMaterialization::Argument);
2668 }
2669
2670 // If the materialization does not have any live users, we don't need to
2671 // generate a user materialization for it.
2672 // FIXME: For argument materializations, we currently need to check if any
2673 // of the inverse mapped values are used because some patterns expect blind
2674 // value replacement even if the types differ in some cases. When those
2675 // patterns are fixed, we can drop the argument special case here.
2676 bool isMaterializationLive = isLive(opResult);
2677 if (mat->getKind() == UnresolvedMaterialization::Argument)
2678 isMaterializationLive |= llvm::any_of(inverseMapping[opResult], isLive);
2679 if (!isMaterializationLive)
2680 continue;
2681 if (!necessaryMaterializations.insert(mat))
2682 continue;
2683
2684 // Reprocess input materializations to see if they have an updated status.
2685 for (Value input : inputOperands) {
2686 if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) {
2687 if (auto *mat = materializationOps.lookup(parentOp))
2688 worklist.insert(mat);
2689 }
2690 }
2691 }
2692 }
2693
2694 /// Legalize the given unresolved materialization. Returns success if the
2695 /// materialization was legalized, failure otherise.
legalizeUnresolvedMaterialization(UnresolvedMaterialization & mat,DenseMap<Operation *,UnresolvedMaterialization * > & materializationOps,ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & rewriterImpl,DenseMap<Value,SmallVector<Value>> & inverseMapping)2696 static LogicalResult legalizeUnresolvedMaterialization(
2697 UnresolvedMaterialization &mat,
2698 DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
2699 ConversionPatternRewriter &rewriter,
2700 ConversionPatternRewriterImpl &rewriterImpl,
2701 DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2702 auto findLiveUser = [&](auto &&users) {
2703 auto liveUserIt = llvm::find_if_not(
2704 users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); });
2705 return liveUserIt == users.end() ? nullptr : *liveUserIt;
2706 };
2707
2708 llvm::unique_function<Value(Value, Type)> lookupRemappedValue =
2709 [&](Value value, Type type) {
2710 // Check to see if the input operation was remapped to a variant of the
2711 // output.
2712 Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
2713 if (remappedValue.getType() == type)
2714 return remappedValue;
2715 return Value();
2716 };
2717
2718 UnrealizedConversionCastOp op = mat.getOp();
2719 if (!rewriterImpl.ignoredOps.insert(op))
2720 return success();
2721
2722 // We currently only handle target materializations here.
2723 OpResult opResult = op->getOpResult(0);
2724 Operation::operand_range inputOperands = op.getOperands();
2725 Type outputType = opResult.getType();
2726
2727 // If any input to this materialization is another materialization, resolve
2728 // the input first.
2729 for (Value value : op->getOperands()) {
2730 auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>();
2731 if (!valueCast)
2732 continue;
2733
2734 auto matIt = materializationOps.find(valueCast);
2735 if (matIt != materializationOps.end())
2736 if (failed(legalizeUnresolvedMaterialization(
2737 *matIt->second, materializationOps, rewriter, rewriterImpl,
2738 inverseMapping)))
2739 return failure();
2740 }
2741
2742 // Perform a last ditch attempt to avoid materializing a resolved
2743 // materialization if possible.
2744 // Handle the case of a 1-1 materialization.
2745 if (inputOperands.size() == 1) {
2746 // Check to see if the input operation was remapped to a variant of the
2747 // output.
2748 Value remappedValue = lookupRemappedValue(inputOperands[0], outputType);
2749 if (remappedValue && remappedValue != opResult) {
2750 replaceMaterialization(rewriterImpl, opResult, remappedValue,
2751 inverseMapping);
2752 return success();
2753 }
2754 } else {
2755 // TODO: Avoid materializing other types of conversions here.
2756 }
2757
2758 // Try to materialize the conversion.
2759 if (TypeConverter *converter = mat.getConverter()) {
2760 // FIXME: Determine a suitable insertion location when there are multiple
2761 // inputs.
2762 if (inputOperands.size() == 1)
2763 rewriter.setInsertionPointAfterValue(inputOperands.front());
2764 else
2765 rewriter.setInsertionPoint(op);
2766
2767 Value newMaterialization;
2768 switch (mat.getKind()) {
2769 case UnresolvedMaterialization::Argument:
2770 // Try to materialize an argument conversion.
2771 // FIXME: The current argument materialization hook expects the original
2772 // output type, even though it doesn't use that as the actual output type
2773 // of the generated IR. The output type is just used as an indicator of
2774 // the type of materialization to do. This behavior is really awkward in
2775 // that it diverges from the behavior of the other hooks, and can be
2776 // easily misunderstood. We should clean up the argument hooks to better
2777 // represent the desired invariants we actually care about.
2778 newMaterialization = converter->materializeArgumentConversion(
2779 rewriter, op->getLoc(), mat.getOrigOutputType(), inputOperands);
2780 if (newMaterialization)
2781 break;
2782
2783 // If an argument materialization failed, fallback to trying a target
2784 // materialization.
2785 LLVM_FALLTHROUGH;
2786 case UnresolvedMaterialization::Target:
2787 newMaterialization = converter->materializeTargetConversion(
2788 rewriter, op->getLoc(), outputType, inputOperands);
2789 break;
2790 }
2791 if (newMaterialization) {
2792 replaceMaterialization(rewriterImpl, opResult, newMaterialization,
2793 inverseMapping);
2794 return success();
2795 }
2796 }
2797
2798 InFlightDiagnostic diag = op->emitError()
2799 << "failed to legalize unresolved materialization "
2800 "from "
2801 << inputOperands.getTypes() << " to " << outputType
2802 << " that remained live after conversion";
2803 if (Operation *liveUser = findLiveUser(op->getUsers())) {
2804 diag.attachNote(liveUser->getLoc())
2805 << "see existing live user here: " << *liveUser;
2806 }
2807 return failure();
2808 }
2809
legalizeUnresolvedMaterializations(ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & rewriterImpl,Optional<DenseMap<Value,SmallVector<Value>>> & inverseMapping)2810 LogicalResult OperationConverter::legalizeUnresolvedMaterializations(
2811 ConversionPatternRewriter &rewriter,
2812 ConversionPatternRewriterImpl &rewriterImpl,
2813 Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) {
2814 if (rewriterImpl.unresolvedMaterializations.empty())
2815 return success();
2816 inverseMapping = rewriterImpl.mapping.getInverse();
2817
2818 // As an initial step, compute all of the inserted materializations that we
2819 // expect to persist beyond the conversion process.
2820 DenseMap<Operation *, UnresolvedMaterialization *> materializationOps;
2821 SetVector<UnresolvedMaterialization *> necessaryMaterializations;
2822 computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl,
2823 *inverseMapping, necessaryMaterializations);
2824
2825 // Once computed, legalize any necessary materializations.
2826 for (auto *mat : necessaryMaterializations) {
2827 if (failed(legalizeUnresolvedMaterialization(
2828 *mat, materializationOps, rewriter, rewriterImpl, *inverseMapping)))
2829 return failure();
2830 }
2831 return success();
2832 }
2833
legalizeErasedResult(Operation * op,OpResult result,ConversionPatternRewriterImpl & rewriterImpl)2834 LogicalResult OperationConverter::legalizeErasedResult(
2835 Operation *op, OpResult result,
2836 ConversionPatternRewriterImpl &rewriterImpl) {
2837 // If the operation result was replaced with null, all of the uses of this
2838 // value should be replaced.
2839 auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
2840 return rewriterImpl.isOpIgnored(user);
2841 });
2842 if (liveUserIt != result.user_end()) {
2843 InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
2844 << op->getName() << "' marked as erased";
2845 diag.attachNote(liveUserIt->getLoc())
2846 << "found live user of result #" << result.getResultNumber() << ": "
2847 << *liveUserIt;
2848 return failure();
2849 }
2850 return success();
2851 }
2852
2853 /// Finds a user of the given value, or of any other value that the given value
2854 /// replaced, that was not replaced in the conversion process.
findLiveUserOfReplaced(Value initialValue,ConversionPatternRewriterImpl & rewriterImpl,const DenseMap<Value,SmallVector<Value>> & inverseMapping)2855 static Operation *findLiveUserOfReplaced(
2856 Value initialValue, ConversionPatternRewriterImpl &rewriterImpl,
2857 const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2858 SmallVector<Value> worklist(1, initialValue);
2859 while (!worklist.empty()) {
2860 Value value = worklist.pop_back_val();
2861
2862 // Walk the users of this value to see if there are any live users that
2863 // weren't replaced during conversion.
2864 auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
2865 return rewriterImpl.isOpIgnored(user);
2866 });
2867 if (liveUserIt != value.user_end())
2868 return *liveUserIt;
2869 auto mapIt = inverseMapping.find(value);
2870 if (mapIt != inverseMapping.end())
2871 worklist.append(mapIt->second);
2872 }
2873 return nullptr;
2874 }
2875
legalizeChangedResultType(Operation * op,OpResult result,Value newValue,TypeConverter * replConverter,ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & rewriterImpl,const DenseMap<Value,SmallVector<Value>> & inverseMapping)2876 LogicalResult OperationConverter::legalizeChangedResultType(
2877 Operation *op, OpResult result, Value newValue,
2878 TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2879 ConversionPatternRewriterImpl &rewriterImpl,
2880 const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2881 Operation *liveUser =
2882 findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
2883 if (!liveUser)
2884 return success();
2885
2886 // Functor used to emit a conversion error for a failed materialization.
2887 auto emitConversionError = [&] {
2888 InFlightDiagnostic diag = op->emitError()
2889 << "failed to materialize conversion for result #"
2890 << result.getResultNumber() << " of operation '"
2891 << op->getName()
2892 << "' that remained live after conversion";
2893 diag.attachNote(liveUser->getLoc())
2894 << "see existing live user here: " << *liveUser;
2895 return failure();
2896 };
2897
2898 // If the replacement has a type converter, attempt to materialize a
2899 // conversion back to the original type.
2900 if (!replConverter)
2901 return emitConversionError();
2902
2903 // Materialize a conversion for this live result value.
2904 Type resultType = result.getType();
2905 Value convertedValue = replConverter->materializeSourceConversion(
2906 rewriter, op->getLoc(), resultType, newValue);
2907 if (!convertedValue)
2908 return emitConversionError();
2909
2910 rewriterImpl.mapping.map(result, convertedValue);
2911 return success();
2912 }
2913
2914 //===----------------------------------------------------------------------===//
2915 // Type Conversion
2916 //===----------------------------------------------------------------------===//
2917
addInputs(unsigned origInputNo,ArrayRef<Type> types)2918 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
2919 ArrayRef<Type> types) {
2920 assert(!types.empty() && "expected valid types");
2921 remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
2922 addInputs(types);
2923 }
2924
addInputs(ArrayRef<Type> types)2925 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
2926 assert(!types.empty() &&
2927 "1->0 type remappings don't need to be added explicitly");
2928 argTypes.append(types.begin(), types.end());
2929 }
2930
remapInput(unsigned origInputNo,unsigned newInputNo,unsigned newInputCount)2931 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2932 unsigned newInputNo,
2933 unsigned newInputCount) {
2934 assert(!remappedInputs[origInputNo] && "input has already been remapped");
2935 assert(newInputCount != 0 && "expected valid input count");
2936 remappedInputs[origInputNo] =
2937 InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
2938 }
2939
remapInput(unsigned origInputNo,Value replacementValue)2940 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2941 Value replacementValue) {
2942 assert(!remappedInputs[origInputNo] && "input has already been remapped");
2943 remappedInputs[origInputNo] =
2944 InputMapping{origInputNo, /*size=*/0, replacementValue};
2945 }
2946
convertType(Type t,SmallVectorImpl<Type> & results)2947 LogicalResult TypeConverter::convertType(Type t,
2948 SmallVectorImpl<Type> &results) {
2949 auto existingIt = cachedDirectConversions.find(t);
2950 if (existingIt != cachedDirectConversions.end()) {
2951 if (existingIt->second)
2952 results.push_back(existingIt->second);
2953 return success(existingIt->second != nullptr);
2954 }
2955 auto multiIt = cachedMultiConversions.find(t);
2956 if (multiIt != cachedMultiConversions.end()) {
2957 results.append(multiIt->second.begin(), multiIt->second.end());
2958 return success();
2959 }
2960
2961 // Walk the added converters in reverse order to apply the most recently
2962 // registered first.
2963 size_t currentCount = results.size();
2964 conversionCallStack.push_back(t);
2965 auto popConversionCallStack =
2966 llvm::make_scope_exit([this]() { conversionCallStack.pop_back(); });
2967 for (ConversionCallbackFn &converter : llvm::reverse(conversions)) {
2968 if (Optional<LogicalResult> result =
2969 converter(t, results, conversionCallStack)) {
2970 if (!succeeded(*result)) {
2971 cachedDirectConversions.try_emplace(t, nullptr);
2972 return failure();
2973 }
2974 auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
2975 if (newTypes.size() == 1)
2976 cachedDirectConversions.try_emplace(t, newTypes.front());
2977 else
2978 cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
2979 return success();
2980 }
2981 }
2982 return failure();
2983 }
2984
convertType(Type t)2985 Type TypeConverter::convertType(Type t) {
2986 // Use the multi-type result version to convert the type.
2987 SmallVector<Type, 1> results;
2988 if (failed(convertType(t, results)))
2989 return nullptr;
2990
2991 // Check to ensure that only one type was produced.
2992 return results.size() == 1 ? results.front() : nullptr;
2993 }
2994
convertTypes(TypeRange types,SmallVectorImpl<Type> & results)2995 LogicalResult TypeConverter::convertTypes(TypeRange types,
2996 SmallVectorImpl<Type> &results) {
2997 for (Type type : types)
2998 if (failed(convertType(type, results)))
2999 return failure();
3000 return success();
3001 }
3002
isLegal(Type type)3003 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; }
isLegal(Operation * op)3004 bool TypeConverter::isLegal(Operation *op) {
3005 return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
3006 }
3007
isLegal(Region * region)3008 bool TypeConverter::isLegal(Region *region) {
3009 return llvm::all_of(*region, [this](Block &block) {
3010 return isLegal(block.getArgumentTypes());
3011 });
3012 }
3013
isSignatureLegal(FunctionType ty)3014 bool TypeConverter::isSignatureLegal(FunctionType ty) {
3015 return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
3016 }
3017
convertSignatureArg(unsigned inputNo,Type type,SignatureConversion & result)3018 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
3019 SignatureConversion &result) {
3020 // Try to convert the given input type.
3021 SmallVector<Type, 1> convertedTypes;
3022 if (failed(convertType(type, convertedTypes)))
3023 return failure();
3024
3025 // If this argument is being dropped, there is nothing left to do.
3026 if (convertedTypes.empty())
3027 return success();
3028
3029 // Otherwise, add the new inputs.
3030 result.addInputs(inputNo, convertedTypes);
3031 return success();
3032 }
convertSignatureArgs(TypeRange types,SignatureConversion & result,unsigned origInputOffset)3033 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types,
3034 SignatureConversion &result,
3035 unsigned origInputOffset) {
3036 for (unsigned i = 0, e = types.size(); i != e; ++i)
3037 if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
3038 return failure();
3039 return success();
3040 }
3041
materializeConversion(MutableArrayRef<MaterializationCallbackFn> materializations,OpBuilder & builder,Location loc,Type resultType,ValueRange inputs)3042 Value TypeConverter::materializeConversion(
3043 MutableArrayRef<MaterializationCallbackFn> materializations,
3044 OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) {
3045 for (MaterializationCallbackFn &fn : llvm::reverse(materializations))
3046 if (Optional<Value> result = fn(builder, resultType, inputs, loc))
3047 return *result;
3048 return nullptr;
3049 }
3050
convertBlockSignature(Block * block)3051 auto TypeConverter::convertBlockSignature(Block *block)
3052 -> Optional<SignatureConversion> {
3053 SignatureConversion conversion(block->getNumArguments());
3054 if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
3055 return llvm::None;
3056 return conversion;
3057 }
3058
3059 //===----------------------------------------------------------------------===//
3060 // FunctionOpInterfaceSignatureConversion
3061 //===----------------------------------------------------------------------===//
3062
3063 /// Create a default conversion pattern that rewrites the type signature of a
3064 /// FunctionOpInterface op. This only supports ops which use FunctionType to
3065 /// represent their type.
3066 namespace {
3067 struct FunctionOpInterfaceSignatureConversion : public ConversionPattern {
FunctionOpInterfaceSignatureConversion__anonef530a332711::FunctionOpInterfaceSignatureConversion3068 FunctionOpInterfaceSignatureConversion(StringRef functionLikeOpName,
3069 MLIRContext *ctx,
3070 TypeConverter &converter)
3071 : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
3072
3073 LogicalResult
matchAndRewrite__anonef530a332711::FunctionOpInterfaceSignatureConversion3074 matchAndRewrite(Operation *op, ArrayRef<Value> operands,
3075 ConversionPatternRewriter &rewriter) const override {
3076 FunctionOpInterface funcOp = cast<FunctionOpInterface>(op);
3077 FunctionType type = funcOp.getFunctionType().cast<FunctionType>();
3078
3079 // Convert the original function types.
3080 TypeConverter::SignatureConversion result(type.getNumInputs());
3081 SmallVector<Type, 1> newResults;
3082 if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) ||
3083 failed(typeConverter->convertTypes(type.getResults(), newResults)) ||
3084 failed(rewriter.convertRegionTypes(&funcOp.getBody(), *typeConverter,
3085 &result)))
3086 return failure();
3087
3088 // Update the function signature in-place.
3089 auto newType = FunctionType::get(rewriter.getContext(),
3090 result.getConvertedTypes(), newResults);
3091
3092 rewriter.updateRootInPlace(op, [&] { funcOp.setType(newType); });
3093
3094 return success();
3095 }
3096 };
3097 } // namespace
3098
populateFunctionOpInterfaceTypeConversionPattern(StringRef functionLikeOpName,RewritePatternSet & patterns,TypeConverter & converter)3099 void mlir::populateFunctionOpInterfaceTypeConversionPattern(
3100 StringRef functionLikeOpName, RewritePatternSet &patterns,
3101 TypeConverter &converter) {
3102 patterns.add<FunctionOpInterfaceSignatureConversion>(
3103 functionLikeOpName, patterns.getContext(), converter);
3104 }
3105
3106 //===----------------------------------------------------------------------===//
3107 // ConversionTarget
3108 //===----------------------------------------------------------------------===//
3109
setOpAction(OperationName op,LegalizationAction action)3110 void ConversionTarget::setOpAction(OperationName op,
3111 LegalizationAction action) {
3112 legalOperations[op].action = action;
3113 }
3114
setDialectAction(ArrayRef<StringRef> dialectNames,LegalizationAction action)3115 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
3116 LegalizationAction action) {
3117 for (StringRef dialect : dialectNames)
3118 legalDialects[dialect] = action;
3119 }
3120
getOpAction(OperationName op) const3121 auto ConversionTarget::getOpAction(OperationName op) const
3122 -> Optional<LegalizationAction> {
3123 Optional<LegalizationInfo> info = getOpInfo(op);
3124 return info ? info->action : Optional<LegalizationAction>();
3125 }
3126
isLegal(Operation * op) const3127 auto ConversionTarget::isLegal(Operation *op) const
3128 -> Optional<LegalOpDetails> {
3129 Optional<LegalizationInfo> info = getOpInfo(op->getName());
3130 if (!info)
3131 return llvm::None;
3132
3133 // Returns true if this operation instance is known to be legal.
3134 auto isOpLegal = [&] {
3135 // Handle dynamic legality either with the provided legality function.
3136 if (info->action == LegalizationAction::Dynamic) {
3137 Optional<bool> result = info->legalityFn(op);
3138 if (result)
3139 return *result;
3140 }
3141
3142 // Otherwise, the operation is only legal if it was marked 'Legal'.
3143 return info->action == LegalizationAction::Legal;
3144 };
3145 if (!isOpLegal())
3146 return llvm::None;
3147
3148 // This operation is legal, compute any additional legality information.
3149 LegalOpDetails legalityDetails;
3150 if (info->isRecursivelyLegal) {
3151 auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
3152 if (legalityFnIt != opRecursiveLegalityFns.end()) {
3153 legalityDetails.isRecursivelyLegal =
3154 legalityFnIt->second(op).value_or(true);
3155 } else {
3156 legalityDetails.isRecursivelyLegal = true;
3157 }
3158 }
3159 return legalityDetails;
3160 }
3161
isIllegal(Operation * op) const3162 bool ConversionTarget::isIllegal(Operation *op) const {
3163 Optional<LegalizationInfo> info = getOpInfo(op->getName());
3164 if (!info)
3165 return false;
3166
3167 if (info->action == LegalizationAction::Dynamic) {
3168 Optional<bool> result = info->legalityFn(op);
3169 if (!result)
3170 return false;
3171
3172 return !(*result);
3173 }
3174
3175 return info->action == LegalizationAction::Illegal;
3176 }
3177
composeLegalityCallbacks(ConversionTarget::DynamicLegalityCallbackFn oldCallback,ConversionTarget::DynamicLegalityCallbackFn newCallback)3178 static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks(
3179 ConversionTarget::DynamicLegalityCallbackFn oldCallback,
3180 ConversionTarget::DynamicLegalityCallbackFn newCallback) {
3181 if (!oldCallback)
3182 return newCallback;
3183
3184 auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)](
3185 Operation *op) -> Optional<bool> {
3186 if (Optional<bool> result = newCl(op))
3187 return *result;
3188
3189 return oldCl(op);
3190 };
3191 return chain;
3192 }
3193
setLegalityCallback(OperationName name,const DynamicLegalityCallbackFn & callback)3194 void ConversionTarget::setLegalityCallback(
3195 OperationName name, const DynamicLegalityCallbackFn &callback) {
3196 assert(callback && "expected valid legality callback");
3197 auto infoIt = legalOperations.find(name);
3198 assert(infoIt != legalOperations.end() &&
3199 infoIt->second.action == LegalizationAction::Dynamic &&
3200 "expected operation to already be marked as dynamically legal");
3201 infoIt->second.legalityFn =
3202 composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback);
3203 }
3204
markOpRecursivelyLegal(OperationName name,const DynamicLegalityCallbackFn & callback)3205 void ConversionTarget::markOpRecursivelyLegal(
3206 OperationName name, const DynamicLegalityCallbackFn &callback) {
3207 auto infoIt = legalOperations.find(name);
3208 assert(infoIt != legalOperations.end() &&
3209 infoIt->second.action != LegalizationAction::Illegal &&
3210 "expected operation to already be marked as legal");
3211 infoIt->second.isRecursivelyLegal = true;
3212 if (callback)
3213 opRecursiveLegalityFns[name] = composeLegalityCallbacks(
3214 std::move(opRecursiveLegalityFns[name]), callback);
3215 else
3216 opRecursiveLegalityFns.erase(name);
3217 }
3218
setLegalityCallback(ArrayRef<StringRef> dialects,const DynamicLegalityCallbackFn & callback)3219 void ConversionTarget::setLegalityCallback(
3220 ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
3221 assert(callback && "expected valid legality callback");
3222 for (StringRef dialect : dialects)
3223 dialectLegalityFns[dialect] = composeLegalityCallbacks(
3224 std::move(dialectLegalityFns[dialect]), callback);
3225 }
3226
setLegalityCallback(const DynamicLegalityCallbackFn & callback)3227 void ConversionTarget::setLegalityCallback(
3228 const DynamicLegalityCallbackFn &callback) {
3229 assert(callback && "expected valid legality callback");
3230 unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback);
3231 }
3232
getOpInfo(OperationName op) const3233 auto ConversionTarget::getOpInfo(OperationName op) const
3234 -> Optional<LegalizationInfo> {
3235 // Check for info for this specific operation.
3236 auto it = legalOperations.find(op);
3237 if (it != legalOperations.end())
3238 return it->second;
3239 // Check for info for the parent dialect.
3240 auto dialectIt = legalDialects.find(op.getDialectNamespace());
3241 if (dialectIt != legalDialects.end()) {
3242 DynamicLegalityCallbackFn callback;
3243 auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
3244 if (dialectFn != dialectLegalityFns.end())
3245 callback = dialectFn->second;
3246 return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
3247 callback};
3248 }
3249 // Otherwise, check if we mark unknown operations as dynamic.
3250 if (unknownLegalityFn)
3251 return LegalizationInfo{LegalizationAction::Dynamic,
3252 /*isRecursivelyLegal=*/false, unknownLegalityFn};
3253 return llvm::None;
3254 }
3255
3256 //===----------------------------------------------------------------------===//
3257 // Op Conversion Entry Points
3258 //===----------------------------------------------------------------------===//
3259
3260 //===----------------------------------------------------------------------===//
3261 // Partial Conversion
3262
3263 LogicalResult
applyPartialConversion(ArrayRef<Operation * > ops,ConversionTarget & target,const FrozenRewritePatternSet & patterns,DenseSet<Operation * > * unconvertedOps)3264 mlir::applyPartialConversion(ArrayRef<Operation *> ops,
3265 ConversionTarget &target,
3266 const FrozenRewritePatternSet &patterns,
3267 DenseSet<Operation *> *unconvertedOps) {
3268 OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
3269 unconvertedOps);
3270 return opConverter.convertOperations(ops);
3271 }
3272 LogicalResult
applyPartialConversion(Operation * op,ConversionTarget & target,const FrozenRewritePatternSet & patterns,DenseSet<Operation * > * unconvertedOps)3273 mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
3274 const FrozenRewritePatternSet &patterns,
3275 DenseSet<Operation *> *unconvertedOps) {
3276 return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
3277 unconvertedOps);
3278 }
3279
3280 //===----------------------------------------------------------------------===//
3281 // Full Conversion
3282
3283 LogicalResult
applyFullConversion(ArrayRef<Operation * > ops,ConversionTarget & target,const FrozenRewritePatternSet & patterns)3284 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
3285 const FrozenRewritePatternSet &patterns) {
3286 OperationConverter opConverter(target, patterns, OpConversionMode::Full);
3287 return opConverter.convertOperations(ops);
3288 }
3289 LogicalResult
applyFullConversion(Operation * op,ConversionTarget & target,const FrozenRewritePatternSet & patterns)3290 mlir::applyFullConversion(Operation *op, ConversionTarget &target,
3291 const FrozenRewritePatternSet &patterns) {
3292 return applyFullConversion(llvm::makeArrayRef(op), target, patterns);
3293 }
3294
3295 //===----------------------------------------------------------------------===//
3296 // Analysis Conversion
3297
3298 LogicalResult
applyAnalysisConversion(ArrayRef<Operation * > ops,ConversionTarget & target,const FrozenRewritePatternSet & patterns,DenseSet<Operation * > & convertedOps,function_ref<void (Diagnostic &)> notifyCallback)3299 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
3300 ConversionTarget &target,
3301 const FrozenRewritePatternSet &patterns,
3302 DenseSet<Operation *> &convertedOps,
3303 function_ref<void(Diagnostic &)> notifyCallback) {
3304 OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
3305 &convertedOps);
3306 return opConverter.convertOperations(ops, notifyCallback);
3307 }
3308 LogicalResult
applyAnalysisConversion(Operation * op,ConversionTarget & target,const FrozenRewritePatternSet & patterns,DenseSet<Operation * > & convertedOps,function_ref<void (Diagnostic &)> notifyCallback)3309 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
3310 const FrozenRewritePatternSet &patterns,
3311 DenseSet<Operation *> &convertedOps,
3312 function_ref<void(Diagnostic &)> notifyCallback) {
3313 return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
3314 convertedOps, notifyCallback);
3315 }
3316