1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Transforms/DialectConversion.h"
10 #include "mlir/IR/Block.h"
11 #include "mlir/IR/BlockAndValueMapping.h"
12 #include "mlir/IR/Builders.h"
13 #include "mlir/IR/BuiltinOps.h"
14 #include "mlir/IR/FunctionSupport.h"
15 #include "mlir/Rewrite/PatternApplicator.h"
16 #include "mlir/Transforms/Utils.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/FormatVariadic.h"
21 #include "llvm/Support/SaveAndRestore.h"
22 #include "llvm/Support/ScopedPrinter.h"
23 
24 using namespace mlir;
25 using namespace mlir::detail;
26 
27 #define DEBUG_TYPE "dialect-conversion"
28 
29 /// Recursively collect all of the operations to convert from within 'region'.
30 /// If 'target' is nonnull, operations that are recursively legal have their
31 /// regions pre-filtered to avoid considering them for legalization.
32 static LogicalResult
33 computeConversionSet(iterator_range<Region::iterator> region,
34                      Location regionLoc, std::vector<Operation *> &toConvert,
35                      ConversionTarget *target = nullptr) {
36   if (llvm::empty(region))
37     return success();
38 
39   // Traverse starting from the entry block.
40   SmallVector<Block *, 16> worklist(1, &*region.begin());
41   DenseSet<Block *> visitedBlocks;
42   visitedBlocks.insert(worklist.front());
43   while (!worklist.empty()) {
44     Block *block = worklist.pop_back_val();
45 
46     // Compute the conversion set of each of the nested operations.
47     for (Operation &op : *block) {
48       toConvert.emplace_back(&op);
49 
50       // Don't check this operation's children for conversion if the operation
51       // is recursively legal.
52       auto legalityInfo = target ? target->isLegal(&op)
53                                  : Optional<ConversionTarget::LegalOpDetails>();
54       if (legalityInfo && legalityInfo->isRecursivelyLegal)
55         continue;
56       for (auto &region : op.getRegions()) {
57         if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
58                                         toConvert, target)))
59           return failure();
60       }
61     }
62 
63     // Recurse to children that haven't been visited.
64     for (Block *succ : block->getSuccessors())
65       if (visitedBlocks.insert(succ).second)
66         worklist.push_back(succ);
67   }
68 
69   // Check that all blocks in the region were visited.
70   if (llvm::any_of(llvm::drop_begin(region, 1),
71                    [&](Block &block) { return !visitedBlocks.count(&block); }))
72     return emitError(regionLoc, "unreachable blocks were not converted");
73   return success();
74 }
75 
76 /// A utility function to log a successful result for the given reason.
77 template <typename... Args>
78 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
79   LLVM_DEBUG({
80     os.unindent();
81     os.startLine() << "} -> SUCCESS";
82     if (!fmt.empty())
83       os.getOStream() << " : "
84                       << llvm::formatv(fmt.data(), std::forward<Args>(args)...);
85     os.getOStream() << "\n";
86   });
87 }
88 
89 /// A utility function to log a failure result for the given reason.
90 template <typename... Args>
91 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
92   LLVM_DEBUG({
93     os.unindent();
94     os.startLine() << "} -> FAILURE : "
95                    << llvm::formatv(fmt.data(), std::forward<Args>(args)...)
96                    << "\n";
97   });
98 }
99 
100 //===----------------------------------------------------------------------===//
101 // ConversionValueMapping
102 //===----------------------------------------------------------------------===//
103 
104 namespace {
105 /// This class wraps a BlockAndValueMapping to provide recursive lookup
106 /// functionality, i.e. we will traverse if the mapped value also has a mapping.
107 struct ConversionValueMapping {
108   /// Lookup a mapped value within the map. If a mapping for the provided value
109   /// does not exist then return the provided value. If `desiredType` is
110   /// non-null, returns the most recently mapped value with that type. If an
111   /// operand of that type does not exist, defaults to normal behavior.
112   Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
113 
114   /// Lookup a mapped value within the map, or return null if a mapping does not
115   /// exist. If a mapping exists, this follows the same behavior of
116   /// `lookupOrDefault`.
117   Value lookupOrNull(Value from) const;
118 
119   /// Map a value to the one provided.
120   void map(Value oldVal, Value newVal) { mapping.map(oldVal, newVal); }
121 
122   /// Drop the last mapping for the given value.
123   void erase(Value value) { mapping.erase(value); }
124 
125   /// Returns the inverse raw value mapping (without recursive query support).
126   BlockAndValueMapping getInverse() const { return mapping.getInverse(); }
127 
128 private:
129   /// Current value mappings.
130   BlockAndValueMapping mapping;
131 };
132 } // end anonymous namespace
133 
134 Value ConversionValueMapping::lookupOrDefault(Value from,
135                                               Type desiredType) const {
136   // If there was no desired type, simply find the leaf value.
137   if (!desiredType) {
138     // If this value had a valid mapping, unmap that value as well in the case
139     // that it was also replaced.
140     while (auto mappedValue = mapping.lookupOrNull(from))
141       from = mappedValue;
142     return from;
143   }
144 
145   // Otherwise, try to find the deepest value that has the desired type.
146   Value desiredValue;
147   do {
148     if (from.getType() == desiredType)
149       desiredValue = from;
150 
151     Value mappedValue = mapping.lookupOrNull(from);
152     if (!mappedValue)
153       break;
154     from = mappedValue;
155   } while (true);
156 
157   // If the desired value was found use it, otherwise default to the leaf value.
158   return desiredValue ? desiredValue : from;
159 }
160 
161 Value ConversionValueMapping::lookupOrNull(Value from) const {
162   Value result = lookupOrDefault(from);
163   return result == from ? nullptr : result;
164 }
165 
166 //===----------------------------------------------------------------------===//
167 // ArgConverter
168 //===----------------------------------------------------------------------===//
169 namespace {
170 /// This class provides a simple interface for converting the types of block
171 /// arguments. This is done by creating a new block that contains the new legal
172 /// types and extracting the block that contains the old illegal types to allow
173 /// for undoing pending rewrites in the case of failure.
174 struct ArgConverter {
175   ArgConverter(PatternRewriter &rewriter) : rewriter(rewriter) {}
176 
177   /// This structure contains the information pertaining to an argument that has
178   /// been converted.
179   struct ConvertedArgInfo {
180     ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
181                      Value castValue = nullptr)
182         : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
183 
184     /// The start index of in the new argument list that contains arguments that
185     /// replace the original.
186     unsigned newArgIdx;
187 
188     /// The number of arguments that replaced the original argument.
189     unsigned newArgSize;
190 
191     /// The cast value that was created to cast from the new arguments to the
192     /// old. This only used if 'newArgSize' > 1.
193     Value castValue;
194   };
195 
196   /// This structure contains information pertaining to a block that has had its
197   /// signature converted.
198   struct ConvertedBlockInfo {
199     ConvertedBlockInfo(Block *origBlock, TypeConverter &converter)
200         : origBlock(origBlock), converter(&converter) {}
201 
202     /// The original block that was requested to have its signature converted.
203     Block *origBlock;
204 
205     /// The conversion information for each of the arguments. The information is
206     /// None if the argument was dropped during conversion.
207     SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
208 
209     /// The type converter used to convert the arguments.
210     TypeConverter *converter;
211   };
212 
213   /// Return if the signature of the given block has already been converted.
214   bool hasBeenConverted(Block *block) const {
215     return conversionInfo.count(block) || convertedBlocks.count(block);
216   }
217 
218   /// Set the type converter to use for the given region.
219   void setConverter(Region *region, TypeConverter *typeConverter) {
220     assert(typeConverter && "expected valid type converter");
221     regionToConverter[region] = typeConverter;
222   }
223 
224   /// Return the type converter to use for the given region, or null if there
225   /// isn't one.
226   TypeConverter *getConverter(Region *region) {
227     return regionToConverter.lookup(region);
228   }
229 
230   //===--------------------------------------------------------------------===//
231   // Rewrite Application
232   //===--------------------------------------------------------------------===//
233 
234   /// Erase any rewrites registered for the blocks within the given operation
235   /// which is about to be removed. This merely drops the rewrites without
236   /// undoing them.
237   void notifyOpRemoved(Operation *op);
238 
239   /// Cleanup and undo any generated conversions for the arguments of block.
240   /// This method replaces the new block with the original, reverting the IR to
241   /// its original state.
242   void discardRewrites(Block *block);
243 
244   /// Fully replace uses of the old arguments with the new.
245   void applyRewrites(ConversionValueMapping &mapping);
246 
247   /// Materialize any necessary conversions for converted arguments that have
248   /// live users, using the provided `findLiveUser` to search for a user that
249   /// survives the conversion process.
250   LogicalResult
251   materializeLiveConversions(ConversionValueMapping &mapping,
252                              OpBuilder &builder,
253                              function_ref<Operation *(Value)> findLiveUser);
254 
255   //===--------------------------------------------------------------------===//
256   // Conversion
257   //===--------------------------------------------------------------------===//
258 
259   /// Attempt to convert the signature of the given block, if successful a new
260   /// block is returned containing the new arguments. Returns `block` if it did
261   /// not require conversion.
262   FailureOr<Block *>
263   convertSignature(Block *block, TypeConverter &converter,
264                    ConversionValueMapping &mapping,
265                    SmallVectorImpl<BlockArgument> &argReplacements);
266 
267   /// Apply the given signature conversion on the given block. The new block
268   /// containing the updated signature is returned. If no conversions were
269   /// necessary, e.g. if the block has no arguments, `block` is returned.
270   /// `converter` is used to generate any necessary cast operations that
271   /// translate between the origin argument types and those specified in the
272   /// signature conversion.
273   Block *applySignatureConversion(
274       Block *block, TypeConverter &converter,
275       TypeConverter::SignatureConversion &signatureConversion,
276       ConversionValueMapping &mapping,
277       SmallVectorImpl<BlockArgument> &argReplacements);
278 
279   /// Insert a new conversion into the cache.
280   void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
281 
282   /// A collection of blocks that have had their arguments converted. This is a
283   /// map from the new replacement block, back to the original block.
284   llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
285 
286   /// The set of original blocks that were converted.
287   DenseSet<Block *> convertedBlocks;
288 
289   /// A mapping from valid regions, to those containing the original blocks of a
290   /// conversion.
291   DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
292 
293   /// A mapping of regions to type converters that should be used when
294   /// converting the arguments of blocks within that region.
295   DenseMap<Region *, TypeConverter *> regionToConverter;
296 
297   /// The pattern rewriter to use when materializing conversions.
298   PatternRewriter &rewriter;
299 };
300 } // end anonymous namespace
301 
302 //===----------------------------------------------------------------------===//
303 // Rewrite Application
304 
305 void ArgConverter::notifyOpRemoved(Operation *op) {
306   if (conversionInfo.empty())
307     return;
308 
309   for (Region &region : op->getRegions()) {
310     for (Block &block : region) {
311       // Drop any rewrites from within.
312       for (Operation &nestedOp : block)
313         if (nestedOp.getNumRegions())
314           notifyOpRemoved(&nestedOp);
315 
316       // Check if this block was converted.
317       auto it = conversionInfo.find(&block);
318       if (it == conversionInfo.end())
319         continue;
320 
321       // Drop all uses of the original arguments and delete the original block.
322       Block *origBlock = it->second.origBlock;
323       for (BlockArgument arg : origBlock->getArguments())
324         arg.dropAllUses();
325       conversionInfo.erase(it);
326     }
327   }
328 }
329 
330 void ArgConverter::discardRewrites(Block *block) {
331   auto it = conversionInfo.find(block);
332   if (it == conversionInfo.end())
333     return;
334   Block *origBlock = it->second.origBlock;
335 
336   // Drop all uses of the new block arguments and replace uses of the new block.
337   for (int i = block->getNumArguments() - 1; i >= 0; --i)
338     block->getArgument(i).dropAllUses();
339   block->replaceAllUsesWith(origBlock);
340 
341   // Move the operations back the original block and the delete the new block.
342   origBlock->getOperations().splice(origBlock->end(), block->getOperations());
343   origBlock->moveBefore(block);
344   block->erase();
345 
346   convertedBlocks.erase(origBlock);
347   conversionInfo.erase(it);
348 }
349 
350 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
351   for (auto &info : conversionInfo) {
352     ConvertedBlockInfo &blockInfo = info.second;
353     Block *origBlock = blockInfo.origBlock;
354 
355     // Process the remapping for each of the original arguments.
356     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
357       Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
358       BlockArgument origArg = origBlock->getArgument(i);
359 
360       // Handle the case of a 1->0 value mapping.
361       if (!argInfo) {
362         if (Value newArg = mapping.lookupOrNull(origArg))
363           origArg.replaceAllUsesWith(newArg);
364         continue;
365       }
366 
367       // Otherwise this is a 1->1+ value mapping.
368       Value castValue = argInfo->castValue;
369       assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
370 
371       // If the argument is still used, replace it with the generated cast.
372       if (!origArg.use_empty())
373         origArg.replaceAllUsesWith(mapping.lookupOrDefault(castValue));
374     }
375   }
376 }
377 
378 LogicalResult ArgConverter::materializeLiveConversions(
379     ConversionValueMapping &mapping, OpBuilder &builder,
380     function_ref<Operation *(Value)> findLiveUser) {
381   for (auto &info : conversionInfo) {
382     Block *newBlock = info.first;
383     ConvertedBlockInfo &blockInfo = info.second;
384     Block *origBlock = blockInfo.origBlock;
385 
386     // Process the remapping for each of the original arguments.
387     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
388       // FIXME: We should run the below checks even if the type conversion was
389       // 1->N, but a lot of existing lowering rely on the block argument being
390       // blindly replaced. Those usages should be updated, and this if should be
391       // removed.
392       if (blockInfo.argInfo[i])
393         continue;
394 
395       // If the type of this argument changed and the argument is still live, we
396       // need to materialize a conversion.
397       BlockArgument origArg = origBlock->getArgument(i);
398       auto argReplacementValue = mapping.lookupOrDefault(origArg);
399       bool isDroppedArg = argReplacementValue == origArg;
400       if (argReplacementValue.getType() == origArg.getType() && !isDroppedArg)
401         continue;
402       Operation *liveUser = findLiveUser(origArg);
403       if (!liveUser)
404         continue;
405 
406       if (OpResult result = argReplacementValue.dyn_cast<OpResult>())
407         rewriter.setInsertionPointAfter(result.getOwner());
408       else
409         rewriter.setInsertionPointToStart(newBlock);
410       Value newArg = blockInfo.converter->materializeSourceConversion(
411           rewriter, origArg.getLoc(), origArg.getType(),
412           isDroppedArg ? ValueRange() : ValueRange(argReplacementValue));
413       if (!newArg) {
414         InFlightDiagnostic diag =
415             emitError(origArg.getLoc())
416             << "failed to materialize conversion for block argument #" << i
417             << " that remained live after conversion, type was "
418             << origArg.getType();
419         if (!isDroppedArg)
420           diag << ", with target type " << argReplacementValue.getType();
421         diag.attachNote(liveUser->getLoc())
422             << "see existing live user here: " << *liveUser;
423         return failure();
424       }
425       mapping.map(origArg, newArg);
426     }
427   }
428   return success();
429 }
430 
431 //===----------------------------------------------------------------------===//
432 // Conversion
433 
434 FailureOr<Block *> ArgConverter::convertSignature(
435     Block *block, TypeConverter &converter, ConversionValueMapping &mapping,
436     SmallVectorImpl<BlockArgument> &argReplacements) {
437   // Check if the block was already converted. If the block is detached,
438   // conservatively assume it is going to be deleted.
439   if (hasBeenConverted(block) || !block->getParent())
440     return block;
441 
442   // Try to convert the signature for the block with the provided converter.
443   if (auto conversion = converter.convertBlockSignature(block))
444     return applySignatureConversion(block, converter, *conversion, mapping,
445                                     argReplacements);
446   return failure();
447 }
448 
449 Block *ArgConverter::applySignatureConversion(
450     Block *block, TypeConverter &converter,
451     TypeConverter::SignatureConversion &signatureConversion,
452     ConversionValueMapping &mapping,
453     SmallVectorImpl<BlockArgument> &argReplacements) {
454   // If no arguments are being changed or added, there is nothing to do.
455   unsigned origArgCount = block->getNumArguments();
456   auto convertedTypes = signatureConversion.getConvertedTypes();
457   if (origArgCount == 0 && convertedTypes.empty())
458     return block;
459 
460   // Split the block at the beginning to get a new block to use for the updated
461   // signature.
462   Block *newBlock = block->splitBlock(block->begin());
463   block->replaceAllUsesWith(newBlock);
464 
465   SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes));
466   ArrayRef<Value> newArgs(newArgRange);
467 
468   // Remap each of the original arguments as determined by the signature
469   // conversion.
470   ConvertedBlockInfo info(block, converter);
471   info.argInfo.resize(origArgCount);
472 
473   OpBuilder::InsertionGuard guard(rewriter);
474   rewriter.setInsertionPointToStart(newBlock);
475   for (unsigned i = 0; i != origArgCount; ++i) {
476     auto inputMap = signatureConversion.getInputMapping(i);
477     if (!inputMap)
478       continue;
479     BlockArgument origArg = block->getArgument(i);
480 
481     // If inputMap->replacementValue is not nullptr, then the argument is
482     // dropped and a replacement value is provided to be the remappedValue.
483     if (inputMap->replacementValue) {
484       assert(inputMap->size == 0 &&
485              "invalid to provide a replacement value when the argument isn't "
486              "dropped");
487       mapping.map(origArg, inputMap->replacementValue);
488       argReplacements.push_back(origArg);
489       continue;
490     }
491 
492     // Otherwise, this is a 1->1+ mapping. Call into the provided type converter
493     // to pack the new values. For 1->1 mappings, if there is no materialization
494     // provided, use the argument directly instead.
495     auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
496     Value newArg = converter.materializeArgumentConversion(
497         rewriter, origArg.getLoc(), origArg.getType(), replArgs);
498     if (!newArg) {
499       assert(replArgs.size() == 1 &&
500              "couldn't materialize the result of 1->N conversion");
501       newArg = replArgs.front();
502     }
503     mapping.map(origArg, newArg);
504     argReplacements.push_back(origArg);
505     info.argInfo[i] =
506         ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
507   }
508 
509   // Remove the original block from the region and return the new one.
510   insertConversion(newBlock, std::move(info));
511   return newBlock;
512 }
513 
514 void ArgConverter::insertConversion(Block *newBlock,
515                                     ConvertedBlockInfo &&info) {
516   // Get a region to insert the old block.
517   Region *region = newBlock->getParent();
518   std::unique_ptr<Region> &mappedRegion = regionMapping[region];
519   if (!mappedRegion)
520     mappedRegion = std::make_unique<Region>(region->getParentOp());
521 
522   // Move the original block to the mapped region and emplace the conversion.
523   mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
524                                    info.origBlock->getIterator());
525   convertedBlocks.insert(info.origBlock);
526   conversionInfo.insert({newBlock, std::move(info)});
527 }
528 
529 //===----------------------------------------------------------------------===//
530 // Rewriter and Translation State
531 //===----------------------------------------------------------------------===//
532 namespace {
533 /// This class contains a snapshot of the current conversion rewriter state.
534 /// This is useful when saving and undoing a set of rewrites.
535 struct RewriterState {
536   RewriterState(unsigned numCreatedOps, unsigned numReplacements,
537                 unsigned numArgReplacements, unsigned numBlockActions,
538                 unsigned numIgnoredOperations, unsigned numRootUpdates)
539       : numCreatedOps(numCreatedOps), numReplacements(numReplacements),
540         numArgReplacements(numArgReplacements),
541         numBlockActions(numBlockActions),
542         numIgnoredOperations(numIgnoredOperations),
543         numRootUpdates(numRootUpdates) {}
544 
545   /// The current number of created operations.
546   unsigned numCreatedOps;
547 
548   /// The current number of replacements queued.
549   unsigned numReplacements;
550 
551   /// The current number of argument replacements queued.
552   unsigned numArgReplacements;
553 
554   /// The current number of block actions performed.
555   unsigned numBlockActions;
556 
557   /// The current number of ignored operations.
558   unsigned numIgnoredOperations;
559 
560   /// The current number of operations that were updated in place.
561   unsigned numRootUpdates;
562 };
563 
564 /// The state of an operation that was updated by a pattern in-place. This
565 /// contains all of the necessary information to reconstruct an operation that
566 /// was updated in place.
567 class OperationTransactionState {
568 public:
569   OperationTransactionState() = default;
570   OperationTransactionState(Operation *op)
571       : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()),
572         operands(op->operand_begin(), op->operand_end()),
573         successors(op->successor_begin(), op->successor_end()) {}
574 
575   /// Discard the transaction state and reset the state of the original
576   /// operation.
577   void resetOperation() const {
578     op->setLoc(loc);
579     op->setAttrs(attrs);
580     op->setOperands(operands);
581     for (auto it : llvm::enumerate(successors))
582       op->setSuccessor(it.value(), it.index());
583   }
584 
585   /// Return the original operation of this state.
586   Operation *getOperation() const { return op; }
587 
588 private:
589   Operation *op;
590   LocationAttr loc;
591   DictionaryAttr attrs;
592   SmallVector<Value, 8> operands;
593   SmallVector<Block *, 2> successors;
594 };
595 
596 /// This class represents one requested operation replacement via 'replaceOp' or
597 /// 'eraseOp`.
598 struct OpReplacement {
599   OpReplacement() = default;
600   OpReplacement(TypeConverter *converter) : converter(converter) {}
601 
602   /// An optional type converter that can be used to materialize conversions
603   /// between the new and old values if necessary.
604   TypeConverter *converter = nullptr;
605 };
606 
607 /// The kind of the block action performed during the rewrite.  Actions can be
608 /// undone if the conversion fails.
609 enum class BlockActionKind {
610   Create,
611   Erase,
612   Merge,
613   Move,
614   Split,
615   TypeConversion
616 };
617 
618 /// Original position of the given block in its parent region. During undo
619 /// actions, the block needs to be placed after `insertAfterBlock`.
620 struct BlockPosition {
621   Region *region;
622   Block *insertAfterBlock;
623 };
624 
625 /// Information needed to undo the merge actions.
626 /// - the source block, and
627 /// - the Operation that was the last operation in the dest block before the
628 ///   merge (could be null if the dest block was empty).
629 struct MergeInfo {
630   Block *sourceBlock;
631   Operation *destBlockLastInst;
632 };
633 
634 /// The storage class for an undoable block action (one of BlockActionKind),
635 /// contains the information necessary to undo this action.
636 struct BlockAction {
637   static BlockAction getCreate(Block *block) {
638     return {BlockActionKind::Create, block, {}};
639   }
640   static BlockAction getErase(Block *block, BlockPosition originalPosition) {
641     return {BlockActionKind::Erase, block, {originalPosition}};
642   }
643   static BlockAction getMerge(Block *block, Block *sourceBlock) {
644     BlockAction action{BlockActionKind::Merge, block, {}};
645     action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()};
646     return action;
647   }
648   static BlockAction getMove(Block *block, BlockPosition originalPosition) {
649     return {BlockActionKind::Move, block, {originalPosition}};
650   }
651   static BlockAction getSplit(Block *block, Block *originalBlock) {
652     BlockAction action{BlockActionKind::Split, block, {}};
653     action.originalBlock = originalBlock;
654     return action;
655   }
656   static BlockAction getTypeConversion(Block *block) {
657     return BlockAction{BlockActionKind::TypeConversion, block, {}};
658   }
659 
660   // The action kind.
661   BlockActionKind kind;
662 
663   // A pointer to the block that was created by the action.
664   Block *block;
665 
666   union {
667     // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and
668     // contains a pointer to the region that originally contained the block as
669     // well as the position of the block in that region.
670     BlockPosition originalPosition;
671     // In use if kind == BlockActionKind::Split and contains a pointer to the
672     // block that was split into two parts.
673     Block *originalBlock;
674     // In use if kind == BlockActionKind::Merge, and contains the information
675     // needed to undo the merge.
676     MergeInfo mergeInfo;
677   };
678 };
679 } // end anonymous namespace
680 
681 //===----------------------------------------------------------------------===//
682 // ConversionPatternRewriterImpl
683 //===----------------------------------------------------------------------===//
684 namespace mlir {
685 namespace detail {
686 struct ConversionPatternRewriterImpl {
687   ConversionPatternRewriterImpl(PatternRewriter &rewriter)
688       : argConverter(rewriter) {}
689 
690   /// Cleanup and destroy any generated rewrite operations. This method is
691   /// invoked when the conversion process fails.
692   void discardRewrites();
693 
694   /// Apply all requested operation rewrites. This method is invoked when the
695   /// conversion process succeeds.
696   void applyRewrites();
697 
698   //===--------------------------------------------------------------------===//
699   // State Management
700   //===--------------------------------------------------------------------===//
701 
702   /// Return the current state of the rewriter.
703   RewriterState getCurrentState();
704 
705   /// Reset the state of the rewriter to a previously saved point.
706   void resetState(RewriterState state);
707 
708   /// Erase any blocks that were unlinked from their regions and stored in block
709   /// actions.
710   void eraseDanglingBlocks();
711 
712   /// Undo the block actions (motions, splits) one by one in reverse order until
713   /// "numActionsToKeep" actions remains.
714   void undoBlockActions(unsigned numActionsToKeep = 0);
715 
716   /// Remap the given operands to those with potentially different types. The
717   /// provided type converter is used to ensure that the remapped types are
718   /// legal. Returns success if the operands could be remapped, failure
719   /// otherwise.
720   LogicalResult remapValues(Location loc, PatternRewriter &rewriter,
721                             TypeConverter *converter,
722                             Operation::operand_range operands,
723                             SmallVectorImpl<Value> &remapped);
724 
725   /// Returns true if the given operation is ignored, and does not need to be
726   /// converted.
727   bool isOpIgnored(Operation *op) const;
728 
729   /// Recursively marks the nested operations under 'op' as ignored. This
730   /// removes them from being considered for legalization.
731   void markNestedOpsIgnored(Operation *op);
732 
733   //===--------------------------------------------------------------------===//
734   // Type Conversion
735   //===--------------------------------------------------------------------===//
736 
737   /// Convert the signature of the given block.
738   FailureOr<Block *> convertBlockSignature(
739       Block *block, TypeConverter &converter,
740       TypeConverter::SignatureConversion *conversion = nullptr);
741 
742   /// Apply a signature conversion on the given region.
743   Block *
744   applySignatureConversion(Region *region,
745                            TypeConverter::SignatureConversion &conversion);
746 
747   /// Convert the types of block arguments within the given region.
748   FailureOr<Block *>
749   convertRegionTypes(Region *region, TypeConverter &converter,
750                      TypeConverter::SignatureConversion *entryConversion);
751 
752   //===--------------------------------------------------------------------===//
753   // Rewriter Notification Hooks
754   //===--------------------------------------------------------------------===//
755 
756   /// PatternRewriter hook for replacing the results of an operation.
757   void notifyOpReplaced(Operation *op, ValueRange newValues);
758 
759   /// Notifies that a block is about to be erased.
760   void notifyBlockIsBeingErased(Block *block);
761 
762   /// Notifies that a block was created.
763   void notifyCreatedBlock(Block *block);
764 
765   /// Notifies that a block was split.
766   void notifySplitBlock(Block *block, Block *continuation);
767 
768   /// Notifies that `block` is being merged with `srcBlock`.
769   void notifyBlocksBeingMerged(Block *block, Block *srcBlock);
770 
771   /// Notifies that the blocks of a region are about to be moved.
772   void notifyRegionIsBeingInlinedBefore(Region &region, Region &parent,
773                                         Region::iterator before);
774 
775   /// Notifies that the blocks of a region were cloned into another.
776   void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
777                                    Location origRegionLoc);
778 
779   /// Notifies that a pattern match failed for the given reason.
780   LogicalResult
781   notifyMatchFailure(Location loc,
782                      function_ref<void(Diagnostic &)> reasonCallback);
783 
784   //===--------------------------------------------------------------------===//
785   // State
786   //===--------------------------------------------------------------------===//
787 
788   // Mapping between replaced values that differ in type. This happens when
789   // replacing a value with one of a different type.
790   ConversionValueMapping mapping;
791 
792   /// Utility used to convert block arguments.
793   ArgConverter argConverter;
794 
795   /// Ordered vector of all of the newly created operations during conversion.
796   std::vector<Operation *> createdOps;
797 
798   /// Ordered map of requested operation replacements.
799   llvm::MapVector<Operation *, OpReplacement> replacements;
800 
801   /// Ordered vector of any requested block argument replacements.
802   SmallVector<BlockArgument, 4> argReplacements;
803 
804   /// Ordered list of block operations (creations, splits, motions).
805   SmallVector<BlockAction, 4> blockActions;
806 
807   /// A set of operations that should no longer be considered for legalization,
808   /// but were not directly replace/erased/etc. by a pattern. These are
809   /// generally child operations of other operations who were
810   /// replaced/erased/etc. This is not meant to be an exhaustive list of all
811   /// operations, but the minimal set that can be used to detect if a given
812   /// operation should be `ignored`. For example, we may add the operations that
813   /// define non-empty regions to the set, but not any of the others. This
814   /// simplifies the amount of memory needed as we can query if the parent
815   /// operation was ignored.
816   llvm::SetVector<Operation *> ignoredOps;
817 
818   /// A transaction state for each of operations that were updated in-place.
819   SmallVector<OperationTransactionState, 4> rootUpdates;
820 
821   /// A vector of indices into `replacements` of operations that were replaced
822   /// with values with different result types than the original operation, e.g.
823   /// 1->N conversion of some kind.
824   SmallVector<unsigned, 4> operationsWithChangedResults;
825 
826   /// A default type converter, used when block conversions do not have one
827   /// explicitly provided.
828   TypeConverter defaultTypeConverter;
829 
830   /// The current conversion pattern that is being rewritten, or nullptr if
831   /// called from outside of a conversion pattern rewrite.
832   const ConversionPattern *currentConversionPattern = nullptr;
833 
834 #ifndef NDEBUG
835   /// A set of operations that have pending updates. This tracking isn't
836   /// strictly necessary, and is thus only active during debug builds for extra
837   /// verification.
838   SmallPtrSet<Operation *, 1> pendingRootUpdates;
839 
840   /// A logger used to emit diagnostics during the conversion process.
841   llvm::ScopedPrinter logger{llvm::dbgs()};
842 #endif
843 };
844 } // end namespace detail
845 } // end namespace mlir
846 
847 /// Detach any operations nested in the given operation from their parent
848 /// blocks, and erase the given operation. This can be used when the nested
849 /// operations are scheduled for erasure themselves, so deleting the regions of
850 /// the given operation together with their content would result in double-free.
851 /// This happens, for example, when rolling back op creation in the reverse
852 /// order and if the nested ops were created before the parent op. This function
853 /// does not need to collect nested ops recursively because it is expected to
854 /// also be called for each nested op when it is about to be deleted.
855 static void detachNestedAndErase(Operation *op) {
856   for (Region &region : op->getRegions()) {
857     for (Block &block : region.getBlocks()) {
858       while (!block.getOperations().empty())
859         block.getOperations().remove(block.getOperations().begin());
860       block.dropAllDefinedValueUses();
861     }
862   }
863   op->dropAllUses();
864   op->erase();
865 }
866 
867 void ConversionPatternRewriterImpl::discardRewrites() {
868   // Reset any operations that were updated in place.
869   for (auto &state : rootUpdates)
870     state.resetOperation();
871 
872   undoBlockActions();
873 
874   // Remove any newly created ops.
875   for (auto *op : llvm::reverse(createdOps))
876     detachNestedAndErase(op);
877 }
878 
879 void ConversionPatternRewriterImpl::applyRewrites() {
880   // Apply all of the rewrites replacements requested during conversion.
881   for (auto &repl : replacements) {
882     for (OpResult result : repl.first->getResults())
883       if (Value newValue = mapping.lookupOrNull(result))
884         result.replaceAllUsesWith(newValue);
885 
886     // If this operation defines any regions, drop any pending argument
887     // rewrites.
888     if (repl.first->getNumRegions())
889       argConverter.notifyOpRemoved(repl.first);
890   }
891 
892   // Apply all of the requested argument replacements.
893   for (BlockArgument arg : argReplacements) {
894     Value repl = mapping.lookupOrDefault(arg);
895     if (repl.isa<BlockArgument>()) {
896       arg.replaceAllUsesWith(repl);
897       continue;
898     }
899 
900     // If the replacement value is an operation, we check to make sure that we
901     // don't replace uses that are within the parent operation of the
902     // replacement value.
903     Operation *replOp = repl.cast<OpResult>().getOwner();
904     Block *replBlock = replOp->getBlock();
905     arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
906       Operation *user = operand.getOwner();
907       return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
908     });
909   }
910 
911   // In a second pass, erase all of the replaced operations in reverse. This
912   // allows processing nested operations before their parent region is
913   // destroyed.
914   for (auto &repl : llvm::reverse(replacements))
915     repl.first->erase();
916 
917   argConverter.applyRewrites(mapping);
918 
919   // Now that the ops have been erased, also erase dangling blocks.
920   eraseDanglingBlocks();
921 }
922 
923 //===----------------------------------------------------------------------===//
924 // State Management
925 
926 RewriterState ConversionPatternRewriterImpl::getCurrentState() {
927   return RewriterState(createdOps.size(), replacements.size(),
928                        argReplacements.size(), blockActions.size(),
929                        ignoredOps.size(), rootUpdates.size());
930 }
931 
932 void ConversionPatternRewriterImpl::resetState(RewriterState state) {
933   // Reset any operations that were updated in place.
934   for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
935     rootUpdates[i].resetOperation();
936   rootUpdates.resize(state.numRootUpdates);
937 
938   // Reset any replaced arguments.
939   for (BlockArgument replacedArg :
940        llvm::drop_begin(argReplacements, state.numArgReplacements))
941     mapping.erase(replacedArg);
942   argReplacements.resize(state.numArgReplacements);
943 
944   // Undo any block actions.
945   undoBlockActions(state.numBlockActions);
946 
947   // Reset any replaced operations and undo any saved mappings.
948   for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
949     for (auto result : repl.first->getResults())
950       mapping.erase(result);
951   while (replacements.size() != state.numReplacements)
952     replacements.pop_back();
953 
954   // Pop all of the newly created operations.
955   while (createdOps.size() != state.numCreatedOps) {
956     detachNestedAndErase(createdOps.back());
957     createdOps.pop_back();
958   }
959 
960   // Pop all of the recorded ignored operations that are no longer valid.
961   while (ignoredOps.size() != state.numIgnoredOperations)
962     ignoredOps.pop_back();
963 
964   // Reset operations with changed results.
965   while (!operationsWithChangedResults.empty() &&
966          operationsWithChangedResults.back() >= state.numReplacements)
967     operationsWithChangedResults.pop_back();
968 }
969 
970 void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
971   for (auto &action : blockActions)
972     if (action.kind == BlockActionKind::Erase)
973       delete action.block;
974 }
975 
976 void ConversionPatternRewriterImpl::undoBlockActions(
977     unsigned numActionsToKeep) {
978   for (auto &action :
979        llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
980     switch (action.kind) {
981     // Delete the created block.
982     case BlockActionKind::Create: {
983       // Unlink all of the operations within this block, they will be deleted
984       // separately.
985       auto &blockOps = action.block->getOperations();
986       while (!blockOps.empty())
987         blockOps.remove(blockOps.begin());
988       action.block->dropAllDefinedValueUses();
989       action.block->erase();
990       break;
991     }
992     // Put the block (owned by action) back into its original position.
993     case BlockActionKind::Erase: {
994       auto &blockList = action.originalPosition.region->getBlocks();
995       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
996       blockList.insert((insertAfterBlock
997                             ? std::next(Region::iterator(insertAfterBlock))
998                             : blockList.begin()),
999                        action.block);
1000       break;
1001     }
1002     // Split the block at the position which was originally the end of the
1003     // destination block (owned by action), and put the instructions back into
1004     // the block used before the merge.
1005     case BlockActionKind::Merge: {
1006       Block *sourceBlock = action.mergeInfo.sourceBlock;
1007       Block::iterator splitPoint =
1008           (action.mergeInfo.destBlockLastInst
1009                ? ++Block::iterator(action.mergeInfo.destBlockLastInst)
1010                : action.block->begin());
1011       sourceBlock->getOperations().splice(sourceBlock->begin(),
1012                                           action.block->getOperations(),
1013                                           splitPoint, action.block->end());
1014       break;
1015     }
1016     // Move the block back to its original position.
1017     case BlockActionKind::Move: {
1018       Region *originalRegion = action.originalPosition.region;
1019       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1020       originalRegion->getBlocks().splice(
1021           (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
1022                             : originalRegion->end()),
1023           action.block->getParent()->getBlocks(), action.block);
1024       break;
1025     }
1026     // Merge back the block that was split out.
1027     case BlockActionKind::Split: {
1028       action.originalBlock->getOperations().splice(
1029           action.originalBlock->end(), action.block->getOperations());
1030       action.block->dropAllDefinedValueUses();
1031       action.block->erase();
1032       break;
1033     }
1034     // Undo the type conversion.
1035     case BlockActionKind::TypeConversion: {
1036       argConverter.discardRewrites(action.block);
1037       break;
1038     }
1039     }
1040   }
1041   blockActions.resize(numActionsToKeep);
1042 }
1043 
1044 LogicalResult ConversionPatternRewriterImpl::remapValues(
1045     Location loc, PatternRewriter &rewriter, TypeConverter *converter,
1046     Operation::operand_range operands, SmallVectorImpl<Value> &remapped) {
1047   remapped.reserve(llvm::size(operands));
1048 
1049   SmallVector<Type, 1> legalTypes;
1050   for (auto it : llvm::enumerate(operands)) {
1051     Value operand = it.value();
1052     Type origType = operand.getType();
1053 
1054     // If a converter was provided, get the desired legal types for this
1055     // operand.
1056     Type desiredType;
1057     if (converter) {
1058       // If there is no legal conversion, fail to match this pattern.
1059       legalTypes.clear();
1060       if (failed(converter->convertType(origType, legalTypes))) {
1061         return notifyMatchFailure(loc, [=](Diagnostic &diag) {
1062           diag << "unable to convert type for operand #" << it.index()
1063                << ", type was " << origType;
1064         });
1065       }
1066       // TODO: There currently isn't any mechanism to do 1->N type conversion
1067       // via the PatternRewriter replacement API, so for now we just ignore it.
1068       if (legalTypes.size() == 1)
1069         desiredType = legalTypes.front();
1070     } else {
1071       // TODO: What we should do here is just set `desiredType` to `origType`
1072       // and then handle the necessary type conversions after the conversion
1073       // process has finished. Unfortunately a lot of patterns currently rely on
1074       // receiving the new operands even if the types change, so we keep the
1075       // original behavior here for now until all of the patterns relying on
1076       // this get updated.
1077     }
1078     Value newOperand = mapping.lookupOrDefault(operand, desiredType);
1079 
1080     // Handle the case where the conversion was 1->1 and the new operand type
1081     // isn't legal.
1082     Type newOperandType = newOperand.getType();
1083     if (converter && desiredType && newOperandType != desiredType) {
1084       // Attempt to materialize a conversion for this new value.
1085       newOperand = converter->materializeTargetConversion(
1086           rewriter, loc, desiredType, newOperand);
1087       if (!newOperand) {
1088         return notifyMatchFailure(loc, [=](Diagnostic &diag) {
1089           diag << "unable to materialize a conversion for "
1090                   "operand #"
1091                << it.index() << ", from " << newOperandType << " to "
1092                << desiredType;
1093         });
1094       }
1095     }
1096     remapped.push_back(newOperand);
1097   }
1098   return success();
1099 }
1100 
1101 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
1102   // Check to see if this operation was replaced or its parent ignored.
1103   return replacements.count(op) || ignoredOps.count(op->getParentOp());
1104 }
1105 
1106 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
1107   // Walk this operation and collect nested operations that define non-empty
1108   // regions. We mark such operations as 'ignored' so that we know we don't have
1109   // to convert them, or their nested ops.
1110   if (op->getNumRegions() == 0)
1111     return;
1112   op->walk([&](Operation *op) {
1113     if (llvm::any_of(op->getRegions(),
1114                      [](Region &region) { return !region.empty(); }))
1115       ignoredOps.insert(op);
1116   });
1117 }
1118 
1119 //===----------------------------------------------------------------------===//
1120 // Type Conversion
1121 
1122 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
1123     Block *block, TypeConverter &converter,
1124     TypeConverter::SignatureConversion *conversion) {
1125   FailureOr<Block *> result =
1126       conversion ? argConverter.applySignatureConversion(
1127                        block, converter, *conversion, mapping, argReplacements)
1128                  : argConverter.convertSignature(block, converter, mapping,
1129                                                  argReplacements);
1130   if (Block *newBlock = result.getValue()) {
1131     if (newBlock != block)
1132       blockActions.push_back(BlockAction::getTypeConversion(newBlock));
1133   }
1134   return result;
1135 }
1136 
1137 Block *ConversionPatternRewriterImpl::applySignatureConversion(
1138     Region *region, TypeConverter::SignatureConversion &conversion) {
1139   if (!region->empty()) {
1140     return *convertBlockSignature(&region->front(), defaultTypeConverter,
1141                                   &conversion);
1142   }
1143   return nullptr;
1144 }
1145 
1146 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
1147     Region *region, TypeConverter &converter,
1148     TypeConverter::SignatureConversion *entryConversion) {
1149   argConverter.setConverter(region, &converter);
1150   if (region->empty())
1151     return nullptr;
1152 
1153   // Convert the arguments of each block within the region.
1154   FailureOr<Block *> newEntry =
1155       convertBlockSignature(&region->front(), converter, entryConversion);
1156   for (Block &block : llvm::make_early_inc_range(llvm::drop_begin(*region, 1)))
1157     if (failed(convertBlockSignature(&block, converter)))
1158       return failure();
1159   return newEntry;
1160 }
1161 
1162 //===----------------------------------------------------------------------===//
1163 // Rewriter Notification Hooks
1164 
1165 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
1166                                                      ValueRange newValues) {
1167   assert(newValues.size() == op->getNumResults());
1168   assert(!replacements.count(op) && "operation was already replaced");
1169 
1170   // Track if any of the results changed, e.g. erased and replaced with null.
1171   bool resultChanged = false;
1172 
1173   // Create mappings for each of the new result values.
1174   Value newValue, result;
1175   for (auto it : llvm::zip(newValues, op->getResults())) {
1176     std::tie(newValue, result) = it;
1177     if (!newValue) {
1178       resultChanged = true;
1179       continue;
1180     }
1181     // Remap, and check for any result type changes.
1182     mapping.map(result, newValue);
1183     resultChanged |= (newValue.getType() != result.getType());
1184   }
1185   if (resultChanged)
1186     operationsWithChangedResults.push_back(replacements.size());
1187 
1188   // Record the requested operation replacement.
1189   TypeConverter *converter = nullptr;
1190   if (currentConversionPattern)
1191     converter = currentConversionPattern->getTypeConverter();
1192   replacements.insert(std::make_pair(op, OpReplacement(converter)));
1193 
1194   // Mark this operation as recursively ignored so that we don't need to
1195   // convert any nested operations.
1196   markNestedOpsIgnored(op);
1197 }
1198 
1199 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
1200   Region *region = block->getParent();
1201   Block *origPrevBlock = block->getPrevNode();
1202   blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
1203 }
1204 
1205 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
1206   blockActions.push_back(BlockAction::getCreate(block));
1207 }
1208 
1209 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
1210                                                      Block *continuation) {
1211   blockActions.push_back(BlockAction::getSplit(continuation, block));
1212 }
1213 
1214 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block,
1215                                                             Block *srcBlock) {
1216   blockActions.push_back(BlockAction::getMerge(block, srcBlock));
1217 }
1218 
1219 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
1220     Region &region, Region &parent, Region::iterator before) {
1221   if (region.empty())
1222     return;
1223   Block *laterBlock = &region.back();
1224   for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) {
1225     blockActions.push_back(
1226         BlockAction::getMove(laterBlock, {&region, &earlierBlock}));
1227     laterBlock = &earlierBlock;
1228   }
1229   blockActions.push_back(BlockAction::getMove(laterBlock, {&region, nullptr}));
1230 }
1231 
1232 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
1233     iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
1234   for (Block &block : blocks)
1235     blockActions.push_back(BlockAction::getCreate(&block));
1236 
1237   // Compute the conversion set for the inlined region.
1238   auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
1239 
1240   // This original region has already had its conversion set computed, so there
1241   // shouldn't be any new failures.
1242   (void)result;
1243   assert(succeeded(result) && "expected region to have no unreachable blocks");
1244 }
1245 
1246 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
1247     Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
1248   LLVM_DEBUG({
1249     Diagnostic diag(loc, DiagnosticSeverity::Remark);
1250     reasonCallback(diag);
1251     logger.startLine() << "** Failure : " << diag.str() << "\n";
1252   });
1253   return failure();
1254 }
1255 
1256 //===----------------------------------------------------------------------===//
1257 // ConversionPatternRewriter
1258 //===----------------------------------------------------------------------===//
1259 
1260 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
1261     : PatternRewriter(ctx),
1262       impl(new detail::ConversionPatternRewriterImpl(*this)) {}
1263 ConversionPatternRewriter::~ConversionPatternRewriter() {}
1264 
1265 /// PatternRewriter hook for replacing the results of an operation when the
1266 /// given functor returns true.
1267 void ConversionPatternRewriter::replaceOpWithIf(
1268     Operation *op, ValueRange newValues, bool *allUsesReplaced,
1269     llvm::unique_function<bool(OpOperand &) const> functor) {
1270   // TODO: To support this we will need to rework a bit of how replacements are
1271   // tracked, given that this isn't guranteed to replace all of the uses of an
1272   // operation. The main change is that now an operation can be replaced
1273   // multiple times, in parts. The current "set" based tracking is mainly useful
1274   // for tracking if a replaced operation should be ignored, i.e. if all of the
1275   // uses will be replaced.
1276   llvm_unreachable(
1277       "replaceOpWithIf is currently not supported by DialectConversion");
1278 }
1279 
1280 /// PatternRewriter hook for replacing the results of an operation.
1281 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
1282   LLVM_DEBUG({
1283     impl->logger.startLine()
1284         << "** Replace : '" << op->getName() << "'(" << op << ")\n";
1285   });
1286   impl->notifyOpReplaced(op, newValues);
1287 }
1288 
1289 /// PatternRewriter hook for erasing a dead operation. The uses of this
1290 /// operation *must* be made dead by the end of the conversion process,
1291 /// otherwise an assert will be issued.
1292 void ConversionPatternRewriter::eraseOp(Operation *op) {
1293   LLVM_DEBUG({
1294     impl->logger.startLine()
1295         << "** Erase   : '" << op->getName() << "'(" << op << ")\n";
1296   });
1297   SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
1298   impl->notifyOpReplaced(op, nullRepls);
1299 }
1300 
1301 void ConversionPatternRewriter::eraseBlock(Block *block) {
1302   impl->notifyBlockIsBeingErased(block);
1303 
1304   // Mark all ops for erasure.
1305   for (Operation &op : *block)
1306     eraseOp(&op);
1307 
1308   // Unlink the block from its parent region. The block is kept in the block
1309   // action and will be actually destroyed when rewrites are applied. This
1310   // allows us to keep the operations in the block live and undo the removal by
1311   // re-inserting the block.
1312   block->getParent()->getBlocks().remove(block);
1313 }
1314 
1315 Block *ConversionPatternRewriter::applySignatureConversion(
1316     Region *region, TypeConverter::SignatureConversion &conversion) {
1317   return impl->applySignatureConversion(region, conversion);
1318 }
1319 
1320 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
1321     Region *region, TypeConverter &converter,
1322     TypeConverter::SignatureConversion *entryConversion) {
1323   return impl->convertRegionTypes(region, converter, entryConversion);
1324 }
1325 
1326 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
1327                                                            Value to) {
1328   LLVM_DEBUG({
1329     Operation *parentOp = from.getOwner()->getParentOp();
1330     impl->logger.startLine() << "** Replace Argument : '" << from
1331                              << "'(in region of '" << parentOp->getName()
1332                              << "'(" << from.getOwner()->getParentOp() << ")\n";
1333   });
1334   impl->argReplacements.push_back(from);
1335   impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
1336 }
1337 
1338 /// Return the converted value that replaces 'key'. Return 'key' if there is
1339 /// no such a converted value.
1340 Value ConversionPatternRewriter::getRemappedValue(Value key) {
1341   return impl->mapping.lookupOrDefault(key);
1342 }
1343 
1344 /// PatternRewriter hook for creating a new block with the given arguments.
1345 void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
1346   impl->notifyCreatedBlock(block);
1347 }
1348 
1349 /// PatternRewriter hook for splitting a block into two parts.
1350 Block *ConversionPatternRewriter::splitBlock(Block *block,
1351                                              Block::iterator before) {
1352   auto *continuation = PatternRewriter::splitBlock(block, before);
1353   impl->notifySplitBlock(block, continuation);
1354   return continuation;
1355 }
1356 
1357 /// PatternRewriter hook for merging a block into another.
1358 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
1359                                             ValueRange argValues) {
1360   impl->notifyBlocksBeingMerged(dest, source);
1361   assert(llvm::all_of(source->getPredecessors(),
1362                       [dest](Block *succ) { return succ == dest; }) &&
1363          "expected 'source' to have no predecessors or only 'dest'");
1364   assert(argValues.size() == source->getNumArguments() &&
1365          "incorrect # of argument replacement values");
1366   for (auto it : llvm::zip(source->getArguments(), argValues))
1367     replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
1368   dest->getOperations().splice(dest->end(), source->getOperations());
1369   eraseBlock(source);
1370 }
1371 
1372 /// PatternRewriter hook for moving blocks out of a region.
1373 void ConversionPatternRewriter::inlineRegionBefore(Region &region,
1374                                                    Region &parent,
1375                                                    Region::iterator before) {
1376   impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
1377   PatternRewriter::inlineRegionBefore(region, parent, before);
1378 }
1379 
1380 /// PatternRewriter hook for cloning blocks of one region into another.
1381 void ConversionPatternRewriter::cloneRegionBefore(
1382     Region &region, Region &parent, Region::iterator before,
1383     BlockAndValueMapping &mapping) {
1384   if (region.empty())
1385     return;
1386   PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
1387 
1388   // Collect the range of the cloned blocks.
1389   auto clonedBeginIt = mapping.lookup(&region.front())->getIterator();
1390   auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
1391   impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
1392 }
1393 
1394 /// PatternRewriter hook for creating a new operation.
1395 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
1396   LLVM_DEBUG({
1397     impl->logger.startLine()
1398         << "** Insert  : '" << op->getName() << "'(" << op << ")\n";
1399   });
1400   impl->createdOps.push_back(op);
1401 }
1402 
1403 /// PatternRewriter hook for updating the root operation in-place.
1404 void ConversionPatternRewriter::startRootUpdate(Operation *op) {
1405 #ifndef NDEBUG
1406   impl->pendingRootUpdates.insert(op);
1407 #endif
1408   impl->rootUpdates.emplace_back(op);
1409 }
1410 
1411 /// PatternRewriter hook for updating the root operation in-place.
1412 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
1413   // There is nothing to do here, we only need to track the operation at the
1414   // start of the update.
1415 #ifndef NDEBUG
1416   assert(impl->pendingRootUpdates.erase(op) &&
1417          "operation did not have a pending in-place update");
1418 #endif
1419 }
1420 
1421 /// PatternRewriter hook for updating the root operation in-place.
1422 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
1423 #ifndef NDEBUG
1424   assert(impl->pendingRootUpdates.erase(op) &&
1425          "operation did not have a pending in-place update");
1426 #endif
1427   // Erase the last update for this operation.
1428   auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
1429   auto &rootUpdates = impl->rootUpdates;
1430   auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
1431   rootUpdates.erase(rootUpdates.begin() + (rootUpdates.rend() - it));
1432 }
1433 
1434 /// PatternRewriter hook for notifying match failure reasons.
1435 LogicalResult ConversionPatternRewriter::notifyMatchFailure(
1436     Operation *op, function_ref<void(Diagnostic &)> reasonCallback) {
1437   return impl->notifyMatchFailure(op->getLoc(), reasonCallback);
1438 }
1439 
1440 /// Return a reference to the internal implementation.
1441 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
1442   return *impl;
1443 }
1444 
1445 //===----------------------------------------------------------------------===//
1446 // ConversionPattern
1447 //===----------------------------------------------------------------------===//
1448 
1449 /// Attempt to match and rewrite the IR root at the specified operation.
1450 LogicalResult
1451 ConversionPattern::matchAndRewrite(Operation *op,
1452                                    PatternRewriter &rewriter) const {
1453   auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
1454   auto &rewriterImpl = dialectRewriter.getImpl();
1455 
1456   // Track the current conversion pattern in the rewriter.
1457   assert(!rewriterImpl.currentConversionPattern &&
1458          "already inside of a pattern rewrite");
1459   llvm::SaveAndRestore<const ConversionPattern *> currentPatternGuard(
1460       rewriterImpl.currentConversionPattern, this);
1461 
1462   // Remap the operands of the operation.
1463   SmallVector<Value, 4> operands;
1464   if (failed(rewriterImpl.remapValues(op->getLoc(), rewriter,
1465                                       getTypeConverter(), op->getOperands(),
1466                                       operands))) {
1467     return failure();
1468   }
1469   return matchAndRewrite(op, operands, dialectRewriter);
1470 }
1471 
1472 //===----------------------------------------------------------------------===//
1473 // OperationLegalizer
1474 //===----------------------------------------------------------------------===//
1475 
1476 namespace {
1477 /// A set of rewrite patterns that can be used to legalize a given operation.
1478 using LegalizationPatterns = SmallVector<const Pattern *, 1>;
1479 
1480 /// This class defines a recursive operation legalizer.
1481 class OperationLegalizer {
1482 public:
1483   using LegalizationAction = ConversionTarget::LegalizationAction;
1484 
1485   OperationLegalizer(ConversionTarget &targetInfo,
1486                      const FrozenRewritePatternList &patterns);
1487 
1488   /// Returns true if the given operation is known to be illegal on the target.
1489   bool isIllegal(Operation *op) const;
1490 
1491   /// Attempt to legalize the given operation. Returns success if the operation
1492   /// was legalized, failure otherwise.
1493   LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
1494 
1495   /// Returns the conversion target in use by the legalizer.
1496   ConversionTarget &getTarget() { return target; }
1497 
1498 private:
1499   /// Attempt to legalize the given operation by folding it.
1500   LogicalResult legalizeWithFold(Operation *op,
1501                                  ConversionPatternRewriter &rewriter);
1502 
1503   /// Attempt to legalize the given operation by applying a pattern. Returns
1504   /// success if the operation was legalized, failure otherwise.
1505   LogicalResult legalizeWithPattern(Operation *op,
1506                                     ConversionPatternRewriter &rewriter);
1507 
1508   /// Return true if the given pattern may be applied to the given operation,
1509   /// false otherwise.
1510   bool canApplyPattern(Operation *op, const Pattern &pattern,
1511                        ConversionPatternRewriter &rewriter);
1512 
1513   /// Legalize the resultant IR after successfully applying the given pattern.
1514   LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
1515                                       ConversionPatternRewriter &rewriter,
1516                                       RewriterState &curState);
1517 
1518   /// Legalizes the actions registered during the execution of a pattern.
1519   LogicalResult legalizePatternBlockActions(Operation *op,
1520                                             ConversionPatternRewriter &rewriter,
1521                                             ConversionPatternRewriterImpl &impl,
1522                                             RewriterState &state,
1523                                             RewriterState &newState);
1524   LogicalResult legalizePatternCreatedOperations(
1525       ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1526       RewriterState &state, RewriterState &newState);
1527   LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
1528                                            ConversionPatternRewriterImpl &impl,
1529                                            RewriterState &state,
1530                                            RewriterState &newState);
1531 
1532   //===--------------------------------------------------------------------===//
1533   // Cost Model
1534   //===--------------------------------------------------------------------===//
1535 
1536   /// Build an optimistic legalization graph given the provided patterns. This
1537   /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
1538   /// patterns for operations that are not directly legal, but may be
1539   /// transitively legal for the current target given the provided patterns.
1540   void buildLegalizationGraph(
1541       LegalizationPatterns &anyOpLegalizerPatterns,
1542       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1543 
1544   /// Compute the benefit of each node within the computed legalization graph.
1545   /// This orders the patterns within 'legalizerPatterns' based upon two
1546   /// criteria:
1547   ///  1) Prefer patterns that have the lowest legalization depth, i.e.
1548   ///     represent the more direct mapping to the target.
1549   ///  2) When comparing patterns with the same legalization depth, prefer the
1550   ///     pattern with the highest PatternBenefit. This allows for users to
1551   ///     prefer specific legalizations over others.
1552   void computeLegalizationGraphBenefit(
1553       LegalizationPatterns &anyOpLegalizerPatterns,
1554       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1555 
1556   /// Compute the legalization depth when legalizing an operation of the given
1557   /// type.
1558   unsigned computeOpLegalizationDepth(
1559       OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
1560       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1561 
1562   /// Apply the conversion cost model to the given set of patterns, and return
1563   /// the smallest legalization depth of any of the patterns. See
1564   /// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
1565   unsigned applyCostModelToPatterns(
1566       LegalizationPatterns &patterns,
1567       DenseMap<OperationName, unsigned> &minOpPatternDepth,
1568       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1569 
1570   /// The current set of patterns that have been applied.
1571   SmallPtrSet<const Pattern *, 8> appliedPatterns;
1572 
1573   /// The legalization information provided by the target.
1574   ConversionTarget &target;
1575 
1576   /// The pattern applicator to use for conversions.
1577   PatternApplicator applicator;
1578 };
1579 } // namespace
1580 
1581 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo,
1582                                        const FrozenRewritePatternList &patterns)
1583     : target(targetInfo), applicator(patterns) {
1584   // The set of patterns that can be applied to illegal operations to transform
1585   // them into legal ones.
1586   DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
1587   LegalizationPatterns anyOpLegalizerPatterns;
1588 
1589   buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
1590   computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
1591 }
1592 
1593 bool OperationLegalizer::isIllegal(Operation *op) const {
1594   // Check if the target explicitly marked this operation as illegal.
1595   return target.getOpAction(op->getName()) == LegalizationAction::Illegal;
1596 }
1597 
1598 LogicalResult
1599 OperationLegalizer::legalize(Operation *op,
1600                              ConversionPatternRewriter &rewriter) {
1601 #ifndef NDEBUG
1602   const char *logLineComment =
1603       "//===-------------------------------------------===//\n";
1604 
1605   auto &rewriterImpl = rewriter.getImpl();
1606 #endif
1607   LLVM_DEBUG({
1608     auto &os = rewriterImpl.logger;
1609     os.getOStream() << "\n";
1610     os.startLine() << logLineComment;
1611     os.startLine() << "Legalizing operation : '" << op->getName() << "'(" << op
1612                    << ") {\n";
1613     os.indent();
1614 
1615     // If the operation has no regions, just print it here.
1616     if (op->getNumRegions() == 0) {
1617       op->print(os.startLine(), OpPrintingFlags().printGenericOpForm());
1618       os.getOStream() << "\n\n";
1619     }
1620   });
1621 
1622   // Check if this operation is legal on the target.
1623   if (auto legalityInfo = target.isLegal(op)) {
1624     LLVM_DEBUG({
1625       logSuccess(
1626           rewriterImpl.logger, "operation marked legal by the target{0}",
1627           legalityInfo->isRecursivelyLegal
1628               ? "; NOTE: operation is recursively legal; skipping internals"
1629               : "");
1630       rewriterImpl.logger.startLine() << logLineComment;
1631     });
1632 
1633     // If this operation is recursively legal, mark its children as ignored so
1634     // that we don't consider them for legalization.
1635     if (legalityInfo->isRecursivelyLegal)
1636       rewriter.getImpl().markNestedOpsIgnored(op);
1637     return success();
1638   }
1639 
1640   // Check to see if the operation is ignored and doesn't need to be converted.
1641   if (rewriter.getImpl().isOpIgnored(op)) {
1642     LLVM_DEBUG({
1643       logSuccess(rewriterImpl.logger,
1644                  "operation marked 'ignored' during conversion");
1645       rewriterImpl.logger.startLine() << logLineComment;
1646     });
1647     return success();
1648   }
1649 
1650   // If the operation isn't legal, try to fold it in-place.
1651   // TODO: Should we always try to do this, even if the op is
1652   // already legal?
1653   if (succeeded(legalizeWithFold(op, rewriter))) {
1654     LLVM_DEBUG({
1655       logSuccess(rewriterImpl.logger, "operation was folded");
1656       rewriterImpl.logger.startLine() << logLineComment;
1657     });
1658     return success();
1659   }
1660 
1661   // Otherwise, we need to apply a legalization pattern to this operation.
1662   if (succeeded(legalizeWithPattern(op, rewriter))) {
1663     LLVM_DEBUG({
1664       logSuccess(rewriterImpl.logger, "");
1665       rewriterImpl.logger.startLine() << logLineComment;
1666     });
1667     return success();
1668   }
1669 
1670   LLVM_DEBUG({
1671     logFailure(rewriterImpl.logger, "no matched legalization pattern");
1672     rewriterImpl.logger.startLine() << logLineComment;
1673   });
1674   return failure();
1675 }
1676 
1677 LogicalResult
1678 OperationLegalizer::legalizeWithFold(Operation *op,
1679                                      ConversionPatternRewriter &rewriter) {
1680   auto &rewriterImpl = rewriter.getImpl();
1681   RewriterState curState = rewriterImpl.getCurrentState();
1682 
1683   LLVM_DEBUG({
1684     rewriterImpl.logger.startLine() << "* Fold {\n";
1685     rewriterImpl.logger.indent();
1686   });
1687 
1688   // Try to fold the operation.
1689   SmallVector<Value, 2> replacementValues;
1690   rewriter.setInsertionPoint(op);
1691   if (failed(rewriter.tryFold(op, replacementValues))) {
1692     LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
1693     return failure();
1694   }
1695 
1696   // Insert a replacement for 'op' with the folded replacement values.
1697   rewriter.replaceOp(op, replacementValues);
1698 
1699   // Recursively legalize any new constant operations.
1700   for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
1701        i != e; ++i) {
1702     Operation *cstOp = rewriterImpl.createdOps[i];
1703     if (failed(legalize(cstOp, rewriter))) {
1704       LLVM_DEBUG(logFailure(rewriterImpl.logger,
1705                             "generated constant '{0}' was illegal",
1706                             cstOp->getName()));
1707       rewriterImpl.resetState(curState);
1708       return failure();
1709     }
1710   }
1711 
1712   LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
1713   return success();
1714 }
1715 
1716 LogicalResult
1717 OperationLegalizer::legalizeWithPattern(Operation *op,
1718                                         ConversionPatternRewriter &rewriter) {
1719   auto &rewriterImpl = rewriter.getImpl();
1720 
1721   // Functor that returns if the given pattern may be applied.
1722   auto canApply = [&](const Pattern &pattern) {
1723     return canApplyPattern(op, pattern, rewriter);
1724   };
1725 
1726   // Functor that cleans up the rewriter state after a pattern failed to match.
1727   RewriterState curState = rewriterImpl.getCurrentState();
1728   auto onFailure = [&](const Pattern &pattern) {
1729     LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match"));
1730     rewriterImpl.resetState(curState);
1731     appliedPatterns.erase(&pattern);
1732   };
1733 
1734   // Functor that performs additional legalization when a pattern is
1735   // successfully applied.
1736   auto onSuccess = [&](const Pattern &pattern) {
1737     auto result = legalizePatternResult(op, pattern, rewriter, curState);
1738     appliedPatterns.erase(&pattern);
1739     if (failed(result))
1740       rewriterImpl.resetState(curState);
1741     return result;
1742   };
1743 
1744   // Try to match and rewrite a pattern on this operation.
1745   return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
1746                                     onSuccess);
1747 }
1748 
1749 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
1750                                          ConversionPatternRewriter &rewriter) {
1751   LLVM_DEBUG({
1752     auto &os = rewriter.getImpl().logger;
1753     os.getOStream() << "\n";
1754     os.startLine() << "* Pattern : '" << op->getName() << " -> (";
1755     llvm::interleaveComma(pattern.getGeneratedOps(), llvm::dbgs());
1756     os.getOStream() << ")' {\n";
1757     os.indent();
1758   });
1759 
1760   // Ensure that we don't cycle by not allowing the same pattern to be
1761   // applied twice in the same recursion stack if it is not known to be safe.
1762   if (!pattern.hasBoundedRewriteRecursion() &&
1763       !appliedPatterns.insert(&pattern).second) {
1764     LLVM_DEBUG(
1765         logFailure(rewriter.getImpl().logger, "pattern was already applied"));
1766     return false;
1767   }
1768   return true;
1769 }
1770 
1771 LogicalResult
1772 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
1773                                           ConversionPatternRewriter &rewriter,
1774                                           RewriterState &curState) {
1775   auto &impl = rewriter.getImpl();
1776 
1777 #ifndef NDEBUG
1778   assert(impl.pendingRootUpdates.empty() && "dangling root updates");
1779 #endif
1780 
1781   // Check that the root was either replaced or updated in place.
1782   auto replacedRoot = [&] {
1783     return llvm::any_of(
1784         llvm::drop_begin(impl.replacements, curState.numReplacements),
1785         [op](auto &it) { return it.first == op; });
1786   };
1787   auto updatedRootInPlace = [&] {
1788     return llvm::any_of(
1789         llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
1790         [op](auto &state) { return state.getOperation() == op; });
1791   };
1792   (void)replacedRoot;
1793   (void)updatedRootInPlace;
1794   assert((replacedRoot() || updatedRootInPlace()) &&
1795          "expected pattern to replace the root operation");
1796 
1797   // Legalize each of the actions registered during application.
1798   RewriterState newState = impl.getCurrentState();
1799   if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
1800                                          newState)) ||
1801       failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
1802       failed(legalizePatternCreatedOperations(rewriter, impl, curState,
1803                                               newState))) {
1804     return failure();
1805   }
1806 
1807   LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
1808   return success();
1809 }
1810 
1811 LogicalResult OperationLegalizer::legalizePatternBlockActions(
1812     Operation *op, ConversionPatternRewriter &rewriter,
1813     ConversionPatternRewriterImpl &impl, RewriterState &state,
1814     RewriterState &newState) {
1815   SmallPtrSet<Operation *, 16> operationsToIgnore;
1816 
1817   // If the pattern moved or created any blocks, make sure the types of block
1818   // arguments get legalized.
1819   for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
1820        ++i) {
1821     auto &action = impl.blockActions[i];
1822     if (action.kind == BlockActionKind::TypeConversion ||
1823         action.kind == BlockActionKind::Erase)
1824       continue;
1825     // Only check blocks outside of the current operation.
1826     Operation *parentOp = action.block->getParentOp();
1827     if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
1828       continue;
1829 
1830     // If the region of the block has a type converter, try to convert the block
1831     // directly.
1832     if (auto *converter =
1833             impl.argConverter.getConverter(action.block->getParent())) {
1834       if (failed(impl.convertBlockSignature(action.block, *converter))) {
1835         LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
1836                                            "block"));
1837         return failure();
1838       }
1839       continue;
1840     }
1841 
1842     // Otherwise, check that this operation isn't one generated by this pattern.
1843     // This is because we will attempt to legalize the parent operation, and
1844     // blocks in regions created by this pattern will already be legalized later
1845     // on. If we haven't built the set yet, build it now.
1846     if (operationsToIgnore.empty()) {
1847       auto createdOps = ArrayRef<Operation *>(impl.createdOps)
1848                             .drop_front(state.numCreatedOps);
1849       operationsToIgnore.insert(createdOps.begin(), createdOps.end());
1850     }
1851 
1852     // If this operation should be considered for re-legalization, try it.
1853     if (operationsToIgnore.insert(parentOp).second &&
1854         failed(legalize(parentOp, rewriter))) {
1855       LLVM_DEBUG(logFailure(
1856           impl.logger, "operation '{0}'({1}) became illegal after block action",
1857           parentOp->getName(), parentOp));
1858       return failure();
1859     }
1860   }
1861   return success();
1862 }
1863 LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
1864     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1865     RewriterState &state, RewriterState &newState) {
1866   for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
1867     Operation *op = impl.createdOps[i];
1868     if (failed(legalize(op, rewriter))) {
1869       LLVM_DEBUG(logFailure(impl.logger,
1870                             "generated operation '{0}'({1}) was illegal",
1871                             op->getName(), op));
1872       return failure();
1873     }
1874   }
1875   return success();
1876 }
1877 LogicalResult OperationLegalizer::legalizePatternRootUpdates(
1878     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1879     RewriterState &state, RewriterState &newState) {
1880   for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
1881     Operation *op = impl.rootUpdates[i].getOperation();
1882     if (failed(legalize(op, rewriter))) {
1883       LLVM_DEBUG(logFailure(impl.logger,
1884                             "operation updated in-place '{0}' was illegal",
1885                             op->getName()));
1886       return failure();
1887     }
1888   }
1889   return success();
1890 }
1891 
1892 //===----------------------------------------------------------------------===//
1893 // Cost Model
1894 
1895 void OperationLegalizer::buildLegalizationGraph(
1896     LegalizationPatterns &anyOpLegalizerPatterns,
1897     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
1898   // A mapping between an operation and a set of operations that can be used to
1899   // generate it.
1900   DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
1901   // A mapping between an operation and any currently invalid patterns it has.
1902   DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
1903   // A worklist of patterns to consider for legality.
1904   llvm::SetVector<const Pattern *> patternWorklist;
1905 
1906   // Build the mapping from operations to the parent ops that may generate them.
1907   applicator.walkAllPatterns([&](const Pattern &pattern) {
1908     Optional<OperationName> root = pattern.getRootKind();
1909 
1910     // If the pattern has no specific root, we can't analyze the relationship
1911     // between the root op and generated operations. Given that, add all such
1912     // patterns to the legalization set.
1913     if (!root) {
1914       anyOpLegalizerPatterns.push_back(&pattern);
1915       return;
1916     }
1917 
1918     // Skip operations that are always known to be legal.
1919     if (target.getOpAction(*root) == LegalizationAction::Legal)
1920       return;
1921 
1922     // Add this pattern to the invalid set for the root op and record this root
1923     // as a parent for any generated operations.
1924     invalidPatterns[*root].insert(&pattern);
1925     for (auto op : pattern.getGeneratedOps())
1926       parentOps[op].insert(*root);
1927 
1928     // Add this pattern to the worklist.
1929     patternWorklist.insert(&pattern);
1930   });
1931 
1932   // If there are any patterns that don't have a specific root kind, we can't
1933   // make direct assumptions about what operations will never be legalized.
1934   // Note: Technically we could, but it would require an analysis that may
1935   // recurse into itself. It would be better to perform this kind of filtering
1936   // at a higher level than here anyways.
1937   if (!anyOpLegalizerPatterns.empty()) {
1938     for (const Pattern *pattern : patternWorklist)
1939       legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
1940     return;
1941   }
1942 
1943   while (!patternWorklist.empty()) {
1944     auto *pattern = patternWorklist.pop_back_val();
1945 
1946     // Check to see if any of the generated operations are invalid.
1947     if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
1948           Optional<LegalizationAction> action = target.getOpAction(op);
1949           return !legalizerPatterns.count(op) &&
1950                  (!action || action == LegalizationAction::Illegal);
1951         }))
1952       continue;
1953 
1954     // Otherwise, if all of the generated operation are valid, this op is now
1955     // legal so add all of the child patterns to the worklist.
1956     legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
1957     invalidPatterns[*pattern->getRootKind()].erase(pattern);
1958 
1959     // Add any invalid patterns of the parent operations to see if they have now
1960     // become legal.
1961     for (auto op : parentOps[*pattern->getRootKind()])
1962       patternWorklist.set_union(invalidPatterns[op]);
1963   }
1964 }
1965 
1966 void OperationLegalizer::computeLegalizationGraphBenefit(
1967     LegalizationPatterns &anyOpLegalizerPatterns,
1968     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
1969   // The smallest pattern depth, when legalizing an operation.
1970   DenseMap<OperationName, unsigned> minOpPatternDepth;
1971 
1972   // For each operation that is transitively legal, compute a cost for it.
1973   for (auto &opIt : legalizerPatterns)
1974     if (!minOpPatternDepth.count(opIt.first))
1975       computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
1976                                  legalizerPatterns);
1977 
1978   // Apply the cost model to the patterns that can match any operation. Those
1979   // with a specific operation type are already resolved when computing the op
1980   // legalization depth.
1981   if (!anyOpLegalizerPatterns.empty())
1982     applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
1983                              legalizerPatterns);
1984 
1985   // Apply a cost model to the pattern applicator. We order patterns first by
1986   // depth then benefit. `legalizerPatterns` contains per-op patterns by
1987   // decreasing benefit.
1988   applicator.applyCostModel([&](const Pattern &pattern) {
1989     ArrayRef<const Pattern *> orderedPatternList;
1990     if (Optional<OperationName> rootName = pattern.getRootKind())
1991       orderedPatternList = legalizerPatterns[*rootName];
1992     else
1993       orderedPatternList = anyOpLegalizerPatterns;
1994 
1995     // If the pattern is not found, then it was removed and cannot be matched.
1996     auto it = llvm::find(orderedPatternList, &pattern);
1997     if (it == orderedPatternList.end())
1998       return PatternBenefit::impossibleToMatch();
1999 
2000     // Patterns found earlier in the list have higher benefit.
2001     return PatternBenefit(std::distance(it, orderedPatternList.end()));
2002   });
2003 }
2004 
2005 unsigned OperationLegalizer::computeOpLegalizationDepth(
2006     OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
2007     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2008   // Check for existing depth.
2009   auto depthIt = minOpPatternDepth.find(op);
2010   if (depthIt != minOpPatternDepth.end())
2011     return depthIt->second;
2012 
2013   // If a mapping for this operation does not exist, then this operation
2014   // is always legal. Return 0 as the depth for a directly legal operation.
2015   auto opPatternsIt = legalizerPatterns.find(op);
2016   if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
2017     return 0u;
2018 
2019   // Record this initial depth in case we encounter this op again when
2020   // recursively computing the depth.
2021   minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
2022 
2023   // Apply the cost model to the operation patterns, and update the minimum
2024   // depth.
2025   unsigned minDepth = applyCostModelToPatterns(
2026       opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
2027   minOpPatternDepth[op] = minDepth;
2028   return minDepth;
2029 }
2030 
2031 unsigned OperationLegalizer::applyCostModelToPatterns(
2032     LegalizationPatterns &patterns,
2033     DenseMap<OperationName, unsigned> &minOpPatternDepth,
2034     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2035   unsigned minDepth = std::numeric_limits<unsigned>::max();
2036 
2037   // Compute the depth for each pattern within the set.
2038   SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
2039   patternsByDepth.reserve(patterns.size());
2040   for (const Pattern *pattern : patterns) {
2041     unsigned depth = 0;
2042     for (auto generatedOp : pattern->getGeneratedOps()) {
2043       unsigned generatedOpDepth = computeOpLegalizationDepth(
2044           generatedOp, minOpPatternDepth, legalizerPatterns);
2045       depth = std::max(depth, generatedOpDepth + 1);
2046     }
2047     patternsByDepth.emplace_back(pattern, depth);
2048 
2049     // Update the minimum depth of the pattern list.
2050     minDepth = std::min(minDepth, depth);
2051   }
2052 
2053   // If the operation only has one legalization pattern, there is no need to
2054   // sort them.
2055   if (patternsByDepth.size() == 1)
2056     return minDepth;
2057 
2058   // Sort the patterns by those likely to be the most beneficial.
2059   llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(),
2060                        [](const std::pair<const Pattern *, unsigned> *lhs,
2061                           const std::pair<const Pattern *, unsigned> *rhs) {
2062                          // First sort by the smaller pattern legalization
2063                          // depth.
2064                          if (lhs->second != rhs->second)
2065                            return llvm::array_pod_sort_comparator<unsigned>(
2066                                &lhs->second, &rhs->second);
2067 
2068                          // Then sort by the larger pattern benefit.
2069                          auto lhsBenefit = lhs->first->getBenefit();
2070                          auto rhsBenefit = rhs->first->getBenefit();
2071                          return llvm::array_pod_sort_comparator<PatternBenefit>(
2072                              &rhsBenefit, &lhsBenefit);
2073                        });
2074 
2075   // Update the legalization pattern to use the new sorted list.
2076   patterns.clear();
2077   for (auto &patternIt : patternsByDepth)
2078     patterns.push_back(patternIt.first);
2079   return minDepth;
2080 }
2081 
2082 //===----------------------------------------------------------------------===//
2083 // OperationConverter
2084 //===----------------------------------------------------------------------===//
2085 namespace {
2086 enum OpConversionMode {
2087   // In this mode, the conversion will ignore failed conversions to allow
2088   // illegal operations to co-exist in the IR.
2089   Partial,
2090 
2091   // In this mode, all operations must be legal for the given target for the
2092   // conversion to succeed.
2093   Full,
2094 
2095   // In this mode, operations are analyzed for legality. No actual rewrites are
2096   // applied to the operations on success.
2097   Analysis,
2098 };
2099 
2100 // This class converts operations to a given conversion target via a set of
2101 // rewrite patterns. The conversion behaves differently depending on the
2102 // conversion mode.
2103 struct OperationConverter {
2104   explicit OperationConverter(ConversionTarget &target,
2105                               const FrozenRewritePatternList &patterns,
2106                               OpConversionMode mode,
2107                               DenseSet<Operation *> *trackedOps = nullptr)
2108       : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}
2109 
2110   /// Converts the given operations to the conversion target.
2111   LogicalResult convertOperations(ArrayRef<Operation *> ops);
2112 
2113 private:
2114   /// Converts an operation with the given rewriter.
2115   LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
2116 
2117   /// This method is called after the conversion process to legalize any
2118   /// remaining artifacts and complete the conversion.
2119   LogicalResult finalize(ConversionPatternRewriter &rewriter);
2120 
2121   /// Legalize the types of converted block arguments.
2122   LogicalResult
2123   legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
2124                                  ConversionPatternRewriterImpl &rewriterImpl);
2125 
2126   /// Legalize an operation result that was marked as "erased".
2127   LogicalResult
2128   legalizeErasedResult(Operation *op, OpResult result,
2129                        ConversionPatternRewriterImpl &rewriterImpl);
2130 
2131   /// Legalize an operation result that was replaced with a value of a different
2132   /// type.
2133   LogicalResult
2134   legalizeChangedResultType(Operation *op, OpResult result, Value newValue,
2135                             TypeConverter *replConverter,
2136                             ConversionPatternRewriter &rewriter,
2137                             ConversionPatternRewriterImpl &rewriterImpl,
2138                             const BlockAndValueMapping &inverseMapping);
2139 
2140   /// The legalizer to use when converting operations.
2141   OperationLegalizer opLegalizer;
2142 
2143   /// The conversion mode to use when legalizing operations.
2144   OpConversionMode mode;
2145 
2146   /// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
2147   /// this is populated with ops found to be legalizable to the target.
2148   /// When mode == OpConversionMode::Partial, this is populated with ops found
2149   /// *not* to be legalizable to the target.
2150   DenseSet<Operation *> *trackedOps;
2151 };
2152 } // end anonymous namespace
2153 
2154 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
2155                                           Operation *op) {
2156   // Legalize the given operation.
2157   if (failed(opLegalizer.legalize(op, rewriter))) {
2158     // Handle the case of a failed conversion for each of the different modes.
2159     // Full conversions expect all operations to be converted.
2160     if (mode == OpConversionMode::Full)
2161       return op->emitError()
2162              << "failed to legalize operation '" << op->getName() << "'";
2163     // Partial conversions allow conversions to fail iff the operation was not
2164     // explicitly marked as illegal. If the user provided a nonlegalizableOps
2165     // set, non-legalizable ops are included.
2166     if (mode == OpConversionMode::Partial) {
2167       if (opLegalizer.isIllegal(op))
2168         return op->emitError()
2169                << "failed to legalize operation '" << op->getName()
2170                << "' that was explicitly marked illegal";
2171       if (trackedOps)
2172         trackedOps->insert(op);
2173     }
2174   } else if (mode == OpConversionMode::Analysis) {
2175     // Analysis conversions don't fail if any operations fail to legalize,
2176     // they are only interested in the operations that were successfully
2177     // legalized.
2178     trackedOps->insert(op);
2179   }
2180   return success();
2181 }
2182 
2183 LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
2184   if (ops.empty())
2185     return success();
2186   ConversionTarget &target = opLegalizer.getTarget();
2187 
2188   // Compute the set of operations and blocks to convert.
2189   std::vector<Operation *> toConvert;
2190   for (auto *op : ops) {
2191     toConvert.emplace_back(op);
2192     for (auto &region : op->getRegions())
2193       if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
2194                                       toConvert, &target)))
2195         return failure();
2196   }
2197 
2198   // Convert each operation and discard rewrites on failure.
2199   ConversionPatternRewriter rewriter(ops.front()->getContext());
2200   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2201   for (auto *op : toConvert)
2202     if (failed(convert(rewriter, op)))
2203       return rewriterImpl.discardRewrites(), failure();
2204 
2205   // Now that all of the operations have been converted, finalize the conversion
2206   // process to ensure any lingering conversion artifacts are cleaned up and
2207   // legalized.
2208   if (failed(finalize(rewriter)))
2209     return rewriterImpl.discardRewrites(), failure();
2210 
2211   // After a successful conversion, apply rewrites if this is not an analysis
2212   // conversion.
2213   if (mode == OpConversionMode::Analysis)
2214     rewriterImpl.discardRewrites();
2215   else
2216     rewriterImpl.applyRewrites();
2217   return success();
2218 }
2219 
2220 LogicalResult
2221 OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
2222   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2223 
2224   // Legalize converted block arguments.
2225   if (failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
2226     return failure();
2227 
2228   if (rewriterImpl.operationsWithChangedResults.empty())
2229     return success();
2230 
2231   Optional<BlockAndValueMapping> inverseMapping;
2232 
2233   // Process requested operation replacements.
2234   for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
2235        i != e; ++i) {
2236     unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
2237     auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
2238     for (OpResult result : repl.first->getResults()) {
2239       Value newValue = rewriterImpl.mapping.lookupOrNull(result);
2240 
2241       // If the operation result was replaced with null, all of the uses of this
2242       // value should be replaced.
2243       if (!newValue) {
2244         if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
2245           return failure();
2246         continue;
2247       }
2248 
2249       // Otherwise, check to see if the type of the result changed.
2250       if (result.getType() == newValue.getType())
2251         continue;
2252 
2253       // Compute the inverse mapping only if it is really needed.
2254       if (!inverseMapping)
2255         inverseMapping = rewriterImpl.mapping.getInverse();
2256 
2257       // Legalize this result.
2258       rewriter.setInsertionPoint(repl.first);
2259       if (failed(legalizeChangedResultType(repl.first, result, newValue,
2260                                            repl.second.converter, rewriter,
2261                                            rewriterImpl, *inverseMapping)))
2262         return failure();
2263 
2264       // Update the end iterator for this loop in the case it was updated
2265       // when legalizing generated conversion operations.
2266       e = rewriterImpl.operationsWithChangedResults.size();
2267     }
2268   }
2269   return success();
2270 }
2271 
2272 LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
2273     ConversionPatternRewriter &rewriter,
2274     ConversionPatternRewriterImpl &rewriterImpl) {
2275   // Functor used to check if all users of a value will be dead after
2276   // conversion.
2277   auto findLiveUser = [&](Value val) {
2278     auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
2279       return rewriterImpl.isOpIgnored(user);
2280     });
2281     return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
2282   };
2283 
2284   // Materialize any necessary conversions for converted block arguments that
2285   // are still live.
2286   size_t numCreatedOps = rewriterImpl.createdOps.size();
2287   if (failed(rewriterImpl.argConverter.materializeLiveConversions(
2288           rewriterImpl.mapping, rewriter, findLiveUser)))
2289     return failure();
2290 
2291   // Legalize any newly created operations during argument materialization.
2292   for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) {
2293     if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) {
2294       return rewriterImpl.createdOps[i]->emitError()
2295              << "failed to legalize conversion operation generated for block "
2296                 "argument that remained live after conversion";
2297     }
2298   }
2299   return success();
2300 }
2301 
2302 LogicalResult OperationConverter::legalizeErasedResult(
2303     Operation *op, OpResult result,
2304     ConversionPatternRewriterImpl &rewriterImpl) {
2305   // If the operation result was replaced with null, all of the uses of this
2306   // value should be replaced.
2307   auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
2308     return rewriterImpl.isOpIgnored(user);
2309   });
2310   if (liveUserIt != result.user_end()) {
2311     InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
2312                               << op->getName() << "' marked as erased";
2313     diag.attachNote(liveUserIt->getLoc())
2314         << "found live user of result #" << result.getResultNumber() << ": "
2315         << *liveUserIt;
2316     return failure();
2317   }
2318   return success();
2319 }
2320 
2321 /// Finds a user of the given value, or of any other value that the given value
2322 /// replaced, that was not replaced in the conversion process.
2323 static Operation *
2324 findLiveUserOfReplaced(Value value, ConversionPatternRewriterImpl &rewriterImpl,
2325                        const BlockAndValueMapping &inverseMapping) {
2326   do {
2327     // Walk the users of this value to see if there are any live users that
2328     // weren't replaced during conversion.
2329     auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
2330       return rewriterImpl.isOpIgnored(user);
2331     });
2332     if (liveUserIt != value.user_end())
2333       return *liveUserIt;
2334     value = inverseMapping.lookupOrNull(value);
2335   } while (value != nullptr);
2336   return nullptr;
2337 }
2338 
2339 LogicalResult OperationConverter::legalizeChangedResultType(
2340     Operation *op, OpResult result, Value newValue,
2341     TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2342     ConversionPatternRewriterImpl &rewriterImpl,
2343     const BlockAndValueMapping &inverseMapping) {
2344   Operation *liveUser =
2345       findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
2346   if (!liveUser)
2347     return success();
2348 
2349   // If the replacement has a type converter, attempt to materialize a
2350   // conversion back to the original type.
2351   if (!replConverter) {
2352     // TODO: We should emit an error here, similarly to the case where the
2353     // result is replaced with null. Unfortunately a lot of existing
2354     // patterns rely on this behavior, so until those patterns are updated
2355     // we keep the legacy behavior here of just forwarding the new value.
2356     return success();
2357   }
2358 
2359   // Track the number of created operations so that new ones can be legalized.
2360   size_t numCreatedOps = rewriterImpl.createdOps.size();
2361 
2362   // Materialize a conversion for this live result value.
2363   Type resultType = result.getType();
2364   Value convertedValue = replConverter->materializeSourceConversion(
2365       rewriter, op->getLoc(), resultType, newValue);
2366   if (!convertedValue) {
2367     InFlightDiagnostic diag = op->emitError()
2368                               << "failed to materialize conversion for result #"
2369                               << result.getResultNumber() << " of operation '"
2370                               << op->getName()
2371                               << "' that remained live after conversion";
2372     diag.attachNote(liveUser->getLoc())
2373         << "see existing live user here: " << *liveUser;
2374     return failure();
2375   }
2376 
2377   // Legalize all of the newly created conversion operations.
2378   for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) {
2379     if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) {
2380       return op->emitError("failed to legalize conversion operation generated ")
2381              << "for result #" << result.getResultNumber() << " of operation '"
2382              << op->getName() << "' that remained live after conversion";
2383     }
2384   }
2385 
2386   rewriterImpl.mapping.map(result, convertedValue);
2387   return success();
2388 }
2389 
2390 //===----------------------------------------------------------------------===//
2391 // Type Conversion
2392 //===----------------------------------------------------------------------===//
2393 
2394 /// Remap an input of the original signature with a new set of types. The
2395 /// new types are appended to the new signature conversion.
2396 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
2397                                                    ArrayRef<Type> types) {
2398   assert(!types.empty() && "expected valid types");
2399   remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
2400   addInputs(types);
2401 }
2402 
2403 /// Append new input types to the signature conversion, this should only be
2404 /// used if the new types are not intended to remap an existing input.
2405 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
2406   assert(!types.empty() &&
2407          "1->0 type remappings don't need to be added explicitly");
2408   argTypes.append(types.begin(), types.end());
2409 }
2410 
2411 /// Remap an input of the original signature with a range of types in the
2412 /// new signature.
2413 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2414                                                     unsigned newInputNo,
2415                                                     unsigned newInputCount) {
2416   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2417   assert(newInputCount != 0 && "expected valid input count");
2418   remappedInputs[origInputNo] =
2419       InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
2420 }
2421 
2422 /// Remap an input of the original signature to another `replacementValue`
2423 /// value. This would make the signature converter drop this argument.
2424 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2425                                                     Value replacementValue) {
2426   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2427   remappedInputs[origInputNo] =
2428       InputMapping{origInputNo, /*size=*/0, replacementValue};
2429 }
2430 
2431 /// This hooks allows for converting a type.
2432 LogicalResult TypeConverter::convertType(Type t,
2433                                          SmallVectorImpl<Type> &results) {
2434   auto existingIt = cachedDirectConversions.find(t);
2435   if (existingIt != cachedDirectConversions.end()) {
2436     if (existingIt->second)
2437       results.push_back(existingIt->second);
2438     return success(existingIt->second != nullptr);
2439   }
2440   auto multiIt = cachedMultiConversions.find(t);
2441   if (multiIt != cachedMultiConversions.end()) {
2442     results.append(multiIt->second.begin(), multiIt->second.end());
2443     return success();
2444   }
2445 
2446   // Walk the added converters in reverse order to apply the most recently
2447   // registered first.
2448   size_t currentCount = results.size();
2449   for (ConversionCallbackFn &converter : llvm::reverse(conversions)) {
2450     if (Optional<LogicalResult> result = converter(t, results)) {
2451       if (!succeeded(*result)) {
2452         cachedDirectConversions.try_emplace(t, nullptr);
2453         return failure();
2454       }
2455       auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
2456       if (newTypes.size() == 1)
2457         cachedDirectConversions.try_emplace(t, newTypes.front());
2458       else
2459         cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
2460       return success();
2461     }
2462   }
2463   return failure();
2464 }
2465 
2466 /// This hook simplifies defining 1-1 type conversions. This function returns
2467 /// the type to convert to on success, and a null type on failure.
2468 Type TypeConverter::convertType(Type t) {
2469   // Use the multi-type result version to convert the type.
2470   SmallVector<Type, 1> results;
2471   if (failed(convertType(t, results)))
2472     return nullptr;
2473 
2474   // Check to ensure that only one type was produced.
2475   return results.size() == 1 ? results.front() : nullptr;
2476 }
2477 
2478 /// Convert the given set of types, filling 'results' as necessary. This
2479 /// returns failure if the conversion of any of the types fails, success
2480 /// otherwise.
2481 LogicalResult TypeConverter::convertTypes(ArrayRef<Type> types,
2482                                           SmallVectorImpl<Type> &results) {
2483   for (auto type : types)
2484     if (failed(convertType(type, results)))
2485       return failure();
2486   return success();
2487 }
2488 
2489 /// Return true if the given type is legal for this type converter, i.e. the
2490 /// type converts to itself.
2491 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; }
2492 /// Return true if the given operation has legal operand and result types.
2493 bool TypeConverter::isLegal(Operation *op) {
2494   return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
2495 }
2496 
2497 /// Return true if the types of block arguments within the region are legal.
2498 bool TypeConverter::isLegal(Region *region) {
2499   return llvm::all_of(*region, [this](Block &block) {
2500     return isLegal(block.getArgumentTypes());
2501   });
2502 }
2503 
2504 /// Return true if the inputs and outputs of the given function type are
2505 /// legal.
2506 bool TypeConverter::isSignatureLegal(FunctionType ty) {
2507   return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
2508 }
2509 
2510 /// This hook allows for converting a specific argument of a signature.
2511 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
2512                                                  SignatureConversion &result) {
2513   // Try to convert the given input type.
2514   SmallVector<Type, 1> convertedTypes;
2515   if (failed(convertType(type, convertedTypes)))
2516     return failure();
2517 
2518   // If this argument is being dropped, there is nothing left to do.
2519   if (convertedTypes.empty())
2520     return success();
2521 
2522   // Otherwise, add the new inputs.
2523   result.addInputs(inputNo, convertedTypes);
2524   return success();
2525 }
2526 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types,
2527                                                   SignatureConversion &result,
2528                                                   unsigned origInputOffset) {
2529   for (unsigned i = 0, e = types.size(); i != e; ++i)
2530     if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
2531       return failure();
2532   return success();
2533 }
2534 
2535 Value TypeConverter::materializeConversion(
2536     MutableArrayRef<MaterializationCallbackFn> materializations,
2537     OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) {
2538   for (MaterializationCallbackFn &fn : llvm::reverse(materializations))
2539     if (Optional<Value> result = fn(builder, resultType, inputs, loc))
2540       return result.getValue();
2541   return nullptr;
2542 }
2543 
2544 /// This function converts the type signature of the given block, by invoking
2545 /// 'convertSignatureArg' for each argument. This function should return a valid
2546 /// conversion for the signature on success, None otherwise.
2547 auto TypeConverter::convertBlockSignature(Block *block)
2548     -> Optional<SignatureConversion> {
2549   SignatureConversion conversion(block->getNumArguments());
2550   if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
2551     return llvm::None;
2552   return conversion;
2553 }
2554 
2555 /// Create a default conversion pattern that rewrites the type signature of a
2556 /// FunctionLike op. This only supports FunctionLike ops which use FunctionType
2557 /// to represent their type.
2558 namespace {
2559 struct FunctionLikeSignatureConversion : public ConversionPattern {
2560   FunctionLikeSignatureConversion(StringRef functionLikeOpName,
2561                                   MLIRContext *ctx, TypeConverter &converter)
2562       : ConversionPattern(functionLikeOpName, /*benefit=*/1, converter, ctx) {}
2563 
2564   /// Hook to implement combined matching and rewriting for FunctionLike ops.
2565   LogicalResult
2566   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
2567                   ConversionPatternRewriter &rewriter) const override {
2568     FunctionType type = mlir::impl::getFunctionType(op);
2569 
2570     // Convert the original function types.
2571     TypeConverter::SignatureConversion result(type.getNumInputs());
2572     SmallVector<Type, 1> newResults;
2573     if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) ||
2574         failed(typeConverter->convertTypes(type.getResults(), newResults)) ||
2575         failed(rewriter.convertRegionTypes(&mlir::impl::getFunctionBody(op),
2576                                            *typeConverter, &result)))
2577       return failure();
2578 
2579     // Update the function signature in-place.
2580     auto newType = FunctionType::get(rewriter.getContext(),
2581                                      result.getConvertedTypes(), newResults);
2582 
2583     rewriter.updateRootInPlace(
2584         op, [&] { mlir::impl::setFunctionType(op, newType); });
2585 
2586     return success();
2587   }
2588 };
2589 } // end anonymous namespace
2590 
2591 void mlir::populateFunctionLikeTypeConversionPattern(
2592     StringRef functionLikeOpName, OwningRewritePatternList &patterns,
2593     MLIRContext *ctx, TypeConverter &converter) {
2594   patterns.insert<FunctionLikeSignatureConversion>(functionLikeOpName, ctx,
2595                                                    converter);
2596 }
2597 
2598 void mlir::populateFuncOpTypeConversionPattern(
2599     OwningRewritePatternList &patterns, MLIRContext *ctx,
2600     TypeConverter &converter) {
2601   populateFunctionLikeTypeConversionPattern<FuncOp>(patterns, ctx, converter);
2602 }
2603 
2604 //===----------------------------------------------------------------------===//
2605 // ConversionTarget
2606 //===----------------------------------------------------------------------===//
2607 
2608 /// Register a legality action for the given operation.
2609 void ConversionTarget::setOpAction(OperationName op,
2610                                    LegalizationAction action) {
2611   legalOperations[op] = {action, /*isRecursivelyLegal=*/false, llvm::None};
2612 }
2613 
2614 /// Register a legality action for the given dialects.
2615 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
2616                                         LegalizationAction action) {
2617   for (StringRef dialect : dialectNames)
2618     legalDialects[dialect] = action;
2619 }
2620 
2621 /// Get the legality action for the given operation.
2622 auto ConversionTarget::getOpAction(OperationName op) const
2623     -> Optional<LegalizationAction> {
2624   Optional<LegalizationInfo> info = getOpInfo(op);
2625   return info ? info->action : Optional<LegalizationAction>();
2626 }
2627 
2628 /// If the given operation instance is legal on this target, a structure
2629 /// containing legality information is returned. If the operation is not legal,
2630 /// None is returned.
2631 auto ConversionTarget::isLegal(Operation *op) const
2632     -> Optional<LegalOpDetails> {
2633   Optional<LegalizationInfo> info = getOpInfo(op->getName());
2634   if (!info)
2635     return llvm::None;
2636 
2637   // Returns true if this operation instance is known to be legal.
2638   auto isOpLegal = [&] {
2639     // Handle dynamic legality either with the provided legality function, or
2640     // the default hook on the derived instance.
2641     if (info->action == LegalizationAction::Dynamic)
2642       return info->legalityFn ? (*info->legalityFn)(op)
2643                               : isDynamicallyLegal(op);
2644 
2645     // Otherwise, the operation is only legal if it was marked 'Legal'.
2646     return info->action == LegalizationAction::Legal;
2647   };
2648   if (!isOpLegal())
2649     return llvm::None;
2650 
2651   // This operation is legal, compute any additional legality information.
2652   LegalOpDetails legalityDetails;
2653   if (info->isRecursivelyLegal) {
2654     auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
2655     if (legalityFnIt != opRecursiveLegalityFns.end())
2656       legalityDetails.isRecursivelyLegal = legalityFnIt->second(op);
2657     else
2658       legalityDetails.isRecursivelyLegal = true;
2659   }
2660   return legalityDetails;
2661 }
2662 
2663 /// Set the dynamic legality callback for the given operation.
2664 void ConversionTarget::setLegalityCallback(
2665     OperationName name, const DynamicLegalityCallbackFn &callback) {
2666   assert(callback && "expected valid legality callback");
2667   auto infoIt = legalOperations.find(name);
2668   assert(infoIt != legalOperations.end() &&
2669          infoIt->second.action == LegalizationAction::Dynamic &&
2670          "expected operation to already be marked as dynamically legal");
2671   infoIt->second.legalityFn = callback;
2672 }
2673 
2674 /// Set the recursive legality callback for the given operation and mark the
2675 /// operation as recursively legal.
2676 void ConversionTarget::markOpRecursivelyLegal(
2677     OperationName name, const DynamicLegalityCallbackFn &callback) {
2678   auto infoIt = legalOperations.find(name);
2679   assert(infoIt != legalOperations.end() &&
2680          infoIt->second.action != LegalizationAction::Illegal &&
2681          "expected operation to already be marked as legal");
2682   infoIt->second.isRecursivelyLegal = true;
2683   if (callback)
2684     opRecursiveLegalityFns[name] = callback;
2685   else
2686     opRecursiveLegalityFns.erase(name);
2687 }
2688 
2689 /// Set the dynamic legality callback for the given dialects.
2690 void ConversionTarget::setLegalityCallback(
2691     ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
2692   assert(callback && "expected valid legality callback");
2693   for (StringRef dialect : dialects)
2694     dialectLegalityFns[dialect] = callback;
2695 }
2696 
2697 /// Get the legalization information for the given operation.
2698 auto ConversionTarget::getOpInfo(OperationName op) const
2699     -> Optional<LegalizationInfo> {
2700   // Check for info for this specific operation.
2701   auto it = legalOperations.find(op);
2702   if (it != legalOperations.end())
2703     return it->second;
2704   // Check for info for the parent dialect.
2705   auto dialectIt = legalDialects.find(op.getDialect());
2706   if (dialectIt != legalDialects.end()) {
2707     Optional<DynamicLegalityCallbackFn> callback;
2708     auto dialectFn = dialectLegalityFns.find(op.getDialect());
2709     if (dialectFn != dialectLegalityFns.end())
2710       callback = dialectFn->second;
2711     return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
2712                             callback};
2713   }
2714   // Otherwise, check if we mark unknown operations as dynamic.
2715   if (unknownOpsDynamicallyLegal)
2716     return LegalizationInfo{LegalizationAction::Dynamic,
2717                             /*isRecursivelyLegal=*/false, unknownLegalityFn};
2718   return llvm::None;
2719 }
2720 
2721 //===----------------------------------------------------------------------===//
2722 // Op Conversion Entry Points
2723 //===----------------------------------------------------------------------===//
2724 
2725 /// Apply a partial conversion on the given operations and all nested
2726 /// operations. This method converts as many operations to the target as
2727 /// possible, ignoring operations that failed to legalize. This method only
2728 /// returns failure if there ops explicitly marked as illegal.
2729 /// If an `unconvertedOps` set is provided, all operations that are found not
2730 /// to be legalizable to the given `target` are placed within that set. (Note
2731 /// that if there is an op explicitly marked as illegal, the conversion
2732 /// terminates and the `unconvertedOps` set will not necessarily be complete.)
2733 LogicalResult
2734 mlir::applyPartialConversion(ArrayRef<Operation *> ops,
2735                              ConversionTarget &target,
2736                              const FrozenRewritePatternList &patterns,
2737                              DenseSet<Operation *> *unconvertedOps) {
2738   OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
2739                                  unconvertedOps);
2740   return opConverter.convertOperations(ops);
2741 }
2742 LogicalResult
2743 mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
2744                              const FrozenRewritePatternList &patterns,
2745                              DenseSet<Operation *> *unconvertedOps) {
2746   return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
2747                                 unconvertedOps);
2748 }
2749 
2750 /// Apply a complete conversion on the given operations, and all nested
2751 /// operations. This method will return failure if the conversion of any
2752 /// operation fails.
2753 LogicalResult
2754 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
2755                           const FrozenRewritePatternList &patterns) {
2756   OperationConverter opConverter(target, patterns, OpConversionMode::Full);
2757   return opConverter.convertOperations(ops);
2758 }
2759 LogicalResult
2760 mlir::applyFullConversion(Operation *op, ConversionTarget &target,
2761                           const FrozenRewritePatternList &patterns) {
2762   return applyFullConversion(llvm::makeArrayRef(op), target, patterns);
2763 }
2764 
2765 /// Apply an analysis conversion on the given operations, and all nested
2766 /// operations. This method analyzes which operations would be successfully
2767 /// converted to the target if a conversion was applied. All operations that
2768 /// were found to be legalizable to the given 'target' are placed within the
2769 /// provided 'convertedOps' set; note that no actual rewrites are applied to the
2770 /// operations on success and only pre-existing operations are added to the set.
2771 LogicalResult
2772 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
2773                               ConversionTarget &target,
2774                               const FrozenRewritePatternList &patterns,
2775                               DenseSet<Operation *> &convertedOps) {
2776   OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
2777                                  &convertedOps);
2778   return opConverter.convertOperations(ops);
2779 }
2780 LogicalResult
2781 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
2782                               const FrozenRewritePatternList &patterns,
2783                               DenseSet<Operation *> &convertedOps) {
2784   return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
2785                                  convertedOps);
2786 }
2787