1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Transforms/DialectConversion.h"
10 #include "mlir/IR/Block.h"
11 #include "mlir/IR/BlockAndValueMapping.h"
12 #include "mlir/IR/Builders.h"
13 #include "mlir/IR/BuiltinOps.h"
14 #include "mlir/IR/FunctionSupport.h"
15 #include "mlir/Rewrite/PatternApplicator.h"
16 #include "mlir/Transforms/Utils.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/FormatVariadic.h"
21 #include "llvm/Support/SaveAndRestore.h"
22 #include "llvm/Support/ScopedPrinter.h"
23 
24 using namespace mlir;
25 using namespace mlir::detail;
26 
27 #define DEBUG_TYPE "dialect-conversion"
28 
29 /// Recursively collect all of the operations to convert from within 'region'.
30 /// If 'target' is nonnull, operations that are recursively legal have their
31 /// regions pre-filtered to avoid considering them for legalization.
32 static LogicalResult
33 computeConversionSet(iterator_range<Region::iterator> region,
34                      Location regionLoc,
35                      SmallVectorImpl<Operation *> &toConvert,
36                      ConversionTarget *target = nullptr) {
37   if (llvm::empty(region))
38     return success();
39 
40   // Traverse starting from the entry block.
41   SmallVector<Block *, 16> worklist(1, &*region.begin());
42   DenseSet<Block *> visitedBlocks;
43   visitedBlocks.insert(worklist.front());
44   while (!worklist.empty()) {
45     Block *block = worklist.pop_back_val();
46 
47     // Compute the conversion set of each of the nested operations.
48     for (Operation &op : *block) {
49       toConvert.emplace_back(&op);
50 
51       // Don't check this operation's children for conversion if the operation
52       // is recursively legal.
53       auto legalityInfo = target ? target->isLegal(&op)
54                                  : Optional<ConversionTarget::LegalOpDetails>();
55       if (legalityInfo && legalityInfo->isRecursivelyLegal)
56         continue;
57       for (auto &region : op.getRegions()) {
58         if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
59                                         toConvert, target)))
60           return failure();
61       }
62     }
63 
64     // Recurse to children that haven't been visited.
65     for (Block *succ : block->getSuccessors())
66       if (visitedBlocks.insert(succ).second)
67         worklist.push_back(succ);
68   }
69 
70   // Check that all blocks in the region were visited.
71   if (llvm::any_of(llvm::drop_begin(region, 1),
72                    [&](Block &block) { return !visitedBlocks.count(&block); }))
73     return emitError(regionLoc, "unreachable blocks were not converted");
74   return success();
75 }
76 
77 /// A utility function to log a successful result for the given reason.
78 template <typename... Args>
79 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
80   LLVM_DEBUG({
81     os.unindent();
82     os.startLine() << "} -> SUCCESS";
83     if (!fmt.empty())
84       os.getOStream() << " : "
85                       << llvm::formatv(fmt.data(), std::forward<Args>(args)...);
86     os.getOStream() << "\n";
87   });
88 }
89 
90 /// A utility function to log a failure result for the given reason.
91 template <typename... Args>
92 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
93   LLVM_DEBUG({
94     os.unindent();
95     os.startLine() << "} -> FAILURE : "
96                    << llvm::formatv(fmt.data(), std::forward<Args>(args)...)
97                    << "\n";
98   });
99 }
100 
101 //===----------------------------------------------------------------------===//
102 // ConversionValueMapping
103 //===----------------------------------------------------------------------===//
104 
105 namespace {
106 /// This class wraps a BlockAndValueMapping to provide recursive lookup
107 /// functionality, i.e. we will traverse if the mapped value also has a mapping.
108 struct ConversionValueMapping {
109   /// Lookup a mapped value within the map. If a mapping for the provided value
110   /// does not exist then return the provided value. If `desiredType` is
111   /// non-null, returns the most recently mapped value with that type. If an
112   /// operand of that type does not exist, defaults to normal behavior.
113   Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
114 
115   /// Lookup a mapped value within the map, or return null if a mapping does not
116   /// exist. If a mapping exists, this follows the same behavior of
117   /// `lookupOrDefault`.
118   Value lookupOrNull(Value from, Type desiredType = nullptr) const;
119 
120   /// Map a value to the one provided.
121   void map(Value oldVal, Value newVal) {
122     LLVM_DEBUG({
123       for (Value it = newVal; it; it = mapping.lookupOrNull(it))
124         assert(it != oldVal && "inserting cyclic mapping");
125     });
126     mapping.map(oldVal, newVal);
127   }
128 
129   /// Try to map a value to the one provided. Returns false if a transitive
130   /// mapping from the new value to the old value already exists, true if the
131   /// map was updated.
132   bool tryMap(Value oldVal, Value newVal);
133 
134   /// Drop the last mapping for the given value.
135   void erase(Value value) { mapping.erase(value); }
136 
137   /// Returns the inverse raw value mapping (without recursive query support).
138   DenseMap<Value, SmallVector<Value>> getInverse() const {
139     DenseMap<Value, SmallVector<Value>> inverse;
140     for (auto &it : mapping.getValueMap())
141       inverse[it.second].push_back(it.first);
142     return inverse;
143   }
144 
145 private:
146   /// Current value mappings.
147   BlockAndValueMapping mapping;
148 };
149 } // end anonymous namespace
150 
151 Value ConversionValueMapping::lookupOrDefault(Value from,
152                                               Type desiredType) const {
153   // If there was no desired type, simply find the leaf value.
154   if (!desiredType) {
155     // If this value had a valid mapping, unmap that value as well in the case
156     // that it was also replaced.
157     while (auto mappedValue = mapping.lookupOrNull(from))
158       from = mappedValue;
159     return from;
160   }
161 
162   // Otherwise, try to find the deepest value that has the desired type.
163   Value desiredValue;
164   do {
165     if (from.getType() == desiredType)
166       desiredValue = from;
167 
168     Value mappedValue = mapping.lookupOrNull(from);
169     if (!mappedValue)
170       break;
171     from = mappedValue;
172   } while (true);
173 
174   // If the desired value was found use it, otherwise default to the leaf value.
175   return desiredValue ? desiredValue : from;
176 }
177 
178 Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const {
179   Value result = lookupOrDefault(from, desiredType);
180   if (result == from || (desiredType && result.getType() != desiredType))
181     return nullptr;
182   return result;
183 }
184 
185 bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) {
186   for (Value it = newVal; it; it = mapping.lookupOrNull(it))
187     if (it == oldVal)
188       return false;
189   map(oldVal, newVal);
190   return true;
191 }
192 
193 //===----------------------------------------------------------------------===//
194 // Rewriter and Translation State
195 //===----------------------------------------------------------------------===//
196 namespace {
197 /// This class contains a snapshot of the current conversion rewriter state.
198 /// This is useful when saving and undoing a set of rewrites.
199 struct RewriterState {
200   RewriterState(unsigned numCreatedOps, unsigned numUnresolvedMaterializations,
201                 unsigned numReplacements, unsigned numArgReplacements,
202                 unsigned numBlockActions, unsigned numIgnoredOperations,
203                 unsigned numRootUpdates)
204       : numCreatedOps(numCreatedOps),
205         numUnresolvedMaterializations(numUnresolvedMaterializations),
206         numReplacements(numReplacements),
207         numArgReplacements(numArgReplacements),
208         numBlockActions(numBlockActions),
209         numIgnoredOperations(numIgnoredOperations),
210         numRootUpdates(numRootUpdates) {}
211 
212   /// The current number of created operations.
213   unsigned numCreatedOps;
214 
215   /// The current number of unresolved materializations.
216   unsigned numUnresolvedMaterializations;
217 
218   /// The current number of replacements queued.
219   unsigned numReplacements;
220 
221   /// The current number of argument replacements queued.
222   unsigned numArgReplacements;
223 
224   /// The current number of block actions performed.
225   unsigned numBlockActions;
226 
227   /// The current number of ignored operations.
228   unsigned numIgnoredOperations;
229 
230   /// The current number of operations that were updated in place.
231   unsigned numRootUpdates;
232 };
233 
234 //===----------------------------------------------------------------------===//
235 // OperationTransactionState
236 
237 /// The state of an operation that was updated by a pattern in-place. This
238 /// contains all of the necessary information to reconstruct an operation that
239 /// was updated in place.
240 class OperationTransactionState {
241 public:
242   OperationTransactionState() = default;
243   OperationTransactionState(Operation *op)
244       : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()),
245         operands(op->operand_begin(), op->operand_end()),
246         successors(op->successor_begin(), op->successor_end()) {}
247 
248   /// Discard the transaction state and reset the state of the original
249   /// operation.
250   void resetOperation() const {
251     op->setLoc(loc);
252     op->setAttrs(attrs);
253     op->setOperands(operands);
254     for (auto it : llvm::enumerate(successors))
255       op->setSuccessor(it.value(), it.index());
256   }
257 
258   /// Return the original operation of this state.
259   Operation *getOperation() const { return op; }
260 
261 private:
262   Operation *op;
263   LocationAttr loc;
264   DictionaryAttr attrs;
265   SmallVector<Value, 8> operands;
266   SmallVector<Block *, 2> successors;
267 };
268 
269 //===----------------------------------------------------------------------===//
270 // OpReplacement
271 
272 /// This class represents one requested operation replacement via 'replaceOp' or
273 /// 'eraseOp`.
274 struct OpReplacement {
275   OpReplacement(TypeConverter *converter = nullptr) : converter(converter) {}
276 
277   /// An optional type converter that can be used to materialize conversions
278   /// between the new and old values if necessary.
279   TypeConverter *converter;
280 };
281 
282 //===----------------------------------------------------------------------===//
283 // BlockAction
284 
285 /// The kind of the block action performed during the rewrite.  Actions can be
286 /// undone if the conversion fails.
287 enum class BlockActionKind {
288   Create,
289   Erase,
290   Merge,
291   Move,
292   Split,
293   TypeConversion
294 };
295 
296 /// Original position of the given block in its parent region. During undo
297 /// actions, the block needs to be placed after `insertAfterBlock`.
298 struct BlockPosition {
299   Region *region;
300   Block *insertAfterBlock;
301 };
302 
303 /// Information needed to undo the merge actions.
304 /// - the source block, and
305 /// - the Operation that was the last operation in the dest block before the
306 ///   merge (could be null if the dest block was empty).
307 struct MergeInfo {
308   Block *sourceBlock;
309   Operation *destBlockLastInst;
310 };
311 
312 /// The storage class for an undoable block action (one of BlockActionKind),
313 /// contains the information necessary to undo this action.
314 struct BlockAction {
315   static BlockAction getCreate(Block *block) {
316     return {BlockActionKind::Create, block, {}};
317   }
318   static BlockAction getErase(Block *block, BlockPosition originalPosition) {
319     return {BlockActionKind::Erase, block, {originalPosition}};
320   }
321   static BlockAction getMerge(Block *block, Block *sourceBlock) {
322     BlockAction action{BlockActionKind::Merge, block, {}};
323     action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()};
324     return action;
325   }
326   static BlockAction getMove(Block *block, BlockPosition originalPosition) {
327     return {BlockActionKind::Move, block, {originalPosition}};
328   }
329   static BlockAction getSplit(Block *block, Block *originalBlock) {
330     BlockAction action{BlockActionKind::Split, block, {}};
331     action.originalBlock = originalBlock;
332     return action;
333   }
334   static BlockAction getTypeConversion(Block *block) {
335     return BlockAction{BlockActionKind::TypeConversion, block, {}};
336   }
337 
338   // The action kind.
339   BlockActionKind kind;
340 
341   // A pointer to the block that was created by the action.
342   Block *block;
343 
344   union {
345     // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and
346     // contains a pointer to the region that originally contained the block as
347     // well as the position of the block in that region.
348     BlockPosition originalPosition;
349     // In use if kind == BlockActionKind::Split and contains a pointer to the
350     // block that was split into two parts.
351     Block *originalBlock;
352     // In use if kind == BlockActionKind::Merge, and contains the information
353     // needed to undo the merge.
354     MergeInfo mergeInfo;
355   };
356 };
357 
358 //===----------------------------------------------------------------------===//
359 // UnresolvedMaterialization
360 
361 /// This class represents an unresolved materialization, i.e. a materialization
362 /// that was inserted during conversion that needs to be legalized at the end of
363 /// the conversion process.
364 class UnresolvedMaterialization {
365 public:
366   /// The type of materialization.
367   enum Kind {
368     /// This materialization materializes a conversion for an illegal block
369     /// argument type, to a legal one.
370     Argument,
371 
372     /// This materialization materializes a conversion from an illegal type to a
373     /// legal one.
374     Target
375   };
376 
377   UnresolvedMaterialization(UnrealizedConversionCastOp op = nullptr,
378                             TypeConverter *converter = nullptr,
379                             Kind kind = Target, Type origOutputType = nullptr)
380       : op(op), converterAndKind(converter, kind),
381         origOutputType(origOutputType) {}
382 
383   /// Return the temporary conversion operation inserted for this
384   /// materialization.
385   UnrealizedConversionCastOp getOp() const { return op; }
386 
387   /// Return the type converter of this materialization (which may be null).
388   TypeConverter *getConverter() const { return converterAndKind.getPointer(); }
389 
390   /// Return the kind of this materialization.
391   Kind getKind() const { return converterAndKind.getInt(); }
392 
393   /// Set the kind of this materialization.
394   void setKind(Kind kind) { converterAndKind.setInt(kind); }
395 
396   /// Return the original illegal output type of the input values.
397   Type getOrigOutputType() const { return origOutputType; }
398 
399 private:
400   /// The unresolved materialization operation created during conversion.
401   UnrealizedConversionCastOp op;
402 
403   /// The corresponding type converter to use when resolving this
404   /// materialization, and the kind of this materialization.
405   llvm::PointerIntPair<TypeConverter *, 1, Kind> converterAndKind;
406 
407   /// The original output type. This is only used for argument conversions.
408   Type origOutputType;
409 };
410 } // end anonymous namespace
411 
412 /// Build an unresolved materialization operation given an output type and set
413 /// of input operands.
414 static Value buildUnresolvedMaterialization(
415     UnresolvedMaterialization::Kind kind, Block *insertBlock,
416     Block::iterator insertPt, Location loc, ValueRange inputs, Type outputType,
417     Type origOutputType, TypeConverter *converter,
418     SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
419   // Avoid materializing an unnecessary cast.
420   if (inputs.size() == 1 && inputs.front().getType() == outputType)
421     return inputs.front();
422 
423   // Create an unresolved materialization. We use a new OpBuilder to avoid
424   // tracking the materialization like we do for other operations.
425   OpBuilder builder(insertBlock, insertPt);
426   auto convertOp =
427       builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs);
428   unresolvedMaterializations.emplace_back(convertOp, converter, kind,
429                                           origOutputType);
430   return convertOp.getResult(0);
431 }
432 static Value buildUnresolvedArgumentMaterialization(
433     PatternRewriter &rewriter, Location loc, ValueRange inputs,
434     Type origOutputType, Type outputType, TypeConverter *converter,
435     SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
436   return buildUnresolvedMaterialization(
437       UnresolvedMaterialization::Argument, rewriter.getInsertionBlock(),
438       rewriter.getInsertionPoint(), loc, inputs, outputType, origOutputType,
439       converter, unresolvedMaterializations);
440 }
441 static Value buildUnresolvedTargetMaterialization(
442     Location loc, Value input, Type outputType, TypeConverter *converter,
443     SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
444   Block *insertBlock = input.getParentBlock();
445   Block::iterator insertPt = insertBlock->begin();
446   if (OpResult inputRes = input.dyn_cast<OpResult>())
447     insertPt = ++inputRes.getOwner()->getIterator();
448 
449   return buildUnresolvedMaterialization(
450       UnresolvedMaterialization::Target, insertBlock, insertPt, loc, input,
451       outputType, outputType, converter, unresolvedMaterializations);
452 }
453 
454 //===----------------------------------------------------------------------===//
455 // ArgConverter
456 //===----------------------------------------------------------------------===//
457 namespace {
458 /// This class provides a simple interface for converting the types of block
459 /// arguments. This is done by creating a new block that contains the new legal
460 /// types and extracting the block that contains the old illegal types to allow
461 /// for undoing pending rewrites in the case of failure.
462 struct ArgConverter {
463   ArgConverter(
464       PatternRewriter &rewriter,
465       SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations)
466       : rewriter(rewriter),
467         unresolvedMaterializations(unresolvedMaterializations) {}
468 
469   /// This structure contains the information pertaining to an argument that has
470   /// been converted.
471   struct ConvertedArgInfo {
472     ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
473                      Value castValue = nullptr)
474         : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
475 
476     /// The start index of in the new argument list that contains arguments that
477     /// replace the original.
478     unsigned newArgIdx;
479 
480     /// The number of arguments that replaced the original argument.
481     unsigned newArgSize;
482 
483     /// The cast value that was created to cast from the new arguments to the
484     /// old. This only used if 'newArgSize' > 1.
485     Value castValue;
486   };
487 
488   /// This structure contains information pertaining to a block that has had its
489   /// signature converted.
490   struct ConvertedBlockInfo {
491     ConvertedBlockInfo(Block *origBlock, TypeConverter *converter)
492         : origBlock(origBlock), converter(converter) {}
493 
494     /// The original block that was requested to have its signature converted.
495     Block *origBlock;
496 
497     /// The conversion information for each of the arguments. The information is
498     /// None if the argument was dropped during conversion.
499     SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
500 
501     /// The type converter used to convert the arguments.
502     TypeConverter *converter;
503   };
504 
505   /// Return if the signature of the given block has already been converted.
506   bool hasBeenConverted(Block *block) const {
507     return conversionInfo.count(block) || convertedBlocks.count(block);
508   }
509 
510   /// Set the type converter to use for the given region.
511   void setConverter(Region *region, TypeConverter *typeConverter) {
512     assert(typeConverter && "expected valid type converter");
513     regionToConverter[region] = typeConverter;
514   }
515 
516   /// Return the type converter to use for the given region, or null if there
517   /// isn't one.
518   TypeConverter *getConverter(Region *region) {
519     return regionToConverter.lookup(region);
520   }
521 
522   //===--------------------------------------------------------------------===//
523   // Rewrite Application
524   //===--------------------------------------------------------------------===//
525 
526   /// Erase any rewrites registered for the blocks within the given operation
527   /// which is about to be removed. This merely drops the rewrites without
528   /// undoing them.
529   void notifyOpRemoved(Operation *op);
530 
531   /// Cleanup and undo any generated conversions for the arguments of block.
532   /// This method replaces the new block with the original, reverting the IR to
533   /// its original state.
534   void discardRewrites(Block *block);
535 
536   /// Fully replace uses of the old arguments with the new.
537   void applyRewrites(ConversionValueMapping &mapping);
538 
539   /// Materialize any necessary conversions for converted arguments that have
540   /// live users, using the provided `findLiveUser` to search for a user that
541   /// survives the conversion process.
542   LogicalResult
543   materializeLiveConversions(ConversionValueMapping &mapping,
544                              OpBuilder &builder,
545                              function_ref<Operation *(Value)> findLiveUser);
546 
547   //===--------------------------------------------------------------------===//
548   // Conversion
549   //===--------------------------------------------------------------------===//
550 
551   /// Attempt to convert the signature of the given block, if successful a new
552   /// block is returned containing the new arguments. Returns `block` if it did
553   /// not require conversion.
554   FailureOr<Block *>
555   convertSignature(Block *block, TypeConverter *converter,
556                    ConversionValueMapping &mapping,
557                    SmallVectorImpl<BlockArgument> &argReplacements);
558 
559   /// Apply the given signature conversion on the given block. The new block
560   /// containing the updated signature is returned. If no conversions were
561   /// necessary, e.g. if the block has no arguments, `block` is returned.
562   /// `converter` is used to generate any necessary cast operations that
563   /// translate between the origin argument types and those specified in the
564   /// signature conversion.
565   Block *applySignatureConversion(
566       Block *block, TypeConverter *converter,
567       TypeConverter::SignatureConversion &signatureConversion,
568       ConversionValueMapping &mapping,
569       SmallVectorImpl<BlockArgument> &argReplacements);
570 
571   /// Insert a new conversion into the cache.
572   void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
573 
574   /// A collection of blocks that have had their arguments converted. This is a
575   /// map from the new replacement block, back to the original block.
576   llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
577 
578   /// The set of original blocks that were converted.
579   DenseSet<Block *> convertedBlocks;
580 
581   /// A mapping from valid regions, to those containing the original blocks of a
582   /// conversion.
583   DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
584 
585   /// A mapping of regions to type converters that should be used when
586   /// converting the arguments of blocks within that region.
587   DenseMap<Region *, TypeConverter *> regionToConverter;
588 
589   /// The pattern rewriter to use when materializing conversions.
590   PatternRewriter &rewriter;
591 
592   /// An ordered set of unresolved materializations during conversion.
593   SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations;
594 };
595 } // end anonymous namespace
596 
597 //===----------------------------------------------------------------------===//
598 // Rewrite Application
599 
600 void ArgConverter::notifyOpRemoved(Operation *op) {
601   if (conversionInfo.empty())
602     return;
603 
604   for (Region &region : op->getRegions()) {
605     for (Block &block : region) {
606       // Drop any rewrites from within.
607       for (Operation &nestedOp : block)
608         if (nestedOp.getNumRegions())
609           notifyOpRemoved(&nestedOp);
610 
611       // Check if this block was converted.
612       auto it = conversionInfo.find(&block);
613       if (it == conversionInfo.end())
614         continue;
615 
616       // Drop all uses of the original arguments and delete the original block.
617       Block *origBlock = it->second.origBlock;
618       for (BlockArgument arg : origBlock->getArguments())
619         arg.dropAllUses();
620       conversionInfo.erase(it);
621     }
622   }
623 }
624 
625 void ArgConverter::discardRewrites(Block *block) {
626   auto it = conversionInfo.find(block);
627   if (it == conversionInfo.end())
628     return;
629   Block *origBlock = it->second.origBlock;
630 
631   // Drop all uses of the new block arguments and replace uses of the new block.
632   for (int i = block->getNumArguments() - 1; i >= 0; --i)
633     block->getArgument(i).dropAllUses();
634   block->replaceAllUsesWith(origBlock);
635 
636   // Move the operations back the original block and the delete the new block.
637   origBlock->getOperations().splice(origBlock->end(), block->getOperations());
638   origBlock->moveBefore(block);
639   block->erase();
640 
641   convertedBlocks.erase(origBlock);
642   conversionInfo.erase(it);
643 }
644 
645 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
646   for (auto &info : conversionInfo) {
647     ConvertedBlockInfo &blockInfo = info.second;
648     Block *origBlock = blockInfo.origBlock;
649 
650     // Process the remapping for each of the original arguments.
651     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
652       Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
653       BlockArgument origArg = origBlock->getArgument(i);
654 
655       // Handle the case of a 1->0 value mapping.
656       if (!argInfo) {
657         if (Value newArg = mapping.lookupOrNull(origArg, origArg.getType()))
658           origArg.replaceAllUsesWith(newArg);
659         continue;
660       }
661 
662       // Otherwise this is a 1->1+ value mapping.
663       Value castValue = argInfo->castValue;
664       assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
665 
666       // If the argument is still used, replace it with the generated cast.
667       if (!origArg.use_empty()) {
668         origArg.replaceAllUsesWith(
669             mapping.lookupOrDefault(castValue, origArg.getType()));
670       }
671     }
672   }
673 }
674 
675 LogicalResult ArgConverter::materializeLiveConversions(
676     ConversionValueMapping &mapping, OpBuilder &builder,
677     function_ref<Operation *(Value)> findLiveUser) {
678   for (auto &info : conversionInfo) {
679     Block *newBlock = info.first;
680     ConvertedBlockInfo &blockInfo = info.second;
681     Block *origBlock = blockInfo.origBlock;
682 
683     // Process the remapping for each of the original arguments.
684     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
685       // If the type of this argument changed and the argument is still live, we
686       // need to materialize a conversion.
687       BlockArgument origArg = origBlock->getArgument(i);
688       if (mapping.lookupOrNull(origArg, origArg.getType()))
689         continue;
690       Operation *liveUser = findLiveUser(origArg);
691       if (!liveUser)
692         continue;
693 
694       Value replacementValue = mapping.lookupOrDefault(origArg);
695       bool isDroppedArg = replacementValue == origArg;
696       if (isDroppedArg)
697         rewriter.setInsertionPointToStart(newBlock);
698       else
699         rewriter.setInsertionPointAfterValue(replacementValue);
700       Value newArg;
701       if (blockInfo.converter) {
702         newArg = blockInfo.converter->materializeSourceConversion(
703             rewriter, origArg.getLoc(), origArg.getType(),
704             isDroppedArg ? ValueRange() : ValueRange(replacementValue));
705         assert((!newArg || newArg.getType() == origArg.getType()) &&
706                "materialization hook did not provide a value of the expected "
707                "type");
708       }
709       if (!newArg) {
710         InFlightDiagnostic diag =
711             emitError(origArg.getLoc())
712             << "failed to materialize conversion for block argument #" << i
713             << " that remained live after conversion, type was "
714             << origArg.getType();
715         if (!isDroppedArg)
716           diag << ", with target type " << replacementValue.getType();
717         diag.attachNote(liveUser->getLoc())
718             << "see existing live user here: " << *liveUser;
719         return failure();
720       }
721       mapping.map(origArg, newArg);
722     }
723   }
724   return success();
725 }
726 
727 //===----------------------------------------------------------------------===//
728 // Conversion
729 
730 FailureOr<Block *> ArgConverter::convertSignature(
731     Block *block, TypeConverter *converter, ConversionValueMapping &mapping,
732     SmallVectorImpl<BlockArgument> &argReplacements) {
733   // Check if the block was already converted. If the block is detached,
734   // conservatively assume it is going to be deleted.
735   if (hasBeenConverted(block) || !block->getParent())
736     return block;
737   // If a converter wasn't provided, and the block wasn't already converted,
738   // there is nothing we can do.
739   if (!converter)
740     return failure();
741 
742   // Try to convert the signature for the block with the provided converter.
743   if (auto conversion = converter->convertBlockSignature(block))
744     return applySignatureConversion(block, converter, *conversion, mapping,
745                                     argReplacements);
746   return failure();
747 }
748 
749 Block *ArgConverter::applySignatureConversion(
750     Block *block, TypeConverter *converter,
751     TypeConverter::SignatureConversion &signatureConversion,
752     ConversionValueMapping &mapping,
753     SmallVectorImpl<BlockArgument> &argReplacements) {
754   // If no arguments are being changed or added, there is nothing to do.
755   unsigned origArgCount = block->getNumArguments();
756   auto convertedTypes = signatureConversion.getConvertedTypes();
757   if (origArgCount == 0 && convertedTypes.empty())
758     return block;
759 
760   // Split the block at the beginning to get a new block to use for the updated
761   // signature.
762   Block *newBlock = block->splitBlock(block->begin());
763   block->replaceAllUsesWith(newBlock);
764 
765   SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes));
766   ArrayRef<Value> newArgs(newArgRange);
767 
768   // Remap each of the original arguments as determined by the signature
769   // conversion.
770   ConvertedBlockInfo info(block, converter);
771   info.argInfo.resize(origArgCount);
772 
773   OpBuilder::InsertionGuard guard(rewriter);
774   rewriter.setInsertionPointToStart(newBlock);
775   for (unsigned i = 0; i != origArgCount; ++i) {
776     auto inputMap = signatureConversion.getInputMapping(i);
777     if (!inputMap)
778       continue;
779     BlockArgument origArg = block->getArgument(i);
780 
781     // If inputMap->replacementValue is not nullptr, then the argument is
782     // dropped and a replacement value is provided to be the remappedValue.
783     if (inputMap->replacementValue) {
784       assert(inputMap->size == 0 &&
785              "invalid to provide a replacement value when the argument isn't "
786              "dropped");
787       mapping.map(origArg, inputMap->replacementValue);
788       argReplacements.push_back(origArg);
789       continue;
790     }
791 
792     // Otherwise, this is a 1->1+ mapping.
793     auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
794     Value newArg;
795 
796     // If this is a 1->1 mapping and the types of new and replacement arguments
797     // match (i.e. it's an identity map), then the argument is mapped to its
798     // original type.
799     // FIXME: We simply pass through the replacement argument if there wasn't a
800     // converter, which isn't great as it allows implicit type conversions to
801     // appear. We should properly restructure this code to handle cases where a
802     // converter isn't provided and also to properly handle the case where an
803     // argument materialization is actually a temporary source materialization
804     // (e.g. in the case of 1->N).
805     if (replArgs.size() == 1 &&
806         (!converter || replArgs[0].getType() == origArg.getType())) {
807       newArg = replArgs.front();
808     } else {
809       Type origOutputType = origArg.getType();
810 
811       // Legalize the argument output type.
812       Type outputType = origOutputType;
813       if (Type legalOutputType = converter->convertType(outputType))
814         outputType = legalOutputType;
815 
816       newArg = buildUnresolvedArgumentMaterialization(
817           rewriter, origArg.getLoc(), replArgs, origOutputType, outputType,
818           converter, unresolvedMaterializations);
819     }
820 
821     mapping.map(origArg, newArg);
822     argReplacements.push_back(origArg);
823     info.argInfo[i] =
824         ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
825   }
826 
827   // Remove the original block from the region and return the new one.
828   insertConversion(newBlock, std::move(info));
829   return newBlock;
830 }
831 
832 void ArgConverter::insertConversion(Block *newBlock,
833                                     ConvertedBlockInfo &&info) {
834   // Get a region to insert the old block.
835   Region *region = newBlock->getParent();
836   std::unique_ptr<Region> &mappedRegion = regionMapping[region];
837   if (!mappedRegion)
838     mappedRegion = std::make_unique<Region>(region->getParentOp());
839 
840   // Move the original block to the mapped region and emplace the conversion.
841   mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
842                                    info.origBlock->getIterator());
843   convertedBlocks.insert(info.origBlock);
844   conversionInfo.insert({newBlock, std::move(info)});
845 }
846 
847 //===----------------------------------------------------------------------===//
848 // ConversionPatternRewriterImpl
849 //===----------------------------------------------------------------------===//
850 namespace mlir {
851 namespace detail {
852 struct ConversionPatternRewriterImpl {
853   ConversionPatternRewriterImpl(PatternRewriter &rewriter)
854       : argConverter(rewriter, unresolvedMaterializations) {}
855 
856   /// Cleanup and destroy any generated rewrite operations. This method is
857   /// invoked when the conversion process fails.
858   void discardRewrites();
859 
860   /// Apply all requested operation rewrites. This method is invoked when the
861   /// conversion process succeeds.
862   void applyRewrites();
863 
864   //===--------------------------------------------------------------------===//
865   // State Management
866   //===--------------------------------------------------------------------===//
867 
868   /// Return the current state of the rewriter.
869   RewriterState getCurrentState();
870 
871   /// Reset the state of the rewriter to a previously saved point.
872   void resetState(RewriterState state);
873 
874   /// Erase any blocks that were unlinked from their regions and stored in block
875   /// actions.
876   void eraseDanglingBlocks();
877 
878   /// Undo the block actions (motions, splits) one by one in reverse order until
879   /// "numActionsToKeep" actions remains.
880   void undoBlockActions(unsigned numActionsToKeep = 0);
881 
882   /// Remap the given values to those with potentially different types. Returns
883   /// success if the values could be remapped, failure otherwise. `valueDiagTag`
884   /// is the tag used when describing a value within a diagnostic, e.g.
885   /// "operand".
886   LogicalResult remapValues(StringRef valueDiagTag, Optional<Location> inputLoc,
887                             PatternRewriter &rewriter, ValueRange values,
888                             SmallVectorImpl<Value> &remapped);
889 
890   /// Returns true if the given operation is ignored, and does not need to be
891   /// converted.
892   bool isOpIgnored(Operation *op) const;
893 
894   /// Recursively marks the nested operations under 'op' as ignored. This
895   /// removes them from being considered for legalization.
896   void markNestedOpsIgnored(Operation *op);
897 
898   //===--------------------------------------------------------------------===//
899   // Type Conversion
900   //===--------------------------------------------------------------------===//
901 
902   /// Convert the signature of the given block.
903   FailureOr<Block *> convertBlockSignature(
904       Block *block, TypeConverter *converter,
905       TypeConverter::SignatureConversion *conversion = nullptr);
906 
907   /// Apply a signature conversion on the given region, using `converter` for
908   /// materializations if not null.
909   Block *
910   applySignatureConversion(Region *region,
911                            TypeConverter::SignatureConversion &conversion,
912                            TypeConverter *converter);
913 
914   /// Convert the types of block arguments within the given region.
915   FailureOr<Block *>
916   convertRegionTypes(Region *region, TypeConverter &converter,
917                      TypeConverter::SignatureConversion *entryConversion);
918 
919   /// Convert the types of non-entry block arguments within the given region.
920   LogicalResult convertNonEntryRegionTypes(
921       Region *region, TypeConverter &converter,
922       ArrayRef<TypeConverter::SignatureConversion> blockConversions = {});
923 
924   //===--------------------------------------------------------------------===//
925   // Rewriter Notification Hooks
926   //===--------------------------------------------------------------------===//
927 
928   /// PatternRewriter hook for replacing the results of an operation.
929   void notifyOpReplaced(Operation *op, ValueRange newValues);
930 
931   /// Notifies that a block is about to be erased.
932   void notifyBlockIsBeingErased(Block *block);
933 
934   /// Notifies that a block was created.
935   void notifyCreatedBlock(Block *block);
936 
937   /// Notifies that a block was split.
938   void notifySplitBlock(Block *block, Block *continuation);
939 
940   /// Notifies that `block` is being merged with `srcBlock`.
941   void notifyBlocksBeingMerged(Block *block, Block *srcBlock);
942 
943   /// Notifies that the blocks of a region are about to be moved.
944   void notifyRegionIsBeingInlinedBefore(Region &region, Region &parent,
945                                         Region::iterator before);
946 
947   /// Notifies that the blocks of a region were cloned into another.
948   void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
949                                    Location origRegionLoc);
950 
951   /// Notifies that a pattern match failed for the given reason.
952   LogicalResult
953   notifyMatchFailure(Location loc,
954                      function_ref<void(Diagnostic &)> reasonCallback);
955 
956   //===--------------------------------------------------------------------===//
957   // State
958   //===--------------------------------------------------------------------===//
959 
960   // Mapping between replaced values that differ in type. This happens when
961   // replacing a value with one of a different type.
962   ConversionValueMapping mapping;
963 
964   /// Utility used to convert block arguments.
965   ArgConverter argConverter;
966 
967   /// Ordered vector of all of the newly created operations during conversion.
968   SmallVector<Operation *> createdOps;
969 
970   /// Ordered vector of all unresolved type conversion materializations during
971   /// conversion.
972   SmallVector<UnresolvedMaterialization> unresolvedMaterializations;
973 
974   /// Ordered map of requested operation replacements.
975   llvm::MapVector<Operation *, OpReplacement> replacements;
976 
977   /// Ordered vector of any requested block argument replacements.
978   SmallVector<BlockArgument, 4> argReplacements;
979 
980   /// Ordered list of block operations (creations, splits, motions).
981   SmallVector<BlockAction, 4> blockActions;
982 
983   /// A set of operations that should no longer be considered for legalization,
984   /// but were not directly replace/erased/etc. by a pattern. These are
985   /// generally child operations of other operations who were
986   /// replaced/erased/etc. This is not meant to be an exhaustive list of all
987   /// operations, but the minimal set that can be used to detect if a given
988   /// operation should be `ignored`. For example, we may add the operations that
989   /// define non-empty regions to the set, but not any of the others. This
990   /// simplifies the amount of memory needed as we can query if the parent
991   /// operation was ignored.
992   SetVector<Operation *> ignoredOps;
993 
994   /// A transaction state for each of operations that were updated in-place.
995   SmallVector<OperationTransactionState, 4> rootUpdates;
996 
997   /// A vector of indices into `replacements` of operations that were replaced
998   /// with values with different result types than the original operation, e.g.
999   /// 1->N conversion of some kind.
1000   SmallVector<unsigned, 4> operationsWithChangedResults;
1001 
1002   /// The current type converter, or nullptr if no type converter is currently
1003   /// active.
1004   TypeConverter *currentTypeConverter = nullptr;
1005 
1006 #ifndef NDEBUG
1007   /// A set of operations that have pending updates. This tracking isn't
1008   /// strictly necessary, and is thus only active during debug builds for extra
1009   /// verification.
1010   SmallPtrSet<Operation *, 1> pendingRootUpdates;
1011 
1012   /// A logger used to emit diagnostics during the conversion process.
1013   llvm::ScopedPrinter logger{llvm::dbgs()};
1014 #endif
1015 };
1016 } // end namespace detail
1017 } // end namespace mlir
1018 
1019 /// Detach any operations nested in the given operation from their parent
1020 /// blocks, and erase the given operation. This can be used when the nested
1021 /// operations are scheduled for erasure themselves, so deleting the regions of
1022 /// the given operation together with their content would result in double-free.
1023 /// This happens, for example, when rolling back op creation in the reverse
1024 /// order and if the nested ops were created before the parent op. This function
1025 /// does not need to collect nested ops recursively because it is expected to
1026 /// also be called for each nested op when it is about to be deleted.
1027 static void detachNestedAndErase(Operation *op) {
1028   for (Region &region : op->getRegions()) {
1029     for (Block &block : region.getBlocks()) {
1030       while (!block.getOperations().empty())
1031         block.getOperations().remove(block.getOperations().begin());
1032       block.dropAllDefinedValueUses();
1033     }
1034   }
1035   op->dropAllUses();
1036   op->erase();
1037 }
1038 
1039 void ConversionPatternRewriterImpl::discardRewrites() {
1040   // Reset any operations that were updated in place.
1041   for (auto &state : rootUpdates)
1042     state.resetOperation();
1043 
1044   undoBlockActions();
1045 
1046   // Remove any newly created ops.
1047   for (UnresolvedMaterialization &materialization : unresolvedMaterializations)
1048     detachNestedAndErase(materialization.getOp());
1049   for (auto *op : llvm::reverse(createdOps))
1050     detachNestedAndErase(op);
1051 }
1052 
1053 void ConversionPatternRewriterImpl::applyRewrites() {
1054   // Apply all of the rewrites replacements requested during conversion.
1055   for (auto &repl : replacements) {
1056     for (OpResult result : repl.first->getResults())
1057       if (Value newValue = mapping.lookupOrNull(result, result.getType()))
1058         result.replaceAllUsesWith(newValue);
1059 
1060     // If this operation defines any regions, drop any pending argument
1061     // rewrites.
1062     if (repl.first->getNumRegions())
1063       argConverter.notifyOpRemoved(repl.first);
1064   }
1065 
1066   // Apply all of the requested argument replacements.
1067   for (BlockArgument arg : argReplacements) {
1068     Value repl = mapping.lookupOrNull(arg, arg.getType());
1069     if (!repl)
1070       continue;
1071 
1072     if (repl.isa<BlockArgument>()) {
1073       arg.replaceAllUsesWith(repl);
1074       continue;
1075     }
1076 
1077     // If the replacement value is an operation, we check to make sure that we
1078     // don't replace uses that are within the parent operation of the
1079     // replacement value.
1080     Operation *replOp = repl.cast<OpResult>().getOwner();
1081     Block *replBlock = replOp->getBlock();
1082     arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
1083       Operation *user = operand.getOwner();
1084       return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
1085     });
1086   }
1087 
1088   // Drop all of the unresolved materialization operations created during
1089   // conversion.
1090   for (auto &mat : unresolvedMaterializations) {
1091     mat.getOp()->dropAllUses();
1092     mat.getOp()->erase();
1093   }
1094 
1095   // In a second pass, erase all of the replaced operations in reverse. This
1096   // allows processing nested operations before their parent region is
1097   // destroyed. Because we process in reverse order, producers may be deleted
1098   // before their users (a pattern deleting a producer and then the consumer)
1099   // so we first drop all uses explicitly.
1100   for (auto &repl : llvm::reverse(replacements)) {
1101     repl.first->dropAllUses();
1102     repl.first->erase();
1103   }
1104 
1105   argConverter.applyRewrites(mapping);
1106 
1107   // Now that the ops have been erased, also erase dangling blocks.
1108   eraseDanglingBlocks();
1109 }
1110 
1111 //===----------------------------------------------------------------------===//
1112 // State Management
1113 
1114 RewriterState ConversionPatternRewriterImpl::getCurrentState() {
1115   return RewriterState(createdOps.size(), unresolvedMaterializations.size(),
1116                        replacements.size(), argReplacements.size(),
1117                        blockActions.size(), ignoredOps.size(),
1118                        rootUpdates.size());
1119 }
1120 
1121 void ConversionPatternRewriterImpl::resetState(RewriterState state) {
1122   // Reset any operations that were updated in place.
1123   for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
1124     rootUpdates[i].resetOperation();
1125   rootUpdates.resize(state.numRootUpdates);
1126 
1127   // Reset any replaced arguments.
1128   for (BlockArgument replacedArg :
1129        llvm::drop_begin(argReplacements, state.numArgReplacements))
1130     mapping.erase(replacedArg);
1131   argReplacements.resize(state.numArgReplacements);
1132 
1133   // Undo any block actions.
1134   undoBlockActions(state.numBlockActions);
1135 
1136   // Reset any replaced operations and undo any saved mappings.
1137   for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
1138     for (auto result : repl.first->getResults())
1139       mapping.erase(result);
1140   while (replacements.size() != state.numReplacements)
1141     replacements.pop_back();
1142 
1143   // Pop all of the newly inserted materializations.
1144   while (unresolvedMaterializations.size() !=
1145          state.numUnresolvedMaterializations) {
1146     UnresolvedMaterialization mat = unresolvedMaterializations.pop_back_val();
1147     UnrealizedConversionCastOp op = mat.getOp();
1148 
1149     // If this was a target materialization, drop the mapping that was inserted.
1150     if (mat.getKind() == UnresolvedMaterialization::Target) {
1151       for (Value input : op->getOperands())
1152         mapping.erase(input);
1153     }
1154     detachNestedAndErase(op);
1155   }
1156 
1157   // Pop all of the newly created operations.
1158   while (createdOps.size() != state.numCreatedOps) {
1159     detachNestedAndErase(createdOps.back());
1160     createdOps.pop_back();
1161   }
1162 
1163   // Pop all of the recorded ignored operations that are no longer valid.
1164   while (ignoredOps.size() != state.numIgnoredOperations)
1165     ignoredOps.pop_back();
1166 
1167   // Reset operations with changed results.
1168   while (!operationsWithChangedResults.empty() &&
1169          operationsWithChangedResults.back() >= state.numReplacements)
1170     operationsWithChangedResults.pop_back();
1171 }
1172 
1173 void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
1174   for (auto &action : blockActions)
1175     if (action.kind == BlockActionKind::Erase)
1176       delete action.block;
1177 }
1178 
1179 void ConversionPatternRewriterImpl::undoBlockActions(
1180     unsigned numActionsToKeep) {
1181   for (auto &action :
1182        llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
1183     switch (action.kind) {
1184     // Delete the created block.
1185     case BlockActionKind::Create: {
1186       // Unlink all of the operations within this block, they will be deleted
1187       // separately.
1188       auto &blockOps = action.block->getOperations();
1189       while (!blockOps.empty())
1190         blockOps.remove(blockOps.begin());
1191       action.block->dropAllDefinedValueUses();
1192       action.block->erase();
1193       break;
1194     }
1195     // Put the block (owned by action) back into its original position.
1196     case BlockActionKind::Erase: {
1197       auto &blockList = action.originalPosition.region->getBlocks();
1198       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1199       blockList.insert((insertAfterBlock
1200                             ? std::next(Region::iterator(insertAfterBlock))
1201                             : blockList.begin()),
1202                        action.block);
1203       break;
1204     }
1205     // Split the block at the position which was originally the end of the
1206     // destination block (owned by action), and put the instructions back into
1207     // the block used before the merge.
1208     case BlockActionKind::Merge: {
1209       Block *sourceBlock = action.mergeInfo.sourceBlock;
1210       Block::iterator splitPoint =
1211           (action.mergeInfo.destBlockLastInst
1212                ? ++Block::iterator(action.mergeInfo.destBlockLastInst)
1213                : action.block->begin());
1214       sourceBlock->getOperations().splice(sourceBlock->begin(),
1215                                           action.block->getOperations(),
1216                                           splitPoint, action.block->end());
1217       break;
1218     }
1219     // Move the block back to its original position.
1220     case BlockActionKind::Move: {
1221       Region *originalRegion = action.originalPosition.region;
1222       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1223       originalRegion->getBlocks().splice(
1224           (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
1225                             : originalRegion->end()),
1226           action.block->getParent()->getBlocks(), action.block);
1227       break;
1228     }
1229     // Merge back the block that was split out.
1230     case BlockActionKind::Split: {
1231       action.originalBlock->getOperations().splice(
1232           action.originalBlock->end(), action.block->getOperations());
1233       action.block->dropAllDefinedValueUses();
1234       action.block->erase();
1235       break;
1236     }
1237     // Undo the type conversion.
1238     case BlockActionKind::TypeConversion: {
1239       argConverter.discardRewrites(action.block);
1240       break;
1241     }
1242     }
1243   }
1244   blockActions.resize(numActionsToKeep);
1245 }
1246 
1247 LogicalResult ConversionPatternRewriterImpl::remapValues(
1248     StringRef valueDiagTag, Optional<Location> inputLoc,
1249     PatternRewriter &rewriter, ValueRange values,
1250     SmallVectorImpl<Value> &remapped) {
1251   remapped.reserve(llvm::size(values));
1252 
1253   SmallVector<Type, 1> legalTypes;
1254   for (auto it : llvm::enumerate(values)) {
1255     Value operand = it.value();
1256     Type origType = operand.getType();
1257 
1258     // If a converter was provided, get the desired legal types for this
1259     // operand.
1260     Type desiredType;
1261     if (currentTypeConverter) {
1262       // If there is no legal conversion, fail to match this pattern.
1263       legalTypes.clear();
1264       if (failed(currentTypeConverter->convertType(origType, legalTypes))) {
1265         Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
1266         return notifyMatchFailure(operandLoc, [=](Diagnostic &diag) {
1267           diag << "unable to convert type for " << valueDiagTag << " #"
1268                << it.index() << ", type was " << origType;
1269         });
1270       }
1271       // TODO: There currently isn't any mechanism to do 1->N type conversion
1272       // via the PatternRewriter replacement API, so for now we just ignore it.
1273       if (legalTypes.size() == 1)
1274         desiredType = legalTypes.front();
1275     } else {
1276       // TODO: What we should do here is just set `desiredType` to `origType`
1277       // and then handle the necessary type conversions after the conversion
1278       // process has finished. Unfortunately a lot of patterns currently rely on
1279       // receiving the new operands even if the types change, so we keep the
1280       // original behavior here for now until all of the patterns relying on
1281       // this get updated.
1282     }
1283     Value newOperand = mapping.lookupOrDefault(operand, desiredType);
1284 
1285     // Handle the case where the conversion was 1->1 and the new operand type
1286     // isn't legal.
1287     Type newOperandType = newOperand.getType();
1288     if (currentTypeConverter && desiredType && newOperandType != desiredType) {
1289       Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
1290       Value castValue = buildUnresolvedTargetMaterialization(
1291           operandLoc, newOperand, desiredType, currentTypeConverter,
1292           unresolvedMaterializations);
1293       mapping.map(mapping.lookupOrDefault(newOperand), castValue);
1294       newOperand = castValue;
1295     }
1296     remapped.push_back(newOperand);
1297   }
1298   return success();
1299 }
1300 
1301 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
1302   // Check to see if this operation was replaced or its parent ignored.
1303   return replacements.count(op) || ignoredOps.count(op->getParentOp());
1304 }
1305 
1306 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
1307   // Walk this operation and collect nested operations that define non-empty
1308   // regions. We mark such operations as 'ignored' so that we know we don't have
1309   // to convert them, or their nested ops.
1310   if (op->getNumRegions() == 0)
1311     return;
1312   op->walk([&](Operation *op) {
1313     if (llvm::any_of(op->getRegions(),
1314                      [](Region &region) { return !region.empty(); }))
1315       ignoredOps.insert(op);
1316   });
1317 }
1318 
1319 //===----------------------------------------------------------------------===//
1320 // Type Conversion
1321 
1322 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
1323     Block *block, TypeConverter *converter,
1324     TypeConverter::SignatureConversion *conversion) {
1325   FailureOr<Block *> result =
1326       conversion ? argConverter.applySignatureConversion(
1327                        block, converter, *conversion, mapping, argReplacements)
1328                  : argConverter.convertSignature(block, converter, mapping,
1329                                                  argReplacements);
1330   if (failed(result))
1331     return failure();
1332   if (Block *newBlock = result.getValue()) {
1333     if (newBlock != block)
1334       blockActions.push_back(BlockAction::getTypeConversion(newBlock));
1335   }
1336   return result;
1337 }
1338 
1339 Block *ConversionPatternRewriterImpl::applySignatureConversion(
1340     Region *region, TypeConverter::SignatureConversion &conversion,
1341     TypeConverter *converter) {
1342   if (!region->empty())
1343     return *convertBlockSignature(&region->front(), converter, &conversion);
1344   return nullptr;
1345 }
1346 
1347 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
1348     Region *region, TypeConverter &converter,
1349     TypeConverter::SignatureConversion *entryConversion) {
1350   argConverter.setConverter(region, &converter);
1351   if (region->empty())
1352     return nullptr;
1353 
1354   if (failed(convertNonEntryRegionTypes(region, converter)))
1355     return failure();
1356 
1357   FailureOr<Block *> newEntry =
1358       convertBlockSignature(&region->front(), &converter, entryConversion);
1359   return newEntry;
1360 }
1361 
1362 LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes(
1363     Region *region, TypeConverter &converter,
1364     ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1365   argConverter.setConverter(region, &converter);
1366   if (region->empty())
1367     return success();
1368 
1369   // Convert the arguments of each block within the region.
1370   int blockIdx = 0;
1371   assert((blockConversions.empty() ||
1372           blockConversions.size() == region->getBlocks().size() - 1) &&
1373          "expected either to provide no SignatureConversions at all or to "
1374          "provide a SignatureConversion for each non-entry block");
1375 
1376   for (Block &block :
1377        llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
1378     TypeConverter::SignatureConversion *blockConversion =
1379         blockConversions.empty()
1380             ? nullptr
1381             : const_cast<TypeConverter::SignatureConversion *>(
1382                   &blockConversions[blockIdx++]);
1383 
1384     if (failed(convertBlockSignature(&block, &converter, blockConversion)))
1385       return failure();
1386   }
1387   return success();
1388 }
1389 
1390 //===----------------------------------------------------------------------===//
1391 // Rewriter Notification Hooks
1392 
1393 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
1394                                                      ValueRange newValues) {
1395   assert(newValues.size() == op->getNumResults());
1396   assert(!replacements.count(op) && "operation was already replaced");
1397 
1398   // Track if any of the results changed, e.g. erased and replaced with null.
1399   bool resultChanged = false;
1400 
1401   // Create mappings for each of the new result values.
1402   Value newValue, result;
1403   for (auto it : llvm::zip(newValues, op->getResults())) {
1404     std::tie(newValue, result) = it;
1405     if (!newValue) {
1406       resultChanged = true;
1407       continue;
1408     }
1409     // Remap, and check for any result type changes.
1410     mapping.map(result, newValue);
1411     resultChanged |= (newValue.getType() != result.getType());
1412   }
1413   if (resultChanged)
1414     operationsWithChangedResults.push_back(replacements.size());
1415 
1416   // Record the requested operation replacement.
1417   replacements.insert(std::make_pair(op, OpReplacement(currentTypeConverter)));
1418 
1419   // Mark this operation as recursively ignored so that we don't need to
1420   // convert any nested operations.
1421   markNestedOpsIgnored(op);
1422 }
1423 
1424 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
1425   Region *region = block->getParent();
1426   Block *origPrevBlock = block->getPrevNode();
1427   blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
1428 }
1429 
1430 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
1431   blockActions.push_back(BlockAction::getCreate(block));
1432 }
1433 
1434 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
1435                                                      Block *continuation) {
1436   blockActions.push_back(BlockAction::getSplit(continuation, block));
1437 }
1438 
1439 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block,
1440                                                             Block *srcBlock) {
1441   blockActions.push_back(BlockAction::getMerge(block, srcBlock));
1442 }
1443 
1444 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
1445     Region &region, Region &parent, Region::iterator before) {
1446   if (region.empty())
1447     return;
1448   Block *laterBlock = &region.back();
1449   for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) {
1450     blockActions.push_back(
1451         BlockAction::getMove(laterBlock, {&region, &earlierBlock}));
1452     laterBlock = &earlierBlock;
1453   }
1454   blockActions.push_back(BlockAction::getMove(laterBlock, {&region, nullptr}));
1455 }
1456 
1457 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
1458     iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
1459   for (Block &block : blocks)
1460     blockActions.push_back(BlockAction::getCreate(&block));
1461 
1462   // Compute the conversion set for the inlined region.
1463   auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
1464 
1465   // This original region has already had its conversion set computed, so there
1466   // shouldn't be any new failures.
1467   (void)result;
1468   assert(succeeded(result) && "expected region to have no unreachable blocks");
1469 }
1470 
1471 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
1472     Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
1473   LLVM_DEBUG({
1474     Diagnostic diag(loc, DiagnosticSeverity::Remark);
1475     reasonCallback(diag);
1476     logger.startLine() << "** Failure : " << diag.str() << "\n";
1477   });
1478   return failure();
1479 }
1480 
1481 //===----------------------------------------------------------------------===//
1482 // ConversionPatternRewriter
1483 //===----------------------------------------------------------------------===//
1484 
1485 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
1486     : PatternRewriter(ctx),
1487       impl(new detail::ConversionPatternRewriterImpl(*this)) {}
1488 ConversionPatternRewriter::~ConversionPatternRewriter() {}
1489 
1490 void ConversionPatternRewriter::replaceOpWithIf(
1491     Operation *op, ValueRange newValues, bool *allUsesReplaced,
1492     llvm::unique_function<bool(OpOperand &) const> functor) {
1493   // TODO: To support this we will need to rework a bit of how replacements are
1494   // tracked, given that this isn't guranteed to replace all of the uses of an
1495   // operation. The main change is that now an operation can be replaced
1496   // multiple times, in parts. The current "set" based tracking is mainly useful
1497   // for tracking if a replaced operation should be ignored, i.e. if all of the
1498   // uses will be replaced.
1499   llvm_unreachable(
1500       "replaceOpWithIf is currently not supported by DialectConversion");
1501 }
1502 
1503 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
1504   LLVM_DEBUG({
1505     impl->logger.startLine()
1506         << "** Replace : '" << op->getName() << "'(" << op << ")\n";
1507   });
1508   impl->notifyOpReplaced(op, newValues);
1509 }
1510 
1511 void ConversionPatternRewriter::eraseOp(Operation *op) {
1512   LLVM_DEBUG({
1513     impl->logger.startLine()
1514         << "** Erase   : '" << op->getName() << "'(" << op << ")\n";
1515   });
1516   SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
1517   impl->notifyOpReplaced(op, nullRepls);
1518 }
1519 
1520 void ConversionPatternRewriter::eraseBlock(Block *block) {
1521   impl->notifyBlockIsBeingErased(block);
1522 
1523   // Mark all ops for erasure.
1524   for (Operation &op : *block)
1525     eraseOp(&op);
1526 
1527   // Unlink the block from its parent region. The block is kept in the block
1528   // action and will be actually destroyed when rewrites are applied. This
1529   // allows us to keep the operations in the block live and undo the removal by
1530   // re-inserting the block.
1531   block->getParent()->getBlocks().remove(block);
1532 }
1533 
1534 Block *ConversionPatternRewriter::applySignatureConversion(
1535     Region *region, TypeConverter::SignatureConversion &conversion,
1536     TypeConverter *converter) {
1537   return impl->applySignatureConversion(region, conversion, converter);
1538 }
1539 
1540 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
1541     Region *region, TypeConverter &converter,
1542     TypeConverter::SignatureConversion *entryConversion) {
1543   return impl->convertRegionTypes(region, converter, entryConversion);
1544 }
1545 
1546 LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes(
1547     Region *region, TypeConverter &converter,
1548     ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1549   return impl->convertNonEntryRegionTypes(region, converter, blockConversions);
1550 }
1551 
1552 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
1553                                                            Value to) {
1554   LLVM_DEBUG({
1555     Operation *parentOp = from.getOwner()->getParentOp();
1556     impl->logger.startLine() << "** Replace Argument : '" << from
1557                              << "'(in region of '" << parentOp->getName()
1558                              << "'(" << from.getOwner()->getParentOp() << ")\n";
1559   });
1560   impl->argReplacements.push_back(from);
1561   impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
1562 }
1563 
1564 Value ConversionPatternRewriter::getRemappedValue(Value key) {
1565   SmallVector<Value> remappedValues;
1566   if (failed(impl->remapValues("value", /*inputLoc=*/llvm::None, *this, key,
1567                                remappedValues)))
1568     return nullptr;
1569   return remappedValues.front();
1570 }
1571 
1572 LogicalResult
1573 ConversionPatternRewriter::getRemappedValues(ValueRange keys,
1574                                              SmallVectorImpl<Value> &results) {
1575   if (keys.empty())
1576     return success();
1577   return impl->remapValues("value", /*inputLoc=*/llvm::None, *this, keys,
1578                            results);
1579 }
1580 
1581 void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
1582   impl->notifyCreatedBlock(block);
1583 }
1584 
1585 Block *ConversionPatternRewriter::splitBlock(Block *block,
1586                                              Block::iterator before) {
1587   auto *continuation = PatternRewriter::splitBlock(block, before);
1588   impl->notifySplitBlock(block, continuation);
1589   return continuation;
1590 }
1591 
1592 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
1593                                             ValueRange argValues) {
1594   impl->notifyBlocksBeingMerged(dest, source);
1595   assert(llvm::all_of(source->getPredecessors(),
1596                       [dest](Block *succ) { return succ == dest; }) &&
1597          "expected 'source' to have no predecessors or only 'dest'");
1598   assert(argValues.size() == source->getNumArguments() &&
1599          "incorrect # of argument replacement values");
1600   for (auto it : llvm::zip(source->getArguments(), argValues))
1601     replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
1602   dest->getOperations().splice(dest->end(), source->getOperations());
1603   eraseBlock(source);
1604 }
1605 
1606 void ConversionPatternRewriter::inlineRegionBefore(Region &region,
1607                                                    Region &parent,
1608                                                    Region::iterator before) {
1609   impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
1610   PatternRewriter::inlineRegionBefore(region, parent, before);
1611 }
1612 
1613 void ConversionPatternRewriter::cloneRegionBefore(
1614     Region &region, Region &parent, Region::iterator before,
1615     BlockAndValueMapping &mapping) {
1616   if (region.empty())
1617     return;
1618   PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
1619 
1620   // Collect the range of the cloned blocks.
1621   auto clonedBeginIt = mapping.lookup(&region.front())->getIterator();
1622   auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
1623   impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
1624 }
1625 
1626 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
1627   LLVM_DEBUG({
1628     impl->logger.startLine()
1629         << "** Insert  : '" << op->getName() << "'(" << op << ")\n";
1630   });
1631   impl->createdOps.push_back(op);
1632 }
1633 
1634 void ConversionPatternRewriter::startRootUpdate(Operation *op) {
1635 #ifndef NDEBUG
1636   impl->pendingRootUpdates.insert(op);
1637 #endif
1638   impl->rootUpdates.emplace_back(op);
1639 }
1640 
1641 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
1642   // There is nothing to do here, we only need to track the operation at the
1643   // start of the update.
1644 #ifndef NDEBUG
1645   assert(impl->pendingRootUpdates.erase(op) &&
1646          "operation did not have a pending in-place update");
1647 #endif
1648 }
1649 
1650 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
1651 #ifndef NDEBUG
1652   assert(impl->pendingRootUpdates.erase(op) &&
1653          "operation did not have a pending in-place update");
1654 #endif
1655   // Erase the last update for this operation.
1656   auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
1657   auto &rootUpdates = impl->rootUpdates;
1658   auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
1659   assert(it != rootUpdates.rend() && "no root update started on op");
1660   (*it).resetOperation();
1661   int updateIdx = std::prev(rootUpdates.rend()) - it;
1662   rootUpdates.erase(rootUpdates.begin() + updateIdx);
1663 }
1664 
1665 LogicalResult ConversionPatternRewriter::notifyMatchFailure(
1666     Operation *op, function_ref<void(Diagnostic &)> reasonCallback) {
1667   return impl->notifyMatchFailure(op->getLoc(), reasonCallback);
1668 }
1669 
1670 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
1671   return *impl;
1672 }
1673 
1674 //===----------------------------------------------------------------------===//
1675 // ConversionPattern
1676 //===----------------------------------------------------------------------===//
1677 
1678 LogicalResult
1679 ConversionPattern::matchAndRewrite(Operation *op,
1680                                    PatternRewriter &rewriter) const {
1681   auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
1682   auto &rewriterImpl = dialectRewriter.getImpl();
1683 
1684   // Track the current conversion pattern type converter in the rewriter.
1685   llvm::SaveAndRestore<TypeConverter *> currentConverterGuard(
1686       rewriterImpl.currentTypeConverter, getTypeConverter());
1687 
1688   // Remap the operands of the operation.
1689   SmallVector<Value, 4> operands;
1690   if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter,
1691                                       op->getOperands(), operands))) {
1692     return failure();
1693   }
1694   return matchAndRewrite(op, operands, dialectRewriter);
1695 }
1696 
1697 //===----------------------------------------------------------------------===//
1698 // OperationLegalizer
1699 //===----------------------------------------------------------------------===//
1700 
1701 namespace {
1702 /// A set of rewrite patterns that can be used to legalize a given operation.
1703 using LegalizationPatterns = SmallVector<const Pattern *, 1>;
1704 
1705 /// This class defines a recursive operation legalizer.
1706 class OperationLegalizer {
1707 public:
1708   using LegalizationAction = ConversionTarget::LegalizationAction;
1709 
1710   OperationLegalizer(ConversionTarget &targetInfo,
1711                      const FrozenRewritePatternSet &patterns);
1712 
1713   /// Returns true if the given operation is known to be illegal on the target.
1714   bool isIllegal(Operation *op) const;
1715 
1716   /// Attempt to legalize the given operation. Returns success if the operation
1717   /// was legalized, failure otherwise.
1718   LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
1719 
1720   /// Returns the conversion target in use by the legalizer.
1721   ConversionTarget &getTarget() { return target; }
1722 
1723 private:
1724   /// Attempt to legalize the given operation by folding it.
1725   LogicalResult legalizeWithFold(Operation *op,
1726                                  ConversionPatternRewriter &rewriter);
1727 
1728   /// Attempt to legalize the given operation by applying a pattern. Returns
1729   /// success if the operation was legalized, failure otherwise.
1730   LogicalResult legalizeWithPattern(Operation *op,
1731                                     ConversionPatternRewriter &rewriter);
1732 
1733   /// Return true if the given pattern may be applied to the given operation,
1734   /// false otherwise.
1735   bool canApplyPattern(Operation *op, const Pattern &pattern,
1736                        ConversionPatternRewriter &rewriter);
1737 
1738   /// Legalize the resultant IR after successfully applying the given pattern.
1739   LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
1740                                       ConversionPatternRewriter &rewriter,
1741                                       RewriterState &curState);
1742 
1743   /// Legalizes the actions registered during the execution of a pattern.
1744   LogicalResult legalizePatternBlockActions(Operation *op,
1745                                             ConversionPatternRewriter &rewriter,
1746                                             ConversionPatternRewriterImpl &impl,
1747                                             RewriterState &state,
1748                                             RewriterState &newState);
1749   LogicalResult legalizePatternCreatedOperations(
1750       ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1751       RewriterState &state, RewriterState &newState);
1752   LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
1753                                            ConversionPatternRewriterImpl &impl,
1754                                            RewriterState &state,
1755                                            RewriterState &newState);
1756 
1757   //===--------------------------------------------------------------------===//
1758   // Cost Model
1759   //===--------------------------------------------------------------------===//
1760 
1761   /// Build an optimistic legalization graph given the provided patterns. This
1762   /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
1763   /// patterns for operations that are not directly legal, but may be
1764   /// transitively legal for the current target given the provided patterns.
1765   void buildLegalizationGraph(
1766       LegalizationPatterns &anyOpLegalizerPatterns,
1767       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1768 
1769   /// Compute the benefit of each node within the computed legalization graph.
1770   /// This orders the patterns within 'legalizerPatterns' based upon two
1771   /// criteria:
1772   ///  1) Prefer patterns that have the lowest legalization depth, i.e.
1773   ///     represent the more direct mapping to the target.
1774   ///  2) When comparing patterns with the same legalization depth, prefer the
1775   ///     pattern with the highest PatternBenefit. This allows for users to
1776   ///     prefer specific legalizations over others.
1777   void computeLegalizationGraphBenefit(
1778       LegalizationPatterns &anyOpLegalizerPatterns,
1779       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1780 
1781   /// Compute the legalization depth when legalizing an operation of the given
1782   /// type.
1783   unsigned computeOpLegalizationDepth(
1784       OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
1785       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1786 
1787   /// Apply the conversion cost model to the given set of patterns, and return
1788   /// the smallest legalization depth of any of the patterns. See
1789   /// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
1790   unsigned applyCostModelToPatterns(
1791       LegalizationPatterns &patterns,
1792       DenseMap<OperationName, unsigned> &minOpPatternDepth,
1793       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1794 
1795   /// The current set of patterns that have been applied.
1796   SmallPtrSet<const Pattern *, 8> appliedPatterns;
1797 
1798   /// The legalization information provided by the target.
1799   ConversionTarget &target;
1800 
1801   /// The pattern applicator to use for conversions.
1802   PatternApplicator applicator;
1803 };
1804 } // namespace
1805 
1806 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo,
1807                                        const FrozenRewritePatternSet &patterns)
1808     : target(targetInfo), applicator(patterns) {
1809   // The set of patterns that can be applied to illegal operations to transform
1810   // them into legal ones.
1811   DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
1812   LegalizationPatterns anyOpLegalizerPatterns;
1813 
1814   buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
1815   computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
1816 }
1817 
1818 bool OperationLegalizer::isIllegal(Operation *op) const {
1819   // Check if the target explicitly marked this operation as illegal.
1820   if (auto info = target.getOpAction(op->getName())) {
1821     if (*info == LegalizationAction::Dynamic)
1822       return !target.isLegal(op);
1823     return *info == LegalizationAction::Illegal;
1824   }
1825 
1826   return false;
1827 }
1828 
1829 LogicalResult
1830 OperationLegalizer::legalize(Operation *op,
1831                              ConversionPatternRewriter &rewriter) {
1832 #ifndef NDEBUG
1833   const char *logLineComment =
1834       "//===-------------------------------------------===//\n";
1835 
1836   auto &logger = rewriter.getImpl().logger;
1837 #endif
1838   LLVM_DEBUG({
1839     logger.getOStream() << "\n";
1840     logger.startLine() << logLineComment;
1841     logger.startLine() << "Legalizing operation : '" << op->getName() << "'("
1842                        << op << ") {\n";
1843     logger.indent();
1844 
1845     // If the operation has no regions, just print it here.
1846     if (op->getNumRegions() == 0) {
1847       op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm());
1848       logger.getOStream() << "\n\n";
1849     }
1850   });
1851 
1852   // Check if this operation is legal on the target.
1853   if (auto legalityInfo = target.isLegal(op)) {
1854     LLVM_DEBUG({
1855       logSuccess(
1856           logger, "operation marked legal by the target{0}",
1857           legalityInfo->isRecursivelyLegal
1858               ? "; NOTE: operation is recursively legal; skipping internals"
1859               : "");
1860       logger.startLine() << logLineComment;
1861     });
1862 
1863     // If this operation is recursively legal, mark its children as ignored so
1864     // that we don't consider them for legalization.
1865     if (legalityInfo->isRecursivelyLegal)
1866       rewriter.getImpl().markNestedOpsIgnored(op);
1867     return success();
1868   }
1869 
1870   // Check to see if the operation is ignored and doesn't need to be converted.
1871   if (rewriter.getImpl().isOpIgnored(op)) {
1872     LLVM_DEBUG({
1873       logSuccess(logger, "operation marked 'ignored' during conversion");
1874       logger.startLine() << logLineComment;
1875     });
1876     return success();
1877   }
1878 
1879   // If the operation isn't legal, try to fold it in-place.
1880   // TODO: Should we always try to do this, even if the op is
1881   // already legal?
1882   if (succeeded(legalizeWithFold(op, rewriter))) {
1883     LLVM_DEBUG({
1884       logSuccess(logger, "operation was folded");
1885       logger.startLine() << logLineComment;
1886     });
1887     return success();
1888   }
1889 
1890   // Otherwise, we need to apply a legalization pattern to this operation.
1891   if (succeeded(legalizeWithPattern(op, rewriter))) {
1892     LLVM_DEBUG({
1893       logSuccess(logger, "");
1894       logger.startLine() << logLineComment;
1895     });
1896     return success();
1897   }
1898 
1899   LLVM_DEBUG({
1900     logFailure(logger, "no matched legalization pattern");
1901     logger.startLine() << logLineComment;
1902   });
1903   return failure();
1904 }
1905 
1906 LogicalResult
1907 OperationLegalizer::legalizeWithFold(Operation *op,
1908                                      ConversionPatternRewriter &rewriter) {
1909   auto &rewriterImpl = rewriter.getImpl();
1910   RewriterState curState = rewriterImpl.getCurrentState();
1911 
1912   LLVM_DEBUG({
1913     rewriterImpl.logger.startLine() << "* Fold {\n";
1914     rewriterImpl.logger.indent();
1915   });
1916 
1917   // Try to fold the operation.
1918   SmallVector<Value, 2> replacementValues;
1919   rewriter.setInsertionPoint(op);
1920   if (failed(rewriter.tryFold(op, replacementValues))) {
1921     LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
1922     return failure();
1923   }
1924 
1925   // Insert a replacement for 'op' with the folded replacement values.
1926   rewriter.replaceOp(op, replacementValues);
1927 
1928   // Recursively legalize any new constant operations.
1929   for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
1930        i != e; ++i) {
1931     Operation *cstOp = rewriterImpl.createdOps[i];
1932     if (failed(legalize(cstOp, rewriter))) {
1933       LLVM_DEBUG(logFailure(rewriterImpl.logger,
1934                             "generated constant '{0}' was illegal",
1935                             cstOp->getName()));
1936       rewriterImpl.resetState(curState);
1937       return failure();
1938     }
1939   }
1940 
1941   LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
1942   return success();
1943 }
1944 
1945 LogicalResult
1946 OperationLegalizer::legalizeWithPattern(Operation *op,
1947                                         ConversionPatternRewriter &rewriter) {
1948   auto &rewriterImpl = rewriter.getImpl();
1949 
1950   // Functor that returns if the given pattern may be applied.
1951   auto canApply = [&](const Pattern &pattern) {
1952     return canApplyPattern(op, pattern, rewriter);
1953   };
1954 
1955   // Functor that cleans up the rewriter state after a pattern failed to match.
1956   RewriterState curState = rewriterImpl.getCurrentState();
1957   auto onFailure = [&](const Pattern &pattern) {
1958     LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match"));
1959     rewriterImpl.resetState(curState);
1960     appliedPatterns.erase(&pattern);
1961   };
1962 
1963   // Functor that performs additional legalization when a pattern is
1964   // successfully applied.
1965   auto onSuccess = [&](const Pattern &pattern) {
1966     auto result = legalizePatternResult(op, pattern, rewriter, curState);
1967     appliedPatterns.erase(&pattern);
1968     if (failed(result))
1969       rewriterImpl.resetState(curState);
1970     return result;
1971   };
1972 
1973   // Try to match and rewrite a pattern on this operation.
1974   return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
1975                                     onSuccess);
1976 }
1977 
1978 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
1979                                          ConversionPatternRewriter &rewriter) {
1980   LLVM_DEBUG({
1981     auto &os = rewriter.getImpl().logger;
1982     os.getOStream() << "\n";
1983     os.startLine() << "* Pattern : '" << op->getName() << " -> (";
1984     llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream());
1985     os.getOStream() << ")' {\n";
1986     os.indent();
1987   });
1988 
1989   // Ensure that we don't cycle by not allowing the same pattern to be
1990   // applied twice in the same recursion stack if it is not known to be safe.
1991   if (!pattern.hasBoundedRewriteRecursion() &&
1992       !appliedPatterns.insert(&pattern).second) {
1993     LLVM_DEBUG(
1994         logFailure(rewriter.getImpl().logger, "pattern was already applied"));
1995     return false;
1996   }
1997   return true;
1998 }
1999 
2000 LogicalResult
2001 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
2002                                           ConversionPatternRewriter &rewriter,
2003                                           RewriterState &curState) {
2004   auto &impl = rewriter.getImpl();
2005 
2006 #ifndef NDEBUG
2007   assert(impl.pendingRootUpdates.empty() && "dangling root updates");
2008 #endif
2009 
2010   // Check that the root was either replaced or updated in place.
2011   auto replacedRoot = [&] {
2012     return llvm::any_of(
2013         llvm::drop_begin(impl.replacements, curState.numReplacements),
2014         [op](auto &it) { return it.first == op; });
2015   };
2016   auto updatedRootInPlace = [&] {
2017     return llvm::any_of(
2018         llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
2019         [op](auto &state) { return state.getOperation() == op; });
2020   };
2021   (void)replacedRoot;
2022   (void)updatedRootInPlace;
2023   assert((replacedRoot() || updatedRootInPlace()) &&
2024          "expected pattern to replace the root operation");
2025 
2026   // Legalize each of the actions registered during application.
2027   RewriterState newState = impl.getCurrentState();
2028   if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
2029                                          newState)) ||
2030       failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
2031       failed(legalizePatternCreatedOperations(rewriter, impl, curState,
2032                                               newState))) {
2033     return failure();
2034   }
2035 
2036   LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
2037   return success();
2038 }
2039 
2040 LogicalResult OperationLegalizer::legalizePatternBlockActions(
2041     Operation *op, ConversionPatternRewriter &rewriter,
2042     ConversionPatternRewriterImpl &impl, RewriterState &state,
2043     RewriterState &newState) {
2044   SmallPtrSet<Operation *, 16> operationsToIgnore;
2045 
2046   // If the pattern moved or created any blocks, make sure the types of block
2047   // arguments get legalized.
2048   for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
2049        ++i) {
2050     auto &action = impl.blockActions[i];
2051     if (action.kind == BlockActionKind::TypeConversion ||
2052         action.kind == BlockActionKind::Erase)
2053       continue;
2054     // Only check blocks outside of the current operation.
2055     Operation *parentOp = action.block->getParentOp();
2056     if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
2057       continue;
2058 
2059     // If the region of the block has a type converter, try to convert the block
2060     // directly.
2061     if (auto *converter =
2062             impl.argConverter.getConverter(action.block->getParent())) {
2063       if (failed(impl.convertBlockSignature(action.block, converter))) {
2064         LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
2065                                            "block"));
2066         return failure();
2067       }
2068       continue;
2069     }
2070 
2071     // Otherwise, check that this operation isn't one generated by this pattern.
2072     // This is because we will attempt to legalize the parent operation, and
2073     // blocks in regions created by this pattern will already be legalized later
2074     // on. If we haven't built the set yet, build it now.
2075     if (operationsToIgnore.empty()) {
2076       auto createdOps = ArrayRef<Operation *>(impl.createdOps)
2077                             .drop_front(state.numCreatedOps);
2078       operationsToIgnore.insert(createdOps.begin(), createdOps.end());
2079     }
2080 
2081     // If this operation should be considered for re-legalization, try it.
2082     if (operationsToIgnore.insert(parentOp).second &&
2083         failed(legalize(parentOp, rewriter))) {
2084       LLVM_DEBUG(logFailure(
2085           impl.logger, "operation '{0}'({1}) became illegal after block action",
2086           parentOp->getName(), parentOp));
2087       return failure();
2088     }
2089   }
2090   return success();
2091 }
2092 
2093 LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
2094     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
2095     RewriterState &state, RewriterState &newState) {
2096   for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
2097     Operation *op = impl.createdOps[i];
2098     if (failed(legalize(op, rewriter))) {
2099       LLVM_DEBUG(logFailure(impl.logger,
2100                             "generated operation '{0}'({1}) was illegal",
2101                             op->getName(), op));
2102       return failure();
2103     }
2104   }
2105   return success();
2106 }
2107 
2108 LogicalResult OperationLegalizer::legalizePatternRootUpdates(
2109     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
2110     RewriterState &state, RewriterState &newState) {
2111   for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
2112     Operation *op = impl.rootUpdates[i].getOperation();
2113     if (failed(legalize(op, rewriter))) {
2114       LLVM_DEBUG(logFailure(impl.logger,
2115                             "operation updated in-place '{0}' was illegal",
2116                             op->getName()));
2117       return failure();
2118     }
2119   }
2120   return success();
2121 }
2122 
2123 //===----------------------------------------------------------------------===//
2124 // Cost Model
2125 
2126 void OperationLegalizer::buildLegalizationGraph(
2127     LegalizationPatterns &anyOpLegalizerPatterns,
2128     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2129   // A mapping between an operation and a set of operations that can be used to
2130   // generate it.
2131   DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
2132   // A mapping between an operation and any currently invalid patterns it has.
2133   DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
2134   // A worklist of patterns to consider for legality.
2135   SetVector<const Pattern *> patternWorklist;
2136 
2137   // Build the mapping from operations to the parent ops that may generate them.
2138   applicator.walkAllPatterns([&](const Pattern &pattern) {
2139     Optional<OperationName> root = pattern.getRootKind();
2140 
2141     // If the pattern has no specific root, we can't analyze the relationship
2142     // between the root op and generated operations. Given that, add all such
2143     // patterns to the legalization set.
2144     if (!root) {
2145       anyOpLegalizerPatterns.push_back(&pattern);
2146       return;
2147     }
2148 
2149     // Skip operations that are always known to be legal.
2150     if (target.getOpAction(*root) == LegalizationAction::Legal)
2151       return;
2152 
2153     // Add this pattern to the invalid set for the root op and record this root
2154     // as a parent for any generated operations.
2155     invalidPatterns[*root].insert(&pattern);
2156     for (auto op : pattern.getGeneratedOps())
2157       parentOps[op].insert(*root);
2158 
2159     // Add this pattern to the worklist.
2160     patternWorklist.insert(&pattern);
2161   });
2162 
2163   // If there are any patterns that don't have a specific root kind, we can't
2164   // make direct assumptions about what operations will never be legalized.
2165   // Note: Technically we could, but it would require an analysis that may
2166   // recurse into itself. It would be better to perform this kind of filtering
2167   // at a higher level than here anyways.
2168   if (!anyOpLegalizerPatterns.empty()) {
2169     for (const Pattern *pattern : patternWorklist)
2170       legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2171     return;
2172   }
2173 
2174   while (!patternWorklist.empty()) {
2175     auto *pattern = patternWorklist.pop_back_val();
2176 
2177     // Check to see if any of the generated operations are invalid.
2178     if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
2179           Optional<LegalizationAction> action = target.getOpAction(op);
2180           return !legalizerPatterns.count(op) &&
2181                  (!action || action == LegalizationAction::Illegal);
2182         }))
2183       continue;
2184 
2185     // Otherwise, if all of the generated operation are valid, this op is now
2186     // legal so add all of the child patterns to the worklist.
2187     legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2188     invalidPatterns[*pattern->getRootKind()].erase(pattern);
2189 
2190     // Add any invalid patterns of the parent operations to see if they have now
2191     // become legal.
2192     for (auto op : parentOps[*pattern->getRootKind()])
2193       patternWorklist.set_union(invalidPatterns[op]);
2194   }
2195 }
2196 
2197 void OperationLegalizer::computeLegalizationGraphBenefit(
2198     LegalizationPatterns &anyOpLegalizerPatterns,
2199     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2200   // The smallest pattern depth, when legalizing an operation.
2201   DenseMap<OperationName, unsigned> minOpPatternDepth;
2202 
2203   // For each operation that is transitively legal, compute a cost for it.
2204   for (auto &opIt : legalizerPatterns)
2205     if (!minOpPatternDepth.count(opIt.first))
2206       computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
2207                                  legalizerPatterns);
2208 
2209   // Apply the cost model to the patterns that can match any operation. Those
2210   // with a specific operation type are already resolved when computing the op
2211   // legalization depth.
2212   if (!anyOpLegalizerPatterns.empty())
2213     applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
2214                              legalizerPatterns);
2215 
2216   // Apply a cost model to the pattern applicator. We order patterns first by
2217   // depth then benefit. `legalizerPatterns` contains per-op patterns by
2218   // decreasing benefit.
2219   applicator.applyCostModel([&](const Pattern &pattern) {
2220     ArrayRef<const Pattern *> orderedPatternList;
2221     if (Optional<OperationName> rootName = pattern.getRootKind())
2222       orderedPatternList = legalizerPatterns[*rootName];
2223     else
2224       orderedPatternList = anyOpLegalizerPatterns;
2225 
2226     // If the pattern is not found, then it was removed and cannot be matched.
2227     auto *it = llvm::find(orderedPatternList, &pattern);
2228     if (it == orderedPatternList.end())
2229       return PatternBenefit::impossibleToMatch();
2230 
2231     // Patterns found earlier in the list have higher benefit.
2232     return PatternBenefit(std::distance(it, orderedPatternList.end()));
2233   });
2234 }
2235 
2236 unsigned OperationLegalizer::computeOpLegalizationDepth(
2237     OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
2238     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2239   // Check for existing depth.
2240   auto depthIt = minOpPatternDepth.find(op);
2241   if (depthIt != minOpPatternDepth.end())
2242     return depthIt->second;
2243 
2244   // If a mapping for this operation does not exist, then this operation
2245   // is always legal. Return 0 as the depth for a directly legal operation.
2246   auto opPatternsIt = legalizerPatterns.find(op);
2247   if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
2248     return 0u;
2249 
2250   // Record this initial depth in case we encounter this op again when
2251   // recursively computing the depth.
2252   minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
2253 
2254   // Apply the cost model to the operation patterns, and update the minimum
2255   // depth.
2256   unsigned minDepth = applyCostModelToPatterns(
2257       opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
2258   minOpPatternDepth[op] = minDepth;
2259   return minDepth;
2260 }
2261 
2262 unsigned OperationLegalizer::applyCostModelToPatterns(
2263     LegalizationPatterns &patterns,
2264     DenseMap<OperationName, unsigned> &minOpPatternDepth,
2265     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2266   unsigned minDepth = std::numeric_limits<unsigned>::max();
2267 
2268   // Compute the depth for each pattern within the set.
2269   SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
2270   patternsByDepth.reserve(patterns.size());
2271   for (const Pattern *pattern : patterns) {
2272     unsigned depth = 1;
2273     for (auto generatedOp : pattern->getGeneratedOps()) {
2274       unsigned generatedOpDepth = computeOpLegalizationDepth(
2275           generatedOp, minOpPatternDepth, legalizerPatterns);
2276       depth = std::max(depth, generatedOpDepth + 1);
2277     }
2278     patternsByDepth.emplace_back(pattern, depth);
2279 
2280     // Update the minimum depth of the pattern list.
2281     minDepth = std::min(minDepth, depth);
2282   }
2283 
2284   // If the operation only has one legalization pattern, there is no need to
2285   // sort them.
2286   if (patternsByDepth.size() == 1)
2287     return minDepth;
2288 
2289   // Sort the patterns by those likely to be the most beneficial.
2290   llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(),
2291                        [](const std::pair<const Pattern *, unsigned> *lhs,
2292                           const std::pair<const Pattern *, unsigned> *rhs) {
2293                          // First sort by the smaller pattern legalization
2294                          // depth.
2295                          if (lhs->second != rhs->second)
2296                            return llvm::array_pod_sort_comparator<unsigned>(
2297                                &lhs->second, &rhs->second);
2298 
2299                          // Then sort by the larger pattern benefit.
2300                          auto lhsBenefit = lhs->first->getBenefit();
2301                          auto rhsBenefit = rhs->first->getBenefit();
2302                          return llvm::array_pod_sort_comparator<PatternBenefit>(
2303                              &rhsBenefit, &lhsBenefit);
2304                        });
2305 
2306   // Update the legalization pattern to use the new sorted list.
2307   patterns.clear();
2308   for (auto &patternIt : patternsByDepth)
2309     patterns.push_back(patternIt.first);
2310   return minDepth;
2311 }
2312 
2313 //===----------------------------------------------------------------------===//
2314 // OperationConverter
2315 //===----------------------------------------------------------------------===//
2316 namespace {
2317 enum OpConversionMode {
2318   /// In this mode, the conversion will ignore failed conversions to allow
2319   /// illegal operations to co-exist in the IR.
2320   Partial,
2321 
2322   /// In this mode, all operations must be legal for the given target for the
2323   /// conversion to succeed.
2324   Full,
2325 
2326   /// In this mode, operations are analyzed for legality. No actual rewrites are
2327   /// applied to the operations on success.
2328   Analysis,
2329 };
2330 
2331 // This class converts operations to a given conversion target via a set of
2332 // rewrite patterns. The conversion behaves differently depending on the
2333 // conversion mode.
2334 struct OperationConverter {
2335   explicit OperationConverter(ConversionTarget &target,
2336                               const FrozenRewritePatternSet &patterns,
2337                               OpConversionMode mode,
2338                               DenseSet<Operation *> *trackedOps = nullptr)
2339       : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}
2340 
2341   /// Converts the given operations to the conversion target.
2342   LogicalResult convertOperations(ArrayRef<Operation *> ops);
2343 
2344 private:
2345   /// Converts an operation with the given rewriter.
2346   LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
2347 
2348   /// This method is called after the conversion process to legalize any
2349   /// remaining artifacts and complete the conversion.
2350   LogicalResult finalize(ConversionPatternRewriter &rewriter);
2351 
2352   /// Legalize the types of converted block arguments.
2353   LogicalResult
2354   legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
2355                                  ConversionPatternRewriterImpl &rewriterImpl);
2356 
2357   /// Legalize any unresolved type materializations.
2358   LogicalResult legalizeUnresolvedMaterializations(
2359       ConversionPatternRewriter &rewriter,
2360       ConversionPatternRewriterImpl &rewriterImpl,
2361       Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping);
2362 
2363   /// Legalize an operation result that was marked as "erased".
2364   LogicalResult
2365   legalizeErasedResult(Operation *op, OpResult result,
2366                        ConversionPatternRewriterImpl &rewriterImpl);
2367 
2368   /// Legalize an operation result that was replaced with a value of a different
2369   /// type.
2370   LogicalResult legalizeChangedResultType(
2371       Operation *op, OpResult result, Value newValue,
2372       TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2373       ConversionPatternRewriterImpl &rewriterImpl,
2374       const DenseMap<Value, SmallVector<Value>> &inverseMapping);
2375 
2376   /// The legalizer to use when converting operations.
2377   OperationLegalizer opLegalizer;
2378 
2379   /// The conversion mode to use when legalizing operations.
2380   OpConversionMode mode;
2381 
2382   /// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
2383   /// this is populated with ops found to be legalizable to the target.
2384   /// When mode == OpConversionMode::Partial, this is populated with ops found
2385   /// *not* to be legalizable to the target.
2386   DenseSet<Operation *> *trackedOps;
2387 };
2388 } // end anonymous namespace
2389 
2390 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
2391                                           Operation *op) {
2392   // Legalize the given operation.
2393   if (failed(opLegalizer.legalize(op, rewriter))) {
2394     // Handle the case of a failed conversion for each of the different modes.
2395     // Full conversions expect all operations to be converted.
2396     if (mode == OpConversionMode::Full)
2397       return op->emitError()
2398              << "failed to legalize operation '" << op->getName() << "'";
2399     // Partial conversions allow conversions to fail iff the operation was not
2400     // explicitly marked as illegal. If the user provided a nonlegalizableOps
2401     // set, non-legalizable ops are included.
2402     if (mode == OpConversionMode::Partial) {
2403       if (opLegalizer.isIllegal(op))
2404         return op->emitError()
2405                << "failed to legalize operation '" << op->getName()
2406                << "' that was explicitly marked illegal";
2407       if (trackedOps)
2408         trackedOps->insert(op);
2409     }
2410   } else if (mode == OpConversionMode::Analysis) {
2411     // Analysis conversions don't fail if any operations fail to legalize,
2412     // they are only interested in the operations that were successfully
2413     // legalized.
2414     trackedOps->insert(op);
2415   }
2416   return success();
2417 }
2418 
2419 LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
2420   if (ops.empty())
2421     return success();
2422   ConversionTarget &target = opLegalizer.getTarget();
2423 
2424   // Compute the set of operations and blocks to convert.
2425   SmallVector<Operation *> toConvert;
2426   for (auto *op : ops) {
2427     toConvert.emplace_back(op);
2428     for (auto &region : op->getRegions())
2429       if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
2430                                       toConvert, &target)))
2431         return failure();
2432   }
2433 
2434   // Convert each operation and discard rewrites on failure.
2435   ConversionPatternRewriter rewriter(ops.front()->getContext());
2436   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2437   for (auto *op : toConvert)
2438     if (failed(convert(rewriter, op)))
2439       return rewriterImpl.discardRewrites(), failure();
2440 
2441   // Now that all of the operations have been converted, finalize the conversion
2442   // process to ensure any lingering conversion artifacts are cleaned up and
2443   // legalized.
2444   if (failed(finalize(rewriter)))
2445     return rewriterImpl.discardRewrites(), failure();
2446 
2447   // After a successful conversion, apply rewrites if this is not an analysis
2448   // conversion.
2449   if (mode == OpConversionMode::Analysis) {
2450     rewriterImpl.discardRewrites();
2451   } else {
2452     rewriterImpl.applyRewrites();
2453 
2454     // It is possible for a later pattern to erase an op that was originally
2455     // identified as illegal and added to the trackedOps, remove it now after
2456     // replacements have been computed.
2457     if (trackedOps)
2458       for (auto &repl : rewriterImpl.replacements)
2459         trackedOps->erase(repl.first);
2460   }
2461   return success();
2462 }
2463 
2464 LogicalResult
2465 OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
2466   Optional<DenseMap<Value, SmallVector<Value>>> inverseMapping;
2467   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2468   if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl,
2469                                                 inverseMapping)) ||
2470       failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
2471     return failure();
2472 
2473   if (rewriterImpl.operationsWithChangedResults.empty())
2474     return success();
2475 
2476   // Process requested operation replacements.
2477   for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
2478        i != e; ++i) {
2479     unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
2480     auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
2481     for (OpResult result : repl.first->getResults()) {
2482       Value newValue = rewriterImpl.mapping.lookupOrNull(result);
2483 
2484       // If the operation result was replaced with null, all of the uses of this
2485       // value should be replaced.
2486       if (!newValue) {
2487         if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
2488           return failure();
2489         continue;
2490       }
2491 
2492       // Otherwise, check to see if the type of the result changed.
2493       if (result.getType() == newValue.getType())
2494         continue;
2495 
2496       // Compute the inverse mapping only if it is really needed.
2497       if (!inverseMapping)
2498         inverseMapping = rewriterImpl.mapping.getInverse();
2499 
2500       // Legalize this result.
2501       rewriter.setInsertionPoint(repl.first);
2502       if (failed(legalizeChangedResultType(repl.first, result, newValue,
2503                                            repl.second.converter, rewriter,
2504                                            rewriterImpl, *inverseMapping)))
2505         return failure();
2506 
2507       // Update the end iterator for this loop in the case it was updated
2508       // when legalizing generated conversion operations.
2509       e = rewriterImpl.operationsWithChangedResults.size();
2510     }
2511   }
2512   return success();
2513 }
2514 
2515 LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
2516     ConversionPatternRewriter &rewriter,
2517     ConversionPatternRewriterImpl &rewriterImpl) {
2518   // Functor used to check if all users of a value will be dead after
2519   // conversion.
2520   auto findLiveUser = [&](Value val) {
2521     auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
2522       return rewriterImpl.isOpIgnored(user);
2523     });
2524     return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
2525   };
2526   return rewriterImpl.argConverter.materializeLiveConversions(
2527       rewriterImpl.mapping, rewriter, findLiveUser);
2528 }
2529 
2530 /// Replace the results of a materialization operation with the given values.
2531 static void
2532 replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl,
2533                        ResultRange matResults, ValueRange values,
2534                        DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2535   matResults.replaceAllUsesWith(values);
2536 
2537   // For each of the materialization results, update the inverse mappings to
2538   // point to the replacement values.
2539   for (auto it : llvm::zip(matResults, values)) {
2540     Value matResult, newValue;
2541     std::tie(matResult, newValue) = it;
2542     auto inverseMapIt = inverseMapping.find(matResult);
2543     if (inverseMapIt == inverseMapping.end())
2544       continue;
2545 
2546     // Update the reverse mapping, or remove the mapping if we couldn't update
2547     // it. Not being able to update signals that the mapping would have become
2548     // circular (i.e. %foo -> newValue -> %foo), which may occur as values are
2549     // propagated through temporary materializations. We simply drop the
2550     // mapping, and let the post-conversion replacement logic handle updating
2551     // uses.
2552     for (Value inverseMapVal : inverseMapIt->second)
2553       if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue))
2554         rewriterImpl.mapping.erase(inverseMapVal);
2555   }
2556 }
2557 
2558 /// Compute all of the unresolved materializations that will persist beyond the
2559 /// conversion process, and require inserting a proper user materialization for.
2560 static void computeNecessaryMaterializations(
2561     DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
2562     ConversionPatternRewriter &rewriter,
2563     ConversionPatternRewriterImpl &rewriterImpl,
2564     DenseMap<Value, SmallVector<Value>> &inverseMapping,
2565     SetVector<UnresolvedMaterialization *> &necessaryMaterializations) {
2566   auto isLive = [&](Value value) {
2567     auto findFn = [&](Operation *user) {
2568       auto matIt = materializationOps.find(user);
2569       if (matIt != materializationOps.end())
2570         return !necessaryMaterializations.count(matIt->second);
2571       return rewriterImpl.isOpIgnored(user);
2572     };
2573     return llvm::find_if_not(value.getUsers(), findFn) != value.user_end();
2574   };
2575 
2576   llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue =
2577       [&](Value invalidRoot, Value value, Type type) {
2578         // Check to see if the input operation was remapped to a variant of the
2579         // output.
2580         Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
2581         if (remappedValue.getType() == type && remappedValue != invalidRoot)
2582           return remappedValue;
2583 
2584         // Check to see if the input is a materialization operation that
2585         // provides an inverse conversion. We just check blindly for
2586         // UnrealizedConversionCastOp here, but it has no effect on correctness.
2587         auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>();
2588         if (inputCastOp && inputCastOp->getNumOperands() == 1)
2589           return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0),
2590                                      type);
2591 
2592         return Value();
2593       };
2594 
2595   SetVector<UnresolvedMaterialization *> worklist;
2596   for (auto &mat : rewriterImpl.unresolvedMaterializations) {
2597     materializationOps.try_emplace(mat.getOp(), &mat);
2598     worklist.insert(&mat);
2599   }
2600   while (!worklist.empty()) {
2601     UnresolvedMaterialization *mat = worklist.pop_back_val();
2602     UnrealizedConversionCastOp op = mat->getOp();
2603 
2604     // We currently only handle target materializations here.
2605     assert(op->getNumResults() == 1 && "unexpected materialization type");
2606     OpResult opResult = op->getOpResult(0);
2607     Type outputType = opResult.getType();
2608     Operation::operand_range inputOperands = op.getOperands();
2609 
2610     // Try to forward propagate operands for user conversion casts that result
2611     // in the input types of the current cast.
2612     for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) {
2613       auto castOp = dyn_cast<UnrealizedConversionCastOp>(user);
2614       if (!castOp)
2615         continue;
2616       if (castOp->getResultTypes() == inputOperands.getTypes()) {
2617         replaceMaterialization(rewriterImpl, opResult, inputOperands,
2618                                inverseMapping);
2619         necessaryMaterializations.remove(materializationOps.lookup(user));
2620       }
2621     }
2622 
2623     // Try to avoid materializing a resolved materialization if possible.
2624     // Handle the case of a 1-1 materialization.
2625     if (inputOperands.size() == 1) {
2626       // Check to see if the input operation was remapped to a variant of the
2627       // output.
2628       Value remappedValue =
2629           lookupRemappedValue(opResult, inputOperands[0], outputType);
2630       if (remappedValue && remappedValue != opResult) {
2631         replaceMaterialization(rewriterImpl, opResult, remappedValue,
2632                                inverseMapping);
2633         necessaryMaterializations.remove(mat);
2634         continue;
2635       }
2636     } else {
2637       // TODO: Avoid materializing other types of conversions here.
2638     }
2639 
2640     // Check to see if this is an argument materialization.
2641     auto isBlockArg = [](Value v) { return v.isa<BlockArgument>(); };
2642     if (llvm::any_of(op->getOperands(), isBlockArg) ||
2643         llvm::any_of(inverseMapping[op->getResult(0)], isBlockArg)) {
2644       mat->setKind(UnresolvedMaterialization::Argument);
2645     }
2646 
2647     // If the materialization does not have any live users, we don't need to
2648     // generate a user materialization for it.
2649     // FIXME: For argument materializations, we currently need to check if any
2650     // of the inverse mapped values are used because some patterns expect blind
2651     // value replacement even if the types differ in some cases. When those
2652     // patterns are fixed, we can drop the argument special case here.
2653     bool isMaterializationLive = isLive(opResult);
2654     if (mat->getKind() == UnresolvedMaterialization::Argument)
2655       isMaterializationLive |= llvm::any_of(inverseMapping[opResult], isLive);
2656     if (!isMaterializationLive)
2657       continue;
2658     if (!necessaryMaterializations.insert(mat))
2659       continue;
2660 
2661     // Reprocess input materializations to see if they have an updated status.
2662     for (Value input : inputOperands) {
2663       if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) {
2664         if (auto *mat = materializationOps.lookup(parentOp))
2665           worklist.insert(mat);
2666       }
2667     }
2668   }
2669 }
2670 
2671 /// Legalize the given unresolved materialization. Returns success if the
2672 /// materialization was legalized, failure otherise.
2673 static LogicalResult legalizeUnresolvedMaterialization(
2674     UnresolvedMaterialization &mat,
2675     DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
2676     ConversionPatternRewriter &rewriter,
2677     ConversionPatternRewriterImpl &rewriterImpl,
2678     DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2679   auto findLiveUser = [&](auto &&users) {
2680     auto liveUserIt = llvm::find_if_not(
2681         users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); });
2682     return liveUserIt == users.end() ? nullptr : *liveUserIt;
2683   };
2684 
2685   llvm::unique_function<Value(Value, Type)> lookupRemappedValue =
2686       [&](Value value, Type type) {
2687         // Check to see if the input operation was remapped to a variant of the
2688         // output.
2689         Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
2690         if (remappedValue.getType() == type)
2691           return remappedValue;
2692         return Value();
2693       };
2694 
2695   UnrealizedConversionCastOp op = mat.getOp();
2696   if (!rewriterImpl.ignoredOps.insert(op))
2697     return success();
2698 
2699   // We currently only handle target materializations here.
2700   OpResult opResult = op->getOpResult(0);
2701   Operation::operand_range inputOperands = op.getOperands();
2702   Type outputType = opResult.getType();
2703 
2704   // If any input to this materialization is another materialization, resolve
2705   // the input first.
2706   for (Value value : op->getOperands()) {
2707     auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>();
2708     if (!valueCast)
2709       continue;
2710 
2711     auto matIt = materializationOps.find(valueCast);
2712     if (matIt != materializationOps.end())
2713       if (failed(legalizeUnresolvedMaterialization(
2714               *matIt->second, materializationOps, rewriter, rewriterImpl,
2715               inverseMapping)))
2716         return failure();
2717   }
2718 
2719   // Perform a last ditch attempt to avoid materializing a resolved
2720   // materialization if possible.
2721   // Handle the case of a 1-1 materialization.
2722   if (inputOperands.size() == 1) {
2723     // Check to see if the input operation was remapped to a variant of the
2724     // output.
2725     Value remappedValue = lookupRemappedValue(inputOperands[0], outputType);
2726     if (remappedValue && remappedValue != opResult) {
2727       replaceMaterialization(rewriterImpl, opResult, remappedValue,
2728                              inverseMapping);
2729       return success();
2730     }
2731   } else {
2732     // TODO: Avoid materializing other types of conversions here.
2733   }
2734 
2735   // Try to materialize the conversion.
2736   if (TypeConverter *converter = mat.getConverter()) {
2737     // FIXME: Determine a suitable insertion location when there are multiple
2738     // inputs.
2739     if (inputOperands.size() == 1)
2740       rewriter.setInsertionPointAfterValue(inputOperands.front());
2741     else
2742       rewriter.setInsertionPoint(op);
2743 
2744     Value newMaterialization;
2745     switch (mat.getKind()) {
2746     case UnresolvedMaterialization::Argument:
2747       // Try to materialize an argument conversion.
2748       // FIXME: The current argument materialization hook expects the original
2749       // output type, even though it doesn't use that as the actual output type
2750       // of the generated IR. The output type is just used as an indicator of
2751       // the type of materialization to do. This behavior is really awkward in
2752       // that it diverges from the behavior of the other hooks, and can be
2753       // easily misunderstood. We should clean up the argument hooks to better
2754       // represent the desired invariants we actually care about.
2755       newMaterialization = converter->materializeArgumentConversion(
2756           rewriter, op->getLoc(), mat.getOrigOutputType(), inputOperands);
2757       if (newMaterialization)
2758         break;
2759 
2760       // If an argument materialization failed, fallback to trying a target
2761       // materialization.
2762       LLVM_FALLTHROUGH;
2763     case UnresolvedMaterialization::Target:
2764       newMaterialization = converter->materializeTargetConversion(
2765           rewriter, op->getLoc(), outputType, inputOperands);
2766       break;
2767     }
2768     if (newMaterialization) {
2769       replaceMaterialization(rewriterImpl, opResult, newMaterialization,
2770                              inverseMapping);
2771       return success();
2772     }
2773   }
2774 
2775   InFlightDiagnostic diag = op->emitError()
2776                             << "failed to legalize unresolved materialization "
2777                                "from "
2778                             << inputOperands.getTypes() << " to " << outputType
2779                             << " that remained live after conversion";
2780   if (Operation *liveUser = findLiveUser(op->getUsers())) {
2781     diag.attachNote(liveUser->getLoc())
2782         << "see existing live user here: " << *liveUser;
2783   }
2784   return failure();
2785 }
2786 
2787 LogicalResult OperationConverter::legalizeUnresolvedMaterializations(
2788     ConversionPatternRewriter &rewriter,
2789     ConversionPatternRewriterImpl &rewriterImpl,
2790     Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) {
2791   if (rewriterImpl.unresolvedMaterializations.empty())
2792     return success();
2793   inverseMapping = rewriterImpl.mapping.getInverse();
2794 
2795   // As an initial step, compute all of the inserted materializations that we
2796   // expect to persist beyond the conversion process.
2797   DenseMap<Operation *, UnresolvedMaterialization *> materializationOps;
2798   SetVector<UnresolvedMaterialization *> necessaryMaterializations;
2799   computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl,
2800                                    *inverseMapping, necessaryMaterializations);
2801 
2802   // Once computed, legalize any necessary materializations.
2803   for (auto *mat : necessaryMaterializations) {
2804     if (failed(legalizeUnresolvedMaterialization(
2805             *mat, materializationOps, rewriter, rewriterImpl, *inverseMapping)))
2806       return failure();
2807   }
2808   return success();
2809 }
2810 
2811 LogicalResult OperationConverter::legalizeErasedResult(
2812     Operation *op, OpResult result,
2813     ConversionPatternRewriterImpl &rewriterImpl) {
2814   // If the operation result was replaced with null, all of the uses of this
2815   // value should be replaced.
2816   auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
2817     return rewriterImpl.isOpIgnored(user);
2818   });
2819   if (liveUserIt != result.user_end()) {
2820     InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
2821                               << op->getName() << "' marked as erased";
2822     diag.attachNote(liveUserIt->getLoc())
2823         << "found live user of result #" << result.getResultNumber() << ": "
2824         << *liveUserIt;
2825     return failure();
2826   }
2827   return success();
2828 }
2829 
2830 /// Finds a user of the given value, or of any other value that the given value
2831 /// replaced, that was not replaced in the conversion process.
2832 static Operation *findLiveUserOfReplaced(
2833     Value initialValue, ConversionPatternRewriterImpl &rewriterImpl,
2834     const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2835   SmallVector<Value> worklist(1, initialValue);
2836   while (!worklist.empty()) {
2837     Value value = worklist.pop_back_val();
2838 
2839     // Walk the users of this value to see if there are any live users that
2840     // weren't replaced during conversion.
2841     auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
2842       return rewriterImpl.isOpIgnored(user);
2843     });
2844     if (liveUserIt != value.user_end())
2845       return *liveUserIt;
2846     auto mapIt = inverseMapping.find(value);
2847     if (mapIt != inverseMapping.end())
2848       worklist.append(mapIt->second);
2849   }
2850   return nullptr;
2851 }
2852 
2853 LogicalResult OperationConverter::legalizeChangedResultType(
2854     Operation *op, OpResult result, Value newValue,
2855     TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2856     ConversionPatternRewriterImpl &rewriterImpl,
2857     const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2858   Operation *liveUser =
2859       findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
2860   if (!liveUser)
2861     return success();
2862 
2863   // Functor used to emit a conversion error for a failed materialization.
2864   auto emitConversionError = [&] {
2865     InFlightDiagnostic diag = op->emitError()
2866                               << "failed to materialize conversion for result #"
2867                               << result.getResultNumber() << " of operation '"
2868                               << op->getName()
2869                               << "' that remained live after conversion";
2870     diag.attachNote(liveUser->getLoc())
2871         << "see existing live user here: " << *liveUser;
2872     return failure();
2873   };
2874 
2875   // If the replacement has a type converter, attempt to materialize a
2876   // conversion back to the original type.
2877   if (!replConverter)
2878     return emitConversionError();
2879 
2880   // Materialize a conversion for this live result value.
2881   Type resultType = result.getType();
2882   Value convertedValue = replConverter->materializeSourceConversion(
2883       rewriter, op->getLoc(), resultType, newValue);
2884   if (!convertedValue)
2885     return emitConversionError();
2886 
2887   rewriterImpl.mapping.map(result, convertedValue);
2888   return success();
2889 }
2890 
2891 //===----------------------------------------------------------------------===//
2892 // Type Conversion
2893 //===----------------------------------------------------------------------===//
2894 
2895 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
2896                                                    ArrayRef<Type> types) {
2897   assert(!types.empty() && "expected valid types");
2898   remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
2899   addInputs(types);
2900 }
2901 
2902 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
2903   assert(!types.empty() &&
2904          "1->0 type remappings don't need to be added explicitly");
2905   argTypes.append(types.begin(), types.end());
2906 }
2907 
2908 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2909                                                     unsigned newInputNo,
2910                                                     unsigned newInputCount) {
2911   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2912   assert(newInputCount != 0 && "expected valid input count");
2913   remappedInputs[origInputNo] =
2914       InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
2915 }
2916 
2917 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2918                                                     Value replacementValue) {
2919   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2920   remappedInputs[origInputNo] =
2921       InputMapping{origInputNo, /*size=*/0, replacementValue};
2922 }
2923 
2924 LogicalResult TypeConverter::convertType(Type t,
2925                                          SmallVectorImpl<Type> &results) {
2926   auto existingIt = cachedDirectConversions.find(t);
2927   if (existingIt != cachedDirectConversions.end()) {
2928     if (existingIt->second)
2929       results.push_back(existingIt->second);
2930     return success(existingIt->second != nullptr);
2931   }
2932   auto multiIt = cachedMultiConversions.find(t);
2933   if (multiIt != cachedMultiConversions.end()) {
2934     results.append(multiIt->second.begin(), multiIt->second.end());
2935     return success();
2936   }
2937 
2938   // Walk the added converters in reverse order to apply the most recently
2939   // registered first.
2940   size_t currentCount = results.size();
2941   for (ConversionCallbackFn &converter : llvm::reverse(conversions)) {
2942     if (Optional<LogicalResult> result = converter(t, results)) {
2943       if (!succeeded(*result)) {
2944         cachedDirectConversions.try_emplace(t, nullptr);
2945         return failure();
2946       }
2947       auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
2948       if (newTypes.size() == 1)
2949         cachedDirectConversions.try_emplace(t, newTypes.front());
2950       else
2951         cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
2952       return success();
2953     }
2954   }
2955   return failure();
2956 }
2957 
2958 Type TypeConverter::convertType(Type t) {
2959   // Use the multi-type result version to convert the type.
2960   SmallVector<Type, 1> results;
2961   if (failed(convertType(t, results)))
2962     return nullptr;
2963 
2964   // Check to ensure that only one type was produced.
2965   return results.size() == 1 ? results.front() : nullptr;
2966 }
2967 
2968 LogicalResult TypeConverter::convertTypes(TypeRange types,
2969                                           SmallVectorImpl<Type> &results) {
2970   for (Type type : types)
2971     if (failed(convertType(type, results)))
2972       return failure();
2973   return success();
2974 }
2975 
2976 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; }
2977 bool TypeConverter::isLegal(Operation *op) {
2978   return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
2979 }
2980 
2981 bool TypeConverter::isLegal(Region *region) {
2982   return llvm::all_of(*region, [this](Block &block) {
2983     return isLegal(block.getArgumentTypes());
2984   });
2985 }
2986 
2987 bool TypeConverter::isSignatureLegal(FunctionType ty) {
2988   return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
2989 }
2990 
2991 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
2992                                                  SignatureConversion &result) {
2993   // Try to convert the given input type.
2994   SmallVector<Type, 1> convertedTypes;
2995   if (failed(convertType(type, convertedTypes)))
2996     return failure();
2997 
2998   // If this argument is being dropped, there is nothing left to do.
2999   if (convertedTypes.empty())
3000     return success();
3001 
3002   // Otherwise, add the new inputs.
3003   result.addInputs(inputNo, convertedTypes);
3004   return success();
3005 }
3006 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types,
3007                                                   SignatureConversion &result,
3008                                                   unsigned origInputOffset) {
3009   for (unsigned i = 0, e = types.size(); i != e; ++i)
3010     if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
3011       return failure();
3012   return success();
3013 }
3014 
3015 Value TypeConverter::materializeConversion(
3016     MutableArrayRef<MaterializationCallbackFn> materializations,
3017     OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) {
3018   for (MaterializationCallbackFn &fn : llvm::reverse(materializations))
3019     if (Optional<Value> result = fn(builder, resultType, inputs, loc))
3020       return result.getValue();
3021   return nullptr;
3022 }
3023 
3024 auto TypeConverter::convertBlockSignature(Block *block)
3025     -> Optional<SignatureConversion> {
3026   SignatureConversion conversion(block->getNumArguments());
3027   if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
3028     return llvm::None;
3029   return conversion;
3030 }
3031 
3032 //===----------------------------------------------------------------------===//
3033 // FunctionLikeSignatureConversion
3034 //===----------------------------------------------------------------------===//
3035 
3036 /// Create a default conversion pattern that rewrites the type signature of a
3037 /// FunctionLike op. This only supports FunctionLike ops which use FunctionType
3038 /// to represent their type.
3039 namespace {
3040 struct FunctionLikeSignatureConversion : public ConversionPattern {
3041   FunctionLikeSignatureConversion(StringRef functionLikeOpName,
3042                                   MLIRContext *ctx, TypeConverter &converter)
3043       : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
3044 
3045   /// Hook to implement combined matching and rewriting for FunctionLike ops.
3046   LogicalResult
3047   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
3048                   ConversionPatternRewriter &rewriter) const override {
3049     FunctionType type = function_like_impl::getFunctionType(op);
3050 
3051     // Convert the original function types.
3052     TypeConverter::SignatureConversion result(type.getNumInputs());
3053     SmallVector<Type, 1> newResults;
3054     if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) ||
3055         failed(typeConverter->convertTypes(type.getResults(), newResults)) ||
3056         failed(rewriter.convertRegionTypes(
3057             &function_like_impl::getFunctionBody(op), *typeConverter, &result)))
3058       return failure();
3059 
3060     // Update the function signature in-place.
3061     auto newType = FunctionType::get(rewriter.getContext(),
3062                                      result.getConvertedTypes(), newResults);
3063 
3064     rewriter.updateRootInPlace(
3065         op, [&] { function_like_impl::setFunctionType(op, newType); });
3066 
3067     return success();
3068   }
3069 };
3070 } // end anonymous namespace
3071 
3072 void mlir::populateFunctionLikeTypeConversionPattern(
3073     StringRef functionLikeOpName, RewritePatternSet &patterns,
3074     TypeConverter &converter) {
3075   patterns.add<FunctionLikeSignatureConversion>(
3076       functionLikeOpName, patterns.getContext(), converter);
3077 }
3078 
3079 void mlir::populateFuncOpTypeConversionPattern(RewritePatternSet &patterns,
3080                                                TypeConverter &converter) {
3081   populateFunctionLikeTypeConversionPattern<FuncOp>(patterns, converter);
3082 }
3083 
3084 //===----------------------------------------------------------------------===//
3085 // ConversionTarget
3086 //===----------------------------------------------------------------------===//
3087 
3088 void ConversionTarget::setOpAction(OperationName op,
3089                                    LegalizationAction action) {
3090   legalOperations[op].action = action;
3091 }
3092 
3093 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
3094                                         LegalizationAction action) {
3095   for (StringRef dialect : dialectNames)
3096     legalDialects[dialect] = action;
3097 }
3098 
3099 auto ConversionTarget::getOpAction(OperationName op) const
3100     -> Optional<LegalizationAction> {
3101   Optional<LegalizationInfo> info = getOpInfo(op);
3102   return info ? info->action : Optional<LegalizationAction>();
3103 }
3104 
3105 auto ConversionTarget::isLegal(Operation *op) const
3106     -> Optional<LegalOpDetails> {
3107   Optional<LegalizationInfo> info = getOpInfo(op->getName());
3108   if (!info)
3109     return llvm::None;
3110 
3111   // Returns true if this operation instance is known to be legal.
3112   auto isOpLegal = [&] {
3113     // Handle dynamic legality either with the provided legality function.
3114     if (info->action == LegalizationAction::Dynamic) {
3115       Optional<bool> result = info->legalityFn(op);
3116       if (result)
3117         return *result;
3118     }
3119 
3120     // Otherwise, the operation is only legal if it was marked 'Legal'.
3121     return info->action == LegalizationAction::Legal;
3122   };
3123   if (!isOpLegal())
3124     return llvm::None;
3125 
3126   // This operation is legal, compute any additional legality information.
3127   LegalOpDetails legalityDetails;
3128   if (info->isRecursivelyLegal) {
3129     auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
3130     if (legalityFnIt != opRecursiveLegalityFns.end()) {
3131       legalityDetails.isRecursivelyLegal =
3132           legalityFnIt->second(op).getValueOr(true);
3133     } else {
3134       legalityDetails.isRecursivelyLegal = true;
3135     }
3136   }
3137   return legalityDetails;
3138 }
3139 
3140 static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks(
3141     ConversionTarget::DynamicLegalityCallbackFn oldCallback,
3142     ConversionTarget::DynamicLegalityCallbackFn newCallback) {
3143   if (!oldCallback)
3144     return newCallback;
3145 
3146   auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)](
3147                    Operation *op) -> Optional<bool> {
3148     if (Optional<bool> result = newCl(op))
3149       return *result;
3150 
3151     return oldCl(op);
3152   };
3153   return chain;
3154 }
3155 
3156 void ConversionTarget::setLegalityCallback(
3157     OperationName name, const DynamicLegalityCallbackFn &callback) {
3158   assert(callback && "expected valid legality callback");
3159   auto infoIt = legalOperations.find(name);
3160   assert(infoIt != legalOperations.end() &&
3161          infoIt->second.action == LegalizationAction::Dynamic &&
3162          "expected operation to already be marked as dynamically legal");
3163   infoIt->second.legalityFn =
3164       composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback);
3165 }
3166 
3167 void ConversionTarget::markOpRecursivelyLegal(
3168     OperationName name, const DynamicLegalityCallbackFn &callback) {
3169   auto infoIt = legalOperations.find(name);
3170   assert(infoIt != legalOperations.end() &&
3171          infoIt->second.action != LegalizationAction::Illegal &&
3172          "expected operation to already be marked as legal");
3173   infoIt->second.isRecursivelyLegal = true;
3174   if (callback)
3175     opRecursiveLegalityFns[name] = composeLegalityCallbacks(
3176         std::move(opRecursiveLegalityFns[name]), callback);
3177   else
3178     opRecursiveLegalityFns.erase(name);
3179 }
3180 
3181 void ConversionTarget::setLegalityCallback(
3182     ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
3183   assert(callback && "expected valid legality callback");
3184   for (StringRef dialect : dialects)
3185     dialectLegalityFns[dialect] = composeLegalityCallbacks(
3186         std::move(dialectLegalityFns[dialect]), callback);
3187 }
3188 
3189 void ConversionTarget::setLegalityCallback(
3190     const DynamicLegalityCallbackFn &callback) {
3191   assert(callback && "expected valid legality callback");
3192   unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback);
3193 }
3194 
3195 auto ConversionTarget::getOpInfo(OperationName op) const
3196     -> Optional<LegalizationInfo> {
3197   // Check for info for this specific operation.
3198   auto it = legalOperations.find(op);
3199   if (it != legalOperations.end())
3200     return it->second;
3201   // Check for info for the parent dialect.
3202   auto dialectIt = legalDialects.find(op.getDialectNamespace());
3203   if (dialectIt != legalDialects.end()) {
3204     DynamicLegalityCallbackFn callback;
3205     auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
3206     if (dialectFn != dialectLegalityFns.end())
3207       callback = dialectFn->second;
3208     return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
3209                             callback};
3210   }
3211   // Otherwise, check if we mark unknown operations as dynamic.
3212   if (unknownLegalityFn)
3213     return LegalizationInfo{LegalizationAction::Dynamic,
3214                             /*isRecursivelyLegal=*/false, unknownLegalityFn};
3215   return llvm::None;
3216 }
3217 
3218 //===----------------------------------------------------------------------===//
3219 // Op Conversion Entry Points
3220 //===----------------------------------------------------------------------===//
3221 
3222 //===----------------------------------------------------------------------===//
3223 // Partial Conversion
3224 
3225 LogicalResult
3226 mlir::applyPartialConversion(ArrayRef<Operation *> ops,
3227                              ConversionTarget &target,
3228                              const FrozenRewritePatternSet &patterns,
3229                              DenseSet<Operation *> *unconvertedOps) {
3230   OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
3231                                  unconvertedOps);
3232   return opConverter.convertOperations(ops);
3233 }
3234 LogicalResult
3235 mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
3236                              const FrozenRewritePatternSet &patterns,
3237                              DenseSet<Operation *> *unconvertedOps) {
3238   return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
3239                                 unconvertedOps);
3240 }
3241 
3242 //===----------------------------------------------------------------------===//
3243 // Full Conversion
3244 
3245 LogicalResult
3246 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
3247                           const FrozenRewritePatternSet &patterns) {
3248   OperationConverter opConverter(target, patterns, OpConversionMode::Full);
3249   return opConverter.convertOperations(ops);
3250 }
3251 LogicalResult
3252 mlir::applyFullConversion(Operation *op, ConversionTarget &target,
3253                           const FrozenRewritePatternSet &patterns) {
3254   return applyFullConversion(llvm::makeArrayRef(op), target, patterns);
3255 }
3256 
3257 //===----------------------------------------------------------------------===//
3258 // Analysis Conversion
3259 
3260 LogicalResult
3261 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
3262                               ConversionTarget &target,
3263                               const FrozenRewritePatternSet &patterns,
3264                               DenseSet<Operation *> &convertedOps) {
3265   OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
3266                                  &convertedOps);
3267   return opConverter.convertOperations(ops);
3268 }
3269 LogicalResult
3270 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
3271                               const FrozenRewritePatternSet &patterns,
3272                               DenseSet<Operation *> &convertedOps) {
3273   return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
3274                                  convertedOps);
3275 }
3276