1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Transforms/DialectConversion.h"
10 #include "mlir/IR/Block.h"
11 #include "mlir/IR/BlockAndValueMapping.h"
12 #include "mlir/IR/Builders.h"
13 #include "mlir/IR/BuiltinOps.h"
14 #include "mlir/IR/FunctionSupport.h"
15 #include "mlir/Rewrite/PatternApplicator.h"
16 #include "mlir/Transforms/Utils.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/FormatVariadic.h"
21 #include "llvm/Support/SaveAndRestore.h"
22 #include "llvm/Support/ScopedPrinter.h"
23 
24 using namespace mlir;
25 using namespace mlir::detail;
26 
27 #define DEBUG_TYPE "dialect-conversion"
28 
29 /// Recursively collect all of the operations to convert from within 'region'.
30 /// If 'target' is nonnull, operations that are recursively legal have their
31 /// regions pre-filtered to avoid considering them for legalization.
32 static LogicalResult
33 computeConversionSet(iterator_range<Region::iterator> region,
34                      Location regionLoc, std::vector<Operation *> &toConvert,
35                      ConversionTarget *target = nullptr) {
36   if (llvm::empty(region))
37     return success();
38 
39   // Traverse starting from the entry block.
40   SmallVector<Block *, 16> worklist(1, &*region.begin());
41   DenseSet<Block *> visitedBlocks;
42   visitedBlocks.insert(worklist.front());
43   while (!worklist.empty()) {
44     Block *block = worklist.pop_back_val();
45 
46     // Compute the conversion set of each of the nested operations.
47     for (Operation &op : *block) {
48       toConvert.emplace_back(&op);
49 
50       // Don't check this operation's children for conversion if the operation
51       // is recursively legal.
52       auto legalityInfo = target ? target->isLegal(&op)
53                                  : Optional<ConversionTarget::LegalOpDetails>();
54       if (legalityInfo && legalityInfo->isRecursivelyLegal)
55         continue;
56       for (auto &region : op.getRegions()) {
57         if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
58                                         toConvert, target)))
59           return failure();
60       }
61     }
62 
63     // Recurse to children that haven't been visited.
64     for (Block *succ : block->getSuccessors())
65       if (visitedBlocks.insert(succ).second)
66         worklist.push_back(succ);
67   }
68 
69   // Check that all blocks in the region were visited.
70   if (llvm::any_of(llvm::drop_begin(region, 1),
71                    [&](Block &block) { return !visitedBlocks.count(&block); }))
72     return emitError(regionLoc, "unreachable blocks were not converted");
73   return success();
74 }
75 
76 /// A utility function to log a successful result for the given reason.
77 template <typename... Args>
78 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
79   LLVM_DEBUG({
80     os.unindent();
81     os.startLine() << "} -> SUCCESS";
82     if (!fmt.empty())
83       os.getOStream() << " : "
84                       << llvm::formatv(fmt.data(), std::forward<Args>(args)...);
85     os.getOStream() << "\n";
86   });
87 }
88 
89 /// A utility function to log a failure result for the given reason.
90 template <typename... Args>
91 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
92   LLVM_DEBUG({
93     os.unindent();
94     os.startLine() << "} -> FAILURE : "
95                    << llvm::formatv(fmt.data(), std::forward<Args>(args)...)
96                    << "\n";
97   });
98 }
99 
100 //===----------------------------------------------------------------------===//
101 // ConversionValueMapping
102 //===----------------------------------------------------------------------===//
103 
104 namespace {
105 /// This class wraps a BlockAndValueMapping to provide recursive lookup
106 /// functionality, i.e. we will traverse if the mapped value also has a mapping.
107 struct ConversionValueMapping {
108   /// Lookup a mapped value within the map. If a mapping for the provided value
109   /// does not exist then return the provided value. If `desiredType` is
110   /// non-null, returns the most recently mapped value with that type. If an
111   /// operand of that type does not exist, defaults to normal behavior.
112   Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
113 
114   /// Lookup a mapped value within the map, or return null if a mapping does not
115   /// exist. If a mapping exists, this follows the same behavior of
116   /// `lookupOrDefault`.
117   Value lookupOrNull(Value from) const;
118 
119   /// Map a value to the one provided.
120   void map(Value oldVal, Value newVal) { mapping.map(oldVal, newVal); }
121 
122   /// Drop the last mapping for the given value.
123   void erase(Value value) { mapping.erase(value); }
124 
125   /// Returns the inverse raw value mapping (without recursive query support).
126   BlockAndValueMapping getInverse() const { return mapping.getInverse(); }
127 
128 private:
129   /// Current value mappings.
130   BlockAndValueMapping mapping;
131 };
132 } // end anonymous namespace
133 
134 Value ConversionValueMapping::lookupOrDefault(Value from,
135                                               Type desiredType) const {
136   // If there was no desired type, simply find the leaf value.
137   if (!desiredType) {
138     // If this value had a valid mapping, unmap that value as well in the case
139     // that it was also replaced.
140     while (auto mappedValue = mapping.lookupOrNull(from))
141       from = mappedValue;
142     return from;
143   }
144 
145   // Otherwise, try to find the deepest value that has the desired type.
146   Value desiredValue;
147   do {
148     if (from.getType() == desiredType)
149       desiredValue = from;
150 
151     Value mappedValue = mapping.lookupOrNull(from);
152     if (!mappedValue)
153       break;
154     from = mappedValue;
155   } while (true);
156 
157   // If the desired value was found use it, otherwise default to the leaf value.
158   return desiredValue ? desiredValue : from;
159 }
160 
161 Value ConversionValueMapping::lookupOrNull(Value from) const {
162   Value result = lookupOrDefault(from);
163   return result == from ? nullptr : result;
164 }
165 
166 //===----------------------------------------------------------------------===//
167 // ArgConverter
168 //===----------------------------------------------------------------------===//
169 namespace {
170 /// This class provides a simple interface for converting the types of block
171 /// arguments. This is done by creating a new block that contains the new legal
172 /// types and extracting the block that contains the old illegal types to allow
173 /// for undoing pending rewrites in the case of failure.
174 struct ArgConverter {
175   ArgConverter(PatternRewriter &rewriter) : rewriter(rewriter) {}
176 
177   /// This structure contains the information pertaining to an argument that has
178   /// been converted.
179   struct ConvertedArgInfo {
180     ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
181                      Value castValue = nullptr)
182         : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
183 
184     /// The start index of in the new argument list that contains arguments that
185     /// replace the original.
186     unsigned newArgIdx;
187 
188     /// The number of arguments that replaced the original argument.
189     unsigned newArgSize;
190 
191     /// The cast value that was created to cast from the new arguments to the
192     /// old. This only used if 'newArgSize' > 1.
193     Value castValue;
194   };
195 
196   /// This structure contains information pertaining to a block that has had its
197   /// signature converted.
198   struct ConvertedBlockInfo {
199     ConvertedBlockInfo(Block *origBlock, TypeConverter &converter)
200         : origBlock(origBlock), converter(&converter) {}
201 
202     /// The original block that was requested to have its signature converted.
203     Block *origBlock;
204 
205     /// The conversion information for each of the arguments. The information is
206     /// None if the argument was dropped during conversion.
207     SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
208 
209     /// The type converter used to convert the arguments.
210     TypeConverter *converter;
211   };
212 
213   /// Return if the signature of the given block has already been converted.
214   bool hasBeenConverted(Block *block) const {
215     return conversionInfo.count(block) || convertedBlocks.count(block);
216   }
217 
218   /// Set the type converter to use for the given region.
219   void setConverter(Region *region, TypeConverter *typeConverter) {
220     assert(typeConverter && "expected valid type converter");
221     regionToConverter[region] = typeConverter;
222   }
223 
224   /// Return the type converter to use for the given region, or null if there
225   /// isn't one.
226   TypeConverter *getConverter(Region *region) {
227     return regionToConverter.lookup(region);
228   }
229 
230   //===--------------------------------------------------------------------===//
231   // Rewrite Application
232   //===--------------------------------------------------------------------===//
233 
234   /// Erase any rewrites registered for the blocks within the given operation
235   /// which is about to be removed. This merely drops the rewrites without
236   /// undoing them.
237   void notifyOpRemoved(Operation *op);
238 
239   /// Cleanup and undo any generated conversions for the arguments of block.
240   /// This method replaces the new block with the original, reverting the IR to
241   /// its original state.
242   void discardRewrites(Block *block);
243 
244   /// Fully replace uses of the old arguments with the new.
245   void applyRewrites(ConversionValueMapping &mapping);
246 
247   /// Materialize any necessary conversions for converted arguments that have
248   /// live users, using the provided `findLiveUser` to search for a user that
249   /// survives the conversion process.
250   LogicalResult
251   materializeLiveConversions(ConversionValueMapping &mapping,
252                              OpBuilder &builder,
253                              function_ref<Operation *(Value)> findLiveUser);
254 
255   //===--------------------------------------------------------------------===//
256   // Conversion
257   //===--------------------------------------------------------------------===//
258 
259   /// Attempt to convert the signature of the given block, if successful a new
260   /// block is returned containing the new arguments. Returns `block` if it did
261   /// not require conversion.
262   FailureOr<Block *>
263   convertSignature(Block *block, TypeConverter &converter,
264                    ConversionValueMapping &mapping,
265                    SmallVectorImpl<BlockArgument> &argReplacements);
266 
267   /// Apply the given signature conversion on the given block. The new block
268   /// containing the updated signature is returned. If no conversions were
269   /// necessary, e.g. if the block has no arguments, `block` is returned.
270   /// `converter` is used to generate any necessary cast operations that
271   /// translate between the origin argument types and those specified in the
272   /// signature conversion.
273   Block *applySignatureConversion(
274       Block *block, TypeConverter &converter,
275       TypeConverter::SignatureConversion &signatureConversion,
276       ConversionValueMapping &mapping,
277       SmallVectorImpl<BlockArgument> &argReplacements);
278 
279   /// Insert a new conversion into the cache.
280   void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
281 
282   /// A collection of blocks that have had their arguments converted. This is a
283   /// map from the new replacement block, back to the original block.
284   llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
285 
286   /// The set of original blocks that were converted.
287   DenseSet<Block *> convertedBlocks;
288 
289   /// A mapping from valid regions, to those containing the original blocks of a
290   /// conversion.
291   DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
292 
293   /// A mapping of regions to type converters that should be used when
294   /// converting the arguments of blocks within that region.
295   DenseMap<Region *, TypeConverter *> regionToConverter;
296 
297   /// The pattern rewriter to use when materializing conversions.
298   PatternRewriter &rewriter;
299 };
300 } // end anonymous namespace
301 
302 //===----------------------------------------------------------------------===//
303 // Rewrite Application
304 
305 void ArgConverter::notifyOpRemoved(Operation *op) {
306   if (conversionInfo.empty())
307     return;
308 
309   for (Region &region : op->getRegions()) {
310     for (Block &block : region) {
311       // Drop any rewrites from within.
312       for (Operation &nestedOp : block)
313         if (nestedOp.getNumRegions())
314           notifyOpRemoved(&nestedOp);
315 
316       // Check if this block was converted.
317       auto it = conversionInfo.find(&block);
318       if (it == conversionInfo.end())
319         continue;
320 
321       // Drop all uses of the original arguments and delete the original block.
322       Block *origBlock = it->second.origBlock;
323       for (BlockArgument arg : origBlock->getArguments())
324         arg.dropAllUses();
325       conversionInfo.erase(it);
326     }
327   }
328 }
329 
330 void ArgConverter::discardRewrites(Block *block) {
331   auto it = conversionInfo.find(block);
332   if (it == conversionInfo.end())
333     return;
334   Block *origBlock = it->second.origBlock;
335 
336   // Drop all uses of the new block arguments and replace uses of the new block.
337   for (int i = block->getNumArguments() - 1; i >= 0; --i)
338     block->getArgument(i).dropAllUses();
339   block->replaceAllUsesWith(origBlock);
340 
341   // Move the operations back the original block and the delete the new block.
342   origBlock->getOperations().splice(origBlock->end(), block->getOperations());
343   origBlock->moveBefore(block);
344   block->erase();
345 
346   convertedBlocks.erase(origBlock);
347   conversionInfo.erase(it);
348 }
349 
350 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
351   for (auto &info : conversionInfo) {
352     ConvertedBlockInfo &blockInfo = info.second;
353     Block *origBlock = blockInfo.origBlock;
354 
355     // Process the remapping for each of the original arguments.
356     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
357       Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
358       BlockArgument origArg = origBlock->getArgument(i);
359 
360       // Handle the case of a 1->0 value mapping.
361       if (!argInfo) {
362         if (Value newArg = mapping.lookupOrNull(origArg))
363           origArg.replaceAllUsesWith(newArg);
364         continue;
365       }
366 
367       // Otherwise this is a 1->1+ value mapping.
368       Value castValue = argInfo->castValue;
369       assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
370 
371       // If the argument is still used, replace it with the generated cast.
372       if (!origArg.use_empty())
373         origArg.replaceAllUsesWith(mapping.lookupOrDefault(castValue));
374     }
375   }
376 }
377 
378 LogicalResult ArgConverter::materializeLiveConversions(
379     ConversionValueMapping &mapping, OpBuilder &builder,
380     function_ref<Operation *(Value)> findLiveUser) {
381   for (auto &info : conversionInfo) {
382     Block *newBlock = info.first;
383     ConvertedBlockInfo &blockInfo = info.second;
384     Block *origBlock = blockInfo.origBlock;
385 
386     // Process the remapping for each of the original arguments.
387     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
388       // FIXME: We should run the below checks even if the type conversion was
389       // 1->N, but a lot of existing lowering rely on the block argument being
390       // blindly replaced. Those usages should be updated, and this if should be
391       // removed.
392       if (blockInfo.argInfo[i])
393         continue;
394 
395       // If the type of this argument changed and the argument is still live, we
396       // need to materialize a conversion.
397       BlockArgument origArg = origBlock->getArgument(i);
398       auto argReplacementValue = mapping.lookupOrDefault(origArg);
399       bool isDroppedArg = argReplacementValue == origArg;
400       if (argReplacementValue.getType() == origArg.getType() && !isDroppedArg)
401         continue;
402       Operation *liveUser = findLiveUser(origArg);
403       if (!liveUser)
404         continue;
405 
406       if (OpResult result = argReplacementValue.dyn_cast<OpResult>())
407         rewriter.setInsertionPointAfter(result.getOwner());
408       else
409         rewriter.setInsertionPointToStart(newBlock);
410       Value newArg = blockInfo.converter->materializeSourceConversion(
411           rewriter, origArg.getLoc(), origArg.getType(),
412           isDroppedArg ? ValueRange() : ValueRange(argReplacementValue));
413       if (!newArg) {
414         InFlightDiagnostic diag =
415             emitError(origArg.getLoc())
416             << "failed to materialize conversion for block argument #" << i
417             << " that remained live after conversion, type was "
418             << origArg.getType();
419         if (!isDroppedArg)
420           diag << ", with target type " << argReplacementValue.getType();
421         diag.attachNote(liveUser->getLoc())
422             << "see existing live user here: " << *liveUser;
423         return failure();
424       }
425       mapping.map(origArg, newArg);
426     }
427   }
428   return success();
429 }
430 
431 //===----------------------------------------------------------------------===//
432 // Conversion
433 
434 FailureOr<Block *> ArgConverter::convertSignature(
435     Block *block, TypeConverter &converter, ConversionValueMapping &mapping,
436     SmallVectorImpl<BlockArgument> &argReplacements) {
437   // Check if the block was already converted. If the block is detached,
438   // conservatively assume it is going to be deleted.
439   if (hasBeenConverted(block) || !block->getParent())
440     return block;
441 
442   // Try to convert the signature for the block with the provided converter.
443   if (auto conversion = converter.convertBlockSignature(block))
444     return applySignatureConversion(block, converter, *conversion, mapping,
445                                     argReplacements);
446   return failure();
447 }
448 
449 Block *ArgConverter::applySignatureConversion(
450     Block *block, TypeConverter &converter,
451     TypeConverter::SignatureConversion &signatureConversion,
452     ConversionValueMapping &mapping,
453     SmallVectorImpl<BlockArgument> &argReplacements) {
454   // If no arguments are being changed or added, there is nothing to do.
455   unsigned origArgCount = block->getNumArguments();
456   auto convertedTypes = signatureConversion.getConvertedTypes();
457   if (origArgCount == 0 && convertedTypes.empty())
458     return block;
459 
460   // Split the block at the beginning to get a new block to use for the updated
461   // signature.
462   Block *newBlock = block->splitBlock(block->begin());
463   block->replaceAllUsesWith(newBlock);
464 
465   SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes));
466   ArrayRef<Value> newArgs(newArgRange);
467 
468   // Remap each of the original arguments as determined by the signature
469   // conversion.
470   ConvertedBlockInfo info(block, converter);
471   info.argInfo.resize(origArgCount);
472 
473   OpBuilder::InsertionGuard guard(rewriter);
474   rewriter.setInsertionPointToStart(newBlock);
475   for (unsigned i = 0; i != origArgCount; ++i) {
476     auto inputMap = signatureConversion.getInputMapping(i);
477     if (!inputMap)
478       continue;
479     BlockArgument origArg = block->getArgument(i);
480 
481     // If inputMap->replacementValue is not nullptr, then the argument is
482     // dropped and a replacement value is provided to be the remappedValue.
483     if (inputMap->replacementValue) {
484       assert(inputMap->size == 0 &&
485              "invalid to provide a replacement value when the argument isn't "
486              "dropped");
487       mapping.map(origArg, inputMap->replacementValue);
488       argReplacements.push_back(origArg);
489       continue;
490     }
491 
492     // Otherwise, this is a 1->1+ mapping. Call into the provided type converter
493     // to pack the new values. For 1->1 mappings, if there is no materialization
494     // provided, use the argument directly instead.
495     auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
496     Value newArg;
497 
498     // If this is a 1->1 mapping and the types of new and replacement arguments
499     // match (i.e. it's an identity map), then the argument is mapped to its
500     // original type.
501     if (replArgs.size() == 1 && replArgs[0].getType() == origArg.getType())
502       newArg = replArgs[0];
503     else
504       newArg = converter.materializeArgumentConversion(
505           rewriter, origArg.getLoc(), origArg.getType(), replArgs);
506 
507     if (!newArg) {
508       assert(replArgs.size() == 1 &&
509              "couldn't materialize the result of 1->N conversion");
510       newArg = replArgs.front();
511     }
512     mapping.map(origArg, newArg);
513     argReplacements.push_back(origArg);
514     info.argInfo[i] =
515         ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
516   }
517 
518   // Remove the original block from the region and return the new one.
519   insertConversion(newBlock, std::move(info));
520   return newBlock;
521 }
522 
523 void ArgConverter::insertConversion(Block *newBlock,
524                                     ConvertedBlockInfo &&info) {
525   // Get a region to insert the old block.
526   Region *region = newBlock->getParent();
527   std::unique_ptr<Region> &mappedRegion = regionMapping[region];
528   if (!mappedRegion)
529     mappedRegion = std::make_unique<Region>(region->getParentOp());
530 
531   // Move the original block to the mapped region and emplace the conversion.
532   mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
533                                    info.origBlock->getIterator());
534   convertedBlocks.insert(info.origBlock);
535   conversionInfo.insert({newBlock, std::move(info)});
536 }
537 
538 //===----------------------------------------------------------------------===//
539 // Rewriter and Translation State
540 //===----------------------------------------------------------------------===//
541 namespace {
542 /// This class contains a snapshot of the current conversion rewriter state.
543 /// This is useful when saving and undoing a set of rewrites.
544 struct RewriterState {
545   RewriterState(unsigned numCreatedOps, unsigned numReplacements,
546                 unsigned numArgReplacements, unsigned numBlockActions,
547                 unsigned numIgnoredOperations, unsigned numRootUpdates)
548       : numCreatedOps(numCreatedOps), numReplacements(numReplacements),
549         numArgReplacements(numArgReplacements),
550         numBlockActions(numBlockActions),
551         numIgnoredOperations(numIgnoredOperations),
552         numRootUpdates(numRootUpdates) {}
553 
554   /// The current number of created operations.
555   unsigned numCreatedOps;
556 
557   /// The current number of replacements queued.
558   unsigned numReplacements;
559 
560   /// The current number of argument replacements queued.
561   unsigned numArgReplacements;
562 
563   /// The current number of block actions performed.
564   unsigned numBlockActions;
565 
566   /// The current number of ignored operations.
567   unsigned numIgnoredOperations;
568 
569   /// The current number of operations that were updated in place.
570   unsigned numRootUpdates;
571 };
572 
573 /// The state of an operation that was updated by a pattern in-place. This
574 /// contains all of the necessary information to reconstruct an operation that
575 /// was updated in place.
576 class OperationTransactionState {
577 public:
578   OperationTransactionState() = default;
579   OperationTransactionState(Operation *op)
580       : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()),
581         operands(op->operand_begin(), op->operand_end()),
582         successors(op->successor_begin(), op->successor_end()) {}
583 
584   /// Discard the transaction state and reset the state of the original
585   /// operation.
586   void resetOperation() const {
587     op->setLoc(loc);
588     op->setAttrs(attrs);
589     op->setOperands(operands);
590     for (auto it : llvm::enumerate(successors))
591       op->setSuccessor(it.value(), it.index());
592   }
593 
594   /// Return the original operation of this state.
595   Operation *getOperation() const { return op; }
596 
597 private:
598   Operation *op;
599   LocationAttr loc;
600   DictionaryAttr attrs;
601   SmallVector<Value, 8> operands;
602   SmallVector<Block *, 2> successors;
603 };
604 
605 /// This class represents one requested operation replacement via 'replaceOp' or
606 /// 'eraseOp`.
607 struct OpReplacement {
608   OpReplacement() = default;
609   OpReplacement(TypeConverter *converter) : converter(converter) {}
610 
611   /// An optional type converter that can be used to materialize conversions
612   /// between the new and old values if necessary.
613   TypeConverter *converter = nullptr;
614 };
615 
616 /// The kind of the block action performed during the rewrite.  Actions can be
617 /// undone if the conversion fails.
618 enum class BlockActionKind {
619   Create,
620   Erase,
621   Merge,
622   Move,
623   Split,
624   TypeConversion
625 };
626 
627 /// Original position of the given block in its parent region. During undo
628 /// actions, the block needs to be placed after `insertAfterBlock`.
629 struct BlockPosition {
630   Region *region;
631   Block *insertAfterBlock;
632 };
633 
634 /// Information needed to undo the merge actions.
635 /// - the source block, and
636 /// - the Operation that was the last operation in the dest block before the
637 ///   merge (could be null if the dest block was empty).
638 struct MergeInfo {
639   Block *sourceBlock;
640   Operation *destBlockLastInst;
641 };
642 
643 /// The storage class for an undoable block action (one of BlockActionKind),
644 /// contains the information necessary to undo this action.
645 struct BlockAction {
646   static BlockAction getCreate(Block *block) {
647     return {BlockActionKind::Create, block, {}};
648   }
649   static BlockAction getErase(Block *block, BlockPosition originalPosition) {
650     return {BlockActionKind::Erase, block, {originalPosition}};
651   }
652   static BlockAction getMerge(Block *block, Block *sourceBlock) {
653     BlockAction action{BlockActionKind::Merge, block, {}};
654     action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()};
655     return action;
656   }
657   static BlockAction getMove(Block *block, BlockPosition originalPosition) {
658     return {BlockActionKind::Move, block, {originalPosition}};
659   }
660   static BlockAction getSplit(Block *block, Block *originalBlock) {
661     BlockAction action{BlockActionKind::Split, block, {}};
662     action.originalBlock = originalBlock;
663     return action;
664   }
665   static BlockAction getTypeConversion(Block *block) {
666     return BlockAction{BlockActionKind::TypeConversion, block, {}};
667   }
668 
669   // The action kind.
670   BlockActionKind kind;
671 
672   // A pointer to the block that was created by the action.
673   Block *block;
674 
675   union {
676     // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and
677     // contains a pointer to the region that originally contained the block as
678     // well as the position of the block in that region.
679     BlockPosition originalPosition;
680     // In use if kind == BlockActionKind::Split and contains a pointer to the
681     // block that was split into two parts.
682     Block *originalBlock;
683     // In use if kind == BlockActionKind::Merge, and contains the information
684     // needed to undo the merge.
685     MergeInfo mergeInfo;
686   };
687 };
688 } // end anonymous namespace
689 
690 //===----------------------------------------------------------------------===//
691 // ConversionPatternRewriterImpl
692 //===----------------------------------------------------------------------===//
693 namespace mlir {
694 namespace detail {
695 struct ConversionPatternRewriterImpl {
696   ConversionPatternRewriterImpl(PatternRewriter &rewriter)
697       : argConverter(rewriter) {}
698 
699   /// Cleanup and destroy any generated rewrite operations. This method is
700   /// invoked when the conversion process fails.
701   void discardRewrites();
702 
703   /// Apply all requested operation rewrites. This method is invoked when the
704   /// conversion process succeeds.
705   void applyRewrites();
706 
707   //===--------------------------------------------------------------------===//
708   // State Management
709   //===--------------------------------------------------------------------===//
710 
711   /// Return the current state of the rewriter.
712   RewriterState getCurrentState();
713 
714   /// Reset the state of the rewriter to a previously saved point.
715   void resetState(RewriterState state);
716 
717   /// Erase any blocks that were unlinked from their regions and stored in block
718   /// actions.
719   void eraseDanglingBlocks();
720 
721   /// Undo the block actions (motions, splits) one by one in reverse order until
722   /// "numActionsToKeep" actions remains.
723   void undoBlockActions(unsigned numActionsToKeep = 0);
724 
725   /// Remap the given operands to those with potentially different types. The
726   /// provided type converter is used to ensure that the remapped types are
727   /// legal. Returns success if the operands could be remapped, failure
728   /// otherwise.
729   LogicalResult remapValues(Location loc, PatternRewriter &rewriter,
730                             TypeConverter *converter,
731                             Operation::operand_range operands,
732                             SmallVectorImpl<Value> &remapped);
733 
734   /// Returns true if the given operation is ignored, and does not need to be
735   /// converted.
736   bool isOpIgnored(Operation *op) const;
737 
738   /// Recursively marks the nested operations under 'op' as ignored. This
739   /// removes them from being considered for legalization.
740   void markNestedOpsIgnored(Operation *op);
741 
742   //===--------------------------------------------------------------------===//
743   // Type Conversion
744   //===--------------------------------------------------------------------===//
745 
746   /// Convert the signature of the given block.
747   FailureOr<Block *> convertBlockSignature(
748       Block *block, TypeConverter &converter,
749       TypeConverter::SignatureConversion *conversion = nullptr);
750 
751   /// Apply a signature conversion on the given region, using `converter` for
752   /// materializations if not null.
753   Block *
754   applySignatureConversion(Region *region,
755                            TypeConverter::SignatureConversion &conversion,
756                            TypeConverter *converter);
757 
758   /// Convert the types of block arguments within the given region.
759   FailureOr<Block *>
760   convertRegionTypes(Region *region, TypeConverter &converter,
761                      TypeConverter::SignatureConversion *entryConversion);
762 
763   /// Convert the types of non-entry block arguments within the given region.
764   LogicalResult convertNonEntryRegionTypes(
765       Region *region, TypeConverter &converter,
766       ArrayRef<TypeConverter::SignatureConversion> blockConversions = {});
767 
768   //===--------------------------------------------------------------------===//
769   // Rewriter Notification Hooks
770   //===--------------------------------------------------------------------===//
771 
772   /// PatternRewriter hook for replacing the results of an operation.
773   void notifyOpReplaced(Operation *op, ValueRange newValues);
774 
775   /// Notifies that a block is about to be erased.
776   void notifyBlockIsBeingErased(Block *block);
777 
778   /// Notifies that a block was created.
779   void notifyCreatedBlock(Block *block);
780 
781   /// Notifies that a block was split.
782   void notifySplitBlock(Block *block, Block *continuation);
783 
784   /// Notifies that `block` is being merged with `srcBlock`.
785   void notifyBlocksBeingMerged(Block *block, Block *srcBlock);
786 
787   /// Notifies that the blocks of a region are about to be moved.
788   void notifyRegionIsBeingInlinedBefore(Region &region, Region &parent,
789                                         Region::iterator before);
790 
791   /// Notifies that the blocks of a region were cloned into another.
792   void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
793                                    Location origRegionLoc);
794 
795   /// Notifies that a pattern match failed for the given reason.
796   LogicalResult
797   notifyMatchFailure(Location loc,
798                      function_ref<void(Diagnostic &)> reasonCallback);
799 
800   //===--------------------------------------------------------------------===//
801   // State
802   //===--------------------------------------------------------------------===//
803 
804   // Mapping between replaced values that differ in type. This happens when
805   // replacing a value with one of a different type.
806   ConversionValueMapping mapping;
807 
808   /// Utility used to convert block arguments.
809   ArgConverter argConverter;
810 
811   /// Ordered vector of all of the newly created operations during conversion.
812   std::vector<Operation *> createdOps;
813 
814   /// Ordered map of requested operation replacements.
815   llvm::MapVector<Operation *, OpReplacement> replacements;
816 
817   /// Ordered vector of any requested block argument replacements.
818   SmallVector<BlockArgument, 4> argReplacements;
819 
820   /// Ordered list of block operations (creations, splits, motions).
821   SmallVector<BlockAction, 4> blockActions;
822 
823   /// A set of operations that should no longer be considered for legalization,
824   /// but were not directly replace/erased/etc. by a pattern. These are
825   /// generally child operations of other operations who were
826   /// replaced/erased/etc. This is not meant to be an exhaustive list of all
827   /// operations, but the minimal set that can be used to detect if a given
828   /// operation should be `ignored`. For example, we may add the operations that
829   /// define non-empty regions to the set, but not any of the others. This
830   /// simplifies the amount of memory needed as we can query if the parent
831   /// operation was ignored.
832   SetVector<Operation *> ignoredOps;
833 
834   /// A transaction state for each of operations that were updated in-place.
835   SmallVector<OperationTransactionState, 4> rootUpdates;
836 
837   /// A vector of indices into `replacements` of operations that were replaced
838   /// with values with different result types than the original operation, e.g.
839   /// 1->N conversion of some kind.
840   SmallVector<unsigned, 4> operationsWithChangedResults;
841 
842   /// A default type converter, used when block conversions do not have one
843   /// explicitly provided.
844   TypeConverter defaultTypeConverter;
845 
846   /// The current conversion pattern that is being rewritten, or nullptr if
847   /// called from outside of a conversion pattern rewrite.
848   const ConversionPattern *currentConversionPattern = nullptr;
849 
850 #ifndef NDEBUG
851   /// A set of operations that have pending updates. This tracking isn't
852   /// strictly necessary, and is thus only active during debug builds for extra
853   /// verification.
854   SmallPtrSet<Operation *, 1> pendingRootUpdates;
855 
856   /// A logger used to emit diagnostics during the conversion process.
857   llvm::ScopedPrinter logger{llvm::dbgs()};
858 #endif
859 };
860 } // end namespace detail
861 } // end namespace mlir
862 
863 /// Detach any operations nested in the given operation from their parent
864 /// blocks, and erase the given operation. This can be used when the nested
865 /// operations are scheduled for erasure themselves, so deleting the regions of
866 /// the given operation together with their content would result in double-free.
867 /// This happens, for example, when rolling back op creation in the reverse
868 /// order and if the nested ops were created before the parent op. This function
869 /// does not need to collect nested ops recursively because it is expected to
870 /// also be called for each nested op when it is about to be deleted.
871 static void detachNestedAndErase(Operation *op) {
872   for (Region &region : op->getRegions()) {
873     for (Block &block : region.getBlocks()) {
874       while (!block.getOperations().empty())
875         block.getOperations().remove(block.getOperations().begin());
876       block.dropAllDefinedValueUses();
877     }
878   }
879   op->dropAllUses();
880   op->erase();
881 }
882 
883 void ConversionPatternRewriterImpl::discardRewrites() {
884   // Reset any operations that were updated in place.
885   for (auto &state : rootUpdates)
886     state.resetOperation();
887 
888   undoBlockActions();
889 
890   // Remove any newly created ops.
891   for (auto *op : llvm::reverse(createdOps))
892     detachNestedAndErase(op);
893 }
894 
895 void ConversionPatternRewriterImpl::applyRewrites() {
896   // Apply all of the rewrites replacements requested during conversion.
897   for (auto &repl : replacements) {
898     for (OpResult result : repl.first->getResults())
899       if (Value newValue = mapping.lookupOrNull(result))
900         result.replaceAllUsesWith(newValue);
901 
902     // If this operation defines any regions, drop any pending argument
903     // rewrites.
904     if (repl.first->getNumRegions())
905       argConverter.notifyOpRemoved(repl.first);
906   }
907 
908   // Apply all of the requested argument replacements.
909   for (BlockArgument arg : argReplacements) {
910     Value repl = mapping.lookupOrDefault(arg);
911     if (repl.isa<BlockArgument>()) {
912       arg.replaceAllUsesWith(repl);
913       continue;
914     }
915 
916     // If the replacement value is an operation, we check to make sure that we
917     // don't replace uses that are within the parent operation of the
918     // replacement value.
919     Operation *replOp = repl.cast<OpResult>().getOwner();
920     Block *replBlock = replOp->getBlock();
921     arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
922       Operation *user = operand.getOwner();
923       return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
924     });
925   }
926 
927   // In a second pass, erase all of the replaced operations in reverse. This
928   // allows processing nested operations before their parent region is
929   // destroyed. Because we process in reverse order, producers may be deleted
930   // before their users (a pattern deleting a producer and then the consumer)
931   // so we first drop all uses explicitly.
932   for (auto &repl : llvm::reverse(replacements)) {
933     repl.first->dropAllUses();
934     repl.first->erase();
935   }
936 
937   argConverter.applyRewrites(mapping);
938 
939   // Now that the ops have been erased, also erase dangling blocks.
940   eraseDanglingBlocks();
941 }
942 
943 //===----------------------------------------------------------------------===//
944 // State Management
945 
946 RewriterState ConversionPatternRewriterImpl::getCurrentState() {
947   return RewriterState(createdOps.size(), replacements.size(),
948                        argReplacements.size(), blockActions.size(),
949                        ignoredOps.size(), rootUpdates.size());
950 }
951 
952 void ConversionPatternRewriterImpl::resetState(RewriterState state) {
953   // Reset any operations that were updated in place.
954   for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
955     rootUpdates[i].resetOperation();
956   rootUpdates.resize(state.numRootUpdates);
957 
958   // Reset any replaced arguments.
959   for (BlockArgument replacedArg :
960        llvm::drop_begin(argReplacements, state.numArgReplacements))
961     mapping.erase(replacedArg);
962   argReplacements.resize(state.numArgReplacements);
963 
964   // Undo any block actions.
965   undoBlockActions(state.numBlockActions);
966 
967   // Reset any replaced operations and undo any saved mappings.
968   for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
969     for (auto result : repl.first->getResults())
970       mapping.erase(result);
971   while (replacements.size() != state.numReplacements)
972     replacements.pop_back();
973 
974   // Pop all of the newly created operations.
975   while (createdOps.size() != state.numCreatedOps) {
976     detachNestedAndErase(createdOps.back());
977     createdOps.pop_back();
978   }
979 
980   // Pop all of the recorded ignored operations that are no longer valid.
981   while (ignoredOps.size() != state.numIgnoredOperations)
982     ignoredOps.pop_back();
983 
984   // Reset operations with changed results.
985   while (!operationsWithChangedResults.empty() &&
986          operationsWithChangedResults.back() >= state.numReplacements)
987     operationsWithChangedResults.pop_back();
988 }
989 
990 void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
991   for (auto &action : blockActions)
992     if (action.kind == BlockActionKind::Erase)
993       delete action.block;
994 }
995 
996 void ConversionPatternRewriterImpl::undoBlockActions(
997     unsigned numActionsToKeep) {
998   for (auto &action :
999        llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
1000     switch (action.kind) {
1001     // Delete the created block.
1002     case BlockActionKind::Create: {
1003       // Unlink all of the operations within this block, they will be deleted
1004       // separately.
1005       auto &blockOps = action.block->getOperations();
1006       while (!blockOps.empty())
1007         blockOps.remove(blockOps.begin());
1008       action.block->dropAllDefinedValueUses();
1009       action.block->erase();
1010       break;
1011     }
1012     // Put the block (owned by action) back into its original position.
1013     case BlockActionKind::Erase: {
1014       auto &blockList = action.originalPosition.region->getBlocks();
1015       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1016       blockList.insert((insertAfterBlock
1017                             ? std::next(Region::iterator(insertAfterBlock))
1018                             : blockList.begin()),
1019                        action.block);
1020       break;
1021     }
1022     // Split the block at the position which was originally the end of the
1023     // destination block (owned by action), and put the instructions back into
1024     // the block used before the merge.
1025     case BlockActionKind::Merge: {
1026       Block *sourceBlock = action.mergeInfo.sourceBlock;
1027       Block::iterator splitPoint =
1028           (action.mergeInfo.destBlockLastInst
1029                ? ++Block::iterator(action.mergeInfo.destBlockLastInst)
1030                : action.block->begin());
1031       sourceBlock->getOperations().splice(sourceBlock->begin(),
1032                                           action.block->getOperations(),
1033                                           splitPoint, action.block->end());
1034       break;
1035     }
1036     // Move the block back to its original position.
1037     case BlockActionKind::Move: {
1038       Region *originalRegion = action.originalPosition.region;
1039       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1040       originalRegion->getBlocks().splice(
1041           (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
1042                             : originalRegion->end()),
1043           action.block->getParent()->getBlocks(), action.block);
1044       break;
1045     }
1046     // Merge back the block that was split out.
1047     case BlockActionKind::Split: {
1048       action.originalBlock->getOperations().splice(
1049           action.originalBlock->end(), action.block->getOperations());
1050       action.block->dropAllDefinedValueUses();
1051       action.block->erase();
1052       break;
1053     }
1054     // Undo the type conversion.
1055     case BlockActionKind::TypeConversion: {
1056       argConverter.discardRewrites(action.block);
1057       break;
1058     }
1059     }
1060   }
1061   blockActions.resize(numActionsToKeep);
1062 }
1063 
1064 LogicalResult ConversionPatternRewriterImpl::remapValues(
1065     Location loc, PatternRewriter &rewriter, TypeConverter *converter,
1066     Operation::operand_range operands, SmallVectorImpl<Value> &remapped) {
1067   remapped.reserve(llvm::size(operands));
1068 
1069   SmallVector<Type, 1> legalTypes;
1070   for (auto it : llvm::enumerate(operands)) {
1071     Value operand = it.value();
1072     Type origType = operand.getType();
1073 
1074     // If a converter was provided, get the desired legal types for this
1075     // operand.
1076     Type desiredType;
1077     if (converter) {
1078       // If there is no legal conversion, fail to match this pattern.
1079       legalTypes.clear();
1080       if (failed(converter->convertType(origType, legalTypes))) {
1081         return notifyMatchFailure(loc, [=](Diagnostic &diag) {
1082           diag << "unable to convert type for operand #" << it.index()
1083                << ", type was " << origType;
1084         });
1085       }
1086       // TODO: There currently isn't any mechanism to do 1->N type conversion
1087       // via the PatternRewriter replacement API, so for now we just ignore it.
1088       if (legalTypes.size() == 1)
1089         desiredType = legalTypes.front();
1090     } else {
1091       // TODO: What we should do here is just set `desiredType` to `origType`
1092       // and then handle the necessary type conversions after the conversion
1093       // process has finished. Unfortunately a lot of patterns currently rely on
1094       // receiving the new operands even if the types change, so we keep the
1095       // original behavior here for now until all of the patterns relying on
1096       // this get updated.
1097     }
1098     Value newOperand = mapping.lookupOrDefault(operand, desiredType);
1099 
1100     // Handle the case where the conversion was 1->1 and the new operand type
1101     // isn't legal.
1102     Type newOperandType = newOperand.getType();
1103     if (converter && desiredType && newOperandType != desiredType) {
1104       // Attempt to materialize a conversion for this new value.
1105       newOperand = converter->materializeTargetConversion(
1106           rewriter, loc, desiredType, newOperand);
1107       if (!newOperand) {
1108         return notifyMatchFailure(loc, [=](Diagnostic &diag) {
1109           diag << "unable to materialize a conversion for "
1110                   "operand #"
1111                << it.index() << ", from " << newOperandType << " to "
1112                << desiredType;
1113         });
1114       }
1115     }
1116     remapped.push_back(newOperand);
1117   }
1118   return success();
1119 }
1120 
1121 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
1122   // Check to see if this operation was replaced or its parent ignored.
1123   return replacements.count(op) || ignoredOps.count(op->getParentOp());
1124 }
1125 
1126 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
1127   // Walk this operation and collect nested operations that define non-empty
1128   // regions. We mark such operations as 'ignored' so that we know we don't have
1129   // to convert them, or their nested ops.
1130   if (op->getNumRegions() == 0)
1131     return;
1132   op->walk([&](Operation *op) {
1133     if (llvm::any_of(op->getRegions(),
1134                      [](Region &region) { return !region.empty(); }))
1135       ignoredOps.insert(op);
1136   });
1137 }
1138 
1139 //===----------------------------------------------------------------------===//
1140 // Type Conversion
1141 
1142 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
1143     Block *block, TypeConverter &converter,
1144     TypeConverter::SignatureConversion *conversion) {
1145   FailureOr<Block *> result =
1146       conversion ? argConverter.applySignatureConversion(
1147                        block, converter, *conversion, mapping, argReplacements)
1148                  : argConverter.convertSignature(block, converter, mapping,
1149                                                  argReplacements);
1150   if (failed(result))
1151     return failure();
1152   if (Block *newBlock = result.getValue()) {
1153     if (newBlock != block)
1154       blockActions.push_back(BlockAction::getTypeConversion(newBlock));
1155   }
1156   return result;
1157 }
1158 
1159 Block *ConversionPatternRewriterImpl::applySignatureConversion(
1160     Region *region, TypeConverter::SignatureConversion &conversion,
1161     TypeConverter *converter) {
1162   if (!region->empty()) {
1163     return *convertBlockSignature(&region->front(),
1164                                   converter ? *converter : defaultTypeConverter,
1165                                   &conversion);
1166   }
1167   return nullptr;
1168 }
1169 
1170 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
1171     Region *region, TypeConverter &converter,
1172     TypeConverter::SignatureConversion *entryConversion) {
1173   argConverter.setConverter(region, &converter);
1174   if (region->empty())
1175     return nullptr;
1176 
1177   if (failed(convertNonEntryRegionTypes(region, converter)))
1178     return failure();
1179 
1180   FailureOr<Block *> newEntry =
1181       convertBlockSignature(&region->front(), converter, entryConversion);
1182   return newEntry;
1183 }
1184 
1185 LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes(
1186     Region *region, TypeConverter &converter,
1187     ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1188   argConverter.setConverter(region, &converter);
1189   if (region->empty())
1190     return success();
1191 
1192   // Convert the arguments of each block within the region.
1193   int blockIdx = 0;
1194   assert((blockConversions.empty() ||
1195           blockConversions.size() == region->getBlocks().size() - 1) &&
1196          "expected either to provide no SignatureConversions at all or to "
1197          "provide a SignatureConversion for each non-entry block");
1198 
1199   for (Block &block :
1200        llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
1201     TypeConverter::SignatureConversion *blockConversion =
1202         blockConversions.empty()
1203             ? nullptr
1204             : const_cast<TypeConverter::SignatureConversion *>(
1205                   &blockConversions[blockIdx++]);
1206 
1207     if (failed(convertBlockSignature(&block, converter, blockConversion)))
1208       return failure();
1209   }
1210   return success();
1211 }
1212 
1213 //===----------------------------------------------------------------------===//
1214 // Rewriter Notification Hooks
1215 
1216 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
1217                                                      ValueRange newValues) {
1218   assert(newValues.size() == op->getNumResults());
1219   assert(!replacements.count(op) && "operation was already replaced");
1220 
1221   // Track if any of the results changed, e.g. erased and replaced with null.
1222   bool resultChanged = false;
1223 
1224   // Create mappings for each of the new result values.
1225   Value newValue, result;
1226   for (auto it : llvm::zip(newValues, op->getResults())) {
1227     std::tie(newValue, result) = it;
1228     if (!newValue) {
1229       resultChanged = true;
1230       continue;
1231     }
1232     // Remap, and check for any result type changes.
1233     mapping.map(result, newValue);
1234     resultChanged |= (newValue.getType() != result.getType());
1235   }
1236   if (resultChanged)
1237     operationsWithChangedResults.push_back(replacements.size());
1238 
1239   // Record the requested operation replacement.
1240   TypeConverter *converter = nullptr;
1241   if (currentConversionPattern)
1242     converter = currentConversionPattern->getTypeConverter();
1243   replacements.insert(std::make_pair(op, OpReplacement(converter)));
1244 
1245   // Mark this operation as recursively ignored so that we don't need to
1246   // convert any nested operations.
1247   markNestedOpsIgnored(op);
1248 }
1249 
1250 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
1251   Region *region = block->getParent();
1252   Block *origPrevBlock = block->getPrevNode();
1253   blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
1254 }
1255 
1256 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
1257   blockActions.push_back(BlockAction::getCreate(block));
1258 }
1259 
1260 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
1261                                                      Block *continuation) {
1262   blockActions.push_back(BlockAction::getSplit(continuation, block));
1263 }
1264 
1265 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block,
1266                                                             Block *srcBlock) {
1267   blockActions.push_back(BlockAction::getMerge(block, srcBlock));
1268 }
1269 
1270 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
1271     Region &region, Region &parent, Region::iterator before) {
1272   if (region.empty())
1273     return;
1274   Block *laterBlock = &region.back();
1275   for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) {
1276     blockActions.push_back(
1277         BlockAction::getMove(laterBlock, {&region, &earlierBlock}));
1278     laterBlock = &earlierBlock;
1279   }
1280   blockActions.push_back(BlockAction::getMove(laterBlock, {&region, nullptr}));
1281 }
1282 
1283 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
1284     iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
1285   for (Block &block : blocks)
1286     blockActions.push_back(BlockAction::getCreate(&block));
1287 
1288   // Compute the conversion set for the inlined region.
1289   auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
1290 
1291   // This original region has already had its conversion set computed, so there
1292   // shouldn't be any new failures.
1293   (void)result;
1294   assert(succeeded(result) && "expected region to have no unreachable blocks");
1295 }
1296 
1297 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
1298     Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
1299   LLVM_DEBUG({
1300     Diagnostic diag(loc, DiagnosticSeverity::Remark);
1301     reasonCallback(diag);
1302     logger.startLine() << "** Failure : " << diag.str() << "\n";
1303   });
1304   return failure();
1305 }
1306 
1307 //===----------------------------------------------------------------------===//
1308 // ConversionPatternRewriter
1309 //===----------------------------------------------------------------------===//
1310 
1311 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
1312     : PatternRewriter(ctx),
1313       impl(new detail::ConversionPatternRewriterImpl(*this)) {}
1314 ConversionPatternRewriter::~ConversionPatternRewriter() {}
1315 
1316 /// PatternRewriter hook for replacing the results of an operation when the
1317 /// given functor returns true.
1318 void ConversionPatternRewriter::replaceOpWithIf(
1319     Operation *op, ValueRange newValues, bool *allUsesReplaced,
1320     llvm::unique_function<bool(OpOperand &) const> functor) {
1321   // TODO: To support this we will need to rework a bit of how replacements are
1322   // tracked, given that this isn't guranteed to replace all of the uses of an
1323   // operation. The main change is that now an operation can be replaced
1324   // multiple times, in parts. The current "set" based tracking is mainly useful
1325   // for tracking if a replaced operation should be ignored, i.e. if all of the
1326   // uses will be replaced.
1327   llvm_unreachable(
1328       "replaceOpWithIf is currently not supported by DialectConversion");
1329 }
1330 
1331 /// PatternRewriter hook for replacing the results of an operation.
1332 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
1333   LLVM_DEBUG({
1334     impl->logger.startLine()
1335         << "** Replace : '" << op->getName() << "'(" << op << ")\n";
1336   });
1337   impl->notifyOpReplaced(op, newValues);
1338 }
1339 
1340 /// PatternRewriter hook for erasing a dead operation. The uses of this
1341 /// operation *must* be made dead by the end of the conversion process,
1342 /// otherwise an assert will be issued.
1343 void ConversionPatternRewriter::eraseOp(Operation *op) {
1344   LLVM_DEBUG({
1345     impl->logger.startLine()
1346         << "** Erase   : '" << op->getName() << "'(" << op << ")\n";
1347   });
1348   SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
1349   impl->notifyOpReplaced(op, nullRepls);
1350 }
1351 
1352 void ConversionPatternRewriter::eraseBlock(Block *block) {
1353   impl->notifyBlockIsBeingErased(block);
1354 
1355   // Mark all ops for erasure.
1356   for (Operation &op : *block)
1357     eraseOp(&op);
1358 
1359   // Unlink the block from its parent region. The block is kept in the block
1360   // action and will be actually destroyed when rewrites are applied. This
1361   // allows us to keep the operations in the block live and undo the removal by
1362   // re-inserting the block.
1363   block->getParent()->getBlocks().remove(block);
1364 }
1365 
1366 Block *ConversionPatternRewriter::applySignatureConversion(
1367     Region *region, TypeConverter::SignatureConversion &conversion,
1368     TypeConverter *converter) {
1369   return impl->applySignatureConversion(region, conversion, converter);
1370 }
1371 
1372 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
1373     Region *region, TypeConverter &converter,
1374     TypeConverter::SignatureConversion *entryConversion) {
1375   return impl->convertRegionTypes(region, converter, entryConversion);
1376 }
1377 
1378 LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes(
1379     Region *region, TypeConverter &converter,
1380     ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1381   return impl->convertNonEntryRegionTypes(region, converter, blockConversions);
1382 }
1383 
1384 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
1385                                                            Value to) {
1386   LLVM_DEBUG({
1387     Operation *parentOp = from.getOwner()->getParentOp();
1388     impl->logger.startLine() << "** Replace Argument : '" << from
1389                              << "'(in region of '" << parentOp->getName()
1390                              << "'(" << from.getOwner()->getParentOp() << ")\n";
1391   });
1392   impl->argReplacements.push_back(from);
1393   impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
1394 }
1395 
1396 /// Return the converted value that replaces 'key'. Return 'key' if there is
1397 /// no such a converted value.
1398 Value ConversionPatternRewriter::getRemappedValue(Value key) {
1399   return impl->mapping.lookupOrDefault(key);
1400 }
1401 
1402 /// PatternRewriter hook for creating a new block with the given arguments.
1403 void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
1404   impl->notifyCreatedBlock(block);
1405 }
1406 
1407 /// PatternRewriter hook for splitting a block into two parts.
1408 Block *ConversionPatternRewriter::splitBlock(Block *block,
1409                                              Block::iterator before) {
1410   auto *continuation = PatternRewriter::splitBlock(block, before);
1411   impl->notifySplitBlock(block, continuation);
1412   return continuation;
1413 }
1414 
1415 /// PatternRewriter hook for merging a block into another.
1416 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
1417                                             ValueRange argValues) {
1418   impl->notifyBlocksBeingMerged(dest, source);
1419   assert(llvm::all_of(source->getPredecessors(),
1420                       [dest](Block *succ) { return succ == dest; }) &&
1421          "expected 'source' to have no predecessors or only 'dest'");
1422   assert(argValues.size() == source->getNumArguments() &&
1423          "incorrect # of argument replacement values");
1424   for (auto it : llvm::zip(source->getArguments(), argValues))
1425     replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
1426   dest->getOperations().splice(dest->end(), source->getOperations());
1427   eraseBlock(source);
1428 }
1429 
1430 /// PatternRewriter hook for moving blocks out of a region.
1431 void ConversionPatternRewriter::inlineRegionBefore(Region &region,
1432                                                    Region &parent,
1433                                                    Region::iterator before) {
1434   impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
1435   PatternRewriter::inlineRegionBefore(region, parent, before);
1436 }
1437 
1438 /// PatternRewriter hook for cloning blocks of one region into another.
1439 void ConversionPatternRewriter::cloneRegionBefore(
1440     Region &region, Region &parent, Region::iterator before,
1441     BlockAndValueMapping &mapping) {
1442   if (region.empty())
1443     return;
1444   PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
1445 
1446   // Collect the range of the cloned blocks.
1447   auto clonedBeginIt = mapping.lookup(&region.front())->getIterator();
1448   auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
1449   impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
1450 }
1451 
1452 /// PatternRewriter hook for creating a new operation.
1453 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
1454   LLVM_DEBUG({
1455     impl->logger.startLine()
1456         << "** Insert  : '" << op->getName() << "'(" << op << ")\n";
1457   });
1458   impl->createdOps.push_back(op);
1459 }
1460 
1461 /// PatternRewriter hook for updating the root operation in-place.
1462 void ConversionPatternRewriter::startRootUpdate(Operation *op) {
1463 #ifndef NDEBUG
1464   impl->pendingRootUpdates.insert(op);
1465 #endif
1466   impl->rootUpdates.emplace_back(op);
1467 }
1468 
1469 /// PatternRewriter hook for updating the root operation in-place.
1470 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
1471   // There is nothing to do here, we only need to track the operation at the
1472   // start of the update.
1473 #ifndef NDEBUG
1474   assert(impl->pendingRootUpdates.erase(op) &&
1475          "operation did not have a pending in-place update");
1476 #endif
1477 }
1478 
1479 /// PatternRewriter hook for updating the root operation in-place.
1480 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
1481 #ifndef NDEBUG
1482   assert(impl->pendingRootUpdates.erase(op) &&
1483          "operation did not have a pending in-place update");
1484 #endif
1485   // Erase the last update for this operation.
1486   auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
1487   auto &rootUpdates = impl->rootUpdates;
1488   auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
1489   assert(it != rootUpdates.rend() && "no root update started on op");
1490   (*it).resetOperation();
1491   int updateIdx = std::prev(rootUpdates.rend()) - it;
1492   rootUpdates.erase(rootUpdates.begin() + updateIdx);
1493 }
1494 
1495 /// PatternRewriter hook for notifying match failure reasons.
1496 LogicalResult ConversionPatternRewriter::notifyMatchFailure(
1497     Operation *op, function_ref<void(Diagnostic &)> reasonCallback) {
1498   return impl->notifyMatchFailure(op->getLoc(), reasonCallback);
1499 }
1500 
1501 /// Return a reference to the internal implementation.
1502 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
1503   return *impl;
1504 }
1505 
1506 //===----------------------------------------------------------------------===//
1507 // ConversionPattern
1508 //===----------------------------------------------------------------------===//
1509 
1510 /// Attempt to match and rewrite the IR root at the specified operation.
1511 LogicalResult
1512 ConversionPattern::matchAndRewrite(Operation *op,
1513                                    PatternRewriter &rewriter) const {
1514   auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
1515   auto &rewriterImpl = dialectRewriter.getImpl();
1516 
1517   // Track the current conversion pattern in the rewriter.
1518   assert(!rewriterImpl.currentConversionPattern &&
1519          "already inside of a pattern rewrite");
1520   llvm::SaveAndRestore<const ConversionPattern *> currentPatternGuard(
1521       rewriterImpl.currentConversionPattern, this);
1522 
1523   // Remap the operands of the operation.
1524   SmallVector<Value, 4> operands;
1525   if (failed(rewriterImpl.remapValues(op->getLoc(), rewriter,
1526                                       getTypeConverter(), op->getOperands(),
1527                                       operands))) {
1528     return failure();
1529   }
1530   return matchAndRewrite(op, operands, dialectRewriter);
1531 }
1532 
1533 //===----------------------------------------------------------------------===//
1534 // OperationLegalizer
1535 //===----------------------------------------------------------------------===//
1536 
1537 namespace {
1538 /// A set of rewrite patterns that can be used to legalize a given operation.
1539 using LegalizationPatterns = SmallVector<const Pattern *, 1>;
1540 
1541 /// This class defines a recursive operation legalizer.
1542 class OperationLegalizer {
1543 public:
1544   using LegalizationAction = ConversionTarget::LegalizationAction;
1545 
1546   OperationLegalizer(ConversionTarget &targetInfo,
1547                      const FrozenRewritePatternSet &patterns);
1548 
1549   /// Returns true if the given operation is known to be illegal on the target.
1550   bool isIllegal(Operation *op) const;
1551 
1552   /// Attempt to legalize the given operation. Returns success if the operation
1553   /// was legalized, failure otherwise.
1554   LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
1555 
1556   /// Returns the conversion target in use by the legalizer.
1557   ConversionTarget &getTarget() { return target; }
1558 
1559 private:
1560   /// Attempt to legalize the given operation by folding it.
1561   LogicalResult legalizeWithFold(Operation *op,
1562                                  ConversionPatternRewriter &rewriter);
1563 
1564   /// Attempt to legalize the given operation by applying a pattern. Returns
1565   /// success if the operation was legalized, failure otherwise.
1566   LogicalResult legalizeWithPattern(Operation *op,
1567                                     ConversionPatternRewriter &rewriter);
1568 
1569   /// Return true if the given pattern may be applied to the given operation,
1570   /// false otherwise.
1571   bool canApplyPattern(Operation *op, const Pattern &pattern,
1572                        ConversionPatternRewriter &rewriter);
1573 
1574   /// Legalize the resultant IR after successfully applying the given pattern.
1575   LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
1576                                       ConversionPatternRewriter &rewriter,
1577                                       RewriterState &curState);
1578 
1579   /// Legalizes the actions registered during the execution of a pattern.
1580   LogicalResult legalizePatternBlockActions(Operation *op,
1581                                             ConversionPatternRewriter &rewriter,
1582                                             ConversionPatternRewriterImpl &impl,
1583                                             RewriterState &state,
1584                                             RewriterState &newState);
1585   LogicalResult legalizePatternCreatedOperations(
1586       ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1587       RewriterState &state, RewriterState &newState);
1588   LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
1589                                            ConversionPatternRewriterImpl &impl,
1590                                            RewriterState &state,
1591                                            RewriterState &newState);
1592 
1593   //===--------------------------------------------------------------------===//
1594   // Cost Model
1595   //===--------------------------------------------------------------------===//
1596 
1597   /// Build an optimistic legalization graph given the provided patterns. This
1598   /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
1599   /// patterns for operations that are not directly legal, but may be
1600   /// transitively legal for the current target given the provided patterns.
1601   void buildLegalizationGraph(
1602       LegalizationPatterns &anyOpLegalizerPatterns,
1603       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1604 
1605   /// Compute the benefit of each node within the computed legalization graph.
1606   /// This orders the patterns within 'legalizerPatterns' based upon two
1607   /// criteria:
1608   ///  1) Prefer patterns that have the lowest legalization depth, i.e.
1609   ///     represent the more direct mapping to the target.
1610   ///  2) When comparing patterns with the same legalization depth, prefer the
1611   ///     pattern with the highest PatternBenefit. This allows for users to
1612   ///     prefer specific legalizations over others.
1613   void computeLegalizationGraphBenefit(
1614       LegalizationPatterns &anyOpLegalizerPatterns,
1615       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1616 
1617   /// Compute the legalization depth when legalizing an operation of the given
1618   /// type.
1619   unsigned computeOpLegalizationDepth(
1620       OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
1621       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1622 
1623   /// Apply the conversion cost model to the given set of patterns, and return
1624   /// the smallest legalization depth of any of the patterns. See
1625   /// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
1626   unsigned applyCostModelToPatterns(
1627       LegalizationPatterns &patterns,
1628       DenseMap<OperationName, unsigned> &minOpPatternDepth,
1629       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1630 
1631   /// The current set of patterns that have been applied.
1632   SmallPtrSet<const Pattern *, 8> appliedPatterns;
1633 
1634   /// The legalization information provided by the target.
1635   ConversionTarget &target;
1636 
1637   /// The pattern applicator to use for conversions.
1638   PatternApplicator applicator;
1639 };
1640 } // namespace
1641 
1642 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo,
1643                                        const FrozenRewritePatternSet &patterns)
1644     : target(targetInfo), applicator(patterns) {
1645   // The set of patterns that can be applied to illegal operations to transform
1646   // them into legal ones.
1647   DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
1648   LegalizationPatterns anyOpLegalizerPatterns;
1649 
1650   buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
1651   computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
1652 }
1653 
1654 bool OperationLegalizer::isIllegal(Operation *op) const {
1655   // Check if the target explicitly marked this operation as illegal.
1656   if (auto info = target.getOpAction(op->getName())) {
1657     if (*info == LegalizationAction::Dynamic)
1658       return !target.isLegal(op);
1659     return *info == LegalizationAction::Illegal;
1660   }
1661 
1662   return false;
1663 }
1664 
1665 LogicalResult
1666 OperationLegalizer::legalize(Operation *op,
1667                              ConversionPatternRewriter &rewriter) {
1668 #ifndef NDEBUG
1669   const char *logLineComment =
1670       "//===-------------------------------------------===//\n";
1671 
1672   auto &rewriterImpl = rewriter.getImpl();
1673 #endif
1674   LLVM_DEBUG({
1675     auto &os = rewriterImpl.logger;
1676     os.getOStream() << "\n";
1677     os.startLine() << logLineComment;
1678     os.startLine() << "Legalizing operation : '" << op->getName() << "'(" << op
1679                    << ") {\n";
1680     os.indent();
1681 
1682     // If the operation has no regions, just print it here.
1683     if (op->getNumRegions() == 0) {
1684       op->print(os.startLine(), OpPrintingFlags().printGenericOpForm());
1685       os.getOStream() << "\n\n";
1686     }
1687   });
1688 
1689   // Check if this operation is legal on the target.
1690   if (auto legalityInfo = target.isLegal(op)) {
1691     LLVM_DEBUG({
1692       logSuccess(
1693           rewriterImpl.logger, "operation marked legal by the target{0}",
1694           legalityInfo->isRecursivelyLegal
1695               ? "; NOTE: operation is recursively legal; skipping internals"
1696               : "");
1697       rewriterImpl.logger.startLine() << logLineComment;
1698     });
1699 
1700     // If this operation is recursively legal, mark its children as ignored so
1701     // that we don't consider them for legalization.
1702     if (legalityInfo->isRecursivelyLegal)
1703       rewriter.getImpl().markNestedOpsIgnored(op);
1704     return success();
1705   }
1706 
1707   // Check to see if the operation is ignored and doesn't need to be converted.
1708   if (rewriter.getImpl().isOpIgnored(op)) {
1709     LLVM_DEBUG({
1710       logSuccess(rewriterImpl.logger,
1711                  "operation marked 'ignored' during conversion");
1712       rewriterImpl.logger.startLine() << logLineComment;
1713     });
1714     return success();
1715   }
1716 
1717   // If the operation isn't legal, try to fold it in-place.
1718   // TODO: Should we always try to do this, even if the op is
1719   // already legal?
1720   if (succeeded(legalizeWithFold(op, rewriter))) {
1721     LLVM_DEBUG({
1722       logSuccess(rewriterImpl.logger, "operation was folded");
1723       rewriterImpl.logger.startLine() << logLineComment;
1724     });
1725     return success();
1726   }
1727 
1728   // Otherwise, we need to apply a legalization pattern to this operation.
1729   if (succeeded(legalizeWithPattern(op, rewriter))) {
1730     LLVM_DEBUG({
1731       logSuccess(rewriterImpl.logger, "");
1732       rewriterImpl.logger.startLine() << logLineComment;
1733     });
1734     return success();
1735   }
1736 
1737   LLVM_DEBUG({
1738     logFailure(rewriterImpl.logger, "no matched legalization pattern");
1739     rewriterImpl.logger.startLine() << logLineComment;
1740   });
1741   return failure();
1742 }
1743 
1744 LogicalResult
1745 OperationLegalizer::legalizeWithFold(Operation *op,
1746                                      ConversionPatternRewriter &rewriter) {
1747   auto &rewriterImpl = rewriter.getImpl();
1748   RewriterState curState = rewriterImpl.getCurrentState();
1749 
1750   LLVM_DEBUG({
1751     rewriterImpl.logger.startLine() << "* Fold {\n";
1752     rewriterImpl.logger.indent();
1753   });
1754 
1755   // Try to fold the operation.
1756   SmallVector<Value, 2> replacementValues;
1757   rewriter.setInsertionPoint(op);
1758   if (failed(rewriter.tryFold(op, replacementValues))) {
1759     LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
1760     return failure();
1761   }
1762 
1763   // Insert a replacement for 'op' with the folded replacement values.
1764   rewriter.replaceOp(op, replacementValues);
1765 
1766   // Recursively legalize any new constant operations.
1767   for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
1768        i != e; ++i) {
1769     Operation *cstOp = rewriterImpl.createdOps[i];
1770     if (failed(legalize(cstOp, rewriter))) {
1771       LLVM_DEBUG(logFailure(rewriterImpl.logger,
1772                             "generated constant '{0}' was illegal",
1773                             cstOp->getName()));
1774       rewriterImpl.resetState(curState);
1775       return failure();
1776     }
1777   }
1778 
1779   LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
1780   return success();
1781 }
1782 
1783 LogicalResult
1784 OperationLegalizer::legalizeWithPattern(Operation *op,
1785                                         ConversionPatternRewriter &rewriter) {
1786   auto &rewriterImpl = rewriter.getImpl();
1787 
1788   // Functor that returns if the given pattern may be applied.
1789   auto canApply = [&](const Pattern &pattern) {
1790     return canApplyPattern(op, pattern, rewriter);
1791   };
1792 
1793   // Functor that cleans up the rewriter state after a pattern failed to match.
1794   RewriterState curState = rewriterImpl.getCurrentState();
1795   auto onFailure = [&](const Pattern &pattern) {
1796     LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match"));
1797     rewriterImpl.resetState(curState);
1798     appliedPatterns.erase(&pattern);
1799   };
1800 
1801   // Functor that performs additional legalization when a pattern is
1802   // successfully applied.
1803   auto onSuccess = [&](const Pattern &pattern) {
1804     auto result = legalizePatternResult(op, pattern, rewriter, curState);
1805     appliedPatterns.erase(&pattern);
1806     if (failed(result))
1807       rewriterImpl.resetState(curState);
1808     return result;
1809   };
1810 
1811   // Try to match and rewrite a pattern on this operation.
1812   return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
1813                                     onSuccess);
1814 }
1815 
1816 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
1817                                          ConversionPatternRewriter &rewriter) {
1818   LLVM_DEBUG({
1819     auto &os = rewriter.getImpl().logger;
1820     os.getOStream() << "\n";
1821     os.startLine() << "* Pattern : '" << op->getName() << " -> (";
1822     llvm::interleaveComma(pattern.getGeneratedOps(), llvm::dbgs());
1823     os.getOStream() << ")' {\n";
1824     os.indent();
1825   });
1826 
1827   // Ensure that we don't cycle by not allowing the same pattern to be
1828   // applied twice in the same recursion stack if it is not known to be safe.
1829   if (!pattern.hasBoundedRewriteRecursion() &&
1830       !appliedPatterns.insert(&pattern).second) {
1831     LLVM_DEBUG(
1832         logFailure(rewriter.getImpl().logger, "pattern was already applied"));
1833     return false;
1834   }
1835   return true;
1836 }
1837 
1838 LogicalResult
1839 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
1840                                           ConversionPatternRewriter &rewriter,
1841                                           RewriterState &curState) {
1842   auto &impl = rewriter.getImpl();
1843 
1844 #ifndef NDEBUG
1845   assert(impl.pendingRootUpdates.empty() && "dangling root updates");
1846 #endif
1847 
1848   // Check that the root was either replaced or updated in place.
1849   auto replacedRoot = [&] {
1850     return llvm::any_of(
1851         llvm::drop_begin(impl.replacements, curState.numReplacements),
1852         [op](auto &it) { return it.first == op; });
1853   };
1854   auto updatedRootInPlace = [&] {
1855     return llvm::any_of(
1856         llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
1857         [op](auto &state) { return state.getOperation() == op; });
1858   };
1859   (void)replacedRoot;
1860   (void)updatedRootInPlace;
1861   assert((replacedRoot() || updatedRootInPlace()) &&
1862          "expected pattern to replace the root operation");
1863 
1864   // Legalize each of the actions registered during application.
1865   RewriterState newState = impl.getCurrentState();
1866   if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
1867                                          newState)) ||
1868       failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
1869       failed(legalizePatternCreatedOperations(rewriter, impl, curState,
1870                                               newState))) {
1871     return failure();
1872   }
1873 
1874   LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
1875   return success();
1876 }
1877 
1878 LogicalResult OperationLegalizer::legalizePatternBlockActions(
1879     Operation *op, ConversionPatternRewriter &rewriter,
1880     ConversionPatternRewriterImpl &impl, RewriterState &state,
1881     RewriterState &newState) {
1882   SmallPtrSet<Operation *, 16> operationsToIgnore;
1883 
1884   // If the pattern moved or created any blocks, make sure the types of block
1885   // arguments get legalized.
1886   for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
1887        ++i) {
1888     auto &action = impl.blockActions[i];
1889     if (action.kind == BlockActionKind::TypeConversion ||
1890         action.kind == BlockActionKind::Erase)
1891       continue;
1892     // Only check blocks outside of the current operation.
1893     Operation *parentOp = action.block->getParentOp();
1894     if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
1895       continue;
1896 
1897     // If the region of the block has a type converter, try to convert the block
1898     // directly.
1899     if (auto *converter =
1900             impl.argConverter.getConverter(action.block->getParent())) {
1901       if (failed(impl.convertBlockSignature(action.block, *converter))) {
1902         LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
1903                                            "block"));
1904         return failure();
1905       }
1906       continue;
1907     }
1908 
1909     // Otherwise, check that this operation isn't one generated by this pattern.
1910     // This is because we will attempt to legalize the parent operation, and
1911     // blocks in regions created by this pattern will already be legalized later
1912     // on. If we haven't built the set yet, build it now.
1913     if (operationsToIgnore.empty()) {
1914       auto createdOps = ArrayRef<Operation *>(impl.createdOps)
1915                             .drop_front(state.numCreatedOps);
1916       operationsToIgnore.insert(createdOps.begin(), createdOps.end());
1917     }
1918 
1919     // If this operation should be considered for re-legalization, try it.
1920     if (operationsToIgnore.insert(parentOp).second &&
1921         failed(legalize(parentOp, rewriter))) {
1922       LLVM_DEBUG(logFailure(
1923           impl.logger, "operation '{0}'({1}) became illegal after block action",
1924           parentOp->getName(), parentOp));
1925       return failure();
1926     }
1927   }
1928   return success();
1929 }
1930 LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
1931     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1932     RewriterState &state, RewriterState &newState) {
1933   for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
1934     Operation *op = impl.createdOps[i];
1935     if (failed(legalize(op, rewriter))) {
1936       LLVM_DEBUG(logFailure(impl.logger,
1937                             "generated operation '{0}'({1}) was illegal",
1938                             op->getName(), op));
1939       return failure();
1940     }
1941   }
1942   return success();
1943 }
1944 LogicalResult OperationLegalizer::legalizePatternRootUpdates(
1945     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1946     RewriterState &state, RewriterState &newState) {
1947   for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
1948     Operation *op = impl.rootUpdates[i].getOperation();
1949     if (failed(legalize(op, rewriter))) {
1950       LLVM_DEBUG(logFailure(impl.logger,
1951                             "operation updated in-place '{0}' was illegal",
1952                             op->getName()));
1953       return failure();
1954     }
1955   }
1956   return success();
1957 }
1958 
1959 //===----------------------------------------------------------------------===//
1960 // Cost Model
1961 
1962 void OperationLegalizer::buildLegalizationGraph(
1963     LegalizationPatterns &anyOpLegalizerPatterns,
1964     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
1965   // A mapping between an operation and a set of operations that can be used to
1966   // generate it.
1967   DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
1968   // A mapping between an operation and any currently invalid patterns it has.
1969   DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
1970   // A worklist of patterns to consider for legality.
1971   SetVector<const Pattern *> patternWorklist;
1972 
1973   // Build the mapping from operations to the parent ops that may generate them.
1974   applicator.walkAllPatterns([&](const Pattern &pattern) {
1975     Optional<OperationName> root = pattern.getRootKind();
1976 
1977     // If the pattern has no specific root, we can't analyze the relationship
1978     // between the root op and generated operations. Given that, add all such
1979     // patterns to the legalization set.
1980     if (!root) {
1981       anyOpLegalizerPatterns.push_back(&pattern);
1982       return;
1983     }
1984 
1985     // Skip operations that are always known to be legal.
1986     if (target.getOpAction(*root) == LegalizationAction::Legal)
1987       return;
1988 
1989     // Add this pattern to the invalid set for the root op and record this root
1990     // as a parent for any generated operations.
1991     invalidPatterns[*root].insert(&pattern);
1992     for (auto op : pattern.getGeneratedOps())
1993       parentOps[op].insert(*root);
1994 
1995     // Add this pattern to the worklist.
1996     patternWorklist.insert(&pattern);
1997   });
1998 
1999   // If there are any patterns that don't have a specific root kind, we can't
2000   // make direct assumptions about what operations will never be legalized.
2001   // Note: Technically we could, but it would require an analysis that may
2002   // recurse into itself. It would be better to perform this kind of filtering
2003   // at a higher level than here anyways.
2004   if (!anyOpLegalizerPatterns.empty()) {
2005     for (const Pattern *pattern : patternWorklist)
2006       legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2007     return;
2008   }
2009 
2010   while (!patternWorklist.empty()) {
2011     auto *pattern = patternWorklist.pop_back_val();
2012 
2013     // Check to see if any of the generated operations are invalid.
2014     if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
2015           Optional<LegalizationAction> action = target.getOpAction(op);
2016           return !legalizerPatterns.count(op) &&
2017                  (!action || action == LegalizationAction::Illegal);
2018         }))
2019       continue;
2020 
2021     // Otherwise, if all of the generated operation are valid, this op is now
2022     // legal so add all of the child patterns to the worklist.
2023     legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2024     invalidPatterns[*pattern->getRootKind()].erase(pattern);
2025 
2026     // Add any invalid patterns of the parent operations to see if they have now
2027     // become legal.
2028     for (auto op : parentOps[*pattern->getRootKind()])
2029       patternWorklist.set_union(invalidPatterns[op]);
2030   }
2031 }
2032 
2033 void OperationLegalizer::computeLegalizationGraphBenefit(
2034     LegalizationPatterns &anyOpLegalizerPatterns,
2035     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2036   // The smallest pattern depth, when legalizing an operation.
2037   DenseMap<OperationName, unsigned> minOpPatternDepth;
2038 
2039   // For each operation that is transitively legal, compute a cost for it.
2040   for (auto &opIt : legalizerPatterns)
2041     if (!minOpPatternDepth.count(opIt.first))
2042       computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
2043                                  legalizerPatterns);
2044 
2045   // Apply the cost model to the patterns that can match any operation. Those
2046   // with a specific operation type are already resolved when computing the op
2047   // legalization depth.
2048   if (!anyOpLegalizerPatterns.empty())
2049     applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
2050                              legalizerPatterns);
2051 
2052   // Apply a cost model to the pattern applicator. We order patterns first by
2053   // depth then benefit. `legalizerPatterns` contains per-op patterns by
2054   // decreasing benefit.
2055   applicator.applyCostModel([&](const Pattern &pattern) {
2056     ArrayRef<const Pattern *> orderedPatternList;
2057     if (Optional<OperationName> rootName = pattern.getRootKind())
2058       orderedPatternList = legalizerPatterns[*rootName];
2059     else
2060       orderedPatternList = anyOpLegalizerPatterns;
2061 
2062     // If the pattern is not found, then it was removed and cannot be matched.
2063     auto *it = llvm::find(orderedPatternList, &pattern);
2064     if (it == orderedPatternList.end())
2065       return PatternBenefit::impossibleToMatch();
2066 
2067     // Patterns found earlier in the list have higher benefit.
2068     return PatternBenefit(std::distance(it, orderedPatternList.end()));
2069   });
2070 }
2071 
2072 unsigned OperationLegalizer::computeOpLegalizationDepth(
2073     OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
2074     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2075   // Check for existing depth.
2076   auto depthIt = minOpPatternDepth.find(op);
2077   if (depthIt != minOpPatternDepth.end())
2078     return depthIt->second;
2079 
2080   // If a mapping for this operation does not exist, then this operation
2081   // is always legal. Return 0 as the depth for a directly legal operation.
2082   auto opPatternsIt = legalizerPatterns.find(op);
2083   if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
2084     return 0u;
2085 
2086   // Record this initial depth in case we encounter this op again when
2087   // recursively computing the depth.
2088   minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
2089 
2090   // Apply the cost model to the operation patterns, and update the minimum
2091   // depth.
2092   unsigned minDepth = applyCostModelToPatterns(
2093       opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
2094   minOpPatternDepth[op] = minDepth;
2095   return minDepth;
2096 }
2097 
2098 unsigned OperationLegalizer::applyCostModelToPatterns(
2099     LegalizationPatterns &patterns,
2100     DenseMap<OperationName, unsigned> &minOpPatternDepth,
2101     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2102   unsigned minDepth = std::numeric_limits<unsigned>::max();
2103 
2104   // Compute the depth for each pattern within the set.
2105   SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
2106   patternsByDepth.reserve(patterns.size());
2107   for (const Pattern *pattern : patterns) {
2108     unsigned depth = 0;
2109     for (auto generatedOp : pattern->getGeneratedOps()) {
2110       unsigned generatedOpDepth = computeOpLegalizationDepth(
2111           generatedOp, minOpPatternDepth, legalizerPatterns);
2112       depth = std::max(depth, generatedOpDepth + 1);
2113     }
2114     patternsByDepth.emplace_back(pattern, depth);
2115 
2116     // Update the minimum depth of the pattern list.
2117     minDepth = std::min(minDepth, depth);
2118   }
2119 
2120   // If the operation only has one legalization pattern, there is no need to
2121   // sort them.
2122   if (patternsByDepth.size() == 1)
2123     return minDepth;
2124 
2125   // Sort the patterns by those likely to be the most beneficial.
2126   llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(),
2127                        [](const std::pair<const Pattern *, unsigned> *lhs,
2128                           const std::pair<const Pattern *, unsigned> *rhs) {
2129                          // First sort by the smaller pattern legalization
2130                          // depth.
2131                          if (lhs->second != rhs->second)
2132                            return llvm::array_pod_sort_comparator<unsigned>(
2133                                &lhs->second, &rhs->second);
2134 
2135                          // Then sort by the larger pattern benefit.
2136                          auto lhsBenefit = lhs->first->getBenefit();
2137                          auto rhsBenefit = rhs->first->getBenefit();
2138                          return llvm::array_pod_sort_comparator<PatternBenefit>(
2139                              &rhsBenefit, &lhsBenefit);
2140                        });
2141 
2142   // Update the legalization pattern to use the new sorted list.
2143   patterns.clear();
2144   for (auto &patternIt : patternsByDepth)
2145     patterns.push_back(patternIt.first);
2146   return minDepth;
2147 }
2148 
2149 //===----------------------------------------------------------------------===//
2150 // OperationConverter
2151 //===----------------------------------------------------------------------===//
2152 namespace {
2153 enum OpConversionMode {
2154   // In this mode, the conversion will ignore failed conversions to allow
2155   // illegal operations to co-exist in the IR.
2156   Partial,
2157 
2158   // In this mode, all operations must be legal for the given target for the
2159   // conversion to succeed.
2160   Full,
2161 
2162   // In this mode, operations are analyzed for legality. No actual rewrites are
2163   // applied to the operations on success.
2164   Analysis,
2165 };
2166 
2167 // This class converts operations to a given conversion target via a set of
2168 // rewrite patterns. The conversion behaves differently depending on the
2169 // conversion mode.
2170 struct OperationConverter {
2171   explicit OperationConverter(ConversionTarget &target,
2172                               const FrozenRewritePatternSet &patterns,
2173                               OpConversionMode mode,
2174                               DenseSet<Operation *> *trackedOps = nullptr)
2175       : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}
2176 
2177   /// Converts the given operations to the conversion target.
2178   LogicalResult convertOperations(ArrayRef<Operation *> ops);
2179 
2180 private:
2181   /// Converts an operation with the given rewriter.
2182   LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
2183 
2184   /// This method is called after the conversion process to legalize any
2185   /// remaining artifacts and complete the conversion.
2186   LogicalResult finalize(ConversionPatternRewriter &rewriter);
2187 
2188   /// Legalize the types of converted block arguments.
2189   LogicalResult
2190   legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
2191                                  ConversionPatternRewriterImpl &rewriterImpl);
2192 
2193   /// Legalize an operation result that was marked as "erased".
2194   LogicalResult
2195   legalizeErasedResult(Operation *op, OpResult result,
2196                        ConversionPatternRewriterImpl &rewriterImpl);
2197 
2198   /// Legalize an operation result that was replaced with a value of a different
2199   /// type.
2200   LogicalResult
2201   legalizeChangedResultType(Operation *op, OpResult result, Value newValue,
2202                             TypeConverter *replConverter,
2203                             ConversionPatternRewriter &rewriter,
2204                             ConversionPatternRewriterImpl &rewriterImpl,
2205                             const BlockAndValueMapping &inverseMapping);
2206 
2207   /// The legalizer to use when converting operations.
2208   OperationLegalizer opLegalizer;
2209 
2210   /// The conversion mode to use when legalizing operations.
2211   OpConversionMode mode;
2212 
2213   /// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
2214   /// this is populated with ops found to be legalizable to the target.
2215   /// When mode == OpConversionMode::Partial, this is populated with ops found
2216   /// *not* to be legalizable to the target.
2217   DenseSet<Operation *> *trackedOps;
2218 };
2219 } // end anonymous namespace
2220 
2221 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
2222                                           Operation *op) {
2223   // Legalize the given operation.
2224   if (failed(opLegalizer.legalize(op, rewriter))) {
2225     // Handle the case of a failed conversion for each of the different modes.
2226     // Full conversions expect all operations to be converted.
2227     if (mode == OpConversionMode::Full)
2228       return op->emitError()
2229              << "failed to legalize operation '" << op->getName() << "'";
2230     // Partial conversions allow conversions to fail iff the operation was not
2231     // explicitly marked as illegal. If the user provided a nonlegalizableOps
2232     // set, non-legalizable ops are included.
2233     if (mode == OpConversionMode::Partial) {
2234       if (opLegalizer.isIllegal(op))
2235         return op->emitError()
2236                << "failed to legalize operation '" << op->getName()
2237                << "' that was explicitly marked illegal";
2238       if (trackedOps)
2239         trackedOps->insert(op);
2240     }
2241   } else if (mode == OpConversionMode::Analysis) {
2242     // Analysis conversions don't fail if any operations fail to legalize,
2243     // they are only interested in the operations that were successfully
2244     // legalized.
2245     trackedOps->insert(op);
2246   }
2247   return success();
2248 }
2249 
2250 LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
2251   if (ops.empty())
2252     return success();
2253   ConversionTarget &target = opLegalizer.getTarget();
2254 
2255   // Compute the set of operations and blocks to convert.
2256   std::vector<Operation *> toConvert;
2257   for (auto *op : ops) {
2258     toConvert.emplace_back(op);
2259     for (auto &region : op->getRegions())
2260       if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
2261                                       toConvert, &target)))
2262         return failure();
2263   }
2264 
2265   // Convert each operation and discard rewrites on failure.
2266   ConversionPatternRewriter rewriter(ops.front()->getContext());
2267   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2268   for (auto *op : toConvert)
2269     if (failed(convert(rewriter, op)))
2270       return rewriterImpl.discardRewrites(), failure();
2271 
2272   // Now that all of the operations have been converted, finalize the conversion
2273   // process to ensure any lingering conversion artifacts are cleaned up and
2274   // legalized.
2275   if (failed(finalize(rewriter)))
2276     return rewriterImpl.discardRewrites(), failure();
2277   // After a successful conversion, apply rewrites if this is not an analysis
2278   // conversion.
2279   if (mode == OpConversionMode::Analysis)
2280     rewriterImpl.discardRewrites();
2281   else {
2282     rewriterImpl.applyRewrites();
2283 
2284     // It is possible for a later pattern to erase an op that was originally
2285     // identified as illegal and added to the trackedOps, remove it now after
2286     // replacements have been computed.
2287     if (trackedOps)
2288       for (auto &repl : rewriterImpl.replacements)
2289         trackedOps->erase(repl.first);
2290   }
2291   return success();
2292 }
2293 
2294 LogicalResult
2295 OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
2296   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2297 
2298   // Legalize converted block arguments.
2299   if (failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
2300     return failure();
2301 
2302   if (rewriterImpl.operationsWithChangedResults.empty())
2303     return success();
2304 
2305   Optional<BlockAndValueMapping> inverseMapping;
2306 
2307   // Process requested operation replacements.
2308   for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
2309        i != e; ++i) {
2310     unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
2311     auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
2312     for (OpResult result : repl.first->getResults()) {
2313       Value newValue = rewriterImpl.mapping.lookupOrNull(result);
2314 
2315       // If the operation result was replaced with null, all of the uses of this
2316       // value should be replaced.
2317       if (!newValue) {
2318         if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
2319           return failure();
2320         continue;
2321       }
2322 
2323       // Otherwise, check to see if the type of the result changed.
2324       if (result.getType() == newValue.getType())
2325         continue;
2326 
2327       // Compute the inverse mapping only if it is really needed.
2328       if (!inverseMapping)
2329         inverseMapping = rewriterImpl.mapping.getInverse();
2330 
2331       // Legalize this result.
2332       rewriter.setInsertionPoint(repl.first);
2333       if (failed(legalizeChangedResultType(repl.first, result, newValue,
2334                                            repl.second.converter, rewriter,
2335                                            rewriterImpl, *inverseMapping)))
2336         return failure();
2337 
2338       // Update the end iterator for this loop in the case it was updated
2339       // when legalizing generated conversion operations.
2340       e = rewriterImpl.operationsWithChangedResults.size();
2341     }
2342   }
2343   return success();
2344 }
2345 
2346 LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
2347     ConversionPatternRewriter &rewriter,
2348     ConversionPatternRewriterImpl &rewriterImpl) {
2349   // Functor used to check if all users of a value will be dead after
2350   // conversion.
2351   auto findLiveUser = [&](Value val) {
2352     auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
2353       return rewriterImpl.isOpIgnored(user);
2354     });
2355     return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
2356   };
2357 
2358   // Materialize any necessary conversions for converted block arguments that
2359   // are still live.
2360   size_t numCreatedOps = rewriterImpl.createdOps.size();
2361   if (failed(rewriterImpl.argConverter.materializeLiveConversions(
2362           rewriterImpl.mapping, rewriter, findLiveUser)))
2363     return failure();
2364 
2365   // Legalize any newly created operations during argument materialization.
2366   for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) {
2367     if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) {
2368       return rewriterImpl.createdOps[i]->emitError()
2369              << "failed to legalize conversion operation generated for block "
2370                 "argument that remained live after conversion";
2371     }
2372   }
2373   return success();
2374 }
2375 
2376 LogicalResult OperationConverter::legalizeErasedResult(
2377     Operation *op, OpResult result,
2378     ConversionPatternRewriterImpl &rewriterImpl) {
2379   // If the operation result was replaced with null, all of the uses of this
2380   // value should be replaced.
2381   auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
2382     return rewriterImpl.isOpIgnored(user);
2383   });
2384   if (liveUserIt != result.user_end()) {
2385     InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
2386                               << op->getName() << "' marked as erased";
2387     diag.attachNote(liveUserIt->getLoc())
2388         << "found live user of result #" << result.getResultNumber() << ": "
2389         << *liveUserIt;
2390     return failure();
2391   }
2392   return success();
2393 }
2394 
2395 /// Finds a user of the given value, or of any other value that the given value
2396 /// replaced, that was not replaced in the conversion process.
2397 static Operation *
2398 findLiveUserOfReplaced(Value value, ConversionPatternRewriterImpl &rewriterImpl,
2399                        const BlockAndValueMapping &inverseMapping) {
2400   do {
2401     // Walk the users of this value to see if there are any live users that
2402     // weren't replaced during conversion.
2403     auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
2404       return rewriterImpl.isOpIgnored(user);
2405     });
2406     if (liveUserIt != value.user_end())
2407       return *liveUserIt;
2408     value = inverseMapping.lookupOrNull(value);
2409   } while (value != nullptr);
2410   return nullptr;
2411 }
2412 
2413 LogicalResult OperationConverter::legalizeChangedResultType(
2414     Operation *op, OpResult result, Value newValue,
2415     TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2416     ConversionPatternRewriterImpl &rewriterImpl,
2417     const BlockAndValueMapping &inverseMapping) {
2418   Operation *liveUser =
2419       findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
2420   if (!liveUser)
2421     return success();
2422 
2423   // If the replacement has a type converter, attempt to materialize a
2424   // conversion back to the original type.
2425   if (!replConverter) {
2426     // TODO: We should emit an error here, similarly to the case where the
2427     // result is replaced with null. Unfortunately a lot of existing
2428     // patterns rely on this behavior, so until those patterns are updated
2429     // we keep the legacy behavior here of just forwarding the new value.
2430     return success();
2431   }
2432 
2433   // Track the number of created operations so that new ones can be legalized.
2434   size_t numCreatedOps = rewriterImpl.createdOps.size();
2435 
2436   // Materialize a conversion for this live result value.
2437   Type resultType = result.getType();
2438   Value convertedValue = replConverter->materializeSourceConversion(
2439       rewriter, op->getLoc(), resultType, newValue);
2440   if (!convertedValue) {
2441     InFlightDiagnostic diag = op->emitError()
2442                               << "failed to materialize conversion for result #"
2443                               << result.getResultNumber() << " of operation '"
2444                               << op->getName()
2445                               << "' that remained live after conversion";
2446     diag.attachNote(liveUser->getLoc())
2447         << "see existing live user here: " << *liveUser;
2448     return failure();
2449   }
2450 
2451   // Legalize all of the newly created conversion operations.
2452   for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) {
2453     if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) {
2454       return op->emitError("failed to legalize conversion operation generated ")
2455              << "for result #" << result.getResultNumber() << " of operation '"
2456              << op->getName() << "' that remained live after conversion";
2457     }
2458   }
2459 
2460   rewriterImpl.mapping.map(result, convertedValue);
2461   return success();
2462 }
2463 
2464 //===----------------------------------------------------------------------===//
2465 // Type Conversion
2466 //===----------------------------------------------------------------------===//
2467 
2468 /// Remap an input of the original signature with a new set of types. The
2469 /// new types are appended to the new signature conversion.
2470 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
2471                                                    ArrayRef<Type> types) {
2472   assert(!types.empty() && "expected valid types");
2473   remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
2474   addInputs(types);
2475 }
2476 
2477 /// Append new input types to the signature conversion, this should only be
2478 /// used if the new types are not intended to remap an existing input.
2479 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
2480   assert(!types.empty() &&
2481          "1->0 type remappings don't need to be added explicitly");
2482   argTypes.append(types.begin(), types.end());
2483 }
2484 
2485 /// Remap an input of the original signature with a range of types in the
2486 /// new signature.
2487 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2488                                                     unsigned newInputNo,
2489                                                     unsigned newInputCount) {
2490   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2491   assert(newInputCount != 0 && "expected valid input count");
2492   remappedInputs[origInputNo] =
2493       InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
2494 }
2495 
2496 /// Remap an input of the original signature to another `replacementValue`
2497 /// value. This would make the signature converter drop this argument.
2498 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2499                                                     Value replacementValue) {
2500   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2501   remappedInputs[origInputNo] =
2502       InputMapping{origInputNo, /*size=*/0, replacementValue};
2503 }
2504 
2505 /// This hooks allows for converting a type.
2506 LogicalResult TypeConverter::convertType(Type t,
2507                                          SmallVectorImpl<Type> &results) {
2508   auto existingIt = cachedDirectConversions.find(t);
2509   if (existingIt != cachedDirectConversions.end()) {
2510     if (existingIt->second)
2511       results.push_back(existingIt->second);
2512     return success(existingIt->second != nullptr);
2513   }
2514   auto multiIt = cachedMultiConversions.find(t);
2515   if (multiIt != cachedMultiConversions.end()) {
2516     results.append(multiIt->second.begin(), multiIt->second.end());
2517     return success();
2518   }
2519 
2520   // Walk the added converters in reverse order to apply the most recently
2521   // registered first.
2522   size_t currentCount = results.size();
2523   for (ConversionCallbackFn &converter : llvm::reverse(conversions)) {
2524     if (Optional<LogicalResult> result = converter(t, results)) {
2525       if (!succeeded(*result)) {
2526         cachedDirectConversions.try_emplace(t, nullptr);
2527         return failure();
2528       }
2529       auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
2530       if (newTypes.size() == 1)
2531         cachedDirectConversions.try_emplace(t, newTypes.front());
2532       else
2533         cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
2534       return success();
2535     }
2536   }
2537   return failure();
2538 }
2539 
2540 /// This hook simplifies defining 1-1 type conversions. This function returns
2541 /// the type to convert to on success, and a null type on failure.
2542 Type TypeConverter::convertType(Type t) {
2543   // Use the multi-type result version to convert the type.
2544   SmallVector<Type, 1> results;
2545   if (failed(convertType(t, results)))
2546     return nullptr;
2547 
2548   // Check to ensure that only one type was produced.
2549   return results.size() == 1 ? results.front() : nullptr;
2550 }
2551 
2552 /// Convert the given set of types, filling 'results' as necessary. This
2553 /// returns failure if the conversion of any of the types fails, success
2554 /// otherwise.
2555 LogicalResult TypeConverter::convertTypes(TypeRange types,
2556                                           SmallVectorImpl<Type> &results) {
2557   for (Type type : types)
2558     if (failed(convertType(type, results)))
2559       return failure();
2560   return success();
2561 }
2562 
2563 /// Return true if the given type is legal for this type converter, i.e. the
2564 /// type converts to itself.
2565 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; }
2566 /// Return true if the given operation has legal operand and result types.
2567 bool TypeConverter::isLegal(Operation *op) {
2568   return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
2569 }
2570 
2571 /// Return true if the types of block arguments within the region are legal.
2572 bool TypeConverter::isLegal(Region *region) {
2573   return llvm::all_of(*region, [this](Block &block) {
2574     return isLegal(block.getArgumentTypes());
2575   });
2576 }
2577 
2578 /// Return true if the inputs and outputs of the given function type are
2579 /// legal.
2580 bool TypeConverter::isSignatureLegal(FunctionType ty) {
2581   return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
2582 }
2583 
2584 /// This hook allows for converting a specific argument of a signature.
2585 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
2586                                                  SignatureConversion &result) {
2587   // Try to convert the given input type.
2588   SmallVector<Type, 1> convertedTypes;
2589   if (failed(convertType(type, convertedTypes)))
2590     return failure();
2591 
2592   // If this argument is being dropped, there is nothing left to do.
2593   if (convertedTypes.empty())
2594     return success();
2595 
2596   // Otherwise, add the new inputs.
2597   result.addInputs(inputNo, convertedTypes);
2598   return success();
2599 }
2600 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types,
2601                                                   SignatureConversion &result,
2602                                                   unsigned origInputOffset) {
2603   for (unsigned i = 0, e = types.size(); i != e; ++i)
2604     if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
2605       return failure();
2606   return success();
2607 }
2608 
2609 Value TypeConverter::materializeConversion(
2610     MutableArrayRef<MaterializationCallbackFn> materializations,
2611     OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) {
2612   for (MaterializationCallbackFn &fn : llvm::reverse(materializations))
2613     if (Optional<Value> result = fn(builder, resultType, inputs, loc))
2614       return result.getValue();
2615   return nullptr;
2616 }
2617 
2618 /// This function converts the type signature of the given block, by invoking
2619 /// 'convertSignatureArg' for each argument. This function should return a valid
2620 /// conversion for the signature on success, None otherwise.
2621 auto TypeConverter::convertBlockSignature(Block *block)
2622     -> Optional<SignatureConversion> {
2623   SignatureConversion conversion(block->getNumArguments());
2624   if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
2625     return llvm::None;
2626   return conversion;
2627 }
2628 
2629 /// Create a default conversion pattern that rewrites the type signature of a
2630 /// FunctionLike op. This only supports FunctionLike ops which use FunctionType
2631 /// to represent their type.
2632 namespace {
2633 struct FunctionLikeSignatureConversion : public ConversionPattern {
2634   FunctionLikeSignatureConversion(StringRef functionLikeOpName,
2635                                   MLIRContext *ctx, TypeConverter &converter)
2636       : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
2637 
2638   /// Hook to implement combined matching and rewriting for FunctionLike ops.
2639   LogicalResult
2640   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
2641                   ConversionPatternRewriter &rewriter) const override {
2642     FunctionType type = function_like_impl::getFunctionType(op);
2643 
2644     // Convert the original function types.
2645     TypeConverter::SignatureConversion result(type.getNumInputs());
2646     SmallVector<Type, 1> newResults;
2647     if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) ||
2648         failed(typeConverter->convertTypes(type.getResults(), newResults)) ||
2649         failed(rewriter.convertRegionTypes(
2650             &function_like_impl::getFunctionBody(op), *typeConverter, &result)))
2651       return failure();
2652 
2653     // Update the function signature in-place.
2654     auto newType = FunctionType::get(rewriter.getContext(),
2655                                      result.getConvertedTypes(), newResults);
2656 
2657     rewriter.updateRootInPlace(
2658         op, [&] { function_like_impl::setFunctionType(op, newType); });
2659 
2660     return success();
2661   }
2662 };
2663 } // end anonymous namespace
2664 
2665 void mlir::populateFunctionLikeTypeConversionPattern(
2666     StringRef functionLikeOpName, RewritePatternSet &patterns,
2667     TypeConverter &converter) {
2668   patterns.add<FunctionLikeSignatureConversion>(
2669       functionLikeOpName, patterns.getContext(), converter);
2670 }
2671 
2672 void mlir::populateFuncOpTypeConversionPattern(RewritePatternSet &patterns,
2673                                                TypeConverter &converter) {
2674   populateFunctionLikeTypeConversionPattern<FuncOp>(patterns, converter);
2675 }
2676 
2677 //===----------------------------------------------------------------------===//
2678 // ConversionTarget
2679 //===----------------------------------------------------------------------===//
2680 
2681 /// Register a legality action for the given operation.
2682 void ConversionTarget::setOpAction(OperationName op,
2683                                    LegalizationAction action) {
2684   legalOperations[op].action = action;
2685 }
2686 
2687 /// Register a legality action for the given dialects.
2688 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
2689                                         LegalizationAction action) {
2690   for (StringRef dialect : dialectNames)
2691     legalDialects[dialect] = action;
2692 }
2693 
2694 /// Get the legality action for the given operation.
2695 auto ConversionTarget::getOpAction(OperationName op) const
2696     -> Optional<LegalizationAction> {
2697   Optional<LegalizationInfo> info = getOpInfo(op);
2698   return info ? info->action : Optional<LegalizationAction>();
2699 }
2700 
2701 /// If the given operation instance is legal on this target, a structure
2702 /// containing legality information is returned. If the operation is not legal,
2703 /// None is returned.
2704 auto ConversionTarget::isLegal(Operation *op) const
2705     -> Optional<LegalOpDetails> {
2706   Optional<LegalizationInfo> info = getOpInfo(op->getName());
2707   if (!info)
2708     return llvm::None;
2709 
2710   // Returns true if this operation instance is known to be legal.
2711   auto isOpLegal = [&] {
2712     // Handle dynamic legality either with the provided legality function.
2713     if (info->action == LegalizationAction::Dynamic) {
2714       Optional<bool> result = info->legalityFn(op);
2715       if (result)
2716         return *result;
2717     }
2718 
2719     // Otherwise, the operation is only legal if it was marked 'Legal'.
2720     return info->action == LegalizationAction::Legal;
2721   };
2722   if (!isOpLegal())
2723     return llvm::None;
2724 
2725   // This operation is legal, compute any additional legality information.
2726   LegalOpDetails legalityDetails;
2727   if (info->isRecursivelyLegal) {
2728     auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
2729     if (legalityFnIt != opRecursiveLegalityFns.end()) {
2730       legalityDetails.isRecursivelyLegal =
2731           legalityFnIt->second(op).getValueOr(true);
2732     } else {
2733       legalityDetails.isRecursivelyLegal = true;
2734     }
2735   }
2736   return legalityDetails;
2737 }
2738 
2739 static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks(
2740     ConversionTarget::DynamicLegalityCallbackFn oldCallback,
2741     ConversionTarget::DynamicLegalityCallbackFn newCallback) {
2742   if (!oldCallback)
2743     return newCallback;
2744 
2745   auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)](
2746                    Operation *op) -> Optional<bool> {
2747     if (Optional<bool> result = newCl(op))
2748       return *result;
2749 
2750     return oldCl(op);
2751   };
2752   return chain;
2753 }
2754 
2755 /// Set the dynamic legality callback for the given operation.
2756 void ConversionTarget::setLegalityCallback(
2757     OperationName name, const DynamicLegalityCallbackFn &callback) {
2758   assert(callback && "expected valid legality callback");
2759   auto infoIt = legalOperations.find(name);
2760   assert(infoIt != legalOperations.end() &&
2761          infoIt->second.action == LegalizationAction::Dynamic &&
2762          "expected operation to already be marked as dynamically legal");
2763   infoIt->second.legalityFn =
2764       composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback);
2765 }
2766 
2767 /// Set the recursive legality callback for the given operation and mark the
2768 /// operation as recursively legal.
2769 void ConversionTarget::markOpRecursivelyLegal(
2770     OperationName name, const DynamicLegalityCallbackFn &callback) {
2771   auto infoIt = legalOperations.find(name);
2772   assert(infoIt != legalOperations.end() &&
2773          infoIt->second.action != LegalizationAction::Illegal &&
2774          "expected operation to already be marked as legal");
2775   infoIt->second.isRecursivelyLegal = true;
2776   if (callback)
2777     opRecursiveLegalityFns[name] = composeLegalityCallbacks(
2778         std::move(opRecursiveLegalityFns[name]), callback);
2779   else
2780     opRecursiveLegalityFns.erase(name);
2781 }
2782 
2783 /// Set the dynamic legality callback for the given dialects.
2784 void ConversionTarget::setLegalityCallback(
2785     ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
2786   assert(callback && "expected valid legality callback");
2787   for (StringRef dialect : dialects)
2788     dialectLegalityFns[dialect] = composeLegalityCallbacks(
2789         std::move(dialectLegalityFns[dialect]), callback);
2790 }
2791 
2792 /// Set the dynamic legality callback for the unknown ops.
2793 void ConversionTarget::setLegalityCallback(
2794     const DynamicLegalityCallbackFn &callback) {
2795   assert(callback && "expected valid legality callback");
2796   unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback);
2797 }
2798 
2799 /// Get the legalization information for the given operation.
2800 auto ConversionTarget::getOpInfo(OperationName op) const
2801     -> Optional<LegalizationInfo> {
2802   // Check for info for this specific operation.
2803   auto it = legalOperations.find(op);
2804   if (it != legalOperations.end())
2805     return it->second;
2806   // Check for info for the parent dialect.
2807   auto dialectIt = legalDialects.find(op.getDialectNamespace());
2808   if (dialectIt != legalDialects.end()) {
2809     DynamicLegalityCallbackFn callback;
2810     auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
2811     if (dialectFn != dialectLegalityFns.end())
2812       callback = dialectFn->second;
2813     return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
2814                             callback};
2815   }
2816   // Otherwise, check if we mark unknown operations as dynamic.
2817   if (unknownLegalityFn)
2818     return LegalizationInfo{LegalizationAction::Dynamic,
2819                             /*isRecursivelyLegal=*/false, unknownLegalityFn};
2820   return llvm::None;
2821 }
2822 
2823 //===----------------------------------------------------------------------===//
2824 // Op Conversion Entry Points
2825 //===----------------------------------------------------------------------===//
2826 
2827 /// Apply a partial conversion on the given operations and all nested
2828 /// operations. This method converts as many operations to the target as
2829 /// possible, ignoring operations that failed to legalize. This method only
2830 /// returns failure if there ops explicitly marked as illegal.
2831 /// If an `unconvertedOps` set is provided, all operations that are found not
2832 /// to be legalizable to the given `target` are placed within that set. (Note
2833 /// that if there is an op explicitly marked as illegal, the conversion
2834 /// terminates and the `unconvertedOps` set will not necessarily be complete.)
2835 LogicalResult
2836 mlir::applyPartialConversion(ArrayRef<Operation *> ops,
2837                              ConversionTarget &target,
2838                              const FrozenRewritePatternSet &patterns,
2839                              DenseSet<Operation *> *unconvertedOps) {
2840   OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
2841                                  unconvertedOps);
2842   return opConverter.convertOperations(ops);
2843 }
2844 LogicalResult
2845 mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
2846                              const FrozenRewritePatternSet &patterns,
2847                              DenseSet<Operation *> *unconvertedOps) {
2848   return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
2849                                 unconvertedOps);
2850 }
2851 
2852 /// Apply a complete conversion on the given operations, and all nested
2853 /// operations. This method will return failure if the conversion of any
2854 /// operation fails.
2855 LogicalResult
2856 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
2857                           const FrozenRewritePatternSet &patterns) {
2858   OperationConverter opConverter(target, patterns, OpConversionMode::Full);
2859   return opConverter.convertOperations(ops);
2860 }
2861 LogicalResult
2862 mlir::applyFullConversion(Operation *op, ConversionTarget &target,
2863                           const FrozenRewritePatternSet &patterns) {
2864   return applyFullConversion(llvm::makeArrayRef(op), target, patterns);
2865 }
2866 
2867 /// Apply an analysis conversion on the given operations, and all nested
2868 /// operations. This method analyzes which operations would be successfully
2869 /// converted to the target if a conversion was applied. All operations that
2870 /// were found to be legalizable to the given 'target' are placed within the
2871 /// provided 'convertedOps' set; note that no actual rewrites are applied to the
2872 /// operations on success and only pre-existing operations are added to the set.
2873 LogicalResult
2874 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
2875                               ConversionTarget &target,
2876                               const FrozenRewritePatternSet &patterns,
2877                               DenseSet<Operation *> &convertedOps) {
2878   OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
2879                                  &convertedOps);
2880   return opConverter.convertOperations(ops);
2881 }
2882 LogicalResult
2883 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
2884                               const FrozenRewritePatternSet &patterns,
2885                               DenseSet<Operation *> &convertedOps) {
2886   return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
2887                                  convertedOps);
2888 }
2889