1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Transforms/DialectConversion.h" 10 #include "mlir/IR/Block.h" 11 #include "mlir/IR/BlockAndValueMapping.h" 12 #include "mlir/IR/Builders.h" 13 #include "mlir/IR/BuiltinOps.h" 14 #include "mlir/IR/FunctionSupport.h" 15 #include "mlir/Rewrite/PatternApplicator.h" 16 #include "mlir/Transforms/Utils.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/FormatVariadic.h" 21 #include "llvm/Support/SaveAndRestore.h" 22 #include "llvm/Support/ScopedPrinter.h" 23 24 using namespace mlir; 25 using namespace mlir::detail; 26 27 #define DEBUG_TYPE "dialect-conversion" 28 29 /// Recursively collect all of the operations to convert from within 'region'. 30 /// If 'target' is nonnull, operations that are recursively legal have their 31 /// regions pre-filtered to avoid considering them for legalization. 32 static LogicalResult 33 computeConversionSet(iterator_range<Region::iterator> region, 34 Location regionLoc, 35 SmallVectorImpl<Operation *> &toConvert, 36 ConversionTarget *target = nullptr) { 37 if (llvm::empty(region)) 38 return success(); 39 40 // Traverse starting from the entry block. 41 SmallVector<Block *, 16> worklist(1, &*region.begin()); 42 DenseSet<Block *> visitedBlocks; 43 visitedBlocks.insert(worklist.front()); 44 while (!worklist.empty()) { 45 Block *block = worklist.pop_back_val(); 46 47 // Compute the conversion set of each of the nested operations. 48 for (Operation &op : *block) { 49 toConvert.emplace_back(&op); 50 51 // Don't check this operation's children for conversion if the operation 52 // is recursively legal. 53 auto legalityInfo = target ? target->isLegal(&op) 54 : Optional<ConversionTarget::LegalOpDetails>(); 55 if (legalityInfo && legalityInfo->isRecursivelyLegal) 56 continue; 57 for (auto ®ion : op.getRegions()) { 58 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 59 toConvert, target))) 60 return failure(); 61 } 62 } 63 64 // Recurse to children that haven't been visited. 65 for (Block *succ : block->getSuccessors()) 66 if (visitedBlocks.insert(succ).second) 67 worklist.push_back(succ); 68 } 69 70 // Check that all blocks in the region were visited. 71 if (llvm::any_of(llvm::drop_begin(region, 1), 72 [&](Block &block) { return !visitedBlocks.count(&block); })) 73 return emitError(regionLoc, "unreachable blocks were not converted"); 74 return success(); 75 } 76 77 /// A utility function to log a successful result for the given reason. 78 template <typename... Args> 79 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { 80 LLVM_DEBUG({ 81 os.unindent(); 82 os.startLine() << "} -> SUCCESS"; 83 if (!fmt.empty()) 84 os.getOStream() << " : " 85 << llvm::formatv(fmt.data(), std::forward<Args>(args)...); 86 os.getOStream() << "\n"; 87 }); 88 } 89 90 /// A utility function to log a failure result for the given reason. 91 template <typename... Args> 92 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { 93 LLVM_DEBUG({ 94 os.unindent(); 95 os.startLine() << "} -> FAILURE : " 96 << llvm::formatv(fmt.data(), std::forward<Args>(args)...) 97 << "\n"; 98 }); 99 } 100 101 //===----------------------------------------------------------------------===// 102 // ConversionValueMapping 103 //===----------------------------------------------------------------------===// 104 105 namespace { 106 /// This class wraps a BlockAndValueMapping to provide recursive lookup 107 /// functionality, i.e. we will traverse if the mapped value also has a mapping. 108 struct ConversionValueMapping { 109 /// Lookup a mapped value within the map. If a mapping for the provided value 110 /// does not exist then return the provided value. If `desiredType` is 111 /// non-null, returns the most recently mapped value with that type. If an 112 /// operand of that type does not exist, defaults to normal behavior. 113 Value lookupOrDefault(Value from, Type desiredType = nullptr) const; 114 115 /// Lookup a mapped value within the map, or return null if a mapping does not 116 /// exist. If a mapping exists, this follows the same behavior of 117 /// `lookupOrDefault`. 118 Value lookupOrNull(Value from, Type desiredType = nullptr) const; 119 120 /// Map a value to the one provided. 121 void map(Value oldVal, Value newVal) { 122 LLVM_DEBUG({ 123 for (Value it = newVal; it; it = mapping.lookupOrNull(it)) 124 assert(it != oldVal && "inserting cyclic mapping"); 125 }); 126 mapping.map(oldVal, newVal); 127 } 128 129 /// Try to map a value to the one provided. Returns false if a transitive 130 /// mapping from the new value to the old value already exists, true if the 131 /// map was updated. 132 bool tryMap(Value oldVal, Value newVal); 133 134 /// Drop the last mapping for the given value. 135 void erase(Value value) { mapping.erase(value); } 136 137 /// Returns the inverse raw value mapping (without recursive query support). 138 DenseMap<Value, SmallVector<Value>> getInverse() const { 139 DenseMap<Value, SmallVector<Value>> inverse; 140 for (auto &it : mapping.getValueMap()) 141 inverse[it.second].push_back(it.first); 142 return inverse; 143 } 144 145 private: 146 /// Current value mappings. 147 BlockAndValueMapping mapping; 148 }; 149 } // end anonymous namespace 150 151 Value ConversionValueMapping::lookupOrDefault(Value from, 152 Type desiredType) const { 153 // If there was no desired type, simply find the leaf value. 154 if (!desiredType) { 155 // If this value had a valid mapping, unmap that value as well in the case 156 // that it was also replaced. 157 while (auto mappedValue = mapping.lookupOrNull(from)) 158 from = mappedValue; 159 return from; 160 } 161 162 // Otherwise, try to find the deepest value that has the desired type. 163 Value desiredValue; 164 do { 165 if (from.getType() == desiredType) 166 desiredValue = from; 167 168 Value mappedValue = mapping.lookupOrNull(from); 169 if (!mappedValue) 170 break; 171 from = mappedValue; 172 } while (true); 173 174 // If the desired value was found use it, otherwise default to the leaf value. 175 return desiredValue ? desiredValue : from; 176 } 177 178 Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const { 179 Value result = lookupOrDefault(from, desiredType); 180 if (result == from || (desiredType && result.getType() != desiredType)) 181 return nullptr; 182 return result; 183 } 184 185 bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) { 186 for (Value it = newVal; it; it = mapping.lookupOrNull(it)) 187 if (it == oldVal) 188 return false; 189 map(oldVal, newVal); 190 return true; 191 } 192 193 //===----------------------------------------------------------------------===// 194 // Rewriter and Translation State 195 //===----------------------------------------------------------------------===// 196 namespace { 197 /// This class contains a snapshot of the current conversion rewriter state. 198 /// This is useful when saving and undoing a set of rewrites. 199 struct RewriterState { 200 RewriterState(unsigned numCreatedOps, unsigned numUnresolvedMaterializations, 201 unsigned numReplacements, unsigned numArgReplacements, 202 unsigned numBlockActions, unsigned numIgnoredOperations, 203 unsigned numRootUpdates) 204 : numCreatedOps(numCreatedOps), 205 numUnresolvedMaterializations(numUnresolvedMaterializations), 206 numReplacements(numReplacements), 207 numArgReplacements(numArgReplacements), 208 numBlockActions(numBlockActions), 209 numIgnoredOperations(numIgnoredOperations), 210 numRootUpdates(numRootUpdates) {} 211 212 /// The current number of created operations. 213 unsigned numCreatedOps; 214 215 /// The current number of unresolved materializations. 216 unsigned numUnresolvedMaterializations; 217 218 /// The current number of replacements queued. 219 unsigned numReplacements; 220 221 /// The current number of argument replacements queued. 222 unsigned numArgReplacements; 223 224 /// The current number of block actions performed. 225 unsigned numBlockActions; 226 227 /// The current number of ignored operations. 228 unsigned numIgnoredOperations; 229 230 /// The current number of operations that were updated in place. 231 unsigned numRootUpdates; 232 }; 233 234 //===----------------------------------------------------------------------===// 235 // OperationTransactionState 236 237 /// The state of an operation that was updated by a pattern in-place. This 238 /// contains all of the necessary information to reconstruct an operation that 239 /// was updated in place. 240 class OperationTransactionState { 241 public: 242 OperationTransactionState() = default; 243 OperationTransactionState(Operation *op) 244 : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()), 245 operands(op->operand_begin(), op->operand_end()), 246 successors(op->successor_begin(), op->successor_end()) {} 247 248 /// Discard the transaction state and reset the state of the original 249 /// operation. 250 void resetOperation() const { 251 op->setLoc(loc); 252 op->setAttrs(attrs); 253 op->setOperands(operands); 254 for (auto it : llvm::enumerate(successors)) 255 op->setSuccessor(it.value(), it.index()); 256 } 257 258 /// Return the original operation of this state. 259 Operation *getOperation() const { return op; } 260 261 private: 262 Operation *op; 263 LocationAttr loc; 264 DictionaryAttr attrs; 265 SmallVector<Value, 8> operands; 266 SmallVector<Block *, 2> successors; 267 }; 268 269 //===----------------------------------------------------------------------===// 270 // OpReplacement 271 272 /// This class represents one requested operation replacement via 'replaceOp' or 273 /// 'eraseOp`. 274 struct OpReplacement { 275 OpReplacement(TypeConverter *converter = nullptr) : converter(converter) {} 276 277 /// An optional type converter that can be used to materialize conversions 278 /// between the new and old values if necessary. 279 TypeConverter *converter; 280 }; 281 282 //===----------------------------------------------------------------------===// 283 // BlockAction 284 285 /// The kind of the block action performed during the rewrite. Actions can be 286 /// undone if the conversion fails. 287 enum class BlockActionKind { 288 Create, 289 Erase, 290 Merge, 291 Move, 292 Split, 293 TypeConversion 294 }; 295 296 /// Original position of the given block in its parent region. During undo 297 /// actions, the block needs to be placed after `insertAfterBlock`. 298 struct BlockPosition { 299 Region *region; 300 Block *insertAfterBlock; 301 }; 302 303 /// Information needed to undo the merge actions. 304 /// - the source block, and 305 /// - the Operation that was the last operation in the dest block before the 306 /// merge (could be null if the dest block was empty). 307 struct MergeInfo { 308 Block *sourceBlock; 309 Operation *destBlockLastInst; 310 }; 311 312 /// The storage class for an undoable block action (one of BlockActionKind), 313 /// contains the information necessary to undo this action. 314 struct BlockAction { 315 static BlockAction getCreate(Block *block) { 316 return {BlockActionKind::Create, block, {}}; 317 } 318 static BlockAction getErase(Block *block, BlockPosition originalPosition) { 319 return {BlockActionKind::Erase, block, {originalPosition}}; 320 } 321 static BlockAction getMerge(Block *block, Block *sourceBlock) { 322 BlockAction action{BlockActionKind::Merge, block, {}}; 323 action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()}; 324 return action; 325 } 326 static BlockAction getMove(Block *block, BlockPosition originalPosition) { 327 return {BlockActionKind::Move, block, {originalPosition}}; 328 } 329 static BlockAction getSplit(Block *block, Block *originalBlock) { 330 BlockAction action{BlockActionKind::Split, block, {}}; 331 action.originalBlock = originalBlock; 332 return action; 333 } 334 static BlockAction getTypeConversion(Block *block) { 335 return BlockAction{BlockActionKind::TypeConversion, block, {}}; 336 } 337 338 // The action kind. 339 BlockActionKind kind; 340 341 // A pointer to the block that was created by the action. 342 Block *block; 343 344 union { 345 // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and 346 // contains a pointer to the region that originally contained the block as 347 // well as the position of the block in that region. 348 BlockPosition originalPosition; 349 // In use if kind == BlockActionKind::Split and contains a pointer to the 350 // block that was split into two parts. 351 Block *originalBlock; 352 // In use if kind == BlockActionKind::Merge, and contains the information 353 // needed to undo the merge. 354 MergeInfo mergeInfo; 355 }; 356 }; 357 358 //===----------------------------------------------------------------------===// 359 // UnresolvedMaterialization 360 361 /// This class represents an unresolved materialization, i.e. a materialization 362 /// that was inserted during conversion that needs to be legalized at the end of 363 /// the conversion process. 364 class UnresolvedMaterialization { 365 public: 366 /// The type of materialization. 367 enum Kind { 368 /// This materialization materializes a conversion for an illegal block 369 /// argument type, to a legal one. 370 Argument, 371 372 /// This materialization materializes a conversion from an illegal type to a 373 /// legal one. 374 Target 375 }; 376 377 UnresolvedMaterialization(UnrealizedConversionCastOp op = nullptr, 378 TypeConverter *converter = nullptr, 379 Kind kind = Target, Type origOutputType = nullptr) 380 : op(op), converterAndKind(converter, kind), 381 origOutputType(origOutputType) {} 382 383 /// Return the temporary conversion operation inserted for this 384 /// materialization. 385 UnrealizedConversionCastOp getOp() const { return op; } 386 387 /// Return the type converter of this materialization (which may be null). 388 TypeConverter *getConverter() const { return converterAndKind.getPointer(); } 389 390 /// Return the kind of this materialization. 391 Kind getKind() const { return converterAndKind.getInt(); } 392 393 /// Set the kind of this materialization. 394 void setKind(Kind kind) { converterAndKind.setInt(kind); } 395 396 /// Return the original illegal output type of the input values. 397 Type getOrigOutputType() const { return origOutputType; } 398 399 private: 400 /// The unresolved materialization operation created during conversion. 401 UnrealizedConversionCastOp op; 402 403 /// The corresponding type converter to use when resolving this 404 /// materialization, and the kind of this materialization. 405 llvm::PointerIntPair<TypeConverter *, 1, Kind> converterAndKind; 406 407 /// The original output type. This is only used for argument conversions. 408 Type origOutputType; 409 }; 410 } // end anonymous namespace 411 412 /// Build an unresolved materialization operation given an output type and set 413 /// of input operands. 414 static Value buildUnresolvedMaterialization( 415 UnresolvedMaterialization::Kind kind, Block *insertBlock, 416 Block::iterator insertPt, Location loc, ValueRange inputs, Type outputType, 417 Type origOutputType, TypeConverter *converter, 418 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) { 419 // Avoid materializing an unnecessary cast. 420 if (inputs.size() == 1 && inputs.front().getType() == outputType) 421 return inputs.front(); 422 423 // Create an unresolved materialization. We use a new OpBuilder to avoid 424 // tracking the materialization like we do for other operations. 425 OpBuilder builder(insertBlock, insertPt); 426 auto convertOp = 427 builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs); 428 unresolvedMaterializations.emplace_back(convertOp, converter, kind, 429 origOutputType); 430 return convertOp.getResult(0); 431 } 432 static Value buildUnresolvedArgumentMaterialization( 433 PatternRewriter &rewriter, Location loc, ValueRange inputs, 434 Type origOutputType, Type outputType, TypeConverter *converter, 435 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) { 436 return buildUnresolvedMaterialization( 437 UnresolvedMaterialization::Argument, rewriter.getInsertionBlock(), 438 rewriter.getInsertionPoint(), loc, inputs, outputType, origOutputType, 439 converter, unresolvedMaterializations); 440 } 441 static Value buildUnresolvedTargetMaterialization( 442 Location loc, Value input, Type outputType, TypeConverter *converter, 443 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) { 444 Block *insertBlock = input.getParentBlock(); 445 Block::iterator insertPt = insertBlock->begin(); 446 if (OpResult inputRes = input.dyn_cast<OpResult>()) 447 insertPt = ++inputRes.getOwner()->getIterator(); 448 449 return buildUnresolvedMaterialization( 450 UnresolvedMaterialization::Target, insertBlock, insertPt, loc, input, 451 outputType, outputType, converter, unresolvedMaterializations); 452 } 453 454 //===----------------------------------------------------------------------===// 455 // ArgConverter 456 //===----------------------------------------------------------------------===// 457 namespace { 458 /// This class provides a simple interface for converting the types of block 459 /// arguments. This is done by creating a new block that contains the new legal 460 /// types and extracting the block that contains the old illegal types to allow 461 /// for undoing pending rewrites in the case of failure. 462 struct ArgConverter { 463 ArgConverter( 464 PatternRewriter &rewriter, 465 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) 466 : rewriter(rewriter), 467 unresolvedMaterializations(unresolvedMaterializations) {} 468 469 /// This structure contains the information pertaining to an argument that has 470 /// been converted. 471 struct ConvertedArgInfo { 472 ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize, 473 Value castValue = nullptr) 474 : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {} 475 476 /// The start index of in the new argument list that contains arguments that 477 /// replace the original. 478 unsigned newArgIdx; 479 480 /// The number of arguments that replaced the original argument. 481 unsigned newArgSize; 482 483 /// The cast value that was created to cast from the new arguments to the 484 /// old. This only used if 'newArgSize' > 1. 485 Value castValue; 486 }; 487 488 /// This structure contains information pertaining to a block that has had its 489 /// signature converted. 490 struct ConvertedBlockInfo { 491 ConvertedBlockInfo(Block *origBlock, TypeConverter *converter) 492 : origBlock(origBlock), converter(converter) {} 493 494 /// The original block that was requested to have its signature converted. 495 Block *origBlock; 496 497 /// The conversion information for each of the arguments. The information is 498 /// None if the argument was dropped during conversion. 499 SmallVector<Optional<ConvertedArgInfo>, 1> argInfo; 500 501 /// The type converter used to convert the arguments. 502 TypeConverter *converter; 503 }; 504 505 /// Return if the signature of the given block has already been converted. 506 bool hasBeenConverted(Block *block) const { 507 return conversionInfo.count(block) || convertedBlocks.count(block); 508 } 509 510 /// Set the type converter to use for the given region. 511 void setConverter(Region *region, TypeConverter *typeConverter) { 512 assert(typeConverter && "expected valid type converter"); 513 regionToConverter[region] = typeConverter; 514 } 515 516 /// Return the type converter to use for the given region, or null if there 517 /// isn't one. 518 TypeConverter *getConverter(Region *region) { 519 return regionToConverter.lookup(region); 520 } 521 522 //===--------------------------------------------------------------------===// 523 // Rewrite Application 524 //===--------------------------------------------------------------------===// 525 526 /// Erase any rewrites registered for the blocks within the given operation 527 /// which is about to be removed. This merely drops the rewrites without 528 /// undoing them. 529 void notifyOpRemoved(Operation *op); 530 531 /// Cleanup and undo any generated conversions for the arguments of block. 532 /// This method replaces the new block with the original, reverting the IR to 533 /// its original state. 534 void discardRewrites(Block *block); 535 536 /// Fully replace uses of the old arguments with the new. 537 void applyRewrites(ConversionValueMapping &mapping); 538 539 /// Materialize any necessary conversions for converted arguments that have 540 /// live users, using the provided `findLiveUser` to search for a user that 541 /// survives the conversion process. 542 LogicalResult 543 materializeLiveConversions(ConversionValueMapping &mapping, 544 OpBuilder &builder, 545 function_ref<Operation *(Value)> findLiveUser); 546 547 //===--------------------------------------------------------------------===// 548 // Conversion 549 //===--------------------------------------------------------------------===// 550 551 /// Attempt to convert the signature of the given block, if successful a new 552 /// block is returned containing the new arguments. Returns `block` if it did 553 /// not require conversion. 554 FailureOr<Block *> 555 convertSignature(Block *block, TypeConverter *converter, 556 ConversionValueMapping &mapping, 557 SmallVectorImpl<BlockArgument> &argReplacements); 558 559 /// Apply the given signature conversion on the given block. The new block 560 /// containing the updated signature is returned. If no conversions were 561 /// necessary, e.g. if the block has no arguments, `block` is returned. 562 /// `converter` is used to generate any necessary cast operations that 563 /// translate between the origin argument types and those specified in the 564 /// signature conversion. 565 Block *applySignatureConversion( 566 Block *block, TypeConverter *converter, 567 TypeConverter::SignatureConversion &signatureConversion, 568 ConversionValueMapping &mapping, 569 SmallVectorImpl<BlockArgument> &argReplacements); 570 571 /// Insert a new conversion into the cache. 572 void insertConversion(Block *newBlock, ConvertedBlockInfo &&info); 573 574 /// A collection of blocks that have had their arguments converted. This is a 575 /// map from the new replacement block, back to the original block. 576 llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo; 577 578 /// The set of original blocks that were converted. 579 DenseSet<Block *> convertedBlocks; 580 581 /// A mapping from valid regions, to those containing the original blocks of a 582 /// conversion. 583 DenseMap<Region *, std::unique_ptr<Region>> regionMapping; 584 585 /// A mapping of regions to type converters that should be used when 586 /// converting the arguments of blocks within that region. 587 DenseMap<Region *, TypeConverter *> regionToConverter; 588 589 /// The pattern rewriter to use when materializing conversions. 590 PatternRewriter &rewriter; 591 592 /// An ordered set of unresolved materializations during conversion. 593 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations; 594 }; 595 } // end anonymous namespace 596 597 //===----------------------------------------------------------------------===// 598 // Rewrite Application 599 600 void ArgConverter::notifyOpRemoved(Operation *op) { 601 if (conversionInfo.empty()) 602 return; 603 604 for (Region ®ion : op->getRegions()) { 605 for (Block &block : region) { 606 // Drop any rewrites from within. 607 for (Operation &nestedOp : block) 608 if (nestedOp.getNumRegions()) 609 notifyOpRemoved(&nestedOp); 610 611 // Check if this block was converted. 612 auto it = conversionInfo.find(&block); 613 if (it == conversionInfo.end()) 614 continue; 615 616 // Drop all uses of the original arguments and delete the original block. 617 Block *origBlock = it->second.origBlock; 618 for (BlockArgument arg : origBlock->getArguments()) 619 arg.dropAllUses(); 620 conversionInfo.erase(it); 621 } 622 } 623 } 624 625 void ArgConverter::discardRewrites(Block *block) { 626 auto it = conversionInfo.find(block); 627 if (it == conversionInfo.end()) 628 return; 629 Block *origBlock = it->second.origBlock; 630 631 // Drop all uses of the new block arguments and replace uses of the new block. 632 for (int i = block->getNumArguments() - 1; i >= 0; --i) 633 block->getArgument(i).dropAllUses(); 634 block->replaceAllUsesWith(origBlock); 635 636 // Move the operations back the original block and the delete the new block. 637 origBlock->getOperations().splice(origBlock->end(), block->getOperations()); 638 origBlock->moveBefore(block); 639 block->erase(); 640 641 convertedBlocks.erase(origBlock); 642 conversionInfo.erase(it); 643 } 644 645 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) { 646 for (auto &info : conversionInfo) { 647 ConvertedBlockInfo &blockInfo = info.second; 648 Block *origBlock = blockInfo.origBlock; 649 650 // Process the remapping for each of the original arguments. 651 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 652 Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i]; 653 BlockArgument origArg = origBlock->getArgument(i); 654 655 // Handle the case of a 1->0 value mapping. 656 if (!argInfo) { 657 if (Value newArg = mapping.lookupOrNull(origArg, origArg.getType())) 658 origArg.replaceAllUsesWith(newArg); 659 continue; 660 } 661 662 // Otherwise this is a 1->1+ value mapping. 663 Value castValue = argInfo->castValue; 664 assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping"); 665 666 // If the argument is still used, replace it with the generated cast. 667 if (!origArg.use_empty()) { 668 origArg.replaceAllUsesWith( 669 mapping.lookupOrDefault(castValue, origArg.getType())); 670 } 671 } 672 } 673 } 674 675 LogicalResult ArgConverter::materializeLiveConversions( 676 ConversionValueMapping &mapping, OpBuilder &builder, 677 function_ref<Operation *(Value)> findLiveUser) { 678 for (auto &info : conversionInfo) { 679 Block *newBlock = info.first; 680 ConvertedBlockInfo &blockInfo = info.second; 681 Block *origBlock = blockInfo.origBlock; 682 683 // Process the remapping for each of the original arguments. 684 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 685 // If the type of this argument changed and the argument is still live, we 686 // need to materialize a conversion. 687 BlockArgument origArg = origBlock->getArgument(i); 688 if (mapping.lookupOrNull(origArg, origArg.getType())) 689 continue; 690 Operation *liveUser = findLiveUser(origArg); 691 if (!liveUser) 692 continue; 693 694 Value replacementValue = mapping.lookupOrDefault(origArg); 695 bool isDroppedArg = replacementValue == origArg; 696 if (isDroppedArg) 697 rewriter.setInsertionPointToStart(newBlock); 698 else 699 rewriter.setInsertionPointAfterValue(replacementValue); 700 Value newArg; 701 if (blockInfo.converter) { 702 newArg = blockInfo.converter->materializeSourceConversion( 703 rewriter, origArg.getLoc(), origArg.getType(), 704 isDroppedArg ? ValueRange() : ValueRange(replacementValue)); 705 assert((!newArg || newArg.getType() == origArg.getType()) && 706 "materialization hook did not provide a value of the expected " 707 "type"); 708 } 709 if (!newArg) { 710 InFlightDiagnostic diag = 711 emitError(origArg.getLoc()) 712 << "failed to materialize conversion for block argument #" << i 713 << " that remained live after conversion, type was " 714 << origArg.getType(); 715 if (!isDroppedArg) 716 diag << ", with target type " << replacementValue.getType(); 717 diag.attachNote(liveUser->getLoc()) 718 << "see existing live user here: " << *liveUser; 719 return failure(); 720 } 721 mapping.map(origArg, newArg); 722 } 723 } 724 return success(); 725 } 726 727 //===----------------------------------------------------------------------===// 728 // Conversion 729 730 FailureOr<Block *> ArgConverter::convertSignature( 731 Block *block, TypeConverter *converter, ConversionValueMapping &mapping, 732 SmallVectorImpl<BlockArgument> &argReplacements) { 733 // Check if the block was already converted. If the block is detached, 734 // conservatively assume it is going to be deleted. 735 if (hasBeenConverted(block) || !block->getParent()) 736 return block; 737 // If a converter wasn't provided, and the block wasn't already converted, 738 // there is nothing we can do. 739 if (!converter) 740 return failure(); 741 742 // Try to convert the signature for the block with the provided converter. 743 if (auto conversion = converter->convertBlockSignature(block)) 744 return applySignatureConversion(block, converter, *conversion, mapping, 745 argReplacements); 746 return failure(); 747 } 748 749 Block *ArgConverter::applySignatureConversion( 750 Block *block, TypeConverter *converter, 751 TypeConverter::SignatureConversion &signatureConversion, 752 ConversionValueMapping &mapping, 753 SmallVectorImpl<BlockArgument> &argReplacements) { 754 // If no arguments are being changed or added, there is nothing to do. 755 unsigned origArgCount = block->getNumArguments(); 756 auto convertedTypes = signatureConversion.getConvertedTypes(); 757 if (origArgCount == 0 && convertedTypes.empty()) 758 return block; 759 760 // Split the block at the beginning to get a new block to use for the updated 761 // signature. 762 Block *newBlock = block->splitBlock(block->begin()); 763 block->replaceAllUsesWith(newBlock); 764 765 SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes)); 766 ArrayRef<Value> newArgs(newArgRange); 767 768 // Remap each of the original arguments as determined by the signature 769 // conversion. 770 ConvertedBlockInfo info(block, converter); 771 info.argInfo.resize(origArgCount); 772 773 OpBuilder::InsertionGuard guard(rewriter); 774 rewriter.setInsertionPointToStart(newBlock); 775 for (unsigned i = 0; i != origArgCount; ++i) { 776 auto inputMap = signatureConversion.getInputMapping(i); 777 if (!inputMap) 778 continue; 779 BlockArgument origArg = block->getArgument(i); 780 781 // If inputMap->replacementValue is not nullptr, then the argument is 782 // dropped and a replacement value is provided to be the remappedValue. 783 if (inputMap->replacementValue) { 784 assert(inputMap->size == 0 && 785 "invalid to provide a replacement value when the argument isn't " 786 "dropped"); 787 mapping.map(origArg, inputMap->replacementValue); 788 argReplacements.push_back(origArg); 789 continue; 790 } 791 792 // Otherwise, this is a 1->1+ mapping. 793 auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size); 794 Value newArg; 795 796 // If this is a 1->1 mapping and the types of new and replacement arguments 797 // match (i.e. it's an identity map), then the argument is mapped to its 798 // original type. 799 // FIXME: We simply pass through the replacement argument if there wasn't a 800 // converter, which isn't great as it allows implicit type conversions to 801 // appear. We should properly restructure this code to handle cases where a 802 // converter isn't provided and also to properly handle the case where an 803 // argument materialization is actually a temporary source materialization 804 // (e.g. in the case of 1->N). 805 if (replArgs.size() == 1 && 806 (!converter || replArgs[0].getType() == origArg.getType())) { 807 newArg = replArgs.front(); 808 } else { 809 Type origOutputType = origArg.getType(); 810 811 // Legalize the argument output type. 812 Type outputType = origOutputType; 813 if (Type legalOutputType = converter->convertType(outputType)) 814 outputType = legalOutputType; 815 816 newArg = buildUnresolvedArgumentMaterialization( 817 rewriter, origArg.getLoc(), replArgs, origOutputType, outputType, 818 converter, unresolvedMaterializations); 819 } 820 821 mapping.map(origArg, newArg); 822 argReplacements.push_back(origArg); 823 info.argInfo[i] = 824 ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg); 825 } 826 827 // Remove the original block from the region and return the new one. 828 insertConversion(newBlock, std::move(info)); 829 return newBlock; 830 } 831 832 void ArgConverter::insertConversion(Block *newBlock, 833 ConvertedBlockInfo &&info) { 834 // Get a region to insert the old block. 835 Region *region = newBlock->getParent(); 836 std::unique_ptr<Region> &mappedRegion = regionMapping[region]; 837 if (!mappedRegion) 838 mappedRegion = std::make_unique<Region>(region->getParentOp()); 839 840 // Move the original block to the mapped region and emplace the conversion. 841 mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(), 842 info.origBlock->getIterator()); 843 convertedBlocks.insert(info.origBlock); 844 conversionInfo.insert({newBlock, std::move(info)}); 845 } 846 847 //===----------------------------------------------------------------------===// 848 // ConversionPatternRewriterImpl 849 //===----------------------------------------------------------------------===// 850 namespace mlir { 851 namespace detail { 852 struct ConversionPatternRewriterImpl { 853 ConversionPatternRewriterImpl(PatternRewriter &rewriter) 854 : argConverter(rewriter, unresolvedMaterializations) {} 855 856 /// Cleanup and destroy any generated rewrite operations. This method is 857 /// invoked when the conversion process fails. 858 void discardRewrites(); 859 860 /// Apply all requested operation rewrites. This method is invoked when the 861 /// conversion process succeeds. 862 void applyRewrites(); 863 864 //===--------------------------------------------------------------------===// 865 // State Management 866 //===--------------------------------------------------------------------===// 867 868 /// Return the current state of the rewriter. 869 RewriterState getCurrentState(); 870 871 /// Reset the state of the rewriter to a previously saved point. 872 void resetState(RewriterState state); 873 874 /// Erase any blocks that were unlinked from their regions and stored in block 875 /// actions. 876 void eraseDanglingBlocks(); 877 878 /// Undo the block actions (motions, splits) one by one in reverse order until 879 /// "numActionsToKeep" actions remains. 880 void undoBlockActions(unsigned numActionsToKeep = 0); 881 882 /// Remap the given values to those with potentially different types. Returns 883 /// success if the values could be remapped, failure otherwise. `valueDiagTag` 884 /// is the tag used when describing a value within a diagnostic, e.g. 885 /// "operand". 886 LogicalResult remapValues(StringRef valueDiagTag, Optional<Location> inputLoc, 887 PatternRewriter &rewriter, ValueRange values, 888 SmallVectorImpl<Value> &remapped); 889 890 /// Returns true if the given operation is ignored, and does not need to be 891 /// converted. 892 bool isOpIgnored(Operation *op) const; 893 894 /// Recursively marks the nested operations under 'op' as ignored. This 895 /// removes them from being considered for legalization. 896 void markNestedOpsIgnored(Operation *op); 897 898 //===--------------------------------------------------------------------===// 899 // Type Conversion 900 //===--------------------------------------------------------------------===// 901 902 /// Convert the signature of the given block. 903 FailureOr<Block *> convertBlockSignature( 904 Block *block, TypeConverter *converter, 905 TypeConverter::SignatureConversion *conversion = nullptr); 906 907 /// Apply a signature conversion on the given region, using `converter` for 908 /// materializations if not null. 909 Block * 910 applySignatureConversion(Region *region, 911 TypeConverter::SignatureConversion &conversion, 912 TypeConverter *converter); 913 914 /// Convert the types of block arguments within the given region. 915 FailureOr<Block *> 916 convertRegionTypes(Region *region, TypeConverter &converter, 917 TypeConverter::SignatureConversion *entryConversion); 918 919 /// Convert the types of non-entry block arguments within the given region. 920 LogicalResult convertNonEntryRegionTypes( 921 Region *region, TypeConverter &converter, 922 ArrayRef<TypeConverter::SignatureConversion> blockConversions = {}); 923 924 //===--------------------------------------------------------------------===// 925 // Rewriter Notification Hooks 926 //===--------------------------------------------------------------------===// 927 928 /// PatternRewriter hook for replacing the results of an operation. 929 void notifyOpReplaced(Operation *op, ValueRange newValues); 930 931 /// Notifies that a block is about to be erased. 932 void notifyBlockIsBeingErased(Block *block); 933 934 /// Notifies that a block was created. 935 void notifyCreatedBlock(Block *block); 936 937 /// Notifies that a block was split. 938 void notifySplitBlock(Block *block, Block *continuation); 939 940 /// Notifies that `block` is being merged with `srcBlock`. 941 void notifyBlocksBeingMerged(Block *block, Block *srcBlock); 942 943 /// Notifies that the blocks of a region are about to be moved. 944 void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent, 945 Region::iterator before); 946 947 /// Notifies that the blocks of a region were cloned into another. 948 void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks, 949 Location origRegionLoc); 950 951 /// Notifies that a pattern match failed for the given reason. 952 LogicalResult 953 notifyMatchFailure(Location loc, 954 function_ref<void(Diagnostic &)> reasonCallback); 955 956 //===--------------------------------------------------------------------===// 957 // State 958 //===--------------------------------------------------------------------===// 959 960 // Mapping between replaced values that differ in type. This happens when 961 // replacing a value with one of a different type. 962 ConversionValueMapping mapping; 963 964 /// Utility used to convert block arguments. 965 ArgConverter argConverter; 966 967 /// Ordered vector of all of the newly created operations during conversion. 968 SmallVector<Operation *> createdOps; 969 970 /// Ordered vector of all unresolved type conversion materializations during 971 /// conversion. 972 SmallVector<UnresolvedMaterialization> unresolvedMaterializations; 973 974 /// Ordered map of requested operation replacements. 975 llvm::MapVector<Operation *, OpReplacement> replacements; 976 977 /// Ordered vector of any requested block argument replacements. 978 SmallVector<BlockArgument, 4> argReplacements; 979 980 /// Ordered list of block operations (creations, splits, motions). 981 SmallVector<BlockAction, 4> blockActions; 982 983 /// A set of operations that should no longer be considered for legalization, 984 /// but were not directly replace/erased/etc. by a pattern. These are 985 /// generally child operations of other operations who were 986 /// replaced/erased/etc. This is not meant to be an exhaustive list of all 987 /// operations, but the minimal set that can be used to detect if a given 988 /// operation should be `ignored`. For example, we may add the operations that 989 /// define non-empty regions to the set, but not any of the others. This 990 /// simplifies the amount of memory needed as we can query if the parent 991 /// operation was ignored. 992 SetVector<Operation *> ignoredOps; 993 994 /// A transaction state for each of operations that were updated in-place. 995 SmallVector<OperationTransactionState, 4> rootUpdates; 996 997 /// A vector of indices into `replacements` of operations that were replaced 998 /// with values with different result types than the original operation, e.g. 999 /// 1->N conversion of some kind. 1000 SmallVector<unsigned, 4> operationsWithChangedResults; 1001 1002 /// The current type converter, or nullptr if no type converter is currently 1003 /// active. 1004 TypeConverter *currentTypeConverter = nullptr; 1005 1006 #ifndef NDEBUG 1007 /// A set of operations that have pending updates. This tracking isn't 1008 /// strictly necessary, and is thus only active during debug builds for extra 1009 /// verification. 1010 SmallPtrSet<Operation *, 1> pendingRootUpdates; 1011 1012 /// A logger used to emit diagnostics during the conversion process. 1013 llvm::ScopedPrinter logger{llvm::dbgs()}; 1014 #endif 1015 }; 1016 } // end namespace detail 1017 } // end namespace mlir 1018 1019 /// Detach any operations nested in the given operation from their parent 1020 /// blocks, and erase the given operation. This can be used when the nested 1021 /// operations are scheduled for erasure themselves, so deleting the regions of 1022 /// the given operation together with their content would result in double-free. 1023 /// This happens, for example, when rolling back op creation in the reverse 1024 /// order and if the nested ops were created before the parent op. This function 1025 /// does not need to collect nested ops recursively because it is expected to 1026 /// also be called for each nested op when it is about to be deleted. 1027 static void detachNestedAndErase(Operation *op) { 1028 for (Region ®ion : op->getRegions()) { 1029 for (Block &block : region.getBlocks()) { 1030 while (!block.getOperations().empty()) 1031 block.getOperations().remove(block.getOperations().begin()); 1032 block.dropAllDefinedValueUses(); 1033 } 1034 } 1035 op->dropAllUses(); 1036 op->erase(); 1037 } 1038 1039 void ConversionPatternRewriterImpl::discardRewrites() { 1040 // Reset any operations that were updated in place. 1041 for (auto &state : rootUpdates) 1042 state.resetOperation(); 1043 1044 undoBlockActions(); 1045 1046 // Remove any newly created ops. 1047 for (UnresolvedMaterialization &materialization : unresolvedMaterializations) 1048 detachNestedAndErase(materialization.getOp()); 1049 for (auto *op : llvm::reverse(createdOps)) 1050 detachNestedAndErase(op); 1051 } 1052 1053 void ConversionPatternRewriterImpl::applyRewrites() { 1054 // Apply all of the rewrites replacements requested during conversion. 1055 for (auto &repl : replacements) { 1056 for (OpResult result : repl.first->getResults()) 1057 if (Value newValue = mapping.lookupOrNull(result, result.getType())) 1058 result.replaceAllUsesWith(newValue); 1059 1060 // If this operation defines any regions, drop any pending argument 1061 // rewrites. 1062 if (repl.first->getNumRegions()) 1063 argConverter.notifyOpRemoved(repl.first); 1064 } 1065 1066 // Apply all of the requested argument replacements. 1067 for (BlockArgument arg : argReplacements) { 1068 Value repl = mapping.lookupOrNull(arg, arg.getType()); 1069 if (!repl) 1070 continue; 1071 1072 if (repl.isa<BlockArgument>()) { 1073 arg.replaceAllUsesWith(repl); 1074 continue; 1075 } 1076 1077 // If the replacement value is an operation, we check to make sure that we 1078 // don't replace uses that are within the parent operation of the 1079 // replacement value. 1080 Operation *replOp = repl.cast<OpResult>().getOwner(); 1081 Block *replBlock = replOp->getBlock(); 1082 arg.replaceUsesWithIf(repl, [&](OpOperand &operand) { 1083 Operation *user = operand.getOwner(); 1084 return user->getBlock() != replBlock || replOp->isBeforeInBlock(user); 1085 }); 1086 } 1087 1088 // Drop all of the unresolved materialization operations created during 1089 // conversion. 1090 for (auto &mat : unresolvedMaterializations) { 1091 mat.getOp()->dropAllUses(); 1092 mat.getOp()->erase(); 1093 } 1094 1095 // In a second pass, erase all of the replaced operations in reverse. This 1096 // allows processing nested operations before their parent region is 1097 // destroyed. Because we process in reverse order, producers may be deleted 1098 // before their users (a pattern deleting a producer and then the consumer) 1099 // so we first drop all uses explicitly. 1100 for (auto &repl : llvm::reverse(replacements)) { 1101 repl.first->dropAllUses(); 1102 repl.first->erase(); 1103 } 1104 1105 argConverter.applyRewrites(mapping); 1106 1107 // Now that the ops have been erased, also erase dangling blocks. 1108 eraseDanglingBlocks(); 1109 } 1110 1111 //===----------------------------------------------------------------------===// 1112 // State Management 1113 1114 RewriterState ConversionPatternRewriterImpl::getCurrentState() { 1115 return RewriterState(createdOps.size(), unresolvedMaterializations.size(), 1116 replacements.size(), argReplacements.size(), 1117 blockActions.size(), ignoredOps.size(), 1118 rootUpdates.size()); 1119 } 1120 1121 void ConversionPatternRewriterImpl::resetState(RewriterState state) { 1122 // Reset any operations that were updated in place. 1123 for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i) 1124 rootUpdates[i].resetOperation(); 1125 rootUpdates.resize(state.numRootUpdates); 1126 1127 // Reset any replaced arguments. 1128 for (BlockArgument replacedArg : 1129 llvm::drop_begin(argReplacements, state.numArgReplacements)) 1130 mapping.erase(replacedArg); 1131 argReplacements.resize(state.numArgReplacements); 1132 1133 // Undo any block actions. 1134 undoBlockActions(state.numBlockActions); 1135 1136 // Reset any replaced operations and undo any saved mappings. 1137 for (auto &repl : llvm::drop_begin(replacements, state.numReplacements)) 1138 for (auto result : repl.first->getResults()) 1139 mapping.erase(result); 1140 while (replacements.size() != state.numReplacements) 1141 replacements.pop_back(); 1142 1143 // Pop all of the newly inserted materializations. 1144 while (unresolvedMaterializations.size() != 1145 state.numUnresolvedMaterializations) { 1146 UnresolvedMaterialization mat = unresolvedMaterializations.pop_back_val(); 1147 UnrealizedConversionCastOp op = mat.getOp(); 1148 1149 // If this was a target materialization, drop the mapping that was inserted. 1150 if (mat.getKind() == UnresolvedMaterialization::Target) { 1151 for (Value input : op->getOperands()) 1152 mapping.erase(input); 1153 } 1154 detachNestedAndErase(op); 1155 } 1156 1157 // Pop all of the newly created operations. 1158 while (createdOps.size() != state.numCreatedOps) { 1159 detachNestedAndErase(createdOps.back()); 1160 createdOps.pop_back(); 1161 } 1162 1163 // Pop all of the recorded ignored operations that are no longer valid. 1164 while (ignoredOps.size() != state.numIgnoredOperations) 1165 ignoredOps.pop_back(); 1166 1167 // Reset operations with changed results. 1168 while (!operationsWithChangedResults.empty() && 1169 operationsWithChangedResults.back() >= state.numReplacements) 1170 operationsWithChangedResults.pop_back(); 1171 } 1172 1173 void ConversionPatternRewriterImpl::eraseDanglingBlocks() { 1174 for (auto &action : blockActions) 1175 if (action.kind == BlockActionKind::Erase) 1176 delete action.block; 1177 } 1178 1179 void ConversionPatternRewriterImpl::undoBlockActions( 1180 unsigned numActionsToKeep) { 1181 for (auto &action : 1182 llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) { 1183 switch (action.kind) { 1184 // Delete the created block. 1185 case BlockActionKind::Create: { 1186 // Unlink all of the operations within this block, they will be deleted 1187 // separately. 1188 auto &blockOps = action.block->getOperations(); 1189 while (!blockOps.empty()) 1190 blockOps.remove(blockOps.begin()); 1191 action.block->dropAllDefinedValueUses(); 1192 action.block->erase(); 1193 break; 1194 } 1195 // Put the block (owned by action) back into its original position. 1196 case BlockActionKind::Erase: { 1197 auto &blockList = action.originalPosition.region->getBlocks(); 1198 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 1199 blockList.insert((insertAfterBlock 1200 ? std::next(Region::iterator(insertAfterBlock)) 1201 : blockList.begin()), 1202 action.block); 1203 break; 1204 } 1205 // Split the block at the position which was originally the end of the 1206 // destination block (owned by action), and put the instructions back into 1207 // the block used before the merge. 1208 case BlockActionKind::Merge: { 1209 Block *sourceBlock = action.mergeInfo.sourceBlock; 1210 Block::iterator splitPoint = 1211 (action.mergeInfo.destBlockLastInst 1212 ? ++Block::iterator(action.mergeInfo.destBlockLastInst) 1213 : action.block->begin()); 1214 sourceBlock->getOperations().splice(sourceBlock->begin(), 1215 action.block->getOperations(), 1216 splitPoint, action.block->end()); 1217 break; 1218 } 1219 // Move the block back to its original position. 1220 case BlockActionKind::Move: { 1221 Region *originalRegion = action.originalPosition.region; 1222 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 1223 originalRegion->getBlocks().splice( 1224 (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock)) 1225 : originalRegion->end()), 1226 action.block->getParent()->getBlocks(), action.block); 1227 break; 1228 } 1229 // Merge back the block that was split out. 1230 case BlockActionKind::Split: { 1231 action.originalBlock->getOperations().splice( 1232 action.originalBlock->end(), action.block->getOperations()); 1233 action.block->dropAllDefinedValueUses(); 1234 action.block->erase(); 1235 break; 1236 } 1237 // Undo the type conversion. 1238 case BlockActionKind::TypeConversion: { 1239 argConverter.discardRewrites(action.block); 1240 break; 1241 } 1242 } 1243 } 1244 blockActions.resize(numActionsToKeep); 1245 } 1246 1247 LogicalResult ConversionPatternRewriterImpl::remapValues( 1248 StringRef valueDiagTag, Optional<Location> inputLoc, 1249 PatternRewriter &rewriter, ValueRange values, 1250 SmallVectorImpl<Value> &remapped) { 1251 remapped.reserve(llvm::size(values)); 1252 1253 SmallVector<Type, 1> legalTypes; 1254 for (auto it : llvm::enumerate(values)) { 1255 Value operand = it.value(); 1256 Type origType = operand.getType(); 1257 1258 // If a converter was provided, get the desired legal types for this 1259 // operand. 1260 Type desiredType; 1261 if (currentTypeConverter) { 1262 // If there is no legal conversion, fail to match this pattern. 1263 legalTypes.clear(); 1264 if (failed(currentTypeConverter->convertType(origType, legalTypes))) { 1265 Location operandLoc = inputLoc ? *inputLoc : operand.getLoc(); 1266 return notifyMatchFailure(operandLoc, [=](Diagnostic &diag) { 1267 diag << "unable to convert type for " << valueDiagTag << " #" 1268 << it.index() << ", type was " << origType; 1269 }); 1270 } 1271 // TODO: There currently isn't any mechanism to do 1->N type conversion 1272 // via the PatternRewriter replacement API, so for now we just ignore it. 1273 if (legalTypes.size() == 1) 1274 desiredType = legalTypes.front(); 1275 } else { 1276 // TODO: What we should do here is just set `desiredType` to `origType` 1277 // and then handle the necessary type conversions after the conversion 1278 // process has finished. Unfortunately a lot of patterns currently rely on 1279 // receiving the new operands even if the types change, so we keep the 1280 // original behavior here for now until all of the patterns relying on 1281 // this get updated. 1282 } 1283 Value newOperand = mapping.lookupOrDefault(operand, desiredType); 1284 1285 // Handle the case where the conversion was 1->1 and the new operand type 1286 // isn't legal. 1287 Type newOperandType = newOperand.getType(); 1288 if (currentTypeConverter && desiredType && newOperandType != desiredType) { 1289 Location operandLoc = inputLoc ? *inputLoc : operand.getLoc(); 1290 Value castValue = buildUnresolvedTargetMaterialization( 1291 operandLoc, newOperand, desiredType, currentTypeConverter, 1292 unresolvedMaterializations); 1293 mapping.map(mapping.lookupOrDefault(newOperand), castValue); 1294 newOperand = castValue; 1295 } 1296 remapped.push_back(newOperand); 1297 } 1298 return success(); 1299 } 1300 1301 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const { 1302 // Check to see if this operation was replaced or its parent ignored. 1303 return replacements.count(op) || ignoredOps.count(op->getParentOp()); 1304 } 1305 1306 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) { 1307 // Walk this operation and collect nested operations that define non-empty 1308 // regions. We mark such operations as 'ignored' so that we know we don't have 1309 // to convert them, or their nested ops. 1310 if (op->getNumRegions() == 0) 1311 return; 1312 op->walk([&](Operation *op) { 1313 if (llvm::any_of(op->getRegions(), 1314 [](Region ®ion) { return !region.empty(); })) 1315 ignoredOps.insert(op); 1316 }); 1317 } 1318 1319 //===----------------------------------------------------------------------===// 1320 // Type Conversion 1321 1322 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature( 1323 Block *block, TypeConverter *converter, 1324 TypeConverter::SignatureConversion *conversion) { 1325 FailureOr<Block *> result = 1326 conversion ? argConverter.applySignatureConversion( 1327 block, converter, *conversion, mapping, argReplacements) 1328 : argConverter.convertSignature(block, converter, mapping, 1329 argReplacements); 1330 if (failed(result)) 1331 return failure(); 1332 if (Block *newBlock = result.getValue()) { 1333 if (newBlock != block) 1334 blockActions.push_back(BlockAction::getTypeConversion(newBlock)); 1335 } 1336 return result; 1337 } 1338 1339 Block *ConversionPatternRewriterImpl::applySignatureConversion( 1340 Region *region, TypeConverter::SignatureConversion &conversion, 1341 TypeConverter *converter) { 1342 if (!region->empty()) 1343 return *convertBlockSignature(®ion->front(), converter, &conversion); 1344 return nullptr; 1345 } 1346 1347 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes( 1348 Region *region, TypeConverter &converter, 1349 TypeConverter::SignatureConversion *entryConversion) { 1350 argConverter.setConverter(region, &converter); 1351 if (region->empty()) 1352 return nullptr; 1353 1354 if (failed(convertNonEntryRegionTypes(region, converter))) 1355 return failure(); 1356 1357 FailureOr<Block *> newEntry = 1358 convertBlockSignature(®ion->front(), &converter, entryConversion); 1359 return newEntry; 1360 } 1361 1362 LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes( 1363 Region *region, TypeConverter &converter, 1364 ArrayRef<TypeConverter::SignatureConversion> blockConversions) { 1365 argConverter.setConverter(region, &converter); 1366 if (region->empty()) 1367 return success(); 1368 1369 // Convert the arguments of each block within the region. 1370 int blockIdx = 0; 1371 assert((blockConversions.empty() || 1372 blockConversions.size() == region->getBlocks().size() - 1) && 1373 "expected either to provide no SignatureConversions at all or to " 1374 "provide a SignatureConversion for each non-entry block"); 1375 1376 for (Block &block : 1377 llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) { 1378 TypeConverter::SignatureConversion *blockConversion = 1379 blockConversions.empty() 1380 ? nullptr 1381 : const_cast<TypeConverter::SignatureConversion *>( 1382 &blockConversions[blockIdx++]); 1383 1384 if (failed(convertBlockSignature(&block, &converter, blockConversion))) 1385 return failure(); 1386 } 1387 return success(); 1388 } 1389 1390 //===----------------------------------------------------------------------===// 1391 // Rewriter Notification Hooks 1392 1393 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op, 1394 ValueRange newValues) { 1395 assert(newValues.size() == op->getNumResults()); 1396 assert(!replacements.count(op) && "operation was already replaced"); 1397 1398 // Track if any of the results changed, e.g. erased and replaced with null. 1399 bool resultChanged = false; 1400 1401 // Create mappings for each of the new result values. 1402 Value newValue, result; 1403 for (auto it : llvm::zip(newValues, op->getResults())) { 1404 std::tie(newValue, result) = it; 1405 if (!newValue) { 1406 resultChanged = true; 1407 continue; 1408 } 1409 // Remap, and check for any result type changes. 1410 mapping.map(result, newValue); 1411 resultChanged |= (newValue.getType() != result.getType()); 1412 } 1413 if (resultChanged) 1414 operationsWithChangedResults.push_back(replacements.size()); 1415 1416 // Record the requested operation replacement. 1417 replacements.insert(std::make_pair(op, OpReplacement(currentTypeConverter))); 1418 1419 // Mark this operation as recursively ignored so that we don't need to 1420 // convert any nested operations. 1421 markNestedOpsIgnored(op); 1422 } 1423 1424 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) { 1425 Region *region = block->getParent(); 1426 Block *origPrevBlock = block->getPrevNode(); 1427 blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock})); 1428 } 1429 1430 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) { 1431 blockActions.push_back(BlockAction::getCreate(block)); 1432 } 1433 1434 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block, 1435 Block *continuation) { 1436 blockActions.push_back(BlockAction::getSplit(continuation, block)); 1437 } 1438 1439 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block, 1440 Block *srcBlock) { 1441 blockActions.push_back(BlockAction::getMerge(block, srcBlock)); 1442 } 1443 1444 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore( 1445 Region ®ion, Region &parent, Region::iterator before) { 1446 if (region.empty()) 1447 return; 1448 Block *laterBlock = ®ion.back(); 1449 for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) { 1450 blockActions.push_back( 1451 BlockAction::getMove(laterBlock, {®ion, &earlierBlock})); 1452 laterBlock = &earlierBlock; 1453 } 1454 blockActions.push_back(BlockAction::getMove(laterBlock, {®ion, nullptr})); 1455 } 1456 1457 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore( 1458 iterator_range<Region::iterator> &blocks, Location origRegionLoc) { 1459 for (Block &block : blocks) 1460 blockActions.push_back(BlockAction::getCreate(&block)); 1461 1462 // Compute the conversion set for the inlined region. 1463 auto result = computeConversionSet(blocks, origRegionLoc, createdOps); 1464 1465 // This original region has already had its conversion set computed, so there 1466 // shouldn't be any new failures. 1467 (void)result; 1468 assert(succeeded(result) && "expected region to have no unreachable blocks"); 1469 } 1470 1471 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure( 1472 Location loc, function_ref<void(Diagnostic &)> reasonCallback) { 1473 LLVM_DEBUG({ 1474 Diagnostic diag(loc, DiagnosticSeverity::Remark); 1475 reasonCallback(diag); 1476 logger.startLine() << "** Failure : " << diag.str() << "\n"; 1477 }); 1478 return failure(); 1479 } 1480 1481 //===----------------------------------------------------------------------===// 1482 // ConversionPatternRewriter 1483 //===----------------------------------------------------------------------===// 1484 1485 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx) 1486 : PatternRewriter(ctx), 1487 impl(new detail::ConversionPatternRewriterImpl(*this)) {} 1488 ConversionPatternRewriter::~ConversionPatternRewriter() {} 1489 1490 void ConversionPatternRewriter::replaceOpWithIf( 1491 Operation *op, ValueRange newValues, bool *allUsesReplaced, 1492 llvm::unique_function<bool(OpOperand &) const> functor) { 1493 // TODO: To support this we will need to rework a bit of how replacements are 1494 // tracked, given that this isn't guranteed to replace all of the uses of an 1495 // operation. The main change is that now an operation can be replaced 1496 // multiple times, in parts. The current "set" based tracking is mainly useful 1497 // for tracking if a replaced operation should be ignored, i.e. if all of the 1498 // uses will be replaced. 1499 llvm_unreachable( 1500 "replaceOpWithIf is currently not supported by DialectConversion"); 1501 } 1502 1503 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) { 1504 LLVM_DEBUG({ 1505 impl->logger.startLine() 1506 << "** Replace : '" << op->getName() << "'(" << op << ")\n"; 1507 }); 1508 impl->notifyOpReplaced(op, newValues); 1509 } 1510 1511 void ConversionPatternRewriter::eraseOp(Operation *op) { 1512 LLVM_DEBUG({ 1513 impl->logger.startLine() 1514 << "** Erase : '" << op->getName() << "'(" << op << ")\n"; 1515 }); 1516 SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr); 1517 impl->notifyOpReplaced(op, nullRepls); 1518 } 1519 1520 void ConversionPatternRewriter::eraseBlock(Block *block) { 1521 impl->notifyBlockIsBeingErased(block); 1522 1523 // Mark all ops for erasure. 1524 for (Operation &op : *block) 1525 eraseOp(&op); 1526 1527 // Unlink the block from its parent region. The block is kept in the block 1528 // action and will be actually destroyed when rewrites are applied. This 1529 // allows us to keep the operations in the block live and undo the removal by 1530 // re-inserting the block. 1531 block->getParent()->getBlocks().remove(block); 1532 } 1533 1534 Block *ConversionPatternRewriter::applySignatureConversion( 1535 Region *region, TypeConverter::SignatureConversion &conversion, 1536 TypeConverter *converter) { 1537 return impl->applySignatureConversion(region, conversion, converter); 1538 } 1539 1540 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes( 1541 Region *region, TypeConverter &converter, 1542 TypeConverter::SignatureConversion *entryConversion) { 1543 return impl->convertRegionTypes(region, converter, entryConversion); 1544 } 1545 1546 LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes( 1547 Region *region, TypeConverter &converter, 1548 ArrayRef<TypeConverter::SignatureConversion> blockConversions) { 1549 return impl->convertNonEntryRegionTypes(region, converter, blockConversions); 1550 } 1551 1552 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from, 1553 Value to) { 1554 LLVM_DEBUG({ 1555 Operation *parentOp = from.getOwner()->getParentOp(); 1556 impl->logger.startLine() << "** Replace Argument : '" << from 1557 << "'(in region of '" << parentOp->getName() 1558 << "'(" << from.getOwner()->getParentOp() << ")\n"; 1559 }); 1560 impl->argReplacements.push_back(from); 1561 impl->mapping.map(impl->mapping.lookupOrDefault(from), to); 1562 } 1563 1564 Value ConversionPatternRewriter::getRemappedValue(Value key) { 1565 SmallVector<Value> remappedValues; 1566 if (failed(impl->remapValues("value", /*inputLoc=*/llvm::None, *this, key, 1567 remappedValues))) 1568 return nullptr; 1569 return remappedValues.front(); 1570 } 1571 1572 LogicalResult 1573 ConversionPatternRewriter::getRemappedValues(ValueRange keys, 1574 SmallVectorImpl<Value> &results) { 1575 if (keys.empty()) 1576 return success(); 1577 return impl->remapValues("value", /*inputLoc=*/llvm::None, *this, keys, 1578 results); 1579 } 1580 1581 void ConversionPatternRewriter::notifyBlockCreated(Block *block) { 1582 impl->notifyCreatedBlock(block); 1583 } 1584 1585 Block *ConversionPatternRewriter::splitBlock(Block *block, 1586 Block::iterator before) { 1587 auto *continuation = PatternRewriter::splitBlock(block, before); 1588 impl->notifySplitBlock(block, continuation); 1589 return continuation; 1590 } 1591 1592 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest, 1593 ValueRange argValues) { 1594 impl->notifyBlocksBeingMerged(dest, source); 1595 assert(llvm::all_of(source->getPredecessors(), 1596 [dest](Block *succ) { return succ == dest; }) && 1597 "expected 'source' to have no predecessors or only 'dest'"); 1598 assert(argValues.size() == source->getNumArguments() && 1599 "incorrect # of argument replacement values"); 1600 for (auto it : llvm::zip(source->getArguments(), argValues)) 1601 replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it)); 1602 dest->getOperations().splice(dest->end(), source->getOperations()); 1603 eraseBlock(source); 1604 } 1605 1606 void ConversionPatternRewriter::inlineRegionBefore(Region ®ion, 1607 Region &parent, 1608 Region::iterator before) { 1609 impl->notifyRegionIsBeingInlinedBefore(region, parent, before); 1610 PatternRewriter::inlineRegionBefore(region, parent, before); 1611 } 1612 1613 void ConversionPatternRewriter::cloneRegionBefore( 1614 Region ®ion, Region &parent, Region::iterator before, 1615 BlockAndValueMapping &mapping) { 1616 if (region.empty()) 1617 return; 1618 PatternRewriter::cloneRegionBefore(region, parent, before, mapping); 1619 1620 // Collect the range of the cloned blocks. 1621 auto clonedBeginIt = mapping.lookup(®ion.front())->getIterator(); 1622 auto clonedBlocks = llvm::make_range(clonedBeginIt, before); 1623 impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc()); 1624 } 1625 1626 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) { 1627 LLVM_DEBUG({ 1628 impl->logger.startLine() 1629 << "** Insert : '" << op->getName() << "'(" << op << ")\n"; 1630 }); 1631 impl->createdOps.push_back(op); 1632 } 1633 1634 void ConversionPatternRewriter::startRootUpdate(Operation *op) { 1635 #ifndef NDEBUG 1636 impl->pendingRootUpdates.insert(op); 1637 #endif 1638 impl->rootUpdates.emplace_back(op); 1639 } 1640 1641 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) { 1642 // There is nothing to do here, we only need to track the operation at the 1643 // start of the update. 1644 #ifndef NDEBUG 1645 assert(impl->pendingRootUpdates.erase(op) && 1646 "operation did not have a pending in-place update"); 1647 #endif 1648 } 1649 1650 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) { 1651 #ifndef NDEBUG 1652 assert(impl->pendingRootUpdates.erase(op) && 1653 "operation did not have a pending in-place update"); 1654 #endif 1655 // Erase the last update for this operation. 1656 auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; }; 1657 auto &rootUpdates = impl->rootUpdates; 1658 auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp); 1659 assert(it != rootUpdates.rend() && "no root update started on op"); 1660 (*it).resetOperation(); 1661 int updateIdx = std::prev(rootUpdates.rend()) - it; 1662 rootUpdates.erase(rootUpdates.begin() + updateIdx); 1663 } 1664 1665 LogicalResult ConversionPatternRewriter::notifyMatchFailure( 1666 Operation *op, function_ref<void(Diagnostic &)> reasonCallback) { 1667 return impl->notifyMatchFailure(op->getLoc(), reasonCallback); 1668 } 1669 1670 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() { 1671 return *impl; 1672 } 1673 1674 //===----------------------------------------------------------------------===// 1675 // ConversionPattern 1676 //===----------------------------------------------------------------------===// 1677 1678 LogicalResult 1679 ConversionPattern::matchAndRewrite(Operation *op, 1680 PatternRewriter &rewriter) const { 1681 auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter); 1682 auto &rewriterImpl = dialectRewriter.getImpl(); 1683 1684 // Track the current conversion pattern type converter in the rewriter. 1685 llvm::SaveAndRestore<TypeConverter *> currentConverterGuard( 1686 rewriterImpl.currentTypeConverter, getTypeConverter()); 1687 1688 // Remap the operands of the operation. 1689 SmallVector<Value, 4> operands; 1690 if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter, 1691 op->getOperands(), operands))) { 1692 return failure(); 1693 } 1694 return matchAndRewrite(op, operands, dialectRewriter); 1695 } 1696 1697 //===----------------------------------------------------------------------===// 1698 // OperationLegalizer 1699 //===----------------------------------------------------------------------===// 1700 1701 namespace { 1702 /// A set of rewrite patterns that can be used to legalize a given operation. 1703 using LegalizationPatterns = SmallVector<const Pattern *, 1>; 1704 1705 /// This class defines a recursive operation legalizer. 1706 class OperationLegalizer { 1707 public: 1708 using LegalizationAction = ConversionTarget::LegalizationAction; 1709 1710 OperationLegalizer(ConversionTarget &targetInfo, 1711 const FrozenRewritePatternSet &patterns); 1712 1713 /// Returns true if the given operation is known to be illegal on the target. 1714 bool isIllegal(Operation *op) const; 1715 1716 /// Attempt to legalize the given operation. Returns success if the operation 1717 /// was legalized, failure otherwise. 1718 LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter); 1719 1720 /// Returns the conversion target in use by the legalizer. 1721 ConversionTarget &getTarget() { return target; } 1722 1723 private: 1724 /// Attempt to legalize the given operation by folding it. 1725 LogicalResult legalizeWithFold(Operation *op, 1726 ConversionPatternRewriter &rewriter); 1727 1728 /// Attempt to legalize the given operation by applying a pattern. Returns 1729 /// success if the operation was legalized, failure otherwise. 1730 LogicalResult legalizeWithPattern(Operation *op, 1731 ConversionPatternRewriter &rewriter); 1732 1733 /// Return true if the given pattern may be applied to the given operation, 1734 /// false otherwise. 1735 bool canApplyPattern(Operation *op, const Pattern &pattern, 1736 ConversionPatternRewriter &rewriter); 1737 1738 /// Legalize the resultant IR after successfully applying the given pattern. 1739 LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern, 1740 ConversionPatternRewriter &rewriter, 1741 RewriterState &curState); 1742 1743 /// Legalizes the actions registered during the execution of a pattern. 1744 LogicalResult legalizePatternBlockActions(Operation *op, 1745 ConversionPatternRewriter &rewriter, 1746 ConversionPatternRewriterImpl &impl, 1747 RewriterState &state, 1748 RewriterState &newState); 1749 LogicalResult legalizePatternCreatedOperations( 1750 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1751 RewriterState &state, RewriterState &newState); 1752 LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter, 1753 ConversionPatternRewriterImpl &impl, 1754 RewriterState &state, 1755 RewriterState &newState); 1756 1757 //===--------------------------------------------------------------------===// 1758 // Cost Model 1759 //===--------------------------------------------------------------------===// 1760 1761 /// Build an optimistic legalization graph given the provided patterns. This 1762 /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with 1763 /// patterns for operations that are not directly legal, but may be 1764 /// transitively legal for the current target given the provided patterns. 1765 void buildLegalizationGraph( 1766 LegalizationPatterns &anyOpLegalizerPatterns, 1767 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1768 1769 /// Compute the benefit of each node within the computed legalization graph. 1770 /// This orders the patterns within 'legalizerPatterns' based upon two 1771 /// criteria: 1772 /// 1) Prefer patterns that have the lowest legalization depth, i.e. 1773 /// represent the more direct mapping to the target. 1774 /// 2) When comparing patterns with the same legalization depth, prefer the 1775 /// pattern with the highest PatternBenefit. This allows for users to 1776 /// prefer specific legalizations over others. 1777 void computeLegalizationGraphBenefit( 1778 LegalizationPatterns &anyOpLegalizerPatterns, 1779 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1780 1781 /// Compute the legalization depth when legalizing an operation of the given 1782 /// type. 1783 unsigned computeOpLegalizationDepth( 1784 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 1785 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1786 1787 /// Apply the conversion cost model to the given set of patterns, and return 1788 /// the smallest legalization depth of any of the patterns. See 1789 /// `computeLegalizationGraphBenefit` for the breakdown of the cost model. 1790 unsigned applyCostModelToPatterns( 1791 LegalizationPatterns &patterns, 1792 DenseMap<OperationName, unsigned> &minOpPatternDepth, 1793 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1794 1795 /// The current set of patterns that have been applied. 1796 SmallPtrSet<const Pattern *, 8> appliedPatterns; 1797 1798 /// The legalization information provided by the target. 1799 ConversionTarget ⌖ 1800 1801 /// The pattern applicator to use for conversions. 1802 PatternApplicator applicator; 1803 }; 1804 } // namespace 1805 1806 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo, 1807 const FrozenRewritePatternSet &patterns) 1808 : target(targetInfo), applicator(patterns) { 1809 // The set of patterns that can be applied to illegal operations to transform 1810 // them into legal ones. 1811 DenseMap<OperationName, LegalizationPatterns> legalizerPatterns; 1812 LegalizationPatterns anyOpLegalizerPatterns; 1813 1814 buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns); 1815 computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns); 1816 } 1817 1818 bool OperationLegalizer::isIllegal(Operation *op) const { 1819 return target.isIllegal(op); 1820 } 1821 1822 LogicalResult 1823 OperationLegalizer::legalize(Operation *op, 1824 ConversionPatternRewriter &rewriter) { 1825 #ifndef NDEBUG 1826 const char *logLineComment = 1827 "//===-------------------------------------------===//\n"; 1828 1829 auto &logger = rewriter.getImpl().logger; 1830 #endif 1831 LLVM_DEBUG({ 1832 logger.getOStream() << "\n"; 1833 logger.startLine() << logLineComment; 1834 logger.startLine() << "Legalizing operation : '" << op->getName() << "'(" 1835 << op << ") {\n"; 1836 logger.indent(); 1837 1838 // If the operation has no regions, just print it here. 1839 if (op->getNumRegions() == 0) { 1840 op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm()); 1841 logger.getOStream() << "\n\n"; 1842 } 1843 }); 1844 1845 // Check if this operation is legal on the target. 1846 if (auto legalityInfo = target.isLegal(op)) { 1847 LLVM_DEBUG({ 1848 logSuccess( 1849 logger, "operation marked legal by the target{0}", 1850 legalityInfo->isRecursivelyLegal 1851 ? "; NOTE: operation is recursively legal; skipping internals" 1852 : ""); 1853 logger.startLine() << logLineComment; 1854 }); 1855 1856 // If this operation is recursively legal, mark its children as ignored so 1857 // that we don't consider them for legalization. 1858 if (legalityInfo->isRecursivelyLegal) 1859 rewriter.getImpl().markNestedOpsIgnored(op); 1860 return success(); 1861 } 1862 1863 // Check to see if the operation is ignored and doesn't need to be converted. 1864 if (rewriter.getImpl().isOpIgnored(op)) { 1865 LLVM_DEBUG({ 1866 logSuccess(logger, "operation marked 'ignored' during conversion"); 1867 logger.startLine() << logLineComment; 1868 }); 1869 return success(); 1870 } 1871 1872 // If the operation isn't legal, try to fold it in-place. 1873 // TODO: Should we always try to do this, even if the op is 1874 // already legal? 1875 if (succeeded(legalizeWithFold(op, rewriter))) { 1876 LLVM_DEBUG({ 1877 logSuccess(logger, "operation was folded"); 1878 logger.startLine() << logLineComment; 1879 }); 1880 return success(); 1881 } 1882 1883 // Otherwise, we need to apply a legalization pattern to this operation. 1884 if (succeeded(legalizeWithPattern(op, rewriter))) { 1885 LLVM_DEBUG({ 1886 logSuccess(logger, ""); 1887 logger.startLine() << logLineComment; 1888 }); 1889 return success(); 1890 } 1891 1892 LLVM_DEBUG({ 1893 logFailure(logger, "no matched legalization pattern"); 1894 logger.startLine() << logLineComment; 1895 }); 1896 return failure(); 1897 } 1898 1899 LogicalResult 1900 OperationLegalizer::legalizeWithFold(Operation *op, 1901 ConversionPatternRewriter &rewriter) { 1902 auto &rewriterImpl = rewriter.getImpl(); 1903 RewriterState curState = rewriterImpl.getCurrentState(); 1904 1905 LLVM_DEBUG({ 1906 rewriterImpl.logger.startLine() << "* Fold {\n"; 1907 rewriterImpl.logger.indent(); 1908 }); 1909 1910 // Try to fold the operation. 1911 SmallVector<Value, 2> replacementValues; 1912 rewriter.setInsertionPoint(op); 1913 if (failed(rewriter.tryFold(op, replacementValues))) { 1914 LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold")); 1915 return failure(); 1916 } 1917 1918 // Insert a replacement for 'op' with the folded replacement values. 1919 rewriter.replaceOp(op, replacementValues); 1920 1921 // Recursively legalize any new constant operations. 1922 for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size(); 1923 i != e; ++i) { 1924 Operation *cstOp = rewriterImpl.createdOps[i]; 1925 if (failed(legalize(cstOp, rewriter))) { 1926 LLVM_DEBUG(logFailure(rewriterImpl.logger, 1927 "generated constant '{0}' was illegal", 1928 cstOp->getName())); 1929 rewriterImpl.resetState(curState); 1930 return failure(); 1931 } 1932 } 1933 1934 LLVM_DEBUG(logSuccess(rewriterImpl.logger, "")); 1935 return success(); 1936 } 1937 1938 LogicalResult 1939 OperationLegalizer::legalizeWithPattern(Operation *op, 1940 ConversionPatternRewriter &rewriter) { 1941 auto &rewriterImpl = rewriter.getImpl(); 1942 1943 // Functor that returns if the given pattern may be applied. 1944 auto canApply = [&](const Pattern &pattern) { 1945 return canApplyPattern(op, pattern, rewriter); 1946 }; 1947 1948 // Functor that cleans up the rewriter state after a pattern failed to match. 1949 RewriterState curState = rewriterImpl.getCurrentState(); 1950 auto onFailure = [&](const Pattern &pattern) { 1951 LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match")); 1952 rewriterImpl.resetState(curState); 1953 appliedPatterns.erase(&pattern); 1954 }; 1955 1956 // Functor that performs additional legalization when a pattern is 1957 // successfully applied. 1958 auto onSuccess = [&](const Pattern &pattern) { 1959 auto result = legalizePatternResult(op, pattern, rewriter, curState); 1960 appliedPatterns.erase(&pattern); 1961 if (failed(result)) 1962 rewriterImpl.resetState(curState); 1963 return result; 1964 }; 1965 1966 // Try to match and rewrite a pattern on this operation. 1967 return applicator.matchAndRewrite(op, rewriter, canApply, onFailure, 1968 onSuccess); 1969 } 1970 1971 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern, 1972 ConversionPatternRewriter &rewriter) { 1973 LLVM_DEBUG({ 1974 auto &os = rewriter.getImpl().logger; 1975 os.getOStream() << "\n"; 1976 os.startLine() << "* Pattern : '" << op->getName() << " -> ("; 1977 llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream()); 1978 os.getOStream() << ")' {\n"; 1979 os.indent(); 1980 }); 1981 1982 // Ensure that we don't cycle by not allowing the same pattern to be 1983 // applied twice in the same recursion stack if it is not known to be safe. 1984 if (!pattern.hasBoundedRewriteRecursion() && 1985 !appliedPatterns.insert(&pattern).second) { 1986 LLVM_DEBUG( 1987 logFailure(rewriter.getImpl().logger, "pattern was already applied")); 1988 return false; 1989 } 1990 return true; 1991 } 1992 1993 LogicalResult 1994 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern, 1995 ConversionPatternRewriter &rewriter, 1996 RewriterState &curState) { 1997 auto &impl = rewriter.getImpl(); 1998 1999 #ifndef NDEBUG 2000 assert(impl.pendingRootUpdates.empty() && "dangling root updates"); 2001 #endif 2002 2003 // Check that the root was either replaced or updated in place. 2004 auto replacedRoot = [&] { 2005 return llvm::any_of( 2006 llvm::drop_begin(impl.replacements, curState.numReplacements), 2007 [op](auto &it) { return it.first == op; }); 2008 }; 2009 auto updatedRootInPlace = [&] { 2010 return llvm::any_of( 2011 llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates), 2012 [op](auto &state) { return state.getOperation() == op; }); 2013 }; 2014 (void)replacedRoot; 2015 (void)updatedRootInPlace; 2016 assert((replacedRoot() || updatedRootInPlace()) && 2017 "expected pattern to replace the root operation"); 2018 2019 // Legalize each of the actions registered during application. 2020 RewriterState newState = impl.getCurrentState(); 2021 if (failed(legalizePatternBlockActions(op, rewriter, impl, curState, 2022 newState)) || 2023 failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) || 2024 failed(legalizePatternCreatedOperations(rewriter, impl, curState, 2025 newState))) { 2026 return failure(); 2027 } 2028 2029 LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully")); 2030 return success(); 2031 } 2032 2033 LogicalResult OperationLegalizer::legalizePatternBlockActions( 2034 Operation *op, ConversionPatternRewriter &rewriter, 2035 ConversionPatternRewriterImpl &impl, RewriterState &state, 2036 RewriterState &newState) { 2037 SmallPtrSet<Operation *, 16> operationsToIgnore; 2038 2039 // If the pattern moved or created any blocks, make sure the types of block 2040 // arguments get legalized. 2041 for (int i = state.numBlockActions, e = newState.numBlockActions; i != e; 2042 ++i) { 2043 auto &action = impl.blockActions[i]; 2044 if (action.kind == BlockActionKind::TypeConversion || 2045 action.kind == BlockActionKind::Erase) 2046 continue; 2047 // Only check blocks outside of the current operation. 2048 Operation *parentOp = action.block->getParentOp(); 2049 if (!parentOp || parentOp == op || action.block->getNumArguments() == 0) 2050 continue; 2051 2052 // If the region of the block has a type converter, try to convert the block 2053 // directly. 2054 if (auto *converter = 2055 impl.argConverter.getConverter(action.block->getParent())) { 2056 if (failed(impl.convertBlockSignature(action.block, converter))) { 2057 LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved " 2058 "block")); 2059 return failure(); 2060 } 2061 continue; 2062 } 2063 2064 // Otherwise, check that this operation isn't one generated by this pattern. 2065 // This is because we will attempt to legalize the parent operation, and 2066 // blocks in regions created by this pattern will already be legalized later 2067 // on. If we haven't built the set yet, build it now. 2068 if (operationsToIgnore.empty()) { 2069 auto createdOps = ArrayRef<Operation *>(impl.createdOps) 2070 .drop_front(state.numCreatedOps); 2071 operationsToIgnore.insert(createdOps.begin(), createdOps.end()); 2072 } 2073 2074 // If this operation should be considered for re-legalization, try it. 2075 if (operationsToIgnore.insert(parentOp).second && 2076 failed(legalize(parentOp, rewriter))) { 2077 LLVM_DEBUG(logFailure( 2078 impl.logger, "operation '{0}'({1}) became illegal after block action", 2079 parentOp->getName(), parentOp)); 2080 return failure(); 2081 } 2082 } 2083 return success(); 2084 } 2085 2086 LogicalResult OperationLegalizer::legalizePatternCreatedOperations( 2087 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 2088 RewriterState &state, RewriterState &newState) { 2089 for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) { 2090 Operation *op = impl.createdOps[i]; 2091 if (failed(legalize(op, rewriter))) { 2092 LLVM_DEBUG(logFailure(impl.logger, 2093 "generated operation '{0}'({1}) was illegal", 2094 op->getName(), op)); 2095 return failure(); 2096 } 2097 } 2098 return success(); 2099 } 2100 2101 LogicalResult OperationLegalizer::legalizePatternRootUpdates( 2102 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 2103 RewriterState &state, RewriterState &newState) { 2104 for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) { 2105 Operation *op = impl.rootUpdates[i].getOperation(); 2106 if (failed(legalize(op, rewriter))) { 2107 LLVM_DEBUG(logFailure(impl.logger, 2108 "operation updated in-place '{0}' was illegal", 2109 op->getName())); 2110 return failure(); 2111 } 2112 } 2113 return success(); 2114 } 2115 2116 //===----------------------------------------------------------------------===// 2117 // Cost Model 2118 2119 void OperationLegalizer::buildLegalizationGraph( 2120 LegalizationPatterns &anyOpLegalizerPatterns, 2121 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2122 // A mapping between an operation and a set of operations that can be used to 2123 // generate it. 2124 DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps; 2125 // A mapping between an operation and any currently invalid patterns it has. 2126 DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns; 2127 // A worklist of patterns to consider for legality. 2128 SetVector<const Pattern *> patternWorklist; 2129 2130 // Build the mapping from operations to the parent ops that may generate them. 2131 applicator.walkAllPatterns([&](const Pattern &pattern) { 2132 Optional<OperationName> root = pattern.getRootKind(); 2133 2134 // If the pattern has no specific root, we can't analyze the relationship 2135 // between the root op and generated operations. Given that, add all such 2136 // patterns to the legalization set. 2137 if (!root) { 2138 anyOpLegalizerPatterns.push_back(&pattern); 2139 return; 2140 } 2141 2142 // Skip operations that are always known to be legal. 2143 if (target.getOpAction(*root) == LegalizationAction::Legal) 2144 return; 2145 2146 // Add this pattern to the invalid set for the root op and record this root 2147 // as a parent for any generated operations. 2148 invalidPatterns[*root].insert(&pattern); 2149 for (auto op : pattern.getGeneratedOps()) 2150 parentOps[op].insert(*root); 2151 2152 // Add this pattern to the worklist. 2153 patternWorklist.insert(&pattern); 2154 }); 2155 2156 // If there are any patterns that don't have a specific root kind, we can't 2157 // make direct assumptions about what operations will never be legalized. 2158 // Note: Technically we could, but it would require an analysis that may 2159 // recurse into itself. It would be better to perform this kind of filtering 2160 // at a higher level than here anyways. 2161 if (!anyOpLegalizerPatterns.empty()) { 2162 for (const Pattern *pattern : patternWorklist) 2163 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 2164 return; 2165 } 2166 2167 while (!patternWorklist.empty()) { 2168 auto *pattern = patternWorklist.pop_back_val(); 2169 2170 // Check to see if any of the generated operations are invalid. 2171 if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) { 2172 Optional<LegalizationAction> action = target.getOpAction(op); 2173 return !legalizerPatterns.count(op) && 2174 (!action || action == LegalizationAction::Illegal); 2175 })) 2176 continue; 2177 2178 // Otherwise, if all of the generated operation are valid, this op is now 2179 // legal so add all of the child patterns to the worklist. 2180 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 2181 invalidPatterns[*pattern->getRootKind()].erase(pattern); 2182 2183 // Add any invalid patterns of the parent operations to see if they have now 2184 // become legal. 2185 for (auto op : parentOps[*pattern->getRootKind()]) 2186 patternWorklist.set_union(invalidPatterns[op]); 2187 } 2188 } 2189 2190 void OperationLegalizer::computeLegalizationGraphBenefit( 2191 LegalizationPatterns &anyOpLegalizerPatterns, 2192 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2193 // The smallest pattern depth, when legalizing an operation. 2194 DenseMap<OperationName, unsigned> minOpPatternDepth; 2195 2196 // For each operation that is transitively legal, compute a cost for it. 2197 for (auto &opIt : legalizerPatterns) 2198 if (!minOpPatternDepth.count(opIt.first)) 2199 computeOpLegalizationDepth(opIt.first, minOpPatternDepth, 2200 legalizerPatterns); 2201 2202 // Apply the cost model to the patterns that can match any operation. Those 2203 // with a specific operation type are already resolved when computing the op 2204 // legalization depth. 2205 if (!anyOpLegalizerPatterns.empty()) 2206 applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth, 2207 legalizerPatterns); 2208 2209 // Apply a cost model to the pattern applicator. We order patterns first by 2210 // depth then benefit. `legalizerPatterns` contains per-op patterns by 2211 // decreasing benefit. 2212 applicator.applyCostModel([&](const Pattern &pattern) { 2213 ArrayRef<const Pattern *> orderedPatternList; 2214 if (Optional<OperationName> rootName = pattern.getRootKind()) 2215 orderedPatternList = legalizerPatterns[*rootName]; 2216 else 2217 orderedPatternList = anyOpLegalizerPatterns; 2218 2219 // If the pattern is not found, then it was removed and cannot be matched. 2220 auto *it = llvm::find(orderedPatternList, &pattern); 2221 if (it == orderedPatternList.end()) 2222 return PatternBenefit::impossibleToMatch(); 2223 2224 // Patterns found earlier in the list have higher benefit. 2225 return PatternBenefit(std::distance(it, orderedPatternList.end())); 2226 }); 2227 } 2228 2229 unsigned OperationLegalizer::computeOpLegalizationDepth( 2230 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 2231 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2232 // Check for existing depth. 2233 auto depthIt = minOpPatternDepth.find(op); 2234 if (depthIt != minOpPatternDepth.end()) 2235 return depthIt->second; 2236 2237 // If a mapping for this operation does not exist, then this operation 2238 // is always legal. Return 0 as the depth for a directly legal operation. 2239 auto opPatternsIt = legalizerPatterns.find(op); 2240 if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty()) 2241 return 0u; 2242 2243 // Record this initial depth in case we encounter this op again when 2244 // recursively computing the depth. 2245 minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max()); 2246 2247 // Apply the cost model to the operation patterns, and update the minimum 2248 // depth. 2249 unsigned minDepth = applyCostModelToPatterns( 2250 opPatternsIt->second, minOpPatternDepth, legalizerPatterns); 2251 minOpPatternDepth[op] = minDepth; 2252 return minDepth; 2253 } 2254 2255 unsigned OperationLegalizer::applyCostModelToPatterns( 2256 LegalizationPatterns &patterns, 2257 DenseMap<OperationName, unsigned> &minOpPatternDepth, 2258 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2259 unsigned minDepth = std::numeric_limits<unsigned>::max(); 2260 2261 // Compute the depth for each pattern within the set. 2262 SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth; 2263 patternsByDepth.reserve(patterns.size()); 2264 for (const Pattern *pattern : patterns) { 2265 unsigned depth = 1; 2266 for (auto generatedOp : pattern->getGeneratedOps()) { 2267 unsigned generatedOpDepth = computeOpLegalizationDepth( 2268 generatedOp, minOpPatternDepth, legalizerPatterns); 2269 depth = std::max(depth, generatedOpDepth + 1); 2270 } 2271 patternsByDepth.emplace_back(pattern, depth); 2272 2273 // Update the minimum depth of the pattern list. 2274 minDepth = std::min(minDepth, depth); 2275 } 2276 2277 // If the operation only has one legalization pattern, there is no need to 2278 // sort them. 2279 if (patternsByDepth.size() == 1) 2280 return minDepth; 2281 2282 // Sort the patterns by those likely to be the most beneficial. 2283 llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(), 2284 [](const std::pair<const Pattern *, unsigned> *lhs, 2285 const std::pair<const Pattern *, unsigned> *rhs) { 2286 // First sort by the smaller pattern legalization 2287 // depth. 2288 if (lhs->second != rhs->second) 2289 return llvm::array_pod_sort_comparator<unsigned>( 2290 &lhs->second, &rhs->second); 2291 2292 // Then sort by the larger pattern benefit. 2293 auto lhsBenefit = lhs->first->getBenefit(); 2294 auto rhsBenefit = rhs->first->getBenefit(); 2295 return llvm::array_pod_sort_comparator<PatternBenefit>( 2296 &rhsBenefit, &lhsBenefit); 2297 }); 2298 2299 // Update the legalization pattern to use the new sorted list. 2300 patterns.clear(); 2301 for (auto &patternIt : patternsByDepth) 2302 patterns.push_back(patternIt.first); 2303 return minDepth; 2304 } 2305 2306 //===----------------------------------------------------------------------===// 2307 // OperationConverter 2308 //===----------------------------------------------------------------------===// 2309 namespace { 2310 enum OpConversionMode { 2311 /// In this mode, the conversion will ignore failed conversions to allow 2312 /// illegal operations to co-exist in the IR. 2313 Partial, 2314 2315 /// In this mode, all operations must be legal for the given target for the 2316 /// conversion to succeed. 2317 Full, 2318 2319 /// In this mode, operations are analyzed for legality. No actual rewrites are 2320 /// applied to the operations on success. 2321 Analysis, 2322 }; 2323 2324 // This class converts operations to a given conversion target via a set of 2325 // rewrite patterns. The conversion behaves differently depending on the 2326 // conversion mode. 2327 struct OperationConverter { 2328 explicit OperationConverter(ConversionTarget &target, 2329 const FrozenRewritePatternSet &patterns, 2330 OpConversionMode mode, 2331 DenseSet<Operation *> *trackedOps = nullptr) 2332 : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {} 2333 2334 /// Converts the given operations to the conversion target. 2335 LogicalResult convertOperations(ArrayRef<Operation *> ops); 2336 2337 private: 2338 /// Converts an operation with the given rewriter. 2339 LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op); 2340 2341 /// This method is called after the conversion process to legalize any 2342 /// remaining artifacts and complete the conversion. 2343 LogicalResult finalize(ConversionPatternRewriter &rewriter); 2344 2345 /// Legalize the types of converted block arguments. 2346 LogicalResult 2347 legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter, 2348 ConversionPatternRewriterImpl &rewriterImpl); 2349 2350 /// Legalize any unresolved type materializations. 2351 LogicalResult legalizeUnresolvedMaterializations( 2352 ConversionPatternRewriter &rewriter, 2353 ConversionPatternRewriterImpl &rewriterImpl, 2354 Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping); 2355 2356 /// Legalize an operation result that was marked as "erased". 2357 LogicalResult 2358 legalizeErasedResult(Operation *op, OpResult result, 2359 ConversionPatternRewriterImpl &rewriterImpl); 2360 2361 /// Legalize an operation result that was replaced with a value of a different 2362 /// type. 2363 LogicalResult legalizeChangedResultType( 2364 Operation *op, OpResult result, Value newValue, 2365 TypeConverter *replConverter, ConversionPatternRewriter &rewriter, 2366 ConversionPatternRewriterImpl &rewriterImpl, 2367 const DenseMap<Value, SmallVector<Value>> &inverseMapping); 2368 2369 /// The legalizer to use when converting operations. 2370 OperationLegalizer opLegalizer; 2371 2372 /// The conversion mode to use when legalizing operations. 2373 OpConversionMode mode; 2374 2375 /// A set of pre-existing operations. When mode == OpConversionMode::Analysis, 2376 /// this is populated with ops found to be legalizable to the target. 2377 /// When mode == OpConversionMode::Partial, this is populated with ops found 2378 /// *not* to be legalizable to the target. 2379 DenseSet<Operation *> *trackedOps; 2380 }; 2381 } // end anonymous namespace 2382 2383 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter, 2384 Operation *op) { 2385 // Legalize the given operation. 2386 if (failed(opLegalizer.legalize(op, rewriter))) { 2387 // Handle the case of a failed conversion for each of the different modes. 2388 // Full conversions expect all operations to be converted. 2389 if (mode == OpConversionMode::Full) 2390 return op->emitError() 2391 << "failed to legalize operation '" << op->getName() << "'"; 2392 // Partial conversions allow conversions to fail iff the operation was not 2393 // explicitly marked as illegal. If the user provided a nonlegalizableOps 2394 // set, non-legalizable ops are included. 2395 if (mode == OpConversionMode::Partial) { 2396 if (opLegalizer.isIllegal(op)) 2397 return op->emitError() 2398 << "failed to legalize operation '" << op->getName() 2399 << "' that was explicitly marked illegal"; 2400 if (trackedOps) 2401 trackedOps->insert(op); 2402 } 2403 } else if (mode == OpConversionMode::Analysis) { 2404 // Analysis conversions don't fail if any operations fail to legalize, 2405 // they are only interested in the operations that were successfully 2406 // legalized. 2407 trackedOps->insert(op); 2408 } 2409 return success(); 2410 } 2411 2412 LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) { 2413 if (ops.empty()) 2414 return success(); 2415 ConversionTarget &target = opLegalizer.getTarget(); 2416 2417 // Compute the set of operations and blocks to convert. 2418 SmallVector<Operation *> toConvert; 2419 for (auto *op : ops) { 2420 toConvert.emplace_back(op); 2421 for (auto ®ion : op->getRegions()) 2422 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 2423 toConvert, &target))) 2424 return failure(); 2425 } 2426 2427 // Convert each operation and discard rewrites on failure. 2428 ConversionPatternRewriter rewriter(ops.front()->getContext()); 2429 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2430 for (auto *op : toConvert) 2431 if (failed(convert(rewriter, op))) 2432 return rewriterImpl.discardRewrites(), failure(); 2433 2434 // Now that all of the operations have been converted, finalize the conversion 2435 // process to ensure any lingering conversion artifacts are cleaned up and 2436 // legalized. 2437 if (failed(finalize(rewriter))) 2438 return rewriterImpl.discardRewrites(), failure(); 2439 2440 // After a successful conversion, apply rewrites if this is not an analysis 2441 // conversion. 2442 if (mode == OpConversionMode::Analysis) { 2443 rewriterImpl.discardRewrites(); 2444 } else { 2445 rewriterImpl.applyRewrites(); 2446 2447 // It is possible for a later pattern to erase an op that was originally 2448 // identified as illegal and added to the trackedOps, remove it now after 2449 // replacements have been computed. 2450 if (trackedOps) 2451 for (auto &repl : rewriterImpl.replacements) 2452 trackedOps->erase(repl.first); 2453 } 2454 return success(); 2455 } 2456 2457 LogicalResult 2458 OperationConverter::finalize(ConversionPatternRewriter &rewriter) { 2459 Optional<DenseMap<Value, SmallVector<Value>>> inverseMapping; 2460 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2461 if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl, 2462 inverseMapping)) || 2463 failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl))) 2464 return failure(); 2465 2466 if (rewriterImpl.operationsWithChangedResults.empty()) 2467 return success(); 2468 2469 // Process requested operation replacements. 2470 for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size(); 2471 i != e; ++i) { 2472 unsigned replIdx = rewriterImpl.operationsWithChangedResults[i]; 2473 auto &repl = *(rewriterImpl.replacements.begin() + replIdx); 2474 for (OpResult result : repl.first->getResults()) { 2475 Value newValue = rewriterImpl.mapping.lookupOrNull(result); 2476 2477 // If the operation result was replaced with null, all of the uses of this 2478 // value should be replaced. 2479 if (!newValue) { 2480 if (failed(legalizeErasedResult(repl.first, result, rewriterImpl))) 2481 return failure(); 2482 continue; 2483 } 2484 2485 // Otherwise, check to see if the type of the result changed. 2486 if (result.getType() == newValue.getType()) 2487 continue; 2488 2489 // Compute the inverse mapping only if it is really needed. 2490 if (!inverseMapping) 2491 inverseMapping = rewriterImpl.mapping.getInverse(); 2492 2493 // Legalize this result. 2494 rewriter.setInsertionPoint(repl.first); 2495 if (failed(legalizeChangedResultType(repl.first, result, newValue, 2496 repl.second.converter, rewriter, 2497 rewriterImpl, *inverseMapping))) 2498 return failure(); 2499 2500 // Update the end iterator for this loop in the case it was updated 2501 // when legalizing generated conversion operations. 2502 e = rewriterImpl.operationsWithChangedResults.size(); 2503 } 2504 } 2505 return success(); 2506 } 2507 2508 LogicalResult OperationConverter::legalizeConvertedArgumentTypes( 2509 ConversionPatternRewriter &rewriter, 2510 ConversionPatternRewriterImpl &rewriterImpl) { 2511 // Functor used to check if all users of a value will be dead after 2512 // conversion. 2513 auto findLiveUser = [&](Value val) { 2514 auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) { 2515 return rewriterImpl.isOpIgnored(user); 2516 }); 2517 return liveUserIt == val.user_end() ? nullptr : *liveUserIt; 2518 }; 2519 return rewriterImpl.argConverter.materializeLiveConversions( 2520 rewriterImpl.mapping, rewriter, findLiveUser); 2521 } 2522 2523 /// Replace the results of a materialization operation with the given values. 2524 static void 2525 replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl, 2526 ResultRange matResults, ValueRange values, 2527 DenseMap<Value, SmallVector<Value>> &inverseMapping) { 2528 matResults.replaceAllUsesWith(values); 2529 2530 // For each of the materialization results, update the inverse mappings to 2531 // point to the replacement values. 2532 for (auto it : llvm::zip(matResults, values)) { 2533 Value matResult, newValue; 2534 std::tie(matResult, newValue) = it; 2535 auto inverseMapIt = inverseMapping.find(matResult); 2536 if (inverseMapIt == inverseMapping.end()) 2537 continue; 2538 2539 // Update the reverse mapping, or remove the mapping if we couldn't update 2540 // it. Not being able to update signals that the mapping would have become 2541 // circular (i.e. %foo -> newValue -> %foo), which may occur as values are 2542 // propagated through temporary materializations. We simply drop the 2543 // mapping, and let the post-conversion replacement logic handle updating 2544 // uses. 2545 for (Value inverseMapVal : inverseMapIt->second) 2546 if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue)) 2547 rewriterImpl.mapping.erase(inverseMapVal); 2548 } 2549 } 2550 2551 /// Compute all of the unresolved materializations that will persist beyond the 2552 /// conversion process, and require inserting a proper user materialization for. 2553 static void computeNecessaryMaterializations( 2554 DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps, 2555 ConversionPatternRewriter &rewriter, 2556 ConversionPatternRewriterImpl &rewriterImpl, 2557 DenseMap<Value, SmallVector<Value>> &inverseMapping, 2558 SetVector<UnresolvedMaterialization *> &necessaryMaterializations) { 2559 auto isLive = [&](Value value) { 2560 auto findFn = [&](Operation *user) { 2561 auto matIt = materializationOps.find(user); 2562 if (matIt != materializationOps.end()) 2563 return !necessaryMaterializations.count(matIt->second); 2564 return rewriterImpl.isOpIgnored(user); 2565 }; 2566 return llvm::find_if_not(value.getUsers(), findFn) != value.user_end(); 2567 }; 2568 2569 llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue = 2570 [&](Value invalidRoot, Value value, Type type) { 2571 // Check to see if the input operation was remapped to a variant of the 2572 // output. 2573 Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type); 2574 if (remappedValue.getType() == type && remappedValue != invalidRoot) 2575 return remappedValue; 2576 2577 // Check to see if the input is a materialization operation that 2578 // provides an inverse conversion. We just check blindly for 2579 // UnrealizedConversionCastOp here, but it has no effect on correctness. 2580 auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>(); 2581 if (inputCastOp && inputCastOp->getNumOperands() == 1) 2582 return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0), 2583 type); 2584 2585 return Value(); 2586 }; 2587 2588 SetVector<UnresolvedMaterialization *> worklist; 2589 for (auto &mat : rewriterImpl.unresolvedMaterializations) { 2590 materializationOps.try_emplace(mat.getOp(), &mat); 2591 worklist.insert(&mat); 2592 } 2593 while (!worklist.empty()) { 2594 UnresolvedMaterialization *mat = worklist.pop_back_val(); 2595 UnrealizedConversionCastOp op = mat->getOp(); 2596 2597 // We currently only handle target materializations here. 2598 assert(op->getNumResults() == 1 && "unexpected materialization type"); 2599 OpResult opResult = op->getOpResult(0); 2600 Type outputType = opResult.getType(); 2601 Operation::operand_range inputOperands = op.getOperands(); 2602 2603 // Try to forward propagate operands for user conversion casts that result 2604 // in the input types of the current cast. 2605 for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) { 2606 auto castOp = dyn_cast<UnrealizedConversionCastOp>(user); 2607 if (!castOp) 2608 continue; 2609 if (castOp->getResultTypes() == inputOperands.getTypes()) { 2610 replaceMaterialization(rewriterImpl, opResult, inputOperands, 2611 inverseMapping); 2612 necessaryMaterializations.remove(materializationOps.lookup(user)); 2613 } 2614 } 2615 2616 // Try to avoid materializing a resolved materialization if possible. 2617 // Handle the case of a 1-1 materialization. 2618 if (inputOperands.size() == 1) { 2619 // Check to see if the input operation was remapped to a variant of the 2620 // output. 2621 Value remappedValue = 2622 lookupRemappedValue(opResult, inputOperands[0], outputType); 2623 if (remappedValue && remappedValue != opResult) { 2624 replaceMaterialization(rewriterImpl, opResult, remappedValue, 2625 inverseMapping); 2626 necessaryMaterializations.remove(mat); 2627 continue; 2628 } 2629 } else { 2630 // TODO: Avoid materializing other types of conversions here. 2631 } 2632 2633 // Check to see if this is an argument materialization. 2634 auto isBlockArg = [](Value v) { return v.isa<BlockArgument>(); }; 2635 if (llvm::any_of(op->getOperands(), isBlockArg) || 2636 llvm::any_of(inverseMapping[op->getResult(0)], isBlockArg)) { 2637 mat->setKind(UnresolvedMaterialization::Argument); 2638 } 2639 2640 // If the materialization does not have any live users, we don't need to 2641 // generate a user materialization for it. 2642 // FIXME: For argument materializations, we currently need to check if any 2643 // of the inverse mapped values are used because some patterns expect blind 2644 // value replacement even if the types differ in some cases. When those 2645 // patterns are fixed, we can drop the argument special case here. 2646 bool isMaterializationLive = isLive(opResult); 2647 if (mat->getKind() == UnresolvedMaterialization::Argument) 2648 isMaterializationLive |= llvm::any_of(inverseMapping[opResult], isLive); 2649 if (!isMaterializationLive) 2650 continue; 2651 if (!necessaryMaterializations.insert(mat)) 2652 continue; 2653 2654 // Reprocess input materializations to see if they have an updated status. 2655 for (Value input : inputOperands) { 2656 if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) { 2657 if (auto *mat = materializationOps.lookup(parentOp)) 2658 worklist.insert(mat); 2659 } 2660 } 2661 } 2662 } 2663 2664 /// Legalize the given unresolved materialization. Returns success if the 2665 /// materialization was legalized, failure otherise. 2666 static LogicalResult legalizeUnresolvedMaterialization( 2667 UnresolvedMaterialization &mat, 2668 DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps, 2669 ConversionPatternRewriter &rewriter, 2670 ConversionPatternRewriterImpl &rewriterImpl, 2671 DenseMap<Value, SmallVector<Value>> &inverseMapping) { 2672 auto findLiveUser = [&](auto &&users) { 2673 auto liveUserIt = llvm::find_if_not( 2674 users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); }); 2675 return liveUserIt == users.end() ? nullptr : *liveUserIt; 2676 }; 2677 2678 llvm::unique_function<Value(Value, Type)> lookupRemappedValue = 2679 [&](Value value, Type type) { 2680 // Check to see if the input operation was remapped to a variant of the 2681 // output. 2682 Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type); 2683 if (remappedValue.getType() == type) 2684 return remappedValue; 2685 return Value(); 2686 }; 2687 2688 UnrealizedConversionCastOp op = mat.getOp(); 2689 if (!rewriterImpl.ignoredOps.insert(op)) 2690 return success(); 2691 2692 // We currently only handle target materializations here. 2693 OpResult opResult = op->getOpResult(0); 2694 Operation::operand_range inputOperands = op.getOperands(); 2695 Type outputType = opResult.getType(); 2696 2697 // If any input to this materialization is another materialization, resolve 2698 // the input first. 2699 for (Value value : op->getOperands()) { 2700 auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>(); 2701 if (!valueCast) 2702 continue; 2703 2704 auto matIt = materializationOps.find(valueCast); 2705 if (matIt != materializationOps.end()) 2706 if (failed(legalizeUnresolvedMaterialization( 2707 *matIt->second, materializationOps, rewriter, rewriterImpl, 2708 inverseMapping))) 2709 return failure(); 2710 } 2711 2712 // Perform a last ditch attempt to avoid materializing a resolved 2713 // materialization if possible. 2714 // Handle the case of a 1-1 materialization. 2715 if (inputOperands.size() == 1) { 2716 // Check to see if the input operation was remapped to a variant of the 2717 // output. 2718 Value remappedValue = lookupRemappedValue(inputOperands[0], outputType); 2719 if (remappedValue && remappedValue != opResult) { 2720 replaceMaterialization(rewriterImpl, opResult, remappedValue, 2721 inverseMapping); 2722 return success(); 2723 } 2724 } else { 2725 // TODO: Avoid materializing other types of conversions here. 2726 } 2727 2728 // Try to materialize the conversion. 2729 if (TypeConverter *converter = mat.getConverter()) { 2730 // FIXME: Determine a suitable insertion location when there are multiple 2731 // inputs. 2732 if (inputOperands.size() == 1) 2733 rewriter.setInsertionPointAfterValue(inputOperands.front()); 2734 else 2735 rewriter.setInsertionPoint(op); 2736 2737 Value newMaterialization; 2738 switch (mat.getKind()) { 2739 case UnresolvedMaterialization::Argument: 2740 // Try to materialize an argument conversion. 2741 // FIXME: The current argument materialization hook expects the original 2742 // output type, even though it doesn't use that as the actual output type 2743 // of the generated IR. The output type is just used as an indicator of 2744 // the type of materialization to do. This behavior is really awkward in 2745 // that it diverges from the behavior of the other hooks, and can be 2746 // easily misunderstood. We should clean up the argument hooks to better 2747 // represent the desired invariants we actually care about. 2748 newMaterialization = converter->materializeArgumentConversion( 2749 rewriter, op->getLoc(), mat.getOrigOutputType(), inputOperands); 2750 if (newMaterialization) 2751 break; 2752 2753 // If an argument materialization failed, fallback to trying a target 2754 // materialization. 2755 LLVM_FALLTHROUGH; 2756 case UnresolvedMaterialization::Target: 2757 newMaterialization = converter->materializeTargetConversion( 2758 rewriter, op->getLoc(), outputType, inputOperands); 2759 break; 2760 } 2761 if (newMaterialization) { 2762 replaceMaterialization(rewriterImpl, opResult, newMaterialization, 2763 inverseMapping); 2764 return success(); 2765 } 2766 } 2767 2768 InFlightDiagnostic diag = op->emitError() 2769 << "failed to legalize unresolved materialization " 2770 "from " 2771 << inputOperands.getTypes() << " to " << outputType 2772 << " that remained live after conversion"; 2773 if (Operation *liveUser = findLiveUser(op->getUsers())) { 2774 diag.attachNote(liveUser->getLoc()) 2775 << "see existing live user here: " << *liveUser; 2776 } 2777 return failure(); 2778 } 2779 2780 LogicalResult OperationConverter::legalizeUnresolvedMaterializations( 2781 ConversionPatternRewriter &rewriter, 2782 ConversionPatternRewriterImpl &rewriterImpl, 2783 Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) { 2784 if (rewriterImpl.unresolvedMaterializations.empty()) 2785 return success(); 2786 inverseMapping = rewriterImpl.mapping.getInverse(); 2787 2788 // As an initial step, compute all of the inserted materializations that we 2789 // expect to persist beyond the conversion process. 2790 DenseMap<Operation *, UnresolvedMaterialization *> materializationOps; 2791 SetVector<UnresolvedMaterialization *> necessaryMaterializations; 2792 computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl, 2793 *inverseMapping, necessaryMaterializations); 2794 2795 // Once computed, legalize any necessary materializations. 2796 for (auto *mat : necessaryMaterializations) { 2797 if (failed(legalizeUnresolvedMaterialization( 2798 *mat, materializationOps, rewriter, rewriterImpl, *inverseMapping))) 2799 return failure(); 2800 } 2801 return success(); 2802 } 2803 2804 LogicalResult OperationConverter::legalizeErasedResult( 2805 Operation *op, OpResult result, 2806 ConversionPatternRewriterImpl &rewriterImpl) { 2807 // If the operation result was replaced with null, all of the uses of this 2808 // value should be replaced. 2809 auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) { 2810 return rewriterImpl.isOpIgnored(user); 2811 }); 2812 if (liveUserIt != result.user_end()) { 2813 InFlightDiagnostic diag = op->emitError("failed to legalize operation '") 2814 << op->getName() << "' marked as erased"; 2815 diag.attachNote(liveUserIt->getLoc()) 2816 << "found live user of result #" << result.getResultNumber() << ": " 2817 << *liveUserIt; 2818 return failure(); 2819 } 2820 return success(); 2821 } 2822 2823 /// Finds a user of the given value, or of any other value that the given value 2824 /// replaced, that was not replaced in the conversion process. 2825 static Operation *findLiveUserOfReplaced( 2826 Value initialValue, ConversionPatternRewriterImpl &rewriterImpl, 2827 const DenseMap<Value, SmallVector<Value>> &inverseMapping) { 2828 SmallVector<Value> worklist(1, initialValue); 2829 while (!worklist.empty()) { 2830 Value value = worklist.pop_back_val(); 2831 2832 // Walk the users of this value to see if there are any live users that 2833 // weren't replaced during conversion. 2834 auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) { 2835 return rewriterImpl.isOpIgnored(user); 2836 }); 2837 if (liveUserIt != value.user_end()) 2838 return *liveUserIt; 2839 auto mapIt = inverseMapping.find(value); 2840 if (mapIt != inverseMapping.end()) 2841 worklist.append(mapIt->second); 2842 } 2843 return nullptr; 2844 } 2845 2846 LogicalResult OperationConverter::legalizeChangedResultType( 2847 Operation *op, OpResult result, Value newValue, 2848 TypeConverter *replConverter, ConversionPatternRewriter &rewriter, 2849 ConversionPatternRewriterImpl &rewriterImpl, 2850 const DenseMap<Value, SmallVector<Value>> &inverseMapping) { 2851 Operation *liveUser = 2852 findLiveUserOfReplaced(result, rewriterImpl, inverseMapping); 2853 if (!liveUser) 2854 return success(); 2855 2856 // Functor used to emit a conversion error for a failed materialization. 2857 auto emitConversionError = [&] { 2858 InFlightDiagnostic diag = op->emitError() 2859 << "failed to materialize conversion for result #" 2860 << result.getResultNumber() << " of operation '" 2861 << op->getName() 2862 << "' that remained live after conversion"; 2863 diag.attachNote(liveUser->getLoc()) 2864 << "see existing live user here: " << *liveUser; 2865 return failure(); 2866 }; 2867 2868 // If the replacement has a type converter, attempt to materialize a 2869 // conversion back to the original type. 2870 if (!replConverter) 2871 return emitConversionError(); 2872 2873 // Materialize a conversion for this live result value. 2874 Type resultType = result.getType(); 2875 Value convertedValue = replConverter->materializeSourceConversion( 2876 rewriter, op->getLoc(), resultType, newValue); 2877 if (!convertedValue) 2878 return emitConversionError(); 2879 2880 rewriterImpl.mapping.map(result, convertedValue); 2881 return success(); 2882 } 2883 2884 //===----------------------------------------------------------------------===// 2885 // Type Conversion 2886 //===----------------------------------------------------------------------===// 2887 2888 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo, 2889 ArrayRef<Type> types) { 2890 assert(!types.empty() && "expected valid types"); 2891 remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size()); 2892 addInputs(types); 2893 } 2894 2895 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) { 2896 assert(!types.empty() && 2897 "1->0 type remappings don't need to be added explicitly"); 2898 argTypes.append(types.begin(), types.end()); 2899 } 2900 2901 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2902 unsigned newInputNo, 2903 unsigned newInputCount) { 2904 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2905 assert(newInputCount != 0 && "expected valid input count"); 2906 remappedInputs[origInputNo] = 2907 InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr}; 2908 } 2909 2910 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2911 Value replacementValue) { 2912 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2913 remappedInputs[origInputNo] = 2914 InputMapping{origInputNo, /*size=*/0, replacementValue}; 2915 } 2916 2917 LogicalResult TypeConverter::convertType(Type t, 2918 SmallVectorImpl<Type> &results) { 2919 auto existingIt = cachedDirectConversions.find(t); 2920 if (existingIt != cachedDirectConversions.end()) { 2921 if (existingIt->second) 2922 results.push_back(existingIt->second); 2923 return success(existingIt->second != nullptr); 2924 } 2925 auto multiIt = cachedMultiConversions.find(t); 2926 if (multiIt != cachedMultiConversions.end()) { 2927 results.append(multiIt->second.begin(), multiIt->second.end()); 2928 return success(); 2929 } 2930 2931 // Walk the added converters in reverse order to apply the most recently 2932 // registered first. 2933 size_t currentCount = results.size(); 2934 for (ConversionCallbackFn &converter : llvm::reverse(conversions)) { 2935 if (Optional<LogicalResult> result = converter(t, results)) { 2936 if (!succeeded(*result)) { 2937 cachedDirectConversions.try_emplace(t, nullptr); 2938 return failure(); 2939 } 2940 auto newTypes = ArrayRef<Type>(results).drop_front(currentCount); 2941 if (newTypes.size() == 1) 2942 cachedDirectConversions.try_emplace(t, newTypes.front()); 2943 else 2944 cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes)); 2945 return success(); 2946 } 2947 } 2948 return failure(); 2949 } 2950 2951 Type TypeConverter::convertType(Type t) { 2952 // Use the multi-type result version to convert the type. 2953 SmallVector<Type, 1> results; 2954 if (failed(convertType(t, results))) 2955 return nullptr; 2956 2957 // Check to ensure that only one type was produced. 2958 return results.size() == 1 ? results.front() : nullptr; 2959 } 2960 2961 LogicalResult TypeConverter::convertTypes(TypeRange types, 2962 SmallVectorImpl<Type> &results) { 2963 for (Type type : types) 2964 if (failed(convertType(type, results))) 2965 return failure(); 2966 return success(); 2967 } 2968 2969 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; } 2970 bool TypeConverter::isLegal(Operation *op) { 2971 return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes()); 2972 } 2973 2974 bool TypeConverter::isLegal(Region *region) { 2975 return llvm::all_of(*region, [this](Block &block) { 2976 return isLegal(block.getArgumentTypes()); 2977 }); 2978 } 2979 2980 bool TypeConverter::isSignatureLegal(FunctionType ty) { 2981 return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults())); 2982 } 2983 2984 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type, 2985 SignatureConversion &result) { 2986 // Try to convert the given input type. 2987 SmallVector<Type, 1> convertedTypes; 2988 if (failed(convertType(type, convertedTypes))) 2989 return failure(); 2990 2991 // If this argument is being dropped, there is nothing left to do. 2992 if (convertedTypes.empty()) 2993 return success(); 2994 2995 // Otherwise, add the new inputs. 2996 result.addInputs(inputNo, convertedTypes); 2997 return success(); 2998 } 2999 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types, 3000 SignatureConversion &result, 3001 unsigned origInputOffset) { 3002 for (unsigned i = 0, e = types.size(); i != e; ++i) 3003 if (failed(convertSignatureArg(origInputOffset + i, types[i], result))) 3004 return failure(); 3005 return success(); 3006 } 3007 3008 Value TypeConverter::materializeConversion( 3009 MutableArrayRef<MaterializationCallbackFn> materializations, 3010 OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) { 3011 for (MaterializationCallbackFn &fn : llvm::reverse(materializations)) 3012 if (Optional<Value> result = fn(builder, resultType, inputs, loc)) 3013 return result.getValue(); 3014 return nullptr; 3015 } 3016 3017 auto TypeConverter::convertBlockSignature(Block *block) 3018 -> Optional<SignatureConversion> { 3019 SignatureConversion conversion(block->getNumArguments()); 3020 if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion))) 3021 return llvm::None; 3022 return conversion; 3023 } 3024 3025 //===----------------------------------------------------------------------===// 3026 // FunctionLikeSignatureConversion 3027 //===----------------------------------------------------------------------===// 3028 3029 /// Create a default conversion pattern that rewrites the type signature of a 3030 /// FunctionLike op. This only supports FunctionLike ops which use FunctionType 3031 /// to represent their type. 3032 namespace { 3033 struct FunctionLikeSignatureConversion : public ConversionPattern { 3034 FunctionLikeSignatureConversion(StringRef functionLikeOpName, 3035 MLIRContext *ctx, TypeConverter &converter) 3036 : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {} 3037 3038 /// Hook to implement combined matching and rewriting for FunctionLike ops. 3039 LogicalResult 3040 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 3041 ConversionPatternRewriter &rewriter) const override { 3042 FunctionType type = function_like_impl::getFunctionType(op); 3043 3044 // Convert the original function types. 3045 TypeConverter::SignatureConversion result(type.getNumInputs()); 3046 SmallVector<Type, 1> newResults; 3047 if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) || 3048 failed(typeConverter->convertTypes(type.getResults(), newResults)) || 3049 failed(rewriter.convertRegionTypes( 3050 &function_like_impl::getFunctionBody(op), *typeConverter, &result))) 3051 return failure(); 3052 3053 // Update the function signature in-place. 3054 auto newType = FunctionType::get(rewriter.getContext(), 3055 result.getConvertedTypes(), newResults); 3056 3057 rewriter.updateRootInPlace( 3058 op, [&] { function_like_impl::setFunctionType(op, newType); }); 3059 3060 return success(); 3061 } 3062 }; 3063 } // end anonymous namespace 3064 3065 void mlir::populateFunctionLikeTypeConversionPattern( 3066 StringRef functionLikeOpName, RewritePatternSet &patterns, 3067 TypeConverter &converter) { 3068 patterns.add<FunctionLikeSignatureConversion>( 3069 functionLikeOpName, patterns.getContext(), converter); 3070 } 3071 3072 void mlir::populateFuncOpTypeConversionPattern(RewritePatternSet &patterns, 3073 TypeConverter &converter) { 3074 populateFunctionLikeTypeConversionPattern<FuncOp>(patterns, converter); 3075 } 3076 3077 //===----------------------------------------------------------------------===// 3078 // ConversionTarget 3079 //===----------------------------------------------------------------------===// 3080 3081 void ConversionTarget::setOpAction(OperationName op, 3082 LegalizationAction action) { 3083 legalOperations[op].action = action; 3084 } 3085 3086 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames, 3087 LegalizationAction action) { 3088 for (StringRef dialect : dialectNames) 3089 legalDialects[dialect] = action; 3090 } 3091 3092 auto ConversionTarget::getOpAction(OperationName op) const 3093 -> Optional<LegalizationAction> { 3094 Optional<LegalizationInfo> info = getOpInfo(op); 3095 return info ? info->action : Optional<LegalizationAction>(); 3096 } 3097 3098 auto ConversionTarget::isLegal(Operation *op) const 3099 -> Optional<LegalOpDetails> { 3100 Optional<LegalizationInfo> info = getOpInfo(op->getName()); 3101 if (!info) 3102 return llvm::None; 3103 3104 // Returns true if this operation instance is known to be legal. 3105 auto isOpLegal = [&] { 3106 // Handle dynamic legality either with the provided legality function. 3107 if (info->action == LegalizationAction::Dynamic) { 3108 Optional<bool> result = info->legalityFn(op); 3109 if (result) 3110 return *result; 3111 } 3112 3113 // Otherwise, the operation is only legal if it was marked 'Legal'. 3114 return info->action == LegalizationAction::Legal; 3115 }; 3116 if (!isOpLegal()) 3117 return llvm::None; 3118 3119 // This operation is legal, compute any additional legality information. 3120 LegalOpDetails legalityDetails; 3121 if (info->isRecursivelyLegal) { 3122 auto legalityFnIt = opRecursiveLegalityFns.find(op->getName()); 3123 if (legalityFnIt != opRecursiveLegalityFns.end()) { 3124 legalityDetails.isRecursivelyLegal = 3125 legalityFnIt->second(op).getValueOr(true); 3126 } else { 3127 legalityDetails.isRecursivelyLegal = true; 3128 } 3129 } 3130 return legalityDetails; 3131 } 3132 3133 bool ConversionTarget::isIllegal(Operation *op) const { 3134 Optional<LegalizationInfo> info = getOpInfo(op->getName()); 3135 if (!info) 3136 return false; 3137 3138 if (info->action == LegalizationAction::Dynamic) { 3139 Optional<bool> result = info->legalityFn(op); 3140 if (!result) 3141 return false; 3142 3143 return !(*result); 3144 } 3145 3146 return info->action == LegalizationAction::Illegal; 3147 } 3148 3149 static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks( 3150 ConversionTarget::DynamicLegalityCallbackFn oldCallback, 3151 ConversionTarget::DynamicLegalityCallbackFn newCallback) { 3152 if (!oldCallback) 3153 return newCallback; 3154 3155 auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)]( 3156 Operation *op) -> Optional<bool> { 3157 if (Optional<bool> result = newCl(op)) 3158 return *result; 3159 3160 return oldCl(op); 3161 }; 3162 return chain; 3163 } 3164 3165 void ConversionTarget::setLegalityCallback( 3166 OperationName name, const DynamicLegalityCallbackFn &callback) { 3167 assert(callback && "expected valid legality callback"); 3168 auto infoIt = legalOperations.find(name); 3169 assert(infoIt != legalOperations.end() && 3170 infoIt->second.action == LegalizationAction::Dynamic && 3171 "expected operation to already be marked as dynamically legal"); 3172 infoIt->second.legalityFn = 3173 composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback); 3174 } 3175 3176 void ConversionTarget::markOpRecursivelyLegal( 3177 OperationName name, const DynamicLegalityCallbackFn &callback) { 3178 auto infoIt = legalOperations.find(name); 3179 assert(infoIt != legalOperations.end() && 3180 infoIt->second.action != LegalizationAction::Illegal && 3181 "expected operation to already be marked as legal"); 3182 infoIt->second.isRecursivelyLegal = true; 3183 if (callback) 3184 opRecursiveLegalityFns[name] = composeLegalityCallbacks( 3185 std::move(opRecursiveLegalityFns[name]), callback); 3186 else 3187 opRecursiveLegalityFns.erase(name); 3188 } 3189 3190 void ConversionTarget::setLegalityCallback( 3191 ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) { 3192 assert(callback && "expected valid legality callback"); 3193 for (StringRef dialect : dialects) 3194 dialectLegalityFns[dialect] = composeLegalityCallbacks( 3195 std::move(dialectLegalityFns[dialect]), callback); 3196 } 3197 3198 void ConversionTarget::setLegalityCallback( 3199 const DynamicLegalityCallbackFn &callback) { 3200 assert(callback && "expected valid legality callback"); 3201 unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback); 3202 } 3203 3204 auto ConversionTarget::getOpInfo(OperationName op) const 3205 -> Optional<LegalizationInfo> { 3206 // Check for info for this specific operation. 3207 auto it = legalOperations.find(op); 3208 if (it != legalOperations.end()) 3209 return it->second; 3210 // Check for info for the parent dialect. 3211 auto dialectIt = legalDialects.find(op.getDialectNamespace()); 3212 if (dialectIt != legalDialects.end()) { 3213 DynamicLegalityCallbackFn callback; 3214 auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace()); 3215 if (dialectFn != dialectLegalityFns.end()) 3216 callback = dialectFn->second; 3217 return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false, 3218 callback}; 3219 } 3220 // Otherwise, check if we mark unknown operations as dynamic. 3221 if (unknownLegalityFn) 3222 return LegalizationInfo{LegalizationAction::Dynamic, 3223 /*isRecursivelyLegal=*/false, unknownLegalityFn}; 3224 return llvm::None; 3225 } 3226 3227 //===----------------------------------------------------------------------===// 3228 // Op Conversion Entry Points 3229 //===----------------------------------------------------------------------===// 3230 3231 //===----------------------------------------------------------------------===// 3232 // Partial Conversion 3233 3234 LogicalResult 3235 mlir::applyPartialConversion(ArrayRef<Operation *> ops, 3236 ConversionTarget &target, 3237 const FrozenRewritePatternSet &patterns, 3238 DenseSet<Operation *> *unconvertedOps) { 3239 OperationConverter opConverter(target, patterns, OpConversionMode::Partial, 3240 unconvertedOps); 3241 return opConverter.convertOperations(ops); 3242 } 3243 LogicalResult 3244 mlir::applyPartialConversion(Operation *op, ConversionTarget &target, 3245 const FrozenRewritePatternSet &patterns, 3246 DenseSet<Operation *> *unconvertedOps) { 3247 return applyPartialConversion(llvm::makeArrayRef(op), target, patterns, 3248 unconvertedOps); 3249 } 3250 3251 //===----------------------------------------------------------------------===// 3252 // Full Conversion 3253 3254 LogicalResult 3255 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target, 3256 const FrozenRewritePatternSet &patterns) { 3257 OperationConverter opConverter(target, patterns, OpConversionMode::Full); 3258 return opConverter.convertOperations(ops); 3259 } 3260 LogicalResult 3261 mlir::applyFullConversion(Operation *op, ConversionTarget &target, 3262 const FrozenRewritePatternSet &patterns) { 3263 return applyFullConversion(llvm::makeArrayRef(op), target, patterns); 3264 } 3265 3266 //===----------------------------------------------------------------------===// 3267 // Analysis Conversion 3268 3269 LogicalResult 3270 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops, 3271 ConversionTarget &target, 3272 const FrozenRewritePatternSet &patterns, 3273 DenseSet<Operation *> &convertedOps) { 3274 OperationConverter opConverter(target, patterns, OpConversionMode::Analysis, 3275 &convertedOps); 3276 return opConverter.convertOperations(ops); 3277 } 3278 LogicalResult 3279 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target, 3280 const FrozenRewritePatternSet &patterns, 3281 DenseSet<Operation *> &convertedOps) { 3282 return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns, 3283 convertedOps); 3284 } 3285