1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Transforms/DialectConversion.h"
10 #include "mlir/IR/Block.h"
11 #include "mlir/IR/BlockAndValueMapping.h"
12 #include "mlir/IR/Builders.h"
13 #include "mlir/IR/BuiltinOps.h"
14 #include "mlir/IR/FunctionInterfaces.h"
15 #include "mlir/Rewrite/PatternApplicator.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/FormatVariadic.h"
21 #include "llvm/Support/SaveAndRestore.h"
22 #include "llvm/Support/ScopedPrinter.h"
23 
24 using namespace mlir;
25 using namespace mlir::detail;
26 
27 #define DEBUG_TYPE "dialect-conversion"
28 
29 /// Recursively collect all of the operations to convert from within 'region'.
30 /// If 'target' is nonnull, operations that are recursively legal have their
31 /// regions pre-filtered to avoid considering them for legalization.
32 static LogicalResult
computeConversionSet(iterator_range<Region::iterator> region,Location regionLoc,SmallVectorImpl<Operation * > & toConvert,ConversionTarget * target=nullptr)33 computeConversionSet(iterator_range<Region::iterator> region,
34                      Location regionLoc,
35                      SmallVectorImpl<Operation *> &toConvert,
36                      ConversionTarget *target = nullptr) {
37   if (llvm::empty(region))
38     return success();
39 
40   // Traverse starting from the entry block.
41   SmallVector<Block *, 16> worklist(1, &*region.begin());
42   DenseSet<Block *> visitedBlocks;
43   visitedBlocks.insert(worklist.front());
44   while (!worklist.empty()) {
45     Block *block = worklist.pop_back_val();
46 
47     // Compute the conversion set of each of the nested operations.
48     for (Operation &op : *block) {
49       toConvert.emplace_back(&op);
50 
51       // Don't check this operation's children for conversion if the operation
52       // is recursively legal.
53       auto legalityInfo = target ? target->isLegal(&op)
54                                  : Optional<ConversionTarget::LegalOpDetails>();
55       if (legalityInfo && legalityInfo->isRecursivelyLegal)
56         continue;
57       for (auto &region : op.getRegions()) {
58         if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
59                                         toConvert, target)))
60           return failure();
61       }
62     }
63 
64     // Recurse to children that haven't been visited.
65     for (Block *succ : block->getSuccessors())
66       if (visitedBlocks.insert(succ).second)
67         worklist.push_back(succ);
68   }
69 
70   // Check that all blocks in the region were visited.
71   if (llvm::any_of(llvm::drop_begin(region, 1),
72                    [&](Block &block) { return !visitedBlocks.count(&block); }))
73     return emitError(regionLoc, "unreachable blocks were not converted");
74   return success();
75 }
76 
77 /// A utility function to log a successful result for the given reason.
78 template <typename... Args>
logSuccess(llvm::ScopedPrinter & os,StringRef fmt,Args &&...args)79 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
80   LLVM_DEBUG({
81     os.unindent();
82     os.startLine() << "} -> SUCCESS";
83     if (!fmt.empty())
84       os.getOStream() << " : "
85                       << llvm::formatv(fmt.data(), std::forward<Args>(args)...);
86     os.getOStream() << "\n";
87   });
88 }
89 
90 /// A utility function to log a failure result for the given reason.
91 template <typename... Args>
logFailure(llvm::ScopedPrinter & os,StringRef fmt,Args &&...args)92 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
93   LLVM_DEBUG({
94     os.unindent();
95     os.startLine() << "} -> FAILURE : "
96                    << llvm::formatv(fmt.data(), std::forward<Args>(args)...)
97                    << "\n";
98   });
99 }
100 
101 //===----------------------------------------------------------------------===//
102 // ConversionValueMapping
103 //===----------------------------------------------------------------------===//
104 
105 namespace {
106 /// This class wraps a BlockAndValueMapping to provide recursive lookup
107 /// functionality, i.e. we will traverse if the mapped value also has a mapping.
108 struct ConversionValueMapping {
109   /// Lookup a mapped value within the map. If a mapping for the provided value
110   /// does not exist then return the provided value. If `desiredType` is
111   /// non-null, returns the most recently mapped value with that type. If an
112   /// operand of that type does not exist, defaults to normal behavior.
113   Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
114 
115   /// Lookup a mapped value within the map, or return null if a mapping does not
116   /// exist. If a mapping exists, this follows the same behavior of
117   /// `lookupOrDefault`.
118   Value lookupOrNull(Value from, Type desiredType = nullptr) const;
119 
120   /// Map a value to the one provided.
map__anonef530a330211::ConversionValueMapping121   void map(Value oldVal, Value newVal) {
122     LLVM_DEBUG({
123       for (Value it = newVal; it; it = mapping.lookupOrNull(it))
124         assert(it != oldVal && "inserting cyclic mapping");
125     });
126     mapping.map(oldVal, newVal);
127   }
128 
129   /// Try to map a value to the one provided. Returns false if a transitive
130   /// mapping from the new value to the old value already exists, true if the
131   /// map was updated.
132   bool tryMap(Value oldVal, Value newVal);
133 
134   /// Drop the last mapping for the given value.
erase__anonef530a330211::ConversionValueMapping135   void erase(Value value) { mapping.erase(value); }
136 
137   /// Returns the inverse raw value mapping (without recursive query support).
getInverse__anonef530a330211::ConversionValueMapping138   DenseMap<Value, SmallVector<Value>> getInverse() const {
139     DenseMap<Value, SmallVector<Value>> inverse;
140     for (auto &it : mapping.getValueMap())
141       inverse[it.second].push_back(it.first);
142     return inverse;
143   }
144 
145 private:
146   /// Current value mappings.
147   BlockAndValueMapping mapping;
148 };
149 } // namespace
150 
lookupOrDefault(Value from,Type desiredType) const151 Value ConversionValueMapping::lookupOrDefault(Value from,
152                                               Type desiredType) const {
153   // If there was no desired type, simply find the leaf value.
154   if (!desiredType) {
155     // If this value had a valid mapping, unmap that value as well in the case
156     // that it was also replaced.
157     while (auto mappedValue = mapping.lookupOrNull(from))
158       from = mappedValue;
159     return from;
160   }
161 
162   // Otherwise, try to find the deepest value that has the desired type.
163   Value desiredValue;
164   do {
165     if (from.getType() == desiredType)
166       desiredValue = from;
167 
168     Value mappedValue = mapping.lookupOrNull(from);
169     if (!mappedValue)
170       break;
171     from = mappedValue;
172   } while (true);
173 
174   // If the desired value was found use it, otherwise default to the leaf value.
175   return desiredValue ? desiredValue : from;
176 }
177 
lookupOrNull(Value from,Type desiredType) const178 Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const {
179   Value result = lookupOrDefault(from, desiredType);
180   if (result == from || (desiredType && result.getType() != desiredType))
181     return nullptr;
182   return result;
183 }
184 
tryMap(Value oldVal,Value newVal)185 bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) {
186   for (Value it = newVal; it; it = mapping.lookupOrNull(it))
187     if (it == oldVal)
188       return false;
189   map(oldVal, newVal);
190   return true;
191 }
192 
193 //===----------------------------------------------------------------------===//
194 // Rewriter and Translation State
195 //===----------------------------------------------------------------------===//
196 namespace {
197 /// This class contains a snapshot of the current conversion rewriter state.
198 /// This is useful when saving and undoing a set of rewrites.
199 struct RewriterState {
RewriterState__anonef530a330311::RewriterState200   RewriterState(unsigned numCreatedOps, unsigned numUnresolvedMaterializations,
201                 unsigned numReplacements, unsigned numArgReplacements,
202                 unsigned numBlockActions, unsigned numIgnoredOperations,
203                 unsigned numRootUpdates)
204       : numCreatedOps(numCreatedOps),
205         numUnresolvedMaterializations(numUnresolvedMaterializations),
206         numReplacements(numReplacements),
207         numArgReplacements(numArgReplacements),
208         numBlockActions(numBlockActions),
209         numIgnoredOperations(numIgnoredOperations),
210         numRootUpdates(numRootUpdates) {}
211 
212   /// The current number of created operations.
213   unsigned numCreatedOps;
214 
215   /// The current number of unresolved materializations.
216   unsigned numUnresolvedMaterializations;
217 
218   /// The current number of replacements queued.
219   unsigned numReplacements;
220 
221   /// The current number of argument replacements queued.
222   unsigned numArgReplacements;
223 
224   /// The current number of block actions performed.
225   unsigned numBlockActions;
226 
227   /// The current number of ignored operations.
228   unsigned numIgnoredOperations;
229 
230   /// The current number of operations that were updated in place.
231   unsigned numRootUpdates;
232 };
233 
234 //===----------------------------------------------------------------------===//
235 // OperationTransactionState
236 
237 /// The state of an operation that was updated by a pattern in-place. This
238 /// contains all of the necessary information to reconstruct an operation that
239 /// was updated in place.
240 class OperationTransactionState {
241 public:
242   OperationTransactionState() = default;
OperationTransactionState(Operation * op)243   OperationTransactionState(Operation *op)
244       : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()),
245         operands(op->operand_begin(), op->operand_end()),
246         successors(op->successor_begin(), op->successor_end()) {}
247 
248   /// Discard the transaction state and reset the state of the original
249   /// operation.
resetOperation() const250   void resetOperation() const {
251     op->setLoc(loc);
252     op->setAttrs(attrs);
253     op->setOperands(operands);
254     for (const auto &it : llvm::enumerate(successors))
255       op->setSuccessor(it.value(), it.index());
256   }
257 
258   /// Return the original operation of this state.
getOperation() const259   Operation *getOperation() const { return op; }
260 
261 private:
262   Operation *op;
263   LocationAttr loc;
264   DictionaryAttr attrs;
265   SmallVector<Value, 8> operands;
266   SmallVector<Block *, 2> successors;
267 };
268 
269 //===----------------------------------------------------------------------===//
270 // OpReplacement
271 
272 /// This class represents one requested operation replacement via 'replaceOp' or
273 /// 'eraseOp`.
274 struct OpReplacement {
OpReplacement__anonef530a330311::OpReplacement275   OpReplacement(TypeConverter *converter = nullptr) : converter(converter) {}
276 
277   /// An optional type converter that can be used to materialize conversions
278   /// between the new and old values if necessary.
279   TypeConverter *converter;
280 };
281 
282 //===----------------------------------------------------------------------===//
283 // BlockAction
284 
285 /// The kind of the block action performed during the rewrite.  Actions can be
286 /// undone if the conversion fails.
287 enum class BlockActionKind {
288   Create,
289   Erase,
290   Merge,
291   Move,
292   Split,
293   TypeConversion
294 };
295 
296 /// Original position of the given block in its parent region. During undo
297 /// actions, the block needs to be placed after `insertAfterBlock`.
298 struct BlockPosition {
299   Region *region;
300   Block *insertAfterBlock;
301 };
302 
303 /// Information needed to undo the merge actions.
304 /// - the source block, and
305 /// - the Operation that was the last operation in the dest block before the
306 ///   merge (could be null if the dest block was empty).
307 struct MergeInfo {
308   Block *sourceBlock;
309   Operation *destBlockLastInst;
310 };
311 
312 /// The storage class for an undoable block action (one of BlockActionKind),
313 /// contains the information necessary to undo this action.
314 struct BlockAction {
getCreate__anonef530a330311::BlockAction315   static BlockAction getCreate(Block *block) {
316     return {BlockActionKind::Create, block, {}};
317   }
getErase__anonef530a330311::BlockAction318   static BlockAction getErase(Block *block, BlockPosition originalPosition) {
319     return {BlockActionKind::Erase, block, {originalPosition}};
320   }
getMerge__anonef530a330311::BlockAction321   static BlockAction getMerge(Block *block, Block *sourceBlock) {
322     BlockAction action{BlockActionKind::Merge, block, {}};
323     action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()};
324     return action;
325   }
getMove__anonef530a330311::BlockAction326   static BlockAction getMove(Block *block, BlockPosition originalPosition) {
327     return {BlockActionKind::Move, block, {originalPosition}};
328   }
getSplit__anonef530a330311::BlockAction329   static BlockAction getSplit(Block *block, Block *originalBlock) {
330     BlockAction action{BlockActionKind::Split, block, {}};
331     action.originalBlock = originalBlock;
332     return action;
333   }
getTypeConversion__anonef530a330311::BlockAction334   static BlockAction getTypeConversion(Block *block) {
335     return BlockAction{BlockActionKind::TypeConversion, block, {}};
336   }
337 
338   // The action kind.
339   BlockActionKind kind;
340 
341   // A pointer to the block that was created by the action.
342   Block *block;
343 
344   union {
345     // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and
346     // contains a pointer to the region that originally contained the block as
347     // well as the position of the block in that region.
348     BlockPosition originalPosition;
349     // In use if kind == BlockActionKind::Split and contains a pointer to the
350     // block that was split into two parts.
351     Block *originalBlock;
352     // In use if kind == BlockActionKind::Merge, and contains the information
353     // needed to undo the merge.
354     MergeInfo mergeInfo;
355   };
356 };
357 
358 //===----------------------------------------------------------------------===//
359 // UnresolvedMaterialization
360 
361 /// This class represents an unresolved materialization, i.e. a materialization
362 /// that was inserted during conversion that needs to be legalized at the end of
363 /// the conversion process.
364 class UnresolvedMaterialization {
365 public:
366   /// The type of materialization.
367   enum Kind {
368     /// This materialization materializes a conversion for an illegal block
369     /// argument type, to a legal one.
370     Argument,
371 
372     /// This materialization materializes a conversion from an illegal type to a
373     /// legal one.
374     Target
375   };
376 
UnresolvedMaterialization(UnrealizedConversionCastOp op=nullptr,TypeConverter * converter=nullptr,Kind kind=Target,Type origOutputType=nullptr)377   UnresolvedMaterialization(UnrealizedConversionCastOp op = nullptr,
378                             TypeConverter *converter = nullptr,
379                             Kind kind = Target, Type origOutputType = nullptr)
380       : op(op), converterAndKind(converter, kind),
381         origOutputType(origOutputType) {}
382 
383   /// Return the temporary conversion operation inserted for this
384   /// materialization.
getOp() const385   UnrealizedConversionCastOp getOp() const { return op; }
386 
387   /// Return the type converter of this materialization (which may be null).
getConverter() const388   TypeConverter *getConverter() const { return converterAndKind.getPointer(); }
389 
390   /// Return the kind of this materialization.
getKind() const391   Kind getKind() const { return converterAndKind.getInt(); }
392 
393   /// Set the kind of this materialization.
setKind(Kind kind)394   void setKind(Kind kind) { converterAndKind.setInt(kind); }
395 
396   /// Return the original illegal output type of the input values.
getOrigOutputType() const397   Type getOrigOutputType() const { return origOutputType; }
398 
399 private:
400   /// The unresolved materialization operation created during conversion.
401   UnrealizedConversionCastOp op;
402 
403   /// The corresponding type converter to use when resolving this
404   /// materialization, and the kind of this materialization.
405   llvm::PointerIntPair<TypeConverter *, 1, Kind> converterAndKind;
406 
407   /// The original output type. This is only used for argument conversions.
408   Type origOutputType;
409 };
410 } // namespace
411 
412 /// Build an unresolved materialization operation given an output type and set
413 /// of input operands.
buildUnresolvedMaterialization(UnresolvedMaterialization::Kind kind,Block * insertBlock,Block::iterator insertPt,Location loc,ValueRange inputs,Type outputType,Type origOutputType,TypeConverter * converter,SmallVectorImpl<UnresolvedMaterialization> & unresolvedMaterializations)414 static Value buildUnresolvedMaterialization(
415     UnresolvedMaterialization::Kind kind, Block *insertBlock,
416     Block::iterator insertPt, Location loc, ValueRange inputs, Type outputType,
417     Type origOutputType, TypeConverter *converter,
418     SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
419   // Avoid materializing an unnecessary cast.
420   if (inputs.size() == 1 && inputs.front().getType() == outputType)
421     return inputs.front();
422 
423   // Create an unresolved materialization. We use a new OpBuilder to avoid
424   // tracking the materialization like we do for other operations.
425   OpBuilder builder(insertBlock, insertPt);
426   auto convertOp =
427       builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs);
428   unresolvedMaterializations.emplace_back(convertOp, converter, kind,
429                                           origOutputType);
430   return convertOp.getResult(0);
431 }
buildUnresolvedArgumentMaterialization(PatternRewriter & rewriter,Location loc,ValueRange inputs,Type origOutputType,Type outputType,TypeConverter * converter,SmallVectorImpl<UnresolvedMaterialization> & unresolvedMaterializations)432 static Value buildUnresolvedArgumentMaterialization(
433     PatternRewriter &rewriter, Location loc, ValueRange inputs,
434     Type origOutputType, Type outputType, TypeConverter *converter,
435     SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
436   return buildUnresolvedMaterialization(
437       UnresolvedMaterialization::Argument, rewriter.getInsertionBlock(),
438       rewriter.getInsertionPoint(), loc, inputs, outputType, origOutputType,
439       converter, unresolvedMaterializations);
440 }
buildUnresolvedTargetMaterialization(Location loc,Value input,Type outputType,TypeConverter * converter,SmallVectorImpl<UnresolvedMaterialization> & unresolvedMaterializations)441 static Value buildUnresolvedTargetMaterialization(
442     Location loc, Value input, Type outputType, TypeConverter *converter,
443     SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
444   Block *insertBlock = input.getParentBlock();
445   Block::iterator insertPt = insertBlock->begin();
446   if (OpResult inputRes = input.dyn_cast<OpResult>())
447     insertPt = ++inputRes.getOwner()->getIterator();
448 
449   return buildUnresolvedMaterialization(
450       UnresolvedMaterialization::Target, insertBlock, insertPt, loc, input,
451       outputType, outputType, converter, unresolvedMaterializations);
452 }
453 
454 //===----------------------------------------------------------------------===//
455 // ArgConverter
456 //===----------------------------------------------------------------------===//
457 namespace {
458 /// This class provides a simple interface for converting the types of block
459 /// arguments. This is done by creating a new block that contains the new legal
460 /// types and extracting the block that contains the old illegal types to allow
461 /// for undoing pending rewrites in the case of failure.
462 struct ArgConverter {
ArgConverter__anonef530a330511::ArgConverter463   ArgConverter(
464       PatternRewriter &rewriter,
465       SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations)
466       : rewriter(rewriter),
467         unresolvedMaterializations(unresolvedMaterializations) {}
468 
469   /// This structure contains the information pertaining to an argument that has
470   /// been converted.
471   struct ConvertedArgInfo {
ConvertedArgInfo__anonef530a330511::ArgConverter::ConvertedArgInfo472     ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
473                      Value castValue = nullptr)
474         : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
475 
476     /// The start index of in the new argument list that contains arguments that
477     /// replace the original.
478     unsigned newArgIdx;
479 
480     /// The number of arguments that replaced the original argument.
481     unsigned newArgSize;
482 
483     /// The cast value that was created to cast from the new arguments to the
484     /// old. This only used if 'newArgSize' > 1.
485     Value castValue;
486   };
487 
488   /// This structure contains information pertaining to a block that has had its
489   /// signature converted.
490   struct ConvertedBlockInfo {
ConvertedBlockInfo__anonef530a330511::ArgConverter::ConvertedBlockInfo491     ConvertedBlockInfo(Block *origBlock, TypeConverter *converter)
492         : origBlock(origBlock), converter(converter) {}
493 
494     /// The original block that was requested to have its signature converted.
495     Block *origBlock;
496 
497     /// The conversion information for each of the arguments. The information is
498     /// None if the argument was dropped during conversion.
499     SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
500 
501     /// The type converter used to convert the arguments.
502     TypeConverter *converter;
503   };
504 
505   /// Return if the signature of the given block has already been converted.
hasBeenConverted__anonef530a330511::ArgConverter506   bool hasBeenConverted(Block *block) const {
507     return conversionInfo.count(block) || convertedBlocks.count(block);
508   }
509 
510   /// Set the type converter to use for the given region.
setConverter__anonef530a330511::ArgConverter511   void setConverter(Region *region, TypeConverter *typeConverter) {
512     assert(typeConverter && "expected valid type converter");
513     regionToConverter[region] = typeConverter;
514   }
515 
516   /// Return the type converter to use for the given region, or null if there
517   /// isn't one.
getConverter__anonef530a330511::ArgConverter518   TypeConverter *getConverter(Region *region) {
519     return regionToConverter.lookup(region);
520   }
521 
522   //===--------------------------------------------------------------------===//
523   // Rewrite Application
524   //===--------------------------------------------------------------------===//
525 
526   /// Erase any rewrites registered for the blocks within the given operation
527   /// which is about to be removed. This merely drops the rewrites without
528   /// undoing them.
529   void notifyOpRemoved(Operation *op);
530 
531   /// Cleanup and undo any generated conversions for the arguments of block.
532   /// This method replaces the new block with the original, reverting the IR to
533   /// its original state.
534   void discardRewrites(Block *block);
535 
536   /// Fully replace uses of the old arguments with the new.
537   void applyRewrites(ConversionValueMapping &mapping);
538 
539   /// Materialize any necessary conversions for converted arguments that have
540   /// live users, using the provided `findLiveUser` to search for a user that
541   /// survives the conversion process.
542   LogicalResult
543   materializeLiveConversions(ConversionValueMapping &mapping,
544                              OpBuilder &builder,
545                              function_ref<Operation *(Value)> findLiveUser);
546 
547   //===--------------------------------------------------------------------===//
548   // Conversion
549   //===--------------------------------------------------------------------===//
550 
551   /// Attempt to convert the signature of the given block, if successful a new
552   /// block is returned containing the new arguments. Returns `block` if it did
553   /// not require conversion.
554   FailureOr<Block *>
555   convertSignature(Block *block, TypeConverter *converter,
556                    ConversionValueMapping &mapping,
557                    SmallVectorImpl<BlockArgument> &argReplacements);
558 
559   /// Apply the given signature conversion on the given block. The new block
560   /// containing the updated signature is returned. If no conversions were
561   /// necessary, e.g. if the block has no arguments, `block` is returned.
562   /// `converter` is used to generate any necessary cast operations that
563   /// translate between the origin argument types and those specified in the
564   /// signature conversion.
565   Block *applySignatureConversion(
566       Block *block, TypeConverter *converter,
567       TypeConverter::SignatureConversion &signatureConversion,
568       ConversionValueMapping &mapping,
569       SmallVectorImpl<BlockArgument> &argReplacements);
570 
571   /// Insert a new conversion into the cache.
572   void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
573 
574   /// A collection of blocks that have had their arguments converted. This is a
575   /// map from the new replacement block, back to the original block.
576   llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
577 
578   /// The set of original blocks that were converted.
579   DenseSet<Block *> convertedBlocks;
580 
581   /// A mapping from valid regions, to those containing the original blocks of a
582   /// conversion.
583   DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
584 
585   /// A mapping of regions to type converters that should be used when
586   /// converting the arguments of blocks within that region.
587   DenseMap<Region *, TypeConverter *> regionToConverter;
588 
589   /// The pattern rewriter to use when materializing conversions.
590   PatternRewriter &rewriter;
591 
592   /// An ordered set of unresolved materializations during conversion.
593   SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations;
594 };
595 } // namespace
596 
597 //===----------------------------------------------------------------------===//
598 // Rewrite Application
599 
notifyOpRemoved(Operation * op)600 void ArgConverter::notifyOpRemoved(Operation *op) {
601   if (conversionInfo.empty())
602     return;
603 
604   for (Region &region : op->getRegions()) {
605     for (Block &block : region) {
606       // Drop any rewrites from within.
607       for (Operation &nestedOp : block)
608         if (nestedOp.getNumRegions())
609           notifyOpRemoved(&nestedOp);
610 
611       // Check if this block was converted.
612       auto it = conversionInfo.find(&block);
613       if (it == conversionInfo.end())
614         continue;
615 
616       // Drop all uses of the original arguments and delete the original block.
617       Block *origBlock = it->second.origBlock;
618       for (BlockArgument arg : origBlock->getArguments())
619         arg.dropAllUses();
620       conversionInfo.erase(it);
621     }
622   }
623 }
624 
discardRewrites(Block * block)625 void ArgConverter::discardRewrites(Block *block) {
626   auto it = conversionInfo.find(block);
627   if (it == conversionInfo.end())
628     return;
629   Block *origBlock = it->second.origBlock;
630 
631   // Drop all uses of the new block arguments and replace uses of the new block.
632   for (int i = block->getNumArguments() - 1; i >= 0; --i)
633     block->getArgument(i).dropAllUses();
634   block->replaceAllUsesWith(origBlock);
635 
636   // Move the operations back the original block and the delete the new block.
637   origBlock->getOperations().splice(origBlock->end(), block->getOperations());
638   origBlock->moveBefore(block);
639   block->erase();
640 
641   convertedBlocks.erase(origBlock);
642   conversionInfo.erase(it);
643 }
644 
applyRewrites(ConversionValueMapping & mapping)645 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
646   for (auto &info : conversionInfo) {
647     ConvertedBlockInfo &blockInfo = info.second;
648     Block *origBlock = blockInfo.origBlock;
649 
650     // Process the remapping for each of the original arguments.
651     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
652       Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
653       BlockArgument origArg = origBlock->getArgument(i);
654 
655       // Handle the case of a 1->0 value mapping.
656       if (!argInfo) {
657         if (Value newArg = mapping.lookupOrNull(origArg, origArg.getType()))
658           origArg.replaceAllUsesWith(newArg);
659         continue;
660       }
661 
662       // Otherwise this is a 1->1+ value mapping.
663       Value castValue = argInfo->castValue;
664       assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
665 
666       // If the argument is still used, replace it with the generated cast.
667       if (!origArg.use_empty()) {
668         origArg.replaceAllUsesWith(
669             mapping.lookupOrDefault(castValue, origArg.getType()));
670       }
671     }
672   }
673 }
674 
materializeLiveConversions(ConversionValueMapping & mapping,OpBuilder & builder,function_ref<Operation * (Value)> findLiveUser)675 LogicalResult ArgConverter::materializeLiveConversions(
676     ConversionValueMapping &mapping, OpBuilder &builder,
677     function_ref<Operation *(Value)> findLiveUser) {
678   for (auto &info : conversionInfo) {
679     Block *newBlock = info.first;
680     ConvertedBlockInfo &blockInfo = info.second;
681     Block *origBlock = blockInfo.origBlock;
682 
683     // Process the remapping for each of the original arguments.
684     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
685       // If the type of this argument changed and the argument is still live, we
686       // need to materialize a conversion.
687       BlockArgument origArg = origBlock->getArgument(i);
688       if (mapping.lookupOrNull(origArg, origArg.getType()))
689         continue;
690       Operation *liveUser = findLiveUser(origArg);
691       if (!liveUser)
692         continue;
693 
694       Value replacementValue = mapping.lookupOrDefault(origArg);
695       bool isDroppedArg = replacementValue == origArg;
696       if (isDroppedArg)
697         rewriter.setInsertionPointToStart(newBlock);
698       else
699         rewriter.setInsertionPointAfterValue(replacementValue);
700       Value newArg;
701       if (blockInfo.converter) {
702         newArg = blockInfo.converter->materializeSourceConversion(
703             rewriter, origArg.getLoc(), origArg.getType(),
704             isDroppedArg ? ValueRange() : ValueRange(replacementValue));
705         assert((!newArg || newArg.getType() == origArg.getType()) &&
706                "materialization hook did not provide a value of the expected "
707                "type");
708       }
709       if (!newArg) {
710         InFlightDiagnostic diag =
711             emitError(origArg.getLoc())
712             << "failed to materialize conversion for block argument #" << i
713             << " that remained live after conversion, type was "
714             << origArg.getType();
715         if (!isDroppedArg)
716           diag << ", with target type " << replacementValue.getType();
717         diag.attachNote(liveUser->getLoc())
718             << "see existing live user here: " << *liveUser;
719         return failure();
720       }
721       mapping.map(origArg, newArg);
722     }
723   }
724   return success();
725 }
726 
727 //===----------------------------------------------------------------------===//
728 // Conversion
729 
convertSignature(Block * block,TypeConverter * converter,ConversionValueMapping & mapping,SmallVectorImpl<BlockArgument> & argReplacements)730 FailureOr<Block *> ArgConverter::convertSignature(
731     Block *block, TypeConverter *converter, ConversionValueMapping &mapping,
732     SmallVectorImpl<BlockArgument> &argReplacements) {
733   // Check if the block was already converted. If the block is detached,
734   // conservatively assume it is going to be deleted.
735   if (hasBeenConverted(block) || !block->getParent())
736     return block;
737   // If a converter wasn't provided, and the block wasn't already converted,
738   // there is nothing we can do.
739   if (!converter)
740     return failure();
741 
742   // Try to convert the signature for the block with the provided converter.
743   if (auto conversion = converter->convertBlockSignature(block))
744     return applySignatureConversion(block, converter, *conversion, mapping,
745                                     argReplacements);
746   return failure();
747 }
748 
applySignatureConversion(Block * block,TypeConverter * converter,TypeConverter::SignatureConversion & signatureConversion,ConversionValueMapping & mapping,SmallVectorImpl<BlockArgument> & argReplacements)749 Block *ArgConverter::applySignatureConversion(
750     Block *block, TypeConverter *converter,
751     TypeConverter::SignatureConversion &signatureConversion,
752     ConversionValueMapping &mapping,
753     SmallVectorImpl<BlockArgument> &argReplacements) {
754   // If no arguments are being changed or added, there is nothing to do.
755   unsigned origArgCount = block->getNumArguments();
756   auto convertedTypes = signatureConversion.getConvertedTypes();
757   if (origArgCount == 0 && convertedTypes.empty())
758     return block;
759 
760   // Split the block at the beginning to get a new block to use for the updated
761   // signature.
762   Block *newBlock = block->splitBlock(block->begin());
763   block->replaceAllUsesWith(newBlock);
764 
765   // FIXME: We should map the new arguments to proper locations.
766   SmallVector<Location> newLocs(convertedTypes.size(),
767                                 rewriter.getUnknownLoc());
768   SmallVector<Value, 4> newArgRange(
769       newBlock->addArguments(convertedTypes, newLocs));
770   ArrayRef<Value> newArgs(newArgRange);
771 
772   // Remap each of the original arguments as determined by the signature
773   // conversion.
774   ConvertedBlockInfo info(block, converter);
775   info.argInfo.resize(origArgCount);
776 
777   OpBuilder::InsertionGuard guard(rewriter);
778   rewriter.setInsertionPointToStart(newBlock);
779   for (unsigned i = 0; i != origArgCount; ++i) {
780     auto inputMap = signatureConversion.getInputMapping(i);
781     if (!inputMap)
782       continue;
783     BlockArgument origArg = block->getArgument(i);
784 
785     // If inputMap->replacementValue is not nullptr, then the argument is
786     // dropped and a replacement value is provided to be the remappedValue.
787     if (inputMap->replacementValue) {
788       assert(inputMap->size == 0 &&
789              "invalid to provide a replacement value when the argument isn't "
790              "dropped");
791       mapping.map(origArg, inputMap->replacementValue);
792       argReplacements.push_back(origArg);
793       continue;
794     }
795 
796     // Otherwise, this is a 1->1+ mapping.
797     auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
798     Value newArg;
799 
800     // If this is a 1->1 mapping and the types of new and replacement arguments
801     // match (i.e. it's an identity map), then the argument is mapped to its
802     // original type.
803     // FIXME: We simply pass through the replacement argument if there wasn't a
804     // converter, which isn't great as it allows implicit type conversions to
805     // appear. We should properly restructure this code to handle cases where a
806     // converter isn't provided and also to properly handle the case where an
807     // argument materialization is actually a temporary source materialization
808     // (e.g. in the case of 1->N).
809     if (replArgs.size() == 1 &&
810         (!converter || replArgs[0].getType() == origArg.getType())) {
811       newArg = replArgs.front();
812     } else {
813       Type origOutputType = origArg.getType();
814 
815       // Legalize the argument output type.
816       Type outputType = origOutputType;
817       if (Type legalOutputType = converter->convertType(outputType))
818         outputType = legalOutputType;
819 
820       newArg = buildUnresolvedArgumentMaterialization(
821           rewriter, origArg.getLoc(), replArgs, origOutputType, outputType,
822           converter, unresolvedMaterializations);
823     }
824 
825     mapping.map(origArg, newArg);
826     argReplacements.push_back(origArg);
827     info.argInfo[i] =
828         ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
829   }
830 
831   // Remove the original block from the region and return the new one.
832   insertConversion(newBlock, std::move(info));
833   return newBlock;
834 }
835 
insertConversion(Block * newBlock,ConvertedBlockInfo && info)836 void ArgConverter::insertConversion(Block *newBlock,
837                                     ConvertedBlockInfo &&info) {
838   // Get a region to insert the old block.
839   Region *region = newBlock->getParent();
840   std::unique_ptr<Region> &mappedRegion = regionMapping[region];
841   if (!mappedRegion)
842     mappedRegion = std::make_unique<Region>(region->getParentOp());
843 
844   // Move the original block to the mapped region and emplace the conversion.
845   mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
846                                    info.origBlock->getIterator());
847   convertedBlocks.insert(info.origBlock);
848   conversionInfo.insert({newBlock, std::move(info)});
849 }
850 
851 //===----------------------------------------------------------------------===//
852 // ConversionPatternRewriterImpl
853 //===----------------------------------------------------------------------===//
854 namespace mlir {
855 namespace detail {
856 struct ConversionPatternRewriterImpl {
ConversionPatternRewriterImplmlir::detail::ConversionPatternRewriterImpl857   explicit ConversionPatternRewriterImpl(PatternRewriter &rewriter)
858       : argConverter(rewriter, unresolvedMaterializations),
859         notifyCallback(nullptr) {}
860 
861   /// Cleanup and destroy any generated rewrite operations. This method is
862   /// invoked when the conversion process fails.
863   void discardRewrites();
864 
865   /// Apply all requested operation rewrites. This method is invoked when the
866   /// conversion process succeeds.
867   void applyRewrites();
868 
869   //===--------------------------------------------------------------------===//
870   // State Management
871   //===--------------------------------------------------------------------===//
872 
873   /// Return the current state of the rewriter.
874   RewriterState getCurrentState();
875 
876   /// Reset the state of the rewriter to a previously saved point.
877   void resetState(RewriterState state);
878 
879   /// Erase any blocks that were unlinked from their regions and stored in block
880   /// actions.
881   void eraseDanglingBlocks();
882 
883   /// Undo the block actions (motions, splits) one by one in reverse order until
884   /// "numActionsToKeep" actions remains.
885   void undoBlockActions(unsigned numActionsToKeep = 0);
886 
887   /// Remap the given values to those with potentially different types. Returns
888   /// success if the values could be remapped, failure otherwise. `valueDiagTag`
889   /// is the tag used when describing a value within a diagnostic, e.g.
890   /// "operand".
891   LogicalResult remapValues(StringRef valueDiagTag, Optional<Location> inputLoc,
892                             PatternRewriter &rewriter, ValueRange values,
893                             SmallVectorImpl<Value> &remapped);
894 
895   /// Returns true if the given operation is ignored, and does not need to be
896   /// converted.
897   bool isOpIgnored(Operation *op) const;
898 
899   /// Recursively marks the nested operations under 'op' as ignored. This
900   /// removes them from being considered for legalization.
901   void markNestedOpsIgnored(Operation *op);
902 
903   //===--------------------------------------------------------------------===//
904   // Type Conversion
905   //===--------------------------------------------------------------------===//
906 
907   /// Convert the signature of the given block.
908   FailureOr<Block *> convertBlockSignature(
909       Block *block, TypeConverter *converter,
910       TypeConverter::SignatureConversion *conversion = nullptr);
911 
912   /// Apply a signature conversion on the given region, using `converter` for
913   /// materializations if not null.
914   Block *
915   applySignatureConversion(Region *region,
916                            TypeConverter::SignatureConversion &conversion,
917                            TypeConverter *converter);
918 
919   /// Convert the types of block arguments within the given region.
920   FailureOr<Block *>
921   convertRegionTypes(Region *region, TypeConverter &converter,
922                      TypeConverter::SignatureConversion *entryConversion);
923 
924   /// Convert the types of non-entry block arguments within the given region.
925   LogicalResult convertNonEntryRegionTypes(
926       Region *region, TypeConverter &converter,
927       ArrayRef<TypeConverter::SignatureConversion> blockConversions = {});
928 
929   //===--------------------------------------------------------------------===//
930   // Rewriter Notification Hooks
931   //===--------------------------------------------------------------------===//
932 
933   /// PatternRewriter hook for replacing the results of an operation.
934   void notifyOpReplaced(Operation *op, ValueRange newValues);
935 
936   /// Notifies that a block is about to be erased.
937   void notifyBlockIsBeingErased(Block *block);
938 
939   /// Notifies that a block was created.
940   void notifyCreatedBlock(Block *block);
941 
942   /// Notifies that a block was split.
943   void notifySplitBlock(Block *block, Block *continuation);
944 
945   /// Notifies that `block` is being merged with `srcBlock`.
946   void notifyBlocksBeingMerged(Block *block, Block *srcBlock);
947 
948   /// Notifies that the blocks of a region are about to be moved.
949   void notifyRegionIsBeingInlinedBefore(Region &region, Region &parent,
950                                         Region::iterator before);
951 
952   /// Notifies that the blocks of a region were cloned into another.
953   void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
954                                    Location origRegionLoc);
955 
956   /// Notifies that a pattern match failed for the given reason.
957   LogicalResult
958   notifyMatchFailure(Location loc,
959                      function_ref<void(Diagnostic &)> reasonCallback);
960 
961   //===--------------------------------------------------------------------===//
962   // State
963   //===--------------------------------------------------------------------===//
964 
965   // Mapping between replaced values that differ in type. This happens when
966   // replacing a value with one of a different type.
967   ConversionValueMapping mapping;
968 
969   /// Utility used to convert block arguments.
970   ArgConverter argConverter;
971 
972   /// Ordered vector of all of the newly created operations during conversion.
973   SmallVector<Operation *> createdOps;
974 
975   /// Ordered vector of all unresolved type conversion materializations during
976   /// conversion.
977   SmallVector<UnresolvedMaterialization> unresolvedMaterializations;
978 
979   /// Ordered map of requested operation replacements.
980   llvm::MapVector<Operation *, OpReplacement> replacements;
981 
982   /// Ordered vector of any requested block argument replacements.
983   SmallVector<BlockArgument, 4> argReplacements;
984 
985   /// Ordered list of block operations (creations, splits, motions).
986   SmallVector<BlockAction, 4> blockActions;
987 
988   /// A set of operations that should no longer be considered for legalization,
989   /// but were not directly replace/erased/etc. by a pattern. These are
990   /// generally child operations of other operations who were
991   /// replaced/erased/etc. This is not meant to be an exhaustive list of all
992   /// operations, but the minimal set that can be used to detect if a given
993   /// operation should be `ignored`. For example, we may add the operations that
994   /// define non-empty regions to the set, but not any of the others. This
995   /// simplifies the amount of memory needed as we can query if the parent
996   /// operation was ignored.
997   SetVector<Operation *> ignoredOps;
998 
999   /// A transaction state for each of operations that were updated in-place.
1000   SmallVector<OperationTransactionState, 4> rootUpdates;
1001 
1002   /// A vector of indices into `replacements` of operations that were replaced
1003   /// with values with different result types than the original operation, e.g.
1004   /// 1->N conversion of some kind.
1005   SmallVector<unsigned, 4> operationsWithChangedResults;
1006 
1007   /// The current type converter, or nullptr if no type converter is currently
1008   /// active.
1009   TypeConverter *currentTypeConverter = nullptr;
1010 
1011   /// This allows the user to collect the match failure message.
1012   function_ref<void(Diagnostic &)> notifyCallback;
1013 
1014 #ifndef NDEBUG
1015   /// A set of operations that have pending updates. This tracking isn't
1016   /// strictly necessary, and is thus only active during debug builds for extra
1017   /// verification.
1018   SmallPtrSet<Operation *, 1> pendingRootUpdates;
1019 
1020   /// A logger used to emit diagnostics during the conversion process.
1021   llvm::ScopedPrinter logger{llvm::dbgs()};
1022 #endif
1023 };
1024 } // namespace detail
1025 } // namespace mlir
1026 
1027 /// Detach any operations nested in the given operation from their parent
1028 /// blocks, and erase the given operation. This can be used when the nested
1029 /// operations are scheduled for erasure themselves, so deleting the regions of
1030 /// the given operation together with their content would result in double-free.
1031 /// This happens, for example, when rolling back op creation in the reverse
1032 /// order and if the nested ops were created before the parent op. This function
1033 /// does not need to collect nested ops recursively because it is expected to
1034 /// also be called for each nested op when it is about to be deleted.
detachNestedAndErase(Operation * op)1035 static void detachNestedAndErase(Operation *op) {
1036   for (Region &region : op->getRegions()) {
1037     for (Block &block : region.getBlocks()) {
1038       while (!block.getOperations().empty())
1039         block.getOperations().remove(block.getOperations().begin());
1040       block.dropAllDefinedValueUses();
1041     }
1042   }
1043   op->dropAllUses();
1044   op->erase();
1045 }
1046 
discardRewrites()1047 void ConversionPatternRewriterImpl::discardRewrites() {
1048   // Reset any operations that were updated in place.
1049   for (auto &state : rootUpdates)
1050     state.resetOperation();
1051 
1052   undoBlockActions();
1053 
1054   // Remove any newly created ops.
1055   for (UnresolvedMaterialization &materialization : unresolvedMaterializations)
1056     detachNestedAndErase(materialization.getOp());
1057   for (auto *op : llvm::reverse(createdOps))
1058     detachNestedAndErase(op);
1059 }
1060 
applyRewrites()1061 void ConversionPatternRewriterImpl::applyRewrites() {
1062   // Apply all of the rewrites replacements requested during conversion.
1063   for (auto &repl : replacements) {
1064     for (OpResult result : repl.first->getResults())
1065       if (Value newValue = mapping.lookupOrNull(result, result.getType()))
1066         result.replaceAllUsesWith(newValue);
1067 
1068     // If this operation defines any regions, drop any pending argument
1069     // rewrites.
1070     if (repl.first->getNumRegions())
1071       argConverter.notifyOpRemoved(repl.first);
1072   }
1073 
1074   // Apply all of the requested argument replacements.
1075   for (BlockArgument arg : argReplacements) {
1076     Value repl = mapping.lookupOrNull(arg, arg.getType());
1077     if (!repl)
1078       continue;
1079 
1080     if (repl.isa<BlockArgument>()) {
1081       arg.replaceAllUsesWith(repl);
1082       continue;
1083     }
1084 
1085     // If the replacement value is an operation, we check to make sure that we
1086     // don't replace uses that are within the parent operation of the
1087     // replacement value.
1088     Operation *replOp = repl.cast<OpResult>().getOwner();
1089     Block *replBlock = replOp->getBlock();
1090     arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
1091       Operation *user = operand.getOwner();
1092       return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
1093     });
1094   }
1095 
1096   // Drop all of the unresolved materialization operations created during
1097   // conversion.
1098   for (auto &mat : unresolvedMaterializations) {
1099     mat.getOp()->dropAllUses();
1100     mat.getOp()->erase();
1101   }
1102 
1103   // In a second pass, erase all of the replaced operations in reverse. This
1104   // allows processing nested operations before their parent region is
1105   // destroyed. Because we process in reverse order, producers may be deleted
1106   // before their users (a pattern deleting a producer and then the consumer)
1107   // so we first drop all uses explicitly.
1108   for (auto &repl : llvm::reverse(replacements)) {
1109     repl.first->dropAllUses();
1110     repl.first->erase();
1111   }
1112 
1113   argConverter.applyRewrites(mapping);
1114 
1115   // Now that the ops have been erased, also erase dangling blocks.
1116   eraseDanglingBlocks();
1117 }
1118 
1119 //===----------------------------------------------------------------------===//
1120 // State Management
1121 
getCurrentState()1122 RewriterState ConversionPatternRewriterImpl::getCurrentState() {
1123   return RewriterState(createdOps.size(), unresolvedMaterializations.size(),
1124                        replacements.size(), argReplacements.size(),
1125                        blockActions.size(), ignoredOps.size(),
1126                        rootUpdates.size());
1127 }
1128 
resetState(RewriterState state)1129 void ConversionPatternRewriterImpl::resetState(RewriterState state) {
1130   // Reset any operations that were updated in place.
1131   for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
1132     rootUpdates[i].resetOperation();
1133   rootUpdates.resize(state.numRootUpdates);
1134 
1135   // Reset any replaced arguments.
1136   for (BlockArgument replacedArg :
1137        llvm::drop_begin(argReplacements, state.numArgReplacements))
1138     mapping.erase(replacedArg);
1139   argReplacements.resize(state.numArgReplacements);
1140 
1141   // Undo any block actions.
1142   undoBlockActions(state.numBlockActions);
1143 
1144   // Reset any replaced operations and undo any saved mappings.
1145   for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
1146     for (auto result : repl.first->getResults())
1147       mapping.erase(result);
1148   while (replacements.size() != state.numReplacements)
1149     replacements.pop_back();
1150 
1151   // Pop all of the newly inserted materializations.
1152   while (unresolvedMaterializations.size() !=
1153          state.numUnresolvedMaterializations) {
1154     UnresolvedMaterialization mat = unresolvedMaterializations.pop_back_val();
1155     UnrealizedConversionCastOp op = mat.getOp();
1156 
1157     // If this was a target materialization, drop the mapping that was inserted.
1158     if (mat.getKind() == UnresolvedMaterialization::Target) {
1159       for (Value input : op->getOperands())
1160         mapping.erase(input);
1161     }
1162     detachNestedAndErase(op);
1163   }
1164 
1165   // Pop all of the newly created operations.
1166   while (createdOps.size() != state.numCreatedOps) {
1167     detachNestedAndErase(createdOps.back());
1168     createdOps.pop_back();
1169   }
1170 
1171   // Pop all of the recorded ignored operations that are no longer valid.
1172   while (ignoredOps.size() != state.numIgnoredOperations)
1173     ignoredOps.pop_back();
1174 
1175   // Reset operations with changed results.
1176   while (!operationsWithChangedResults.empty() &&
1177          operationsWithChangedResults.back() >= state.numReplacements)
1178     operationsWithChangedResults.pop_back();
1179 }
1180 
eraseDanglingBlocks()1181 void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
1182   for (auto &action : blockActions)
1183     if (action.kind == BlockActionKind::Erase)
1184       delete action.block;
1185 }
1186 
undoBlockActions(unsigned numActionsToKeep)1187 void ConversionPatternRewriterImpl::undoBlockActions(
1188     unsigned numActionsToKeep) {
1189   for (auto &action :
1190        llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
1191     switch (action.kind) {
1192     // Delete the created block.
1193     case BlockActionKind::Create: {
1194       // Unlink all of the operations within this block, they will be deleted
1195       // separately.
1196       auto &blockOps = action.block->getOperations();
1197       while (!blockOps.empty())
1198         blockOps.remove(blockOps.begin());
1199       action.block->dropAllDefinedValueUses();
1200       action.block->erase();
1201       break;
1202     }
1203     // Put the block (owned by action) back into its original position.
1204     case BlockActionKind::Erase: {
1205       auto &blockList = action.originalPosition.region->getBlocks();
1206       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1207       blockList.insert((insertAfterBlock
1208                             ? std::next(Region::iterator(insertAfterBlock))
1209                             : blockList.begin()),
1210                        action.block);
1211       break;
1212     }
1213     // Split the block at the position which was originally the end of the
1214     // destination block (owned by action), and put the instructions back into
1215     // the block used before the merge.
1216     case BlockActionKind::Merge: {
1217       Block *sourceBlock = action.mergeInfo.sourceBlock;
1218       Block::iterator splitPoint =
1219           (action.mergeInfo.destBlockLastInst
1220                ? ++Block::iterator(action.mergeInfo.destBlockLastInst)
1221                : action.block->begin());
1222       sourceBlock->getOperations().splice(sourceBlock->begin(),
1223                                           action.block->getOperations(),
1224                                           splitPoint, action.block->end());
1225       break;
1226     }
1227     // Move the block back to its original position.
1228     case BlockActionKind::Move: {
1229       Region *originalRegion = action.originalPosition.region;
1230       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1231       originalRegion->getBlocks().splice(
1232           (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
1233                             : originalRegion->end()),
1234           action.block->getParent()->getBlocks(), action.block);
1235       break;
1236     }
1237     // Merge back the block that was split out.
1238     case BlockActionKind::Split: {
1239       action.originalBlock->getOperations().splice(
1240           action.originalBlock->end(), action.block->getOperations());
1241       action.block->dropAllDefinedValueUses();
1242       action.block->erase();
1243       break;
1244     }
1245     // Undo the type conversion.
1246     case BlockActionKind::TypeConversion: {
1247       argConverter.discardRewrites(action.block);
1248       break;
1249     }
1250     }
1251   }
1252   blockActions.resize(numActionsToKeep);
1253 }
1254 
remapValues(StringRef valueDiagTag,Optional<Location> inputLoc,PatternRewriter & rewriter,ValueRange values,SmallVectorImpl<Value> & remapped)1255 LogicalResult ConversionPatternRewriterImpl::remapValues(
1256     StringRef valueDiagTag, Optional<Location> inputLoc,
1257     PatternRewriter &rewriter, ValueRange values,
1258     SmallVectorImpl<Value> &remapped) {
1259   remapped.reserve(llvm::size(values));
1260 
1261   SmallVector<Type, 1> legalTypes;
1262   for (const auto &it : llvm::enumerate(values)) {
1263     Value operand = it.value();
1264     Type origType = operand.getType();
1265 
1266     // If a converter was provided, get the desired legal types for this
1267     // operand.
1268     Type desiredType;
1269     if (currentTypeConverter) {
1270       // If there is no legal conversion, fail to match this pattern.
1271       legalTypes.clear();
1272       if (failed(currentTypeConverter->convertType(origType, legalTypes))) {
1273         Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
1274         return notifyMatchFailure(operandLoc, [=](Diagnostic &diag) {
1275           diag << "unable to convert type for " << valueDiagTag << " #"
1276                << it.index() << ", type was " << origType;
1277         });
1278       }
1279       // TODO: There currently isn't any mechanism to do 1->N type conversion
1280       // via the PatternRewriter replacement API, so for now we just ignore it.
1281       if (legalTypes.size() == 1)
1282         desiredType = legalTypes.front();
1283     } else {
1284       // TODO: What we should do here is just set `desiredType` to `origType`
1285       // and then handle the necessary type conversions after the conversion
1286       // process has finished. Unfortunately a lot of patterns currently rely on
1287       // receiving the new operands even if the types change, so we keep the
1288       // original behavior here for now until all of the patterns relying on
1289       // this get updated.
1290     }
1291     Value newOperand = mapping.lookupOrDefault(operand, desiredType);
1292 
1293     // Handle the case where the conversion was 1->1 and the new operand type
1294     // isn't legal.
1295     Type newOperandType = newOperand.getType();
1296     if (currentTypeConverter && desiredType && newOperandType != desiredType) {
1297       Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
1298       Value castValue = buildUnresolvedTargetMaterialization(
1299           operandLoc, newOperand, desiredType, currentTypeConverter,
1300           unresolvedMaterializations);
1301       mapping.map(mapping.lookupOrDefault(newOperand), castValue);
1302       newOperand = castValue;
1303     }
1304     remapped.push_back(newOperand);
1305   }
1306   return success();
1307 }
1308 
isOpIgnored(Operation * op) const1309 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
1310   // Check to see if this operation was replaced or its parent ignored.
1311   return replacements.count(op) || ignoredOps.count(op->getParentOp());
1312 }
1313 
markNestedOpsIgnored(Operation * op)1314 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
1315   // Walk this operation and collect nested operations that define non-empty
1316   // regions. We mark such operations as 'ignored' so that we know we don't have
1317   // to convert them, or their nested ops.
1318   if (op->getNumRegions() == 0)
1319     return;
1320   op->walk([&](Operation *op) {
1321     if (llvm::any_of(op->getRegions(),
1322                      [](Region &region) { return !region.empty(); }))
1323       ignoredOps.insert(op);
1324   });
1325 }
1326 
1327 //===----------------------------------------------------------------------===//
1328 // Type Conversion
1329 
convertBlockSignature(Block * block,TypeConverter * converter,TypeConverter::SignatureConversion * conversion)1330 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
1331     Block *block, TypeConverter *converter,
1332     TypeConverter::SignatureConversion *conversion) {
1333   FailureOr<Block *> result =
1334       conversion ? argConverter.applySignatureConversion(
1335                        block, converter, *conversion, mapping, argReplacements)
1336                  : argConverter.convertSignature(block, converter, mapping,
1337                                                  argReplacements);
1338   if (failed(result))
1339     return failure();
1340   if (Block *newBlock = *result) {
1341     if (newBlock != block)
1342       blockActions.push_back(BlockAction::getTypeConversion(newBlock));
1343   }
1344   return result;
1345 }
1346 
applySignatureConversion(Region * region,TypeConverter::SignatureConversion & conversion,TypeConverter * converter)1347 Block *ConversionPatternRewriterImpl::applySignatureConversion(
1348     Region *region, TypeConverter::SignatureConversion &conversion,
1349     TypeConverter *converter) {
1350   if (!region->empty())
1351     return *convertBlockSignature(&region->front(), converter, &conversion);
1352   return nullptr;
1353 }
1354 
convertRegionTypes(Region * region,TypeConverter & converter,TypeConverter::SignatureConversion * entryConversion)1355 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
1356     Region *region, TypeConverter &converter,
1357     TypeConverter::SignatureConversion *entryConversion) {
1358   argConverter.setConverter(region, &converter);
1359   if (region->empty())
1360     return nullptr;
1361 
1362   if (failed(convertNonEntryRegionTypes(region, converter)))
1363     return failure();
1364 
1365   FailureOr<Block *> newEntry =
1366       convertBlockSignature(&region->front(), &converter, entryConversion);
1367   return newEntry;
1368 }
1369 
convertNonEntryRegionTypes(Region * region,TypeConverter & converter,ArrayRef<TypeConverter::SignatureConversion> blockConversions)1370 LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes(
1371     Region *region, TypeConverter &converter,
1372     ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1373   argConverter.setConverter(region, &converter);
1374   if (region->empty())
1375     return success();
1376 
1377   // Convert the arguments of each block within the region.
1378   int blockIdx = 0;
1379   assert((blockConversions.empty() ||
1380           blockConversions.size() == region->getBlocks().size() - 1) &&
1381          "expected either to provide no SignatureConversions at all or to "
1382          "provide a SignatureConversion for each non-entry block");
1383 
1384   for (Block &block :
1385        llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
1386     TypeConverter::SignatureConversion *blockConversion =
1387         blockConversions.empty()
1388             ? nullptr
1389             : const_cast<TypeConverter::SignatureConversion *>(
1390                   &blockConversions[blockIdx++]);
1391 
1392     if (failed(convertBlockSignature(&block, &converter, blockConversion)))
1393       return failure();
1394   }
1395   return success();
1396 }
1397 
1398 //===----------------------------------------------------------------------===//
1399 // Rewriter Notification Hooks
1400 
notifyOpReplaced(Operation * op,ValueRange newValues)1401 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
1402                                                      ValueRange newValues) {
1403   assert(newValues.size() == op->getNumResults());
1404   assert(!replacements.count(op) && "operation was already replaced");
1405 
1406   // Track if any of the results changed, e.g. erased and replaced with null.
1407   bool resultChanged = false;
1408 
1409   // Create mappings for each of the new result values.
1410   Value newValue, result;
1411   for (auto it : llvm::zip(newValues, op->getResults())) {
1412     std::tie(newValue, result) = it;
1413     if (!newValue) {
1414       resultChanged = true;
1415       continue;
1416     }
1417     // Remap, and check for any result type changes.
1418     mapping.map(result, newValue);
1419     resultChanged |= (newValue.getType() != result.getType());
1420   }
1421   if (resultChanged)
1422     operationsWithChangedResults.push_back(replacements.size());
1423 
1424   // Record the requested operation replacement.
1425   replacements.insert(std::make_pair(op, OpReplacement(currentTypeConverter)));
1426 
1427   // Mark this operation as recursively ignored so that we don't need to
1428   // convert any nested operations.
1429   markNestedOpsIgnored(op);
1430 }
1431 
notifyBlockIsBeingErased(Block * block)1432 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
1433   Region *region = block->getParent();
1434   Block *origPrevBlock = block->getPrevNode();
1435   blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
1436 }
1437 
notifyCreatedBlock(Block * block)1438 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
1439   blockActions.push_back(BlockAction::getCreate(block));
1440 }
1441 
notifySplitBlock(Block * block,Block * continuation)1442 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
1443                                                      Block *continuation) {
1444   blockActions.push_back(BlockAction::getSplit(continuation, block));
1445 }
1446 
notifyBlocksBeingMerged(Block * block,Block * srcBlock)1447 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block,
1448                                                             Block *srcBlock) {
1449   blockActions.push_back(BlockAction::getMerge(block, srcBlock));
1450 }
1451 
notifyRegionIsBeingInlinedBefore(Region & region,Region & parent,Region::iterator before)1452 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
1453     Region &region, Region &parent, Region::iterator before) {
1454   if (region.empty())
1455     return;
1456   Block *laterBlock = &region.back();
1457   for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) {
1458     blockActions.push_back(
1459         BlockAction::getMove(laterBlock, {&region, &earlierBlock}));
1460     laterBlock = &earlierBlock;
1461   }
1462   blockActions.push_back(BlockAction::getMove(laterBlock, {&region, nullptr}));
1463 }
1464 
notifyRegionWasClonedBefore(iterator_range<Region::iterator> & blocks,Location origRegionLoc)1465 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
1466     iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
1467   for (Block &block : blocks)
1468     blockActions.push_back(BlockAction::getCreate(&block));
1469 
1470   // Compute the conversion set for the inlined region.
1471   auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
1472 
1473   // This original region has already had its conversion set computed, so there
1474   // shouldn't be any new failures.
1475   (void)result;
1476   assert(succeeded(result) && "expected region to have no unreachable blocks");
1477 }
1478 
notifyMatchFailure(Location loc,function_ref<void (Diagnostic &)> reasonCallback)1479 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
1480     Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
1481   LLVM_DEBUG({
1482     Diagnostic diag(loc, DiagnosticSeverity::Remark);
1483     reasonCallback(diag);
1484     logger.startLine() << "** Failure : " << diag.str() << "\n";
1485     if (notifyCallback)
1486       notifyCallback(diag);
1487   });
1488   return failure();
1489 }
1490 
1491 //===----------------------------------------------------------------------===//
1492 // ConversionPatternRewriter
1493 //===----------------------------------------------------------------------===//
1494 
ConversionPatternRewriter(MLIRContext * ctx)1495 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
1496     : PatternRewriter(ctx),
1497       impl(new detail::ConversionPatternRewriterImpl(*this)) {}
1498 ConversionPatternRewriter::~ConversionPatternRewriter() = default;
1499 
replaceOpWithIf(Operation * op,ValueRange newValues,bool * allUsesReplaced,llvm::unique_function<bool (OpOperand &)const> functor)1500 void ConversionPatternRewriter::replaceOpWithIf(
1501     Operation *op, ValueRange newValues, bool *allUsesReplaced,
1502     llvm::unique_function<bool(OpOperand &) const> functor) {
1503   // TODO: To support this we will need to rework a bit of how replacements are
1504   // tracked, given that this isn't guranteed to replace all of the uses of an
1505   // operation. The main change is that now an operation can be replaced
1506   // multiple times, in parts. The current "set" based tracking is mainly useful
1507   // for tracking if a replaced operation should be ignored, i.e. if all of the
1508   // uses will be replaced.
1509   llvm_unreachable(
1510       "replaceOpWithIf is currently not supported by DialectConversion");
1511 }
1512 
replaceOp(Operation * op,ValueRange newValues)1513 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
1514   LLVM_DEBUG({
1515     impl->logger.startLine()
1516         << "** Replace : '" << op->getName() << "'(" << op << ")\n";
1517   });
1518   impl->notifyOpReplaced(op, newValues);
1519 }
1520 
eraseOp(Operation * op)1521 void ConversionPatternRewriter::eraseOp(Operation *op) {
1522   LLVM_DEBUG({
1523     impl->logger.startLine()
1524         << "** Erase   : '" << op->getName() << "'(" << op << ")\n";
1525   });
1526   SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
1527   impl->notifyOpReplaced(op, nullRepls);
1528 }
1529 
eraseBlock(Block * block)1530 void ConversionPatternRewriter::eraseBlock(Block *block) {
1531   impl->notifyBlockIsBeingErased(block);
1532 
1533   // Mark all ops for erasure.
1534   for (Operation &op : *block)
1535     eraseOp(&op);
1536 
1537   // Unlink the block from its parent region. The block is kept in the block
1538   // action and will be actually destroyed when rewrites are applied. This
1539   // allows us to keep the operations in the block live and undo the removal by
1540   // re-inserting the block.
1541   block->getParent()->getBlocks().remove(block);
1542 }
1543 
applySignatureConversion(Region * region,TypeConverter::SignatureConversion & conversion,TypeConverter * converter)1544 Block *ConversionPatternRewriter::applySignatureConversion(
1545     Region *region, TypeConverter::SignatureConversion &conversion,
1546     TypeConverter *converter) {
1547   return impl->applySignatureConversion(region, conversion, converter);
1548 }
1549 
convertRegionTypes(Region * region,TypeConverter & converter,TypeConverter::SignatureConversion * entryConversion)1550 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
1551     Region *region, TypeConverter &converter,
1552     TypeConverter::SignatureConversion *entryConversion) {
1553   return impl->convertRegionTypes(region, converter, entryConversion);
1554 }
1555 
convertNonEntryRegionTypes(Region * region,TypeConverter & converter,ArrayRef<TypeConverter::SignatureConversion> blockConversions)1556 LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes(
1557     Region *region, TypeConverter &converter,
1558     ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1559   return impl->convertNonEntryRegionTypes(region, converter, blockConversions);
1560 }
1561 
replaceUsesOfBlockArgument(BlockArgument from,Value to)1562 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
1563                                                            Value to) {
1564   LLVM_DEBUG({
1565     Operation *parentOp = from.getOwner()->getParentOp();
1566     impl->logger.startLine() << "** Replace Argument : '" << from
1567                              << "'(in region of '" << parentOp->getName()
1568                              << "'(" << from.getOwner()->getParentOp() << ")\n";
1569   });
1570   impl->argReplacements.push_back(from);
1571   impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
1572 }
1573 
getRemappedValue(Value key)1574 Value ConversionPatternRewriter::getRemappedValue(Value key) {
1575   SmallVector<Value> remappedValues;
1576   if (failed(impl->remapValues("value", /*inputLoc=*/llvm::None, *this, key,
1577                                remappedValues)))
1578     return nullptr;
1579   return remappedValues.front();
1580 }
1581 
1582 LogicalResult
getRemappedValues(ValueRange keys,SmallVectorImpl<Value> & results)1583 ConversionPatternRewriter::getRemappedValues(ValueRange keys,
1584                                              SmallVectorImpl<Value> &results) {
1585   if (keys.empty())
1586     return success();
1587   return impl->remapValues("value", /*inputLoc=*/llvm::None, *this, keys,
1588                            results);
1589 }
1590 
notifyBlockCreated(Block * block)1591 void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
1592   impl->notifyCreatedBlock(block);
1593 }
1594 
splitBlock(Block * block,Block::iterator before)1595 Block *ConversionPatternRewriter::splitBlock(Block *block,
1596                                              Block::iterator before) {
1597   auto *continuation = PatternRewriter::splitBlock(block, before);
1598   impl->notifySplitBlock(block, continuation);
1599   return continuation;
1600 }
1601 
mergeBlocks(Block * source,Block * dest,ValueRange argValues)1602 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
1603                                             ValueRange argValues) {
1604   impl->notifyBlocksBeingMerged(dest, source);
1605   assert(llvm::all_of(source->getPredecessors(),
1606                       [dest](Block *succ) { return succ == dest; }) &&
1607          "expected 'source' to have no predecessors or only 'dest'");
1608   assert(argValues.size() == source->getNumArguments() &&
1609          "incorrect # of argument replacement values");
1610   for (auto it : llvm::zip(source->getArguments(), argValues))
1611     replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
1612   dest->getOperations().splice(dest->end(), source->getOperations());
1613   eraseBlock(source);
1614 }
1615 
inlineRegionBefore(Region & region,Region & parent,Region::iterator before)1616 void ConversionPatternRewriter::inlineRegionBefore(Region &region,
1617                                                    Region &parent,
1618                                                    Region::iterator before) {
1619   impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
1620   PatternRewriter::inlineRegionBefore(region, parent, before);
1621 }
1622 
cloneRegionBefore(Region & region,Region & parent,Region::iterator before,BlockAndValueMapping & mapping)1623 void ConversionPatternRewriter::cloneRegionBefore(
1624     Region &region, Region &parent, Region::iterator before,
1625     BlockAndValueMapping &mapping) {
1626   if (region.empty())
1627     return;
1628   PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
1629 
1630   // Collect the range of the cloned blocks.
1631   auto clonedBeginIt = mapping.lookup(&region.front())->getIterator();
1632   auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
1633   impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
1634 }
1635 
notifyOperationInserted(Operation * op)1636 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
1637   LLVM_DEBUG({
1638     impl->logger.startLine()
1639         << "** Insert  : '" << op->getName() << "'(" << op << ")\n";
1640   });
1641   impl->createdOps.push_back(op);
1642 }
1643 
startRootUpdate(Operation * op)1644 void ConversionPatternRewriter::startRootUpdate(Operation *op) {
1645 #ifndef NDEBUG
1646   impl->pendingRootUpdates.insert(op);
1647 #endif
1648   impl->rootUpdates.emplace_back(op);
1649 }
1650 
finalizeRootUpdate(Operation * op)1651 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
1652   // There is nothing to do here, we only need to track the operation at the
1653   // start of the update.
1654 #ifndef NDEBUG
1655   assert(impl->pendingRootUpdates.erase(op) &&
1656          "operation did not have a pending in-place update");
1657 #endif
1658 }
1659 
cancelRootUpdate(Operation * op)1660 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
1661 #ifndef NDEBUG
1662   assert(impl->pendingRootUpdates.erase(op) &&
1663          "operation did not have a pending in-place update");
1664 #endif
1665   // Erase the last update for this operation.
1666   auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
1667   auto &rootUpdates = impl->rootUpdates;
1668   auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
1669   assert(it != rootUpdates.rend() && "no root update started on op");
1670   (*it).resetOperation();
1671   int updateIdx = std::prev(rootUpdates.rend()) - it;
1672   rootUpdates.erase(rootUpdates.begin() + updateIdx);
1673 }
1674 
notifyMatchFailure(Location loc,function_ref<void (Diagnostic &)> reasonCallback)1675 LogicalResult ConversionPatternRewriter::notifyMatchFailure(
1676     Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
1677   return impl->notifyMatchFailure(loc, reasonCallback);
1678 }
1679 
getImpl()1680 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
1681   return *impl;
1682 }
1683 
1684 //===----------------------------------------------------------------------===//
1685 // ConversionPattern
1686 //===----------------------------------------------------------------------===//
1687 
1688 LogicalResult
matchAndRewrite(Operation * op,PatternRewriter & rewriter) const1689 ConversionPattern::matchAndRewrite(Operation *op,
1690                                    PatternRewriter &rewriter) const {
1691   auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
1692   auto &rewriterImpl = dialectRewriter.getImpl();
1693 
1694   // Track the current conversion pattern type converter in the rewriter.
1695   llvm::SaveAndRestore<TypeConverter *> currentConverterGuard(
1696       rewriterImpl.currentTypeConverter, getTypeConverter());
1697 
1698   // Remap the operands of the operation.
1699   SmallVector<Value, 4> operands;
1700   if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter,
1701                                       op->getOperands(), operands))) {
1702     return failure();
1703   }
1704   return matchAndRewrite(op, operands, dialectRewriter);
1705 }
1706 
1707 //===----------------------------------------------------------------------===//
1708 // OperationLegalizer
1709 //===----------------------------------------------------------------------===//
1710 
1711 namespace {
1712 /// A set of rewrite patterns that can be used to legalize a given operation.
1713 using LegalizationPatterns = SmallVector<const Pattern *, 1>;
1714 
1715 /// This class defines a recursive operation legalizer.
1716 class OperationLegalizer {
1717 public:
1718   using LegalizationAction = ConversionTarget::LegalizationAction;
1719 
1720   OperationLegalizer(ConversionTarget &targetInfo,
1721                      const FrozenRewritePatternSet &patterns);
1722 
1723   /// Returns true if the given operation is known to be illegal on the target.
1724   bool isIllegal(Operation *op) const;
1725 
1726   /// Attempt to legalize the given operation. Returns success if the operation
1727   /// was legalized, failure otherwise.
1728   LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
1729 
1730   /// Returns the conversion target in use by the legalizer.
getTarget()1731   ConversionTarget &getTarget() { return target; }
1732 
1733 private:
1734   /// Attempt to legalize the given operation by folding it.
1735   LogicalResult legalizeWithFold(Operation *op,
1736                                  ConversionPatternRewriter &rewriter);
1737 
1738   /// Attempt to legalize the given operation by applying a pattern. Returns
1739   /// success if the operation was legalized, failure otherwise.
1740   LogicalResult legalizeWithPattern(Operation *op,
1741                                     ConversionPatternRewriter &rewriter);
1742 
1743   /// Return true if the given pattern may be applied to the given operation,
1744   /// false otherwise.
1745   bool canApplyPattern(Operation *op, const Pattern &pattern,
1746                        ConversionPatternRewriter &rewriter);
1747 
1748   /// Legalize the resultant IR after successfully applying the given pattern.
1749   LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
1750                                       ConversionPatternRewriter &rewriter,
1751                                       RewriterState &curState);
1752 
1753   /// Legalizes the actions registered during the execution of a pattern.
1754   LogicalResult legalizePatternBlockActions(Operation *op,
1755                                             ConversionPatternRewriter &rewriter,
1756                                             ConversionPatternRewriterImpl &impl,
1757                                             RewriterState &state,
1758                                             RewriterState &newState);
1759   LogicalResult legalizePatternCreatedOperations(
1760       ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1761       RewriterState &state, RewriterState &newState);
1762   LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
1763                                            ConversionPatternRewriterImpl &impl,
1764                                            RewriterState &state,
1765                                            RewriterState &newState);
1766 
1767   //===--------------------------------------------------------------------===//
1768   // Cost Model
1769   //===--------------------------------------------------------------------===//
1770 
1771   /// Build an optimistic legalization graph given the provided patterns. This
1772   /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
1773   /// patterns for operations that are not directly legal, but may be
1774   /// transitively legal for the current target given the provided patterns.
1775   void buildLegalizationGraph(
1776       LegalizationPatterns &anyOpLegalizerPatterns,
1777       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1778 
1779   /// Compute the benefit of each node within the computed legalization graph.
1780   /// This orders the patterns within 'legalizerPatterns' based upon two
1781   /// criteria:
1782   ///  1) Prefer patterns that have the lowest legalization depth, i.e.
1783   ///     represent the more direct mapping to the target.
1784   ///  2) When comparing patterns with the same legalization depth, prefer the
1785   ///     pattern with the highest PatternBenefit. This allows for users to
1786   ///     prefer specific legalizations over others.
1787   void computeLegalizationGraphBenefit(
1788       LegalizationPatterns &anyOpLegalizerPatterns,
1789       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1790 
1791   /// Compute the legalization depth when legalizing an operation of the given
1792   /// type.
1793   unsigned computeOpLegalizationDepth(
1794       OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
1795       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1796 
1797   /// Apply the conversion cost model to the given set of patterns, and return
1798   /// the smallest legalization depth of any of the patterns. See
1799   /// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
1800   unsigned applyCostModelToPatterns(
1801       LegalizationPatterns &patterns,
1802       DenseMap<OperationName, unsigned> &minOpPatternDepth,
1803       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1804 
1805   /// The current set of patterns that have been applied.
1806   SmallPtrSet<const Pattern *, 8> appliedPatterns;
1807 
1808   /// The legalization information provided by the target.
1809   ConversionTarget &target;
1810 
1811   /// The pattern applicator to use for conversions.
1812   PatternApplicator applicator;
1813 };
1814 } // namespace
1815 
OperationLegalizer(ConversionTarget & targetInfo,const FrozenRewritePatternSet & patterns)1816 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo,
1817                                        const FrozenRewritePatternSet &patterns)
1818     : target(targetInfo), applicator(patterns) {
1819   // The set of patterns that can be applied to illegal operations to transform
1820   // them into legal ones.
1821   DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
1822   LegalizationPatterns anyOpLegalizerPatterns;
1823 
1824   buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
1825   computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
1826 }
1827 
isIllegal(Operation * op) const1828 bool OperationLegalizer::isIllegal(Operation *op) const {
1829   return target.isIllegal(op);
1830 }
1831 
1832 LogicalResult
legalize(Operation * op,ConversionPatternRewriter & rewriter)1833 OperationLegalizer::legalize(Operation *op,
1834                              ConversionPatternRewriter &rewriter) {
1835 #ifndef NDEBUG
1836   const char *logLineComment =
1837       "//===-------------------------------------------===//\n";
1838 
1839   auto &logger = rewriter.getImpl().logger;
1840 #endif
1841   LLVM_DEBUG({
1842     logger.getOStream() << "\n";
1843     logger.startLine() << logLineComment;
1844     logger.startLine() << "Legalizing operation : '" << op->getName() << "'("
1845                        << op << ") {\n";
1846     logger.indent();
1847 
1848     // If the operation has no regions, just print it here.
1849     if (op->getNumRegions() == 0) {
1850       op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm());
1851       logger.getOStream() << "\n\n";
1852     }
1853   });
1854 
1855   // Check if this operation is legal on the target.
1856   if (auto legalityInfo = target.isLegal(op)) {
1857     LLVM_DEBUG({
1858       logSuccess(
1859           logger, "operation marked legal by the target{0}",
1860           legalityInfo->isRecursivelyLegal
1861               ? "; NOTE: operation is recursively legal; skipping internals"
1862               : "");
1863       logger.startLine() << logLineComment;
1864     });
1865 
1866     // If this operation is recursively legal, mark its children as ignored so
1867     // that we don't consider them for legalization.
1868     if (legalityInfo->isRecursivelyLegal)
1869       rewriter.getImpl().markNestedOpsIgnored(op);
1870     return success();
1871   }
1872 
1873   // Check to see if the operation is ignored and doesn't need to be converted.
1874   if (rewriter.getImpl().isOpIgnored(op)) {
1875     LLVM_DEBUG({
1876       logSuccess(logger, "operation marked 'ignored' during conversion");
1877       logger.startLine() << logLineComment;
1878     });
1879     return success();
1880   }
1881 
1882   // If the operation isn't legal, try to fold it in-place.
1883   // TODO: Should we always try to do this, even if the op is
1884   // already legal?
1885   if (succeeded(legalizeWithFold(op, rewriter))) {
1886     LLVM_DEBUG({
1887       logSuccess(logger, "operation was folded");
1888       logger.startLine() << logLineComment;
1889     });
1890     return success();
1891   }
1892 
1893   // Otherwise, we need to apply a legalization pattern to this operation.
1894   if (succeeded(legalizeWithPattern(op, rewriter))) {
1895     LLVM_DEBUG({
1896       logSuccess(logger, "");
1897       logger.startLine() << logLineComment;
1898     });
1899     return success();
1900   }
1901 
1902   LLVM_DEBUG({
1903     logFailure(logger, "no matched legalization pattern");
1904     logger.startLine() << logLineComment;
1905   });
1906   return failure();
1907 }
1908 
1909 LogicalResult
legalizeWithFold(Operation * op,ConversionPatternRewriter & rewriter)1910 OperationLegalizer::legalizeWithFold(Operation *op,
1911                                      ConversionPatternRewriter &rewriter) {
1912   auto &rewriterImpl = rewriter.getImpl();
1913   RewriterState curState = rewriterImpl.getCurrentState();
1914 
1915   LLVM_DEBUG({
1916     rewriterImpl.logger.startLine() << "* Fold {\n";
1917     rewriterImpl.logger.indent();
1918   });
1919 
1920   // Try to fold the operation.
1921   SmallVector<Value, 2> replacementValues;
1922   rewriter.setInsertionPoint(op);
1923   if (failed(rewriter.tryFold(op, replacementValues))) {
1924     LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
1925     return failure();
1926   }
1927 
1928   // Insert a replacement for 'op' with the folded replacement values.
1929   rewriter.replaceOp(op, replacementValues);
1930 
1931   // Recursively legalize any new constant operations.
1932   for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
1933        i != e; ++i) {
1934     Operation *cstOp = rewriterImpl.createdOps[i];
1935     if (failed(legalize(cstOp, rewriter))) {
1936       LLVM_DEBUG(logFailure(rewriterImpl.logger,
1937                             "failed to legalize generated constant '{0}'",
1938                             cstOp->getName()));
1939       rewriterImpl.resetState(curState);
1940       return failure();
1941     }
1942   }
1943 
1944   LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
1945   return success();
1946 }
1947 
1948 LogicalResult
legalizeWithPattern(Operation * op,ConversionPatternRewriter & rewriter)1949 OperationLegalizer::legalizeWithPattern(Operation *op,
1950                                         ConversionPatternRewriter &rewriter) {
1951   auto &rewriterImpl = rewriter.getImpl();
1952 
1953   // Functor that returns if the given pattern may be applied.
1954   auto canApply = [&](const Pattern &pattern) {
1955     return canApplyPattern(op, pattern, rewriter);
1956   };
1957 
1958   // Functor that cleans up the rewriter state after a pattern failed to match.
1959   RewriterState curState = rewriterImpl.getCurrentState();
1960   auto onFailure = [&](const Pattern &pattern) {
1961     LLVM_DEBUG({
1962       logFailure(rewriterImpl.logger, "pattern failed to match");
1963       if (rewriterImpl.notifyCallback) {
1964         Diagnostic diag(op->getLoc(), DiagnosticSeverity::Remark);
1965         diag << "Failed to apply pattern \"" << pattern.getDebugName()
1966              << "\" on op:\n"
1967              << *op;
1968         rewriterImpl.notifyCallback(diag);
1969       }
1970     });
1971     rewriterImpl.resetState(curState);
1972     appliedPatterns.erase(&pattern);
1973   };
1974 
1975   // Functor that performs additional legalization when a pattern is
1976   // successfully applied.
1977   auto onSuccess = [&](const Pattern &pattern) {
1978     auto result = legalizePatternResult(op, pattern, rewriter, curState);
1979     appliedPatterns.erase(&pattern);
1980     if (failed(result))
1981       rewriterImpl.resetState(curState);
1982     return result;
1983   };
1984 
1985   // Try to match and rewrite a pattern on this operation.
1986   return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
1987                                     onSuccess);
1988 }
1989 
canApplyPattern(Operation * op,const Pattern & pattern,ConversionPatternRewriter & rewriter)1990 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
1991                                          ConversionPatternRewriter &rewriter) {
1992   LLVM_DEBUG({
1993     auto &os = rewriter.getImpl().logger;
1994     os.getOStream() << "\n";
1995     os.startLine() << "* Pattern : '" << op->getName() << " -> (";
1996     llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream());
1997     os.getOStream() << ")' {\n";
1998     os.indent();
1999   });
2000 
2001   // Ensure that we don't cycle by not allowing the same pattern to be
2002   // applied twice in the same recursion stack if it is not known to be safe.
2003   if (!pattern.hasBoundedRewriteRecursion() &&
2004       !appliedPatterns.insert(&pattern).second) {
2005     LLVM_DEBUG(
2006         logFailure(rewriter.getImpl().logger, "pattern was already applied"));
2007     return false;
2008   }
2009   return true;
2010 }
2011 
2012 LogicalResult
legalizePatternResult(Operation * op,const Pattern & pattern,ConversionPatternRewriter & rewriter,RewriterState & curState)2013 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
2014                                           ConversionPatternRewriter &rewriter,
2015                                           RewriterState &curState) {
2016   auto &impl = rewriter.getImpl();
2017 
2018 #ifndef NDEBUG
2019   assert(impl.pendingRootUpdates.empty() && "dangling root updates");
2020 #endif
2021 
2022   // Check that the root was either replaced or updated in place.
2023   auto replacedRoot = [&] {
2024     return llvm::any_of(
2025         llvm::drop_begin(impl.replacements, curState.numReplacements),
2026         [op](auto &it) { return it.first == op; });
2027   };
2028   auto updatedRootInPlace = [&] {
2029     return llvm::any_of(
2030         llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
2031         [op](auto &state) { return state.getOperation() == op; });
2032   };
2033   (void)replacedRoot;
2034   (void)updatedRootInPlace;
2035   assert((replacedRoot() || updatedRootInPlace()) &&
2036          "expected pattern to replace the root operation");
2037 
2038   // Legalize each of the actions registered during application.
2039   RewriterState newState = impl.getCurrentState();
2040   if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
2041                                          newState)) ||
2042       failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
2043       failed(legalizePatternCreatedOperations(rewriter, impl, curState,
2044                                               newState))) {
2045     return failure();
2046   }
2047 
2048   LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
2049   return success();
2050 }
2051 
legalizePatternBlockActions(Operation * op,ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & impl,RewriterState & state,RewriterState & newState)2052 LogicalResult OperationLegalizer::legalizePatternBlockActions(
2053     Operation *op, ConversionPatternRewriter &rewriter,
2054     ConversionPatternRewriterImpl &impl, RewriterState &state,
2055     RewriterState &newState) {
2056   SmallPtrSet<Operation *, 16> operationsToIgnore;
2057 
2058   // If the pattern moved or created any blocks, make sure the types of block
2059   // arguments get legalized.
2060   for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
2061        ++i) {
2062     auto &action = impl.blockActions[i];
2063     if (action.kind == BlockActionKind::TypeConversion ||
2064         action.kind == BlockActionKind::Erase)
2065       continue;
2066     // Only check blocks outside of the current operation.
2067     Operation *parentOp = action.block->getParentOp();
2068     if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
2069       continue;
2070 
2071     // If the region of the block has a type converter, try to convert the block
2072     // directly.
2073     if (auto *converter =
2074             impl.argConverter.getConverter(action.block->getParent())) {
2075       if (failed(impl.convertBlockSignature(action.block, converter))) {
2076         LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
2077                                            "block"));
2078         return failure();
2079       }
2080       continue;
2081     }
2082 
2083     // Otherwise, check that this operation isn't one generated by this pattern.
2084     // This is because we will attempt to legalize the parent operation, and
2085     // blocks in regions created by this pattern will already be legalized later
2086     // on. If we haven't built the set yet, build it now.
2087     if (operationsToIgnore.empty()) {
2088       auto createdOps = ArrayRef<Operation *>(impl.createdOps)
2089                             .drop_front(state.numCreatedOps);
2090       operationsToIgnore.insert(createdOps.begin(), createdOps.end());
2091     }
2092 
2093     // If this operation should be considered for re-legalization, try it.
2094     if (operationsToIgnore.insert(parentOp).second &&
2095         failed(legalize(parentOp, rewriter))) {
2096       LLVM_DEBUG(logFailure(
2097           impl.logger, "operation '{0}'({1}) became illegal after block action",
2098           parentOp->getName(), parentOp));
2099       return failure();
2100     }
2101   }
2102   return success();
2103 }
2104 
legalizePatternCreatedOperations(ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & impl,RewriterState & state,RewriterState & newState)2105 LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
2106     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
2107     RewriterState &state, RewriterState &newState) {
2108   for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
2109     Operation *op = impl.createdOps[i];
2110     if (failed(legalize(op, rewriter))) {
2111       LLVM_DEBUG(logFailure(impl.logger,
2112                             "failed to legalize generated operation '{0}'({1})",
2113                             op->getName(), op));
2114       return failure();
2115     }
2116   }
2117   return success();
2118 }
2119 
legalizePatternRootUpdates(ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & impl,RewriterState & state,RewriterState & newState)2120 LogicalResult OperationLegalizer::legalizePatternRootUpdates(
2121     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
2122     RewriterState &state, RewriterState &newState) {
2123   for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
2124     Operation *op = impl.rootUpdates[i].getOperation();
2125     if (failed(legalize(op, rewriter))) {
2126       LLVM_DEBUG(logFailure(
2127           impl.logger, "failed to legalize operation updated in-place '{0}'",
2128           op->getName()));
2129       return failure();
2130     }
2131   }
2132   return success();
2133 }
2134 
2135 //===----------------------------------------------------------------------===//
2136 // Cost Model
2137 
buildLegalizationGraph(LegalizationPatterns & anyOpLegalizerPatterns,DenseMap<OperationName,LegalizationPatterns> & legalizerPatterns)2138 void OperationLegalizer::buildLegalizationGraph(
2139     LegalizationPatterns &anyOpLegalizerPatterns,
2140     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2141   // A mapping between an operation and a set of operations that can be used to
2142   // generate it.
2143   DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
2144   // A mapping between an operation and any currently invalid patterns it has.
2145   DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
2146   // A worklist of patterns to consider for legality.
2147   SetVector<const Pattern *> patternWorklist;
2148 
2149   // Build the mapping from operations to the parent ops that may generate them.
2150   applicator.walkAllPatterns([&](const Pattern &pattern) {
2151     Optional<OperationName> root = pattern.getRootKind();
2152 
2153     // If the pattern has no specific root, we can't analyze the relationship
2154     // between the root op and generated operations. Given that, add all such
2155     // patterns to the legalization set.
2156     if (!root) {
2157       anyOpLegalizerPatterns.push_back(&pattern);
2158       return;
2159     }
2160 
2161     // Skip operations that are always known to be legal.
2162     if (target.getOpAction(*root) == LegalizationAction::Legal)
2163       return;
2164 
2165     // Add this pattern to the invalid set for the root op and record this root
2166     // as a parent for any generated operations.
2167     invalidPatterns[*root].insert(&pattern);
2168     for (auto op : pattern.getGeneratedOps())
2169       parentOps[op].insert(*root);
2170 
2171     // Add this pattern to the worklist.
2172     patternWorklist.insert(&pattern);
2173   });
2174 
2175   // If there are any patterns that don't have a specific root kind, we can't
2176   // make direct assumptions about what operations will never be legalized.
2177   // Note: Technically we could, but it would require an analysis that may
2178   // recurse into itself. It would be better to perform this kind of filtering
2179   // at a higher level than here anyways.
2180   if (!anyOpLegalizerPatterns.empty()) {
2181     for (const Pattern *pattern : patternWorklist)
2182       legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2183     return;
2184   }
2185 
2186   while (!patternWorklist.empty()) {
2187     auto *pattern = patternWorklist.pop_back_val();
2188 
2189     // Check to see if any of the generated operations are invalid.
2190     if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
2191           Optional<LegalizationAction> action = target.getOpAction(op);
2192           return !legalizerPatterns.count(op) &&
2193                  (!action || action == LegalizationAction::Illegal);
2194         }))
2195       continue;
2196 
2197     // Otherwise, if all of the generated operation are valid, this op is now
2198     // legal so add all of the child patterns to the worklist.
2199     legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2200     invalidPatterns[*pattern->getRootKind()].erase(pattern);
2201 
2202     // Add any invalid patterns of the parent operations to see if they have now
2203     // become legal.
2204     for (auto op : parentOps[*pattern->getRootKind()])
2205       patternWorklist.set_union(invalidPatterns[op]);
2206   }
2207 }
2208 
computeLegalizationGraphBenefit(LegalizationPatterns & anyOpLegalizerPatterns,DenseMap<OperationName,LegalizationPatterns> & legalizerPatterns)2209 void OperationLegalizer::computeLegalizationGraphBenefit(
2210     LegalizationPatterns &anyOpLegalizerPatterns,
2211     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2212   // The smallest pattern depth, when legalizing an operation.
2213   DenseMap<OperationName, unsigned> minOpPatternDepth;
2214 
2215   // For each operation that is transitively legal, compute a cost for it.
2216   for (auto &opIt : legalizerPatterns)
2217     if (!minOpPatternDepth.count(opIt.first))
2218       computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
2219                                  legalizerPatterns);
2220 
2221   // Apply the cost model to the patterns that can match any operation. Those
2222   // with a specific operation type are already resolved when computing the op
2223   // legalization depth.
2224   if (!anyOpLegalizerPatterns.empty())
2225     applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
2226                              legalizerPatterns);
2227 
2228   // Apply a cost model to the pattern applicator. We order patterns first by
2229   // depth then benefit. `legalizerPatterns` contains per-op patterns by
2230   // decreasing benefit.
2231   applicator.applyCostModel([&](const Pattern &pattern) {
2232     ArrayRef<const Pattern *> orderedPatternList;
2233     if (Optional<OperationName> rootName = pattern.getRootKind())
2234       orderedPatternList = legalizerPatterns[*rootName];
2235     else
2236       orderedPatternList = anyOpLegalizerPatterns;
2237 
2238     // If the pattern is not found, then it was removed and cannot be matched.
2239     auto *it = llvm::find(orderedPatternList, &pattern);
2240     if (it == orderedPatternList.end())
2241       return PatternBenefit::impossibleToMatch();
2242 
2243     // Patterns found earlier in the list have higher benefit.
2244     return PatternBenefit(std::distance(it, orderedPatternList.end()));
2245   });
2246 }
2247 
computeOpLegalizationDepth(OperationName op,DenseMap<OperationName,unsigned> & minOpPatternDepth,DenseMap<OperationName,LegalizationPatterns> & legalizerPatterns)2248 unsigned OperationLegalizer::computeOpLegalizationDepth(
2249     OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
2250     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2251   // Check for existing depth.
2252   auto depthIt = minOpPatternDepth.find(op);
2253   if (depthIt != minOpPatternDepth.end())
2254     return depthIt->second;
2255 
2256   // If a mapping for this operation does not exist, then this operation
2257   // is always legal. Return 0 as the depth for a directly legal operation.
2258   auto opPatternsIt = legalizerPatterns.find(op);
2259   if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
2260     return 0u;
2261 
2262   // Record this initial depth in case we encounter this op again when
2263   // recursively computing the depth.
2264   minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
2265 
2266   // Apply the cost model to the operation patterns, and update the minimum
2267   // depth.
2268   unsigned minDepth = applyCostModelToPatterns(
2269       opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
2270   minOpPatternDepth[op] = minDepth;
2271   return minDepth;
2272 }
2273 
applyCostModelToPatterns(LegalizationPatterns & patterns,DenseMap<OperationName,unsigned> & minOpPatternDepth,DenseMap<OperationName,LegalizationPatterns> & legalizerPatterns)2274 unsigned OperationLegalizer::applyCostModelToPatterns(
2275     LegalizationPatterns &patterns,
2276     DenseMap<OperationName, unsigned> &minOpPatternDepth,
2277     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2278   unsigned minDepth = std::numeric_limits<unsigned>::max();
2279 
2280   // Compute the depth for each pattern within the set.
2281   SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
2282   patternsByDepth.reserve(patterns.size());
2283   for (const Pattern *pattern : patterns) {
2284     unsigned depth = 1;
2285     for (auto generatedOp : pattern->getGeneratedOps()) {
2286       unsigned generatedOpDepth = computeOpLegalizationDepth(
2287           generatedOp, minOpPatternDepth, legalizerPatterns);
2288       depth = std::max(depth, generatedOpDepth + 1);
2289     }
2290     patternsByDepth.emplace_back(pattern, depth);
2291 
2292     // Update the minimum depth of the pattern list.
2293     minDepth = std::min(minDepth, depth);
2294   }
2295 
2296   // If the operation only has one legalization pattern, there is no need to
2297   // sort them.
2298   if (patternsByDepth.size() == 1)
2299     return minDepth;
2300 
2301   // Sort the patterns by those likely to be the most beneficial.
2302   llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(),
2303                        [](const std::pair<const Pattern *, unsigned> *lhs,
2304                           const std::pair<const Pattern *, unsigned> *rhs) {
2305                          // First sort by the smaller pattern legalization
2306                          // depth.
2307                          if (lhs->second != rhs->second)
2308                            return llvm::array_pod_sort_comparator<unsigned>(
2309                                &lhs->second, &rhs->second);
2310 
2311                          // Then sort by the larger pattern benefit.
2312                          auto lhsBenefit = lhs->first->getBenefit();
2313                          auto rhsBenefit = rhs->first->getBenefit();
2314                          return llvm::array_pod_sort_comparator<PatternBenefit>(
2315                              &rhsBenefit, &lhsBenefit);
2316                        });
2317 
2318   // Update the legalization pattern to use the new sorted list.
2319   patterns.clear();
2320   for (auto &patternIt : patternsByDepth)
2321     patterns.push_back(patternIt.first);
2322   return minDepth;
2323 }
2324 
2325 //===----------------------------------------------------------------------===//
2326 // OperationConverter
2327 //===----------------------------------------------------------------------===//
2328 namespace {
2329 enum OpConversionMode {
2330   /// In this mode, the conversion will ignore failed conversions to allow
2331   /// illegal operations to co-exist in the IR.
2332   Partial,
2333 
2334   /// In this mode, all operations must be legal for the given target for the
2335   /// conversion to succeed.
2336   Full,
2337 
2338   /// In this mode, operations are analyzed for legality. No actual rewrites are
2339   /// applied to the operations on success.
2340   Analysis,
2341 };
2342 
2343 // This class converts operations to a given conversion target via a set of
2344 // rewrite patterns. The conversion behaves differently depending on the
2345 // conversion mode.
2346 struct OperationConverter {
OperationConverter__anonef530a331811::OperationConverter2347   explicit OperationConverter(ConversionTarget &target,
2348                               const FrozenRewritePatternSet &patterns,
2349                               OpConversionMode mode,
2350                               DenseSet<Operation *> *trackedOps = nullptr)
2351       : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}
2352 
2353   /// Converts the given operations to the conversion target.
2354   LogicalResult
2355   convertOperations(ArrayRef<Operation *> ops,
2356                     function_ref<void(Diagnostic &)> notifyCallback = nullptr);
2357 
2358 private:
2359   /// Converts an operation with the given rewriter.
2360   LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
2361 
2362   /// This method is called after the conversion process to legalize any
2363   /// remaining artifacts and complete the conversion.
2364   LogicalResult finalize(ConversionPatternRewriter &rewriter);
2365 
2366   /// Legalize the types of converted block arguments.
2367   LogicalResult
2368   legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
2369                                  ConversionPatternRewriterImpl &rewriterImpl);
2370 
2371   /// Legalize any unresolved type materializations.
2372   LogicalResult legalizeUnresolvedMaterializations(
2373       ConversionPatternRewriter &rewriter,
2374       ConversionPatternRewriterImpl &rewriterImpl,
2375       Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping);
2376 
2377   /// Legalize an operation result that was marked as "erased".
2378   LogicalResult
2379   legalizeErasedResult(Operation *op, OpResult result,
2380                        ConversionPatternRewriterImpl &rewriterImpl);
2381 
2382   /// Legalize an operation result that was replaced with a value of a different
2383   /// type.
2384   LogicalResult legalizeChangedResultType(
2385       Operation *op, OpResult result, Value newValue,
2386       TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2387       ConversionPatternRewriterImpl &rewriterImpl,
2388       const DenseMap<Value, SmallVector<Value>> &inverseMapping);
2389 
2390   /// The legalizer to use when converting operations.
2391   OperationLegalizer opLegalizer;
2392 
2393   /// The conversion mode to use when legalizing operations.
2394   OpConversionMode mode;
2395 
2396   /// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
2397   /// this is populated with ops found to be legalizable to the target.
2398   /// When mode == OpConversionMode::Partial, this is populated with ops found
2399   /// *not* to be legalizable to the target.
2400   DenseSet<Operation *> *trackedOps;
2401 };
2402 } // namespace
2403 
convert(ConversionPatternRewriter & rewriter,Operation * op)2404 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
2405                                           Operation *op) {
2406   // Legalize the given operation.
2407   if (failed(opLegalizer.legalize(op, rewriter))) {
2408     // Handle the case of a failed conversion for each of the different modes.
2409     // Full conversions expect all operations to be converted.
2410     if (mode == OpConversionMode::Full)
2411       return op->emitError()
2412              << "failed to legalize operation '" << op->getName() << "'";
2413     // Partial conversions allow conversions to fail iff the operation was not
2414     // explicitly marked as illegal. If the user provided a nonlegalizableOps
2415     // set, non-legalizable ops are included.
2416     if (mode == OpConversionMode::Partial) {
2417       if (opLegalizer.isIllegal(op))
2418         return op->emitError()
2419                << "failed to legalize operation '" << op->getName()
2420                << "' that was explicitly marked illegal";
2421       if (trackedOps)
2422         trackedOps->insert(op);
2423     }
2424   } else if (mode == OpConversionMode::Analysis) {
2425     // Analysis conversions don't fail if any operations fail to legalize,
2426     // they are only interested in the operations that were successfully
2427     // legalized.
2428     trackedOps->insert(op);
2429   }
2430   return success();
2431 }
2432 
convertOperations(ArrayRef<Operation * > ops,function_ref<void (Diagnostic &)> notifyCallback)2433 LogicalResult OperationConverter::convertOperations(
2434     ArrayRef<Operation *> ops,
2435     function_ref<void(Diagnostic &)> notifyCallback) {
2436   if (ops.empty())
2437     return success();
2438   ConversionTarget &target = opLegalizer.getTarget();
2439 
2440   // Compute the set of operations and blocks to convert.
2441   SmallVector<Operation *> toConvert;
2442   for (auto *op : ops) {
2443     toConvert.emplace_back(op);
2444     for (auto &region : op->getRegions())
2445       if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
2446                                       toConvert, &target)))
2447         return failure();
2448   }
2449 
2450   // Convert each operation and discard rewrites on failure.
2451   ConversionPatternRewriter rewriter(ops.front()->getContext());
2452   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2453   rewriterImpl.notifyCallback = notifyCallback;
2454 
2455   for (auto *op : toConvert)
2456     if (failed(convert(rewriter, op)))
2457       return rewriterImpl.discardRewrites(), failure();
2458 
2459   // Now that all of the operations have been converted, finalize the conversion
2460   // process to ensure any lingering conversion artifacts are cleaned up and
2461   // legalized.
2462   if (failed(finalize(rewriter)))
2463     return rewriterImpl.discardRewrites(), failure();
2464 
2465   // After a successful conversion, apply rewrites if this is not an analysis
2466   // conversion.
2467   if (mode == OpConversionMode::Analysis) {
2468     rewriterImpl.discardRewrites();
2469   } else {
2470     rewriterImpl.applyRewrites();
2471 
2472     // It is possible for a later pattern to erase an op that was originally
2473     // identified as illegal and added to the trackedOps, remove it now after
2474     // replacements have been computed.
2475     if (trackedOps)
2476       for (auto &repl : rewriterImpl.replacements)
2477         trackedOps->erase(repl.first);
2478   }
2479   return success();
2480 }
2481 
2482 LogicalResult
finalize(ConversionPatternRewriter & rewriter)2483 OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
2484   Optional<DenseMap<Value, SmallVector<Value>>> inverseMapping;
2485   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2486   if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl,
2487                                                 inverseMapping)) ||
2488       failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
2489     return failure();
2490 
2491   if (rewriterImpl.operationsWithChangedResults.empty())
2492     return success();
2493 
2494   // Process requested operation replacements.
2495   for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
2496        i != e; ++i) {
2497     unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
2498     auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
2499     for (OpResult result : repl.first->getResults()) {
2500       Value newValue = rewriterImpl.mapping.lookupOrNull(result);
2501 
2502       // If the operation result was replaced with null, all of the uses of this
2503       // value should be replaced.
2504       if (!newValue) {
2505         if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
2506           return failure();
2507         continue;
2508       }
2509 
2510       // Otherwise, check to see if the type of the result changed.
2511       if (result.getType() == newValue.getType())
2512         continue;
2513 
2514       // Compute the inverse mapping only if it is really needed.
2515       if (!inverseMapping)
2516         inverseMapping = rewriterImpl.mapping.getInverse();
2517 
2518       // Legalize this result.
2519       rewriter.setInsertionPoint(repl.first);
2520       if (failed(legalizeChangedResultType(repl.first, result, newValue,
2521                                            repl.second.converter, rewriter,
2522                                            rewriterImpl, *inverseMapping)))
2523         return failure();
2524 
2525       // Update the end iterator for this loop in the case it was updated
2526       // when legalizing generated conversion operations.
2527       e = rewriterImpl.operationsWithChangedResults.size();
2528     }
2529   }
2530   return success();
2531 }
2532 
legalizeConvertedArgumentTypes(ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & rewriterImpl)2533 LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
2534     ConversionPatternRewriter &rewriter,
2535     ConversionPatternRewriterImpl &rewriterImpl) {
2536   // Functor used to check if all users of a value will be dead after
2537   // conversion.
2538   auto findLiveUser = [&](Value val) {
2539     auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
2540       return rewriterImpl.isOpIgnored(user);
2541     });
2542     return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
2543   };
2544   return rewriterImpl.argConverter.materializeLiveConversions(
2545       rewriterImpl.mapping, rewriter, findLiveUser);
2546 }
2547 
2548 /// Replace the results of a materialization operation with the given values.
2549 static void
replaceMaterialization(ConversionPatternRewriterImpl & rewriterImpl,ResultRange matResults,ValueRange values,DenseMap<Value,SmallVector<Value>> & inverseMapping)2550 replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl,
2551                        ResultRange matResults, ValueRange values,
2552                        DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2553   matResults.replaceAllUsesWith(values);
2554 
2555   // For each of the materialization results, update the inverse mappings to
2556   // point to the replacement values.
2557   for (auto it : llvm::zip(matResults, values)) {
2558     Value matResult, newValue;
2559     std::tie(matResult, newValue) = it;
2560     auto inverseMapIt = inverseMapping.find(matResult);
2561     if (inverseMapIt == inverseMapping.end())
2562       continue;
2563 
2564     // Update the reverse mapping, or remove the mapping if we couldn't update
2565     // it. Not being able to update signals that the mapping would have become
2566     // circular (i.e. %foo -> newValue -> %foo), which may occur as values are
2567     // propagated through temporary materializations. We simply drop the
2568     // mapping, and let the post-conversion replacement logic handle updating
2569     // uses.
2570     for (Value inverseMapVal : inverseMapIt->second)
2571       if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue))
2572         rewriterImpl.mapping.erase(inverseMapVal);
2573   }
2574 }
2575 
2576 /// Compute all of the unresolved materializations that will persist beyond the
2577 /// conversion process, and require inserting a proper user materialization for.
computeNecessaryMaterializations(DenseMap<Operation *,UnresolvedMaterialization * > & materializationOps,ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & rewriterImpl,DenseMap<Value,SmallVector<Value>> & inverseMapping,SetVector<UnresolvedMaterialization * > & necessaryMaterializations)2578 static void computeNecessaryMaterializations(
2579     DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
2580     ConversionPatternRewriter &rewriter,
2581     ConversionPatternRewriterImpl &rewriterImpl,
2582     DenseMap<Value, SmallVector<Value>> &inverseMapping,
2583     SetVector<UnresolvedMaterialization *> &necessaryMaterializations) {
2584   auto isLive = [&](Value value) {
2585     auto findFn = [&](Operation *user) {
2586       auto matIt = materializationOps.find(user);
2587       if (matIt != materializationOps.end())
2588         return !necessaryMaterializations.count(matIt->second);
2589       return rewriterImpl.isOpIgnored(user);
2590     };
2591     // This value may be replacing another value that has a live user.
2592     for (Value inv : inverseMapping.lookup(value))
2593       if (llvm::find_if_not(inv.getUsers(), findFn) != inv.user_end())
2594         return true;
2595     // Or have live users itself.
2596     return llvm::find_if_not(value.getUsers(), findFn) != value.user_end();
2597   };
2598 
2599   llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue =
2600       [&](Value invalidRoot, Value value, Type type) {
2601         // Check to see if the input operation was remapped to a variant of the
2602         // output.
2603         Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
2604         if (remappedValue.getType() == type && remappedValue != invalidRoot)
2605           return remappedValue;
2606 
2607         // Check to see if the input is a materialization operation that
2608         // provides an inverse conversion. We just check blindly for
2609         // UnrealizedConversionCastOp here, but it has no effect on correctness.
2610         auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>();
2611         if (inputCastOp && inputCastOp->getNumOperands() == 1)
2612           return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0),
2613                                      type);
2614 
2615         return Value();
2616       };
2617 
2618   SetVector<UnresolvedMaterialization *> worklist;
2619   for (auto &mat : rewriterImpl.unresolvedMaterializations) {
2620     materializationOps.try_emplace(mat.getOp(), &mat);
2621     worklist.insert(&mat);
2622   }
2623   while (!worklist.empty()) {
2624     UnresolvedMaterialization *mat = worklist.pop_back_val();
2625     UnrealizedConversionCastOp op = mat->getOp();
2626 
2627     // We currently only handle target materializations here.
2628     assert(op->getNumResults() == 1 && "unexpected materialization type");
2629     OpResult opResult = op->getOpResult(0);
2630     Type outputType = opResult.getType();
2631     Operation::operand_range inputOperands = op.getOperands();
2632 
2633     // Try to forward propagate operands for user conversion casts that result
2634     // in the input types of the current cast.
2635     for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) {
2636       auto castOp = dyn_cast<UnrealizedConversionCastOp>(user);
2637       if (!castOp)
2638         continue;
2639       if (castOp->getResultTypes() == inputOperands.getTypes()) {
2640         replaceMaterialization(rewriterImpl, opResult, inputOperands,
2641                                inverseMapping);
2642         necessaryMaterializations.remove(materializationOps.lookup(user));
2643       }
2644     }
2645 
2646     // Try to avoid materializing a resolved materialization if possible.
2647     // Handle the case of a 1-1 materialization.
2648     if (inputOperands.size() == 1) {
2649       // Check to see if the input operation was remapped to a variant of the
2650       // output.
2651       Value remappedValue =
2652           lookupRemappedValue(opResult, inputOperands[0], outputType);
2653       if (remappedValue && remappedValue != opResult) {
2654         replaceMaterialization(rewriterImpl, opResult, remappedValue,
2655                                inverseMapping);
2656         necessaryMaterializations.remove(mat);
2657         continue;
2658       }
2659     } else {
2660       // TODO: Avoid materializing other types of conversions here.
2661     }
2662 
2663     // Check to see if this is an argument materialization.
2664     auto isBlockArg = [](Value v) { return v.isa<BlockArgument>(); };
2665     if (llvm::any_of(op->getOperands(), isBlockArg) ||
2666         llvm::any_of(inverseMapping[op->getResult(0)], isBlockArg)) {
2667       mat->setKind(UnresolvedMaterialization::Argument);
2668     }
2669 
2670     // If the materialization does not have any live users, we don't need to
2671     // generate a user materialization for it.
2672     // FIXME: For argument materializations, we currently need to check if any
2673     // of the inverse mapped values are used because some patterns expect blind
2674     // value replacement even if the types differ in some cases. When those
2675     // patterns are fixed, we can drop the argument special case here.
2676     bool isMaterializationLive = isLive(opResult);
2677     if (mat->getKind() == UnresolvedMaterialization::Argument)
2678       isMaterializationLive |= llvm::any_of(inverseMapping[opResult], isLive);
2679     if (!isMaterializationLive)
2680       continue;
2681     if (!necessaryMaterializations.insert(mat))
2682       continue;
2683 
2684     // Reprocess input materializations to see if they have an updated status.
2685     for (Value input : inputOperands) {
2686       if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) {
2687         if (auto *mat = materializationOps.lookup(parentOp))
2688           worklist.insert(mat);
2689       }
2690     }
2691   }
2692 }
2693 
2694 /// Legalize the given unresolved materialization. Returns success if the
2695 /// materialization was legalized, failure otherise.
legalizeUnresolvedMaterialization(UnresolvedMaterialization & mat,DenseMap<Operation *,UnresolvedMaterialization * > & materializationOps,ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & rewriterImpl,DenseMap<Value,SmallVector<Value>> & inverseMapping)2696 static LogicalResult legalizeUnresolvedMaterialization(
2697     UnresolvedMaterialization &mat,
2698     DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
2699     ConversionPatternRewriter &rewriter,
2700     ConversionPatternRewriterImpl &rewriterImpl,
2701     DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2702   auto findLiveUser = [&](auto &&users) {
2703     auto liveUserIt = llvm::find_if_not(
2704         users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); });
2705     return liveUserIt == users.end() ? nullptr : *liveUserIt;
2706   };
2707 
2708   llvm::unique_function<Value(Value, Type)> lookupRemappedValue =
2709       [&](Value value, Type type) {
2710         // Check to see if the input operation was remapped to a variant of the
2711         // output.
2712         Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
2713         if (remappedValue.getType() == type)
2714           return remappedValue;
2715         return Value();
2716       };
2717 
2718   UnrealizedConversionCastOp op = mat.getOp();
2719   if (!rewriterImpl.ignoredOps.insert(op))
2720     return success();
2721 
2722   // We currently only handle target materializations here.
2723   OpResult opResult = op->getOpResult(0);
2724   Operation::operand_range inputOperands = op.getOperands();
2725   Type outputType = opResult.getType();
2726 
2727   // If any input to this materialization is another materialization, resolve
2728   // the input first.
2729   for (Value value : op->getOperands()) {
2730     auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>();
2731     if (!valueCast)
2732       continue;
2733 
2734     auto matIt = materializationOps.find(valueCast);
2735     if (matIt != materializationOps.end())
2736       if (failed(legalizeUnresolvedMaterialization(
2737               *matIt->second, materializationOps, rewriter, rewriterImpl,
2738               inverseMapping)))
2739         return failure();
2740   }
2741 
2742   // Perform a last ditch attempt to avoid materializing a resolved
2743   // materialization if possible.
2744   // Handle the case of a 1-1 materialization.
2745   if (inputOperands.size() == 1) {
2746     // Check to see if the input operation was remapped to a variant of the
2747     // output.
2748     Value remappedValue = lookupRemappedValue(inputOperands[0], outputType);
2749     if (remappedValue && remappedValue != opResult) {
2750       replaceMaterialization(rewriterImpl, opResult, remappedValue,
2751                              inverseMapping);
2752       return success();
2753     }
2754   } else {
2755     // TODO: Avoid materializing other types of conversions here.
2756   }
2757 
2758   // Try to materialize the conversion.
2759   if (TypeConverter *converter = mat.getConverter()) {
2760     // FIXME: Determine a suitable insertion location when there are multiple
2761     // inputs.
2762     if (inputOperands.size() == 1)
2763       rewriter.setInsertionPointAfterValue(inputOperands.front());
2764     else
2765       rewriter.setInsertionPoint(op);
2766 
2767     Value newMaterialization;
2768     switch (mat.getKind()) {
2769     case UnresolvedMaterialization::Argument:
2770       // Try to materialize an argument conversion.
2771       // FIXME: The current argument materialization hook expects the original
2772       // output type, even though it doesn't use that as the actual output type
2773       // of the generated IR. The output type is just used as an indicator of
2774       // the type of materialization to do. This behavior is really awkward in
2775       // that it diverges from the behavior of the other hooks, and can be
2776       // easily misunderstood. We should clean up the argument hooks to better
2777       // represent the desired invariants we actually care about.
2778       newMaterialization = converter->materializeArgumentConversion(
2779           rewriter, op->getLoc(), mat.getOrigOutputType(), inputOperands);
2780       if (newMaterialization)
2781         break;
2782 
2783       // If an argument materialization failed, fallback to trying a target
2784       // materialization.
2785       LLVM_FALLTHROUGH;
2786     case UnresolvedMaterialization::Target:
2787       newMaterialization = converter->materializeTargetConversion(
2788           rewriter, op->getLoc(), outputType, inputOperands);
2789       break;
2790     }
2791     if (newMaterialization) {
2792       replaceMaterialization(rewriterImpl, opResult, newMaterialization,
2793                              inverseMapping);
2794       return success();
2795     }
2796   }
2797 
2798   InFlightDiagnostic diag = op->emitError()
2799                             << "failed to legalize unresolved materialization "
2800                                "from "
2801                             << inputOperands.getTypes() << " to " << outputType
2802                             << " that remained live after conversion";
2803   if (Operation *liveUser = findLiveUser(op->getUsers())) {
2804     diag.attachNote(liveUser->getLoc())
2805         << "see existing live user here: " << *liveUser;
2806   }
2807   return failure();
2808 }
2809 
legalizeUnresolvedMaterializations(ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & rewriterImpl,Optional<DenseMap<Value,SmallVector<Value>>> & inverseMapping)2810 LogicalResult OperationConverter::legalizeUnresolvedMaterializations(
2811     ConversionPatternRewriter &rewriter,
2812     ConversionPatternRewriterImpl &rewriterImpl,
2813     Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) {
2814   if (rewriterImpl.unresolvedMaterializations.empty())
2815     return success();
2816   inverseMapping = rewriterImpl.mapping.getInverse();
2817 
2818   // As an initial step, compute all of the inserted materializations that we
2819   // expect to persist beyond the conversion process.
2820   DenseMap<Operation *, UnresolvedMaterialization *> materializationOps;
2821   SetVector<UnresolvedMaterialization *> necessaryMaterializations;
2822   computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl,
2823                                    *inverseMapping, necessaryMaterializations);
2824 
2825   // Once computed, legalize any necessary materializations.
2826   for (auto *mat : necessaryMaterializations) {
2827     if (failed(legalizeUnresolvedMaterialization(
2828             *mat, materializationOps, rewriter, rewriterImpl, *inverseMapping)))
2829       return failure();
2830   }
2831   return success();
2832 }
2833 
legalizeErasedResult(Operation * op,OpResult result,ConversionPatternRewriterImpl & rewriterImpl)2834 LogicalResult OperationConverter::legalizeErasedResult(
2835     Operation *op, OpResult result,
2836     ConversionPatternRewriterImpl &rewriterImpl) {
2837   // If the operation result was replaced with null, all of the uses of this
2838   // value should be replaced.
2839   auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
2840     return rewriterImpl.isOpIgnored(user);
2841   });
2842   if (liveUserIt != result.user_end()) {
2843     InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
2844                               << op->getName() << "' marked as erased";
2845     diag.attachNote(liveUserIt->getLoc())
2846         << "found live user of result #" << result.getResultNumber() << ": "
2847         << *liveUserIt;
2848     return failure();
2849   }
2850   return success();
2851 }
2852 
2853 /// Finds a user of the given value, or of any other value that the given value
2854 /// replaced, that was not replaced in the conversion process.
findLiveUserOfReplaced(Value initialValue,ConversionPatternRewriterImpl & rewriterImpl,const DenseMap<Value,SmallVector<Value>> & inverseMapping)2855 static Operation *findLiveUserOfReplaced(
2856     Value initialValue, ConversionPatternRewriterImpl &rewriterImpl,
2857     const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2858   SmallVector<Value> worklist(1, initialValue);
2859   while (!worklist.empty()) {
2860     Value value = worklist.pop_back_val();
2861 
2862     // Walk the users of this value to see if there are any live users that
2863     // weren't replaced during conversion.
2864     auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
2865       return rewriterImpl.isOpIgnored(user);
2866     });
2867     if (liveUserIt != value.user_end())
2868       return *liveUserIt;
2869     auto mapIt = inverseMapping.find(value);
2870     if (mapIt != inverseMapping.end())
2871       worklist.append(mapIt->second);
2872   }
2873   return nullptr;
2874 }
2875 
legalizeChangedResultType(Operation * op,OpResult result,Value newValue,TypeConverter * replConverter,ConversionPatternRewriter & rewriter,ConversionPatternRewriterImpl & rewriterImpl,const DenseMap<Value,SmallVector<Value>> & inverseMapping)2876 LogicalResult OperationConverter::legalizeChangedResultType(
2877     Operation *op, OpResult result, Value newValue,
2878     TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2879     ConversionPatternRewriterImpl &rewriterImpl,
2880     const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2881   Operation *liveUser =
2882       findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
2883   if (!liveUser)
2884     return success();
2885 
2886   // Functor used to emit a conversion error for a failed materialization.
2887   auto emitConversionError = [&] {
2888     InFlightDiagnostic diag = op->emitError()
2889                               << "failed to materialize conversion for result #"
2890                               << result.getResultNumber() << " of operation '"
2891                               << op->getName()
2892                               << "' that remained live after conversion";
2893     diag.attachNote(liveUser->getLoc())
2894         << "see existing live user here: " << *liveUser;
2895     return failure();
2896   };
2897 
2898   // If the replacement has a type converter, attempt to materialize a
2899   // conversion back to the original type.
2900   if (!replConverter)
2901     return emitConversionError();
2902 
2903   // Materialize a conversion for this live result value.
2904   Type resultType = result.getType();
2905   Value convertedValue = replConverter->materializeSourceConversion(
2906       rewriter, op->getLoc(), resultType, newValue);
2907   if (!convertedValue)
2908     return emitConversionError();
2909 
2910   rewriterImpl.mapping.map(result, convertedValue);
2911   return success();
2912 }
2913 
2914 //===----------------------------------------------------------------------===//
2915 // Type Conversion
2916 //===----------------------------------------------------------------------===//
2917 
addInputs(unsigned origInputNo,ArrayRef<Type> types)2918 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
2919                                                    ArrayRef<Type> types) {
2920   assert(!types.empty() && "expected valid types");
2921   remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
2922   addInputs(types);
2923 }
2924 
addInputs(ArrayRef<Type> types)2925 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
2926   assert(!types.empty() &&
2927          "1->0 type remappings don't need to be added explicitly");
2928   argTypes.append(types.begin(), types.end());
2929 }
2930 
remapInput(unsigned origInputNo,unsigned newInputNo,unsigned newInputCount)2931 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2932                                                     unsigned newInputNo,
2933                                                     unsigned newInputCount) {
2934   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2935   assert(newInputCount != 0 && "expected valid input count");
2936   remappedInputs[origInputNo] =
2937       InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
2938 }
2939 
remapInput(unsigned origInputNo,Value replacementValue)2940 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2941                                                     Value replacementValue) {
2942   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2943   remappedInputs[origInputNo] =
2944       InputMapping{origInputNo, /*size=*/0, replacementValue};
2945 }
2946 
convertType(Type t,SmallVectorImpl<Type> & results)2947 LogicalResult TypeConverter::convertType(Type t,
2948                                          SmallVectorImpl<Type> &results) {
2949   auto existingIt = cachedDirectConversions.find(t);
2950   if (existingIt != cachedDirectConversions.end()) {
2951     if (existingIt->second)
2952       results.push_back(existingIt->second);
2953     return success(existingIt->second != nullptr);
2954   }
2955   auto multiIt = cachedMultiConversions.find(t);
2956   if (multiIt != cachedMultiConversions.end()) {
2957     results.append(multiIt->second.begin(), multiIt->second.end());
2958     return success();
2959   }
2960 
2961   // Walk the added converters in reverse order to apply the most recently
2962   // registered first.
2963   size_t currentCount = results.size();
2964   conversionCallStack.push_back(t);
2965   auto popConversionCallStack =
2966       llvm::make_scope_exit([this]() { conversionCallStack.pop_back(); });
2967   for (ConversionCallbackFn &converter : llvm::reverse(conversions)) {
2968     if (Optional<LogicalResult> result =
2969             converter(t, results, conversionCallStack)) {
2970       if (!succeeded(*result)) {
2971         cachedDirectConversions.try_emplace(t, nullptr);
2972         return failure();
2973       }
2974       auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
2975       if (newTypes.size() == 1)
2976         cachedDirectConversions.try_emplace(t, newTypes.front());
2977       else
2978         cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
2979       return success();
2980     }
2981   }
2982   return failure();
2983 }
2984 
convertType(Type t)2985 Type TypeConverter::convertType(Type t) {
2986   // Use the multi-type result version to convert the type.
2987   SmallVector<Type, 1> results;
2988   if (failed(convertType(t, results)))
2989     return nullptr;
2990 
2991   // Check to ensure that only one type was produced.
2992   return results.size() == 1 ? results.front() : nullptr;
2993 }
2994 
convertTypes(TypeRange types,SmallVectorImpl<Type> & results)2995 LogicalResult TypeConverter::convertTypes(TypeRange types,
2996                                           SmallVectorImpl<Type> &results) {
2997   for (Type type : types)
2998     if (failed(convertType(type, results)))
2999       return failure();
3000   return success();
3001 }
3002 
isLegal(Type type)3003 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; }
isLegal(Operation * op)3004 bool TypeConverter::isLegal(Operation *op) {
3005   return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
3006 }
3007 
isLegal(Region * region)3008 bool TypeConverter::isLegal(Region *region) {
3009   return llvm::all_of(*region, [this](Block &block) {
3010     return isLegal(block.getArgumentTypes());
3011   });
3012 }
3013 
isSignatureLegal(FunctionType ty)3014 bool TypeConverter::isSignatureLegal(FunctionType ty) {
3015   return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
3016 }
3017 
convertSignatureArg(unsigned inputNo,Type type,SignatureConversion & result)3018 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
3019                                                  SignatureConversion &result) {
3020   // Try to convert the given input type.
3021   SmallVector<Type, 1> convertedTypes;
3022   if (failed(convertType(type, convertedTypes)))
3023     return failure();
3024 
3025   // If this argument is being dropped, there is nothing left to do.
3026   if (convertedTypes.empty())
3027     return success();
3028 
3029   // Otherwise, add the new inputs.
3030   result.addInputs(inputNo, convertedTypes);
3031   return success();
3032 }
convertSignatureArgs(TypeRange types,SignatureConversion & result,unsigned origInputOffset)3033 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types,
3034                                                   SignatureConversion &result,
3035                                                   unsigned origInputOffset) {
3036   for (unsigned i = 0, e = types.size(); i != e; ++i)
3037     if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
3038       return failure();
3039   return success();
3040 }
3041 
materializeConversion(MutableArrayRef<MaterializationCallbackFn> materializations,OpBuilder & builder,Location loc,Type resultType,ValueRange inputs)3042 Value TypeConverter::materializeConversion(
3043     MutableArrayRef<MaterializationCallbackFn> materializations,
3044     OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) {
3045   for (MaterializationCallbackFn &fn : llvm::reverse(materializations))
3046     if (Optional<Value> result = fn(builder, resultType, inputs, loc))
3047       return *result;
3048   return nullptr;
3049 }
3050 
convertBlockSignature(Block * block)3051 auto TypeConverter::convertBlockSignature(Block *block)
3052     -> Optional<SignatureConversion> {
3053   SignatureConversion conversion(block->getNumArguments());
3054   if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
3055     return llvm::None;
3056   return conversion;
3057 }
3058 
3059 //===----------------------------------------------------------------------===//
3060 // FunctionOpInterfaceSignatureConversion
3061 //===----------------------------------------------------------------------===//
3062 
3063 /// Create a default conversion pattern that rewrites the type signature of a
3064 /// FunctionOpInterface op. This only supports ops which use FunctionType to
3065 /// represent their type.
3066 namespace {
3067 struct FunctionOpInterfaceSignatureConversion : public ConversionPattern {
FunctionOpInterfaceSignatureConversion__anonef530a332711::FunctionOpInterfaceSignatureConversion3068   FunctionOpInterfaceSignatureConversion(StringRef functionLikeOpName,
3069                                          MLIRContext *ctx,
3070                                          TypeConverter &converter)
3071       : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
3072 
3073   LogicalResult
matchAndRewrite__anonef530a332711::FunctionOpInterfaceSignatureConversion3074   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
3075                   ConversionPatternRewriter &rewriter) const override {
3076     FunctionOpInterface funcOp = cast<FunctionOpInterface>(op);
3077     FunctionType type = funcOp.getFunctionType().cast<FunctionType>();
3078 
3079     // Convert the original function types.
3080     TypeConverter::SignatureConversion result(type.getNumInputs());
3081     SmallVector<Type, 1> newResults;
3082     if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) ||
3083         failed(typeConverter->convertTypes(type.getResults(), newResults)) ||
3084         failed(rewriter.convertRegionTypes(&funcOp.getBody(), *typeConverter,
3085                                            &result)))
3086       return failure();
3087 
3088     // Update the function signature in-place.
3089     auto newType = FunctionType::get(rewriter.getContext(),
3090                                      result.getConvertedTypes(), newResults);
3091 
3092     rewriter.updateRootInPlace(op, [&] { funcOp.setType(newType); });
3093 
3094     return success();
3095   }
3096 };
3097 } // namespace
3098 
populateFunctionOpInterfaceTypeConversionPattern(StringRef functionLikeOpName,RewritePatternSet & patterns,TypeConverter & converter)3099 void mlir::populateFunctionOpInterfaceTypeConversionPattern(
3100     StringRef functionLikeOpName, RewritePatternSet &patterns,
3101     TypeConverter &converter) {
3102   patterns.add<FunctionOpInterfaceSignatureConversion>(
3103       functionLikeOpName, patterns.getContext(), converter);
3104 }
3105 
3106 //===----------------------------------------------------------------------===//
3107 // ConversionTarget
3108 //===----------------------------------------------------------------------===//
3109 
setOpAction(OperationName op,LegalizationAction action)3110 void ConversionTarget::setOpAction(OperationName op,
3111                                    LegalizationAction action) {
3112   legalOperations[op].action = action;
3113 }
3114 
setDialectAction(ArrayRef<StringRef> dialectNames,LegalizationAction action)3115 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
3116                                         LegalizationAction action) {
3117   for (StringRef dialect : dialectNames)
3118     legalDialects[dialect] = action;
3119 }
3120 
getOpAction(OperationName op) const3121 auto ConversionTarget::getOpAction(OperationName op) const
3122     -> Optional<LegalizationAction> {
3123   Optional<LegalizationInfo> info = getOpInfo(op);
3124   return info ? info->action : Optional<LegalizationAction>();
3125 }
3126 
isLegal(Operation * op) const3127 auto ConversionTarget::isLegal(Operation *op) const
3128     -> Optional<LegalOpDetails> {
3129   Optional<LegalizationInfo> info = getOpInfo(op->getName());
3130   if (!info)
3131     return llvm::None;
3132 
3133   // Returns true if this operation instance is known to be legal.
3134   auto isOpLegal = [&] {
3135     // Handle dynamic legality either with the provided legality function.
3136     if (info->action == LegalizationAction::Dynamic) {
3137       Optional<bool> result = info->legalityFn(op);
3138       if (result)
3139         return *result;
3140     }
3141 
3142     // Otherwise, the operation is only legal if it was marked 'Legal'.
3143     return info->action == LegalizationAction::Legal;
3144   };
3145   if (!isOpLegal())
3146     return llvm::None;
3147 
3148   // This operation is legal, compute any additional legality information.
3149   LegalOpDetails legalityDetails;
3150   if (info->isRecursivelyLegal) {
3151     auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
3152     if (legalityFnIt != opRecursiveLegalityFns.end()) {
3153       legalityDetails.isRecursivelyLegal =
3154           legalityFnIt->second(op).value_or(true);
3155     } else {
3156       legalityDetails.isRecursivelyLegal = true;
3157     }
3158   }
3159   return legalityDetails;
3160 }
3161 
isIllegal(Operation * op) const3162 bool ConversionTarget::isIllegal(Operation *op) const {
3163   Optional<LegalizationInfo> info = getOpInfo(op->getName());
3164   if (!info)
3165     return false;
3166 
3167   if (info->action == LegalizationAction::Dynamic) {
3168     Optional<bool> result = info->legalityFn(op);
3169     if (!result)
3170       return false;
3171 
3172     return !(*result);
3173   }
3174 
3175   return info->action == LegalizationAction::Illegal;
3176 }
3177 
composeLegalityCallbacks(ConversionTarget::DynamicLegalityCallbackFn oldCallback,ConversionTarget::DynamicLegalityCallbackFn newCallback)3178 static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks(
3179     ConversionTarget::DynamicLegalityCallbackFn oldCallback,
3180     ConversionTarget::DynamicLegalityCallbackFn newCallback) {
3181   if (!oldCallback)
3182     return newCallback;
3183 
3184   auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)](
3185                    Operation *op) -> Optional<bool> {
3186     if (Optional<bool> result = newCl(op))
3187       return *result;
3188 
3189     return oldCl(op);
3190   };
3191   return chain;
3192 }
3193 
setLegalityCallback(OperationName name,const DynamicLegalityCallbackFn & callback)3194 void ConversionTarget::setLegalityCallback(
3195     OperationName name, const DynamicLegalityCallbackFn &callback) {
3196   assert(callback && "expected valid legality callback");
3197   auto infoIt = legalOperations.find(name);
3198   assert(infoIt != legalOperations.end() &&
3199          infoIt->second.action == LegalizationAction::Dynamic &&
3200          "expected operation to already be marked as dynamically legal");
3201   infoIt->second.legalityFn =
3202       composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback);
3203 }
3204 
markOpRecursivelyLegal(OperationName name,const DynamicLegalityCallbackFn & callback)3205 void ConversionTarget::markOpRecursivelyLegal(
3206     OperationName name, const DynamicLegalityCallbackFn &callback) {
3207   auto infoIt = legalOperations.find(name);
3208   assert(infoIt != legalOperations.end() &&
3209          infoIt->second.action != LegalizationAction::Illegal &&
3210          "expected operation to already be marked as legal");
3211   infoIt->second.isRecursivelyLegal = true;
3212   if (callback)
3213     opRecursiveLegalityFns[name] = composeLegalityCallbacks(
3214         std::move(opRecursiveLegalityFns[name]), callback);
3215   else
3216     opRecursiveLegalityFns.erase(name);
3217 }
3218 
setLegalityCallback(ArrayRef<StringRef> dialects,const DynamicLegalityCallbackFn & callback)3219 void ConversionTarget::setLegalityCallback(
3220     ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
3221   assert(callback && "expected valid legality callback");
3222   for (StringRef dialect : dialects)
3223     dialectLegalityFns[dialect] = composeLegalityCallbacks(
3224         std::move(dialectLegalityFns[dialect]), callback);
3225 }
3226 
setLegalityCallback(const DynamicLegalityCallbackFn & callback)3227 void ConversionTarget::setLegalityCallback(
3228     const DynamicLegalityCallbackFn &callback) {
3229   assert(callback && "expected valid legality callback");
3230   unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback);
3231 }
3232 
getOpInfo(OperationName op) const3233 auto ConversionTarget::getOpInfo(OperationName op) const
3234     -> Optional<LegalizationInfo> {
3235   // Check for info for this specific operation.
3236   auto it = legalOperations.find(op);
3237   if (it != legalOperations.end())
3238     return it->second;
3239   // Check for info for the parent dialect.
3240   auto dialectIt = legalDialects.find(op.getDialectNamespace());
3241   if (dialectIt != legalDialects.end()) {
3242     DynamicLegalityCallbackFn callback;
3243     auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
3244     if (dialectFn != dialectLegalityFns.end())
3245       callback = dialectFn->second;
3246     return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
3247                             callback};
3248   }
3249   // Otherwise, check if we mark unknown operations as dynamic.
3250   if (unknownLegalityFn)
3251     return LegalizationInfo{LegalizationAction::Dynamic,
3252                             /*isRecursivelyLegal=*/false, unknownLegalityFn};
3253   return llvm::None;
3254 }
3255 
3256 //===----------------------------------------------------------------------===//
3257 // Op Conversion Entry Points
3258 //===----------------------------------------------------------------------===//
3259 
3260 //===----------------------------------------------------------------------===//
3261 // Partial Conversion
3262 
3263 LogicalResult
applyPartialConversion(ArrayRef<Operation * > ops,ConversionTarget & target,const FrozenRewritePatternSet & patterns,DenseSet<Operation * > * unconvertedOps)3264 mlir::applyPartialConversion(ArrayRef<Operation *> ops,
3265                              ConversionTarget &target,
3266                              const FrozenRewritePatternSet &patterns,
3267                              DenseSet<Operation *> *unconvertedOps) {
3268   OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
3269                                  unconvertedOps);
3270   return opConverter.convertOperations(ops);
3271 }
3272 LogicalResult
applyPartialConversion(Operation * op,ConversionTarget & target,const FrozenRewritePatternSet & patterns,DenseSet<Operation * > * unconvertedOps)3273 mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
3274                              const FrozenRewritePatternSet &patterns,
3275                              DenseSet<Operation *> *unconvertedOps) {
3276   return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
3277                                 unconvertedOps);
3278 }
3279 
3280 //===----------------------------------------------------------------------===//
3281 // Full Conversion
3282 
3283 LogicalResult
applyFullConversion(ArrayRef<Operation * > ops,ConversionTarget & target,const FrozenRewritePatternSet & patterns)3284 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
3285                           const FrozenRewritePatternSet &patterns) {
3286   OperationConverter opConverter(target, patterns, OpConversionMode::Full);
3287   return opConverter.convertOperations(ops);
3288 }
3289 LogicalResult
applyFullConversion(Operation * op,ConversionTarget & target,const FrozenRewritePatternSet & patterns)3290 mlir::applyFullConversion(Operation *op, ConversionTarget &target,
3291                           const FrozenRewritePatternSet &patterns) {
3292   return applyFullConversion(llvm::makeArrayRef(op), target, patterns);
3293 }
3294 
3295 //===----------------------------------------------------------------------===//
3296 // Analysis Conversion
3297 
3298 LogicalResult
applyAnalysisConversion(ArrayRef<Operation * > ops,ConversionTarget & target,const FrozenRewritePatternSet & patterns,DenseSet<Operation * > & convertedOps,function_ref<void (Diagnostic &)> notifyCallback)3299 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
3300                               ConversionTarget &target,
3301                               const FrozenRewritePatternSet &patterns,
3302                               DenseSet<Operation *> &convertedOps,
3303                               function_ref<void(Diagnostic &)> notifyCallback) {
3304   OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
3305                                  &convertedOps);
3306   return opConverter.convertOperations(ops, notifyCallback);
3307 }
3308 LogicalResult
applyAnalysisConversion(Operation * op,ConversionTarget & target,const FrozenRewritePatternSet & patterns,DenseSet<Operation * > & convertedOps,function_ref<void (Diagnostic &)> notifyCallback)3309 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
3310                               const FrozenRewritePatternSet &patterns,
3311                               DenseSet<Operation *> &convertedOps,
3312                               function_ref<void(Diagnostic &)> notifyCallback) {
3313   return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
3314                                  convertedOps, notifyCallback);
3315 }
3316