1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Transforms/DialectConversion.h" 10 #include "mlir/IR/Block.h" 11 #include "mlir/IR/BlockAndValueMapping.h" 12 #include "mlir/IR/Builders.h" 13 #include "mlir/IR/BuiltinOps.h" 14 #include "mlir/IR/FunctionSupport.h" 15 #include "mlir/Rewrite/PatternApplicator.h" 16 #include "mlir/Transforms/Utils.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/FormatVariadic.h" 21 #include "llvm/Support/SaveAndRestore.h" 22 #include "llvm/Support/ScopedPrinter.h" 23 24 using namespace mlir; 25 using namespace mlir::detail; 26 27 #define DEBUG_TYPE "dialect-conversion" 28 29 /// Recursively collect all of the operations to convert from within 'region'. 30 /// If 'target' is nonnull, operations that are recursively legal have their 31 /// regions pre-filtered to avoid considering them for legalization. 32 static LogicalResult 33 computeConversionSet(iterator_range<Region::iterator> region, 34 Location regionLoc, std::vector<Operation *> &toConvert, 35 ConversionTarget *target = nullptr) { 36 if (llvm::empty(region)) 37 return success(); 38 39 // Traverse starting from the entry block. 40 SmallVector<Block *, 16> worklist(1, &*region.begin()); 41 DenseSet<Block *> visitedBlocks; 42 visitedBlocks.insert(worklist.front()); 43 while (!worklist.empty()) { 44 Block *block = worklist.pop_back_val(); 45 46 // Compute the conversion set of each of the nested operations. 47 for (Operation &op : *block) { 48 toConvert.emplace_back(&op); 49 50 // Don't check this operation's children for conversion if the operation 51 // is recursively legal. 52 auto legalityInfo = target ? target->isLegal(&op) 53 : Optional<ConversionTarget::LegalOpDetails>(); 54 if (legalityInfo && legalityInfo->isRecursivelyLegal) 55 continue; 56 for (auto ®ion : op.getRegions()) { 57 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 58 toConvert, target))) 59 return failure(); 60 } 61 } 62 63 // Recurse to children that haven't been visited. 64 for (Block *succ : block->getSuccessors()) 65 if (visitedBlocks.insert(succ).second) 66 worklist.push_back(succ); 67 } 68 69 // Check that all blocks in the region were visited. 70 if (llvm::any_of(llvm::drop_begin(region, 1), 71 [&](Block &block) { return !visitedBlocks.count(&block); })) 72 return emitError(regionLoc, "unreachable blocks were not converted"); 73 return success(); 74 } 75 76 /// A utility function to log a successful result for the given reason. 77 template <typename... Args> 78 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, 79 Args &&... args) { 80 LLVM_DEBUG({ 81 os.unindent(); 82 os.startLine() << "} -> SUCCESS"; 83 if (!fmt.empty()) 84 os.getOStream() << " : " 85 << llvm::formatv(fmt.data(), std::forward<Args>(args)...); 86 os.getOStream() << "\n"; 87 }); 88 } 89 90 /// A utility function to log a failure result for the given reason. 91 template <typename... Args> 92 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, 93 Args &&... args) { 94 LLVM_DEBUG({ 95 os.unindent(); 96 os.startLine() << "} -> FAILURE : " 97 << llvm::formatv(fmt.data(), std::forward<Args>(args)...) 98 << "\n"; 99 }); 100 } 101 102 //===----------------------------------------------------------------------===// 103 // ConversionValueMapping 104 //===----------------------------------------------------------------------===// 105 106 namespace { 107 /// This class wraps a BlockAndValueMapping to provide recursive lookup 108 /// functionality, i.e. we will traverse if the mapped value also has a mapping. 109 struct ConversionValueMapping { 110 /// Lookup a mapped value within the map. If a mapping for the provided value 111 /// does not exist then return the provided value. If `desiredType` is 112 /// non-null, returns the most recently mapped value with that type. If an 113 /// operand of that type does not exist, defaults to normal behavior. 114 Value lookupOrDefault(Value from, Type desiredType = nullptr) const; 115 116 /// Lookup a mapped value within the map, or return null if a mapping does not 117 /// exist. If a mapping exists, this follows the same behavior of 118 /// `lookupOrDefault`. 119 Value lookupOrNull(Value from) const; 120 121 /// Map a value to the one provided. 122 void map(Value oldVal, Value newVal) { mapping.map(oldVal, newVal); } 123 124 /// Drop the last mapping for the given value. 125 void erase(Value value) { mapping.erase(value); } 126 127 /// Returns the inverse raw value mapping (without recursive query support). 128 BlockAndValueMapping getInverse() const { return mapping.getInverse(); } 129 130 private: 131 /// Current value mappings. 132 BlockAndValueMapping mapping; 133 }; 134 } // end anonymous namespace 135 136 Value ConversionValueMapping::lookupOrDefault(Value from, 137 Type desiredType) const { 138 // If there was no desired type, simply find the leaf value. 139 if (!desiredType) { 140 // If this value had a valid mapping, unmap that value as well in the case 141 // that it was also replaced. 142 while (auto mappedValue = mapping.lookupOrNull(from)) 143 from = mappedValue; 144 return from; 145 } 146 147 // Otherwise, try to find the deepest value that has the desired type. 148 Value desiredValue; 149 do { 150 if (from.getType() == desiredType) 151 desiredValue = from; 152 153 Value mappedValue = mapping.lookupOrNull(from); 154 if (!mappedValue) 155 break; 156 from = mappedValue; 157 } while (true); 158 159 // If the desired value was found use it, otherwise default to the leaf value. 160 return desiredValue ? desiredValue : from; 161 } 162 163 Value ConversionValueMapping::lookupOrNull(Value from) const { 164 Value result = lookupOrDefault(from); 165 return result == from ? nullptr : result; 166 } 167 168 //===----------------------------------------------------------------------===// 169 // ArgConverter 170 //===----------------------------------------------------------------------===// 171 namespace { 172 /// This class provides a simple interface for converting the types of block 173 /// arguments. This is done by creating a new block that contains the new legal 174 /// types and extracting the block that contains the old illegal types to allow 175 /// for undoing pending rewrites in the case of failure. 176 struct ArgConverter { 177 ArgConverter(PatternRewriter &rewriter) : rewriter(rewriter) {} 178 179 /// This structure contains the information pertaining to an argument that has 180 /// been converted. 181 struct ConvertedArgInfo { 182 ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize, 183 Value castValue = nullptr) 184 : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {} 185 186 /// The start index of in the new argument list that contains arguments that 187 /// replace the original. 188 unsigned newArgIdx; 189 190 /// The number of arguments that replaced the original argument. 191 unsigned newArgSize; 192 193 /// The cast value that was created to cast from the new arguments to the 194 /// old. This only used if 'newArgSize' > 1. 195 Value castValue; 196 }; 197 198 /// This structure contains information pertaining to a block that has had its 199 /// signature converted. 200 struct ConvertedBlockInfo { 201 ConvertedBlockInfo(Block *origBlock, TypeConverter &converter) 202 : origBlock(origBlock), converter(&converter) {} 203 204 /// The original block that was requested to have its signature converted. 205 Block *origBlock; 206 207 /// The conversion information for each of the arguments. The information is 208 /// None if the argument was dropped during conversion. 209 SmallVector<Optional<ConvertedArgInfo>, 1> argInfo; 210 211 /// The type converter used to convert the arguments. 212 TypeConverter *converter; 213 }; 214 215 /// Return if the signature of the given block has already been converted. 216 bool hasBeenConverted(Block *block) const { 217 return conversionInfo.count(block) || convertedBlocks.count(block); 218 } 219 220 /// Set the type converter to use for the given region. 221 void setConverter(Region *region, TypeConverter *typeConverter) { 222 assert(typeConverter && "expected valid type converter"); 223 regionToConverter[region] = typeConverter; 224 } 225 226 /// Return the type converter to use for the given region, or null if there 227 /// isn't one. 228 TypeConverter *getConverter(Region *region) { 229 return regionToConverter.lookup(region); 230 } 231 232 //===--------------------------------------------------------------------===// 233 // Rewrite Application 234 //===--------------------------------------------------------------------===// 235 236 /// Erase any rewrites registered for the blocks within the given operation 237 /// which is about to be removed. This merely drops the rewrites without 238 /// undoing them. 239 void notifyOpRemoved(Operation *op); 240 241 /// Cleanup and undo any generated conversions for the arguments of block. 242 /// This method replaces the new block with the original, reverting the IR to 243 /// its original state. 244 void discardRewrites(Block *block); 245 246 /// Fully replace uses of the old arguments with the new. 247 void applyRewrites(ConversionValueMapping &mapping); 248 249 /// Materialize any necessary conversions for converted arguments that have 250 /// live users, using the provided `findLiveUser` to search for a user that 251 /// survives the conversion process. 252 LogicalResult 253 materializeLiveConversions(ConversionValueMapping &mapping, 254 OpBuilder &builder, 255 function_ref<Operation *(Value)> findLiveUser); 256 257 //===--------------------------------------------------------------------===// 258 // Conversion 259 //===--------------------------------------------------------------------===// 260 261 /// Attempt to convert the signature of the given block, if successful a new 262 /// block is returned containing the new arguments. Returns `block` if it did 263 /// not require conversion. 264 FailureOr<Block *> 265 convertSignature(Block *block, TypeConverter &converter, 266 ConversionValueMapping &mapping, 267 SmallVectorImpl<BlockArgument> &argReplacements); 268 269 /// Apply the given signature conversion on the given block. The new block 270 /// containing the updated signature is returned. If no conversions were 271 /// necessary, e.g. if the block has no arguments, `block` is returned. 272 /// `converter` is used to generate any necessary cast operations that 273 /// translate between the origin argument types and those specified in the 274 /// signature conversion. 275 Block *applySignatureConversion( 276 Block *block, TypeConverter &converter, 277 TypeConverter::SignatureConversion &signatureConversion, 278 ConversionValueMapping &mapping, 279 SmallVectorImpl<BlockArgument> &argReplacements); 280 281 /// Insert a new conversion into the cache. 282 void insertConversion(Block *newBlock, ConvertedBlockInfo &&info); 283 284 /// A collection of blocks that have had their arguments converted. This is a 285 /// map from the new replacement block, back to the original block. 286 llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo; 287 288 /// The set of original blocks that were converted. 289 DenseSet<Block *> convertedBlocks; 290 291 /// A mapping from valid regions, to those containing the original blocks of a 292 /// conversion. 293 DenseMap<Region *, std::unique_ptr<Region>> regionMapping; 294 295 /// A mapping of regions to type converters that should be used when 296 /// converting the arguments of blocks within that region. 297 DenseMap<Region *, TypeConverter *> regionToConverter; 298 299 /// The pattern rewriter to use when materializing conversions. 300 PatternRewriter &rewriter; 301 }; 302 } // end anonymous namespace 303 304 //===----------------------------------------------------------------------===// 305 // Rewrite Application 306 307 void ArgConverter::notifyOpRemoved(Operation *op) { 308 if (conversionInfo.empty()) 309 return; 310 311 for (Region ®ion : op->getRegions()) { 312 for (Block &block : region) { 313 // Drop any rewrites from within. 314 for (Operation &nestedOp : block) 315 if (nestedOp.getNumRegions()) 316 notifyOpRemoved(&nestedOp); 317 318 // Check if this block was converted. 319 auto it = conversionInfo.find(&block); 320 if (it == conversionInfo.end()) 321 continue; 322 323 // Drop all uses of the original arguments and delete the original block. 324 Block *origBlock = it->second.origBlock; 325 for (BlockArgument arg : origBlock->getArguments()) 326 arg.dropAllUses(); 327 conversionInfo.erase(it); 328 } 329 } 330 } 331 332 void ArgConverter::discardRewrites(Block *block) { 333 auto it = conversionInfo.find(block); 334 if (it == conversionInfo.end()) 335 return; 336 Block *origBlock = it->second.origBlock; 337 338 // Drop all uses of the new block arguments and replace uses of the new block. 339 for (int i = block->getNumArguments() - 1; i >= 0; --i) 340 block->getArgument(i).dropAllUses(); 341 block->replaceAllUsesWith(origBlock); 342 343 // Move the operations back the original block and the delete the new block. 344 origBlock->getOperations().splice(origBlock->end(), block->getOperations()); 345 origBlock->moveBefore(block); 346 block->erase(); 347 348 convertedBlocks.erase(origBlock); 349 conversionInfo.erase(it); 350 } 351 352 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) { 353 for (auto &info : conversionInfo) { 354 ConvertedBlockInfo &blockInfo = info.second; 355 Block *origBlock = blockInfo.origBlock; 356 357 // Process the remapping for each of the original arguments. 358 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 359 Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i]; 360 BlockArgument origArg = origBlock->getArgument(i); 361 362 // Handle the case of a 1->0 value mapping. 363 if (!argInfo) { 364 if (Value newArg = mapping.lookupOrNull(origArg)) 365 origArg.replaceAllUsesWith(newArg); 366 continue; 367 } 368 369 // Otherwise this is a 1->1+ value mapping. 370 Value castValue = argInfo->castValue; 371 assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping"); 372 373 // If the argument is still used, replace it with the generated cast. 374 if (!origArg.use_empty()) 375 origArg.replaceAllUsesWith(mapping.lookupOrDefault(castValue)); 376 } 377 } 378 } 379 380 LogicalResult ArgConverter::materializeLiveConversions( 381 ConversionValueMapping &mapping, OpBuilder &builder, 382 function_ref<Operation *(Value)> findLiveUser) { 383 for (auto &info : conversionInfo) { 384 Block *newBlock = info.first; 385 ConvertedBlockInfo &blockInfo = info.second; 386 Block *origBlock = blockInfo.origBlock; 387 388 // Process the remapping for each of the original arguments. 389 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 390 // FIXME: We should run the below checks even if the type conversion was 391 // 1->N, but a lot of existing lowering rely on the block argument being 392 // blindly replaced. Those usages should be updated, and this if should be 393 // removed. 394 if (blockInfo.argInfo[i]) 395 continue; 396 397 // If the type of this argument changed and the argument is still live, we 398 // need to materialize a conversion. 399 BlockArgument origArg = origBlock->getArgument(i); 400 auto argReplacementValue = mapping.lookupOrDefault(origArg); 401 bool isDroppedArg = argReplacementValue == origArg; 402 if (argReplacementValue.getType() == origArg.getType() && !isDroppedArg) 403 continue; 404 Operation *liveUser = findLiveUser(origArg); 405 if (!liveUser) 406 continue; 407 408 if (OpResult result = argReplacementValue.dyn_cast<OpResult>()) 409 rewriter.setInsertionPointAfter(result.getOwner()); 410 else 411 rewriter.setInsertionPointToStart(newBlock); 412 Value newArg = blockInfo.converter->materializeSourceConversion( 413 rewriter, origArg.getLoc(), origArg.getType(), 414 isDroppedArg ? ValueRange() : ValueRange(argReplacementValue)); 415 if (!newArg) { 416 InFlightDiagnostic diag = 417 emitError(origArg.getLoc()) 418 << "failed to materialize conversion for block argument #" << i 419 << " that remained live after conversion, type was " 420 << origArg.getType(); 421 if (!isDroppedArg) 422 diag << ", with target type " << argReplacementValue.getType(); 423 diag.attachNote(liveUser->getLoc()) 424 << "see existing live user here: " << *liveUser; 425 return failure(); 426 } 427 mapping.map(origArg, newArg); 428 } 429 } 430 return success(); 431 } 432 433 //===----------------------------------------------------------------------===// 434 // Conversion 435 436 FailureOr<Block *> ArgConverter::convertSignature( 437 Block *block, TypeConverter &converter, ConversionValueMapping &mapping, 438 SmallVectorImpl<BlockArgument> &argReplacements) { 439 // Check if the block was already converted. If the block is detached, 440 // conservatively assume it is going to be deleted. 441 if (hasBeenConverted(block) || !block->getParent()) 442 return block; 443 444 // Try to convert the signature for the block with the provided converter. 445 if (auto conversion = converter.convertBlockSignature(block)) 446 return applySignatureConversion(block, converter, *conversion, mapping, 447 argReplacements); 448 return failure(); 449 } 450 451 Block *ArgConverter::applySignatureConversion( 452 Block *block, TypeConverter &converter, 453 TypeConverter::SignatureConversion &signatureConversion, 454 ConversionValueMapping &mapping, 455 SmallVectorImpl<BlockArgument> &argReplacements) { 456 // If no arguments are being changed or added, there is nothing to do. 457 unsigned origArgCount = block->getNumArguments(); 458 auto convertedTypes = signatureConversion.getConvertedTypes(); 459 if (origArgCount == 0 && convertedTypes.empty()) 460 return block; 461 462 // Split the block at the beginning to get a new block to use for the updated 463 // signature. 464 Block *newBlock = block->splitBlock(block->begin()); 465 block->replaceAllUsesWith(newBlock); 466 467 SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes)); 468 ArrayRef<Value> newArgs(newArgRange); 469 470 // Remap each of the original arguments as determined by the signature 471 // conversion. 472 ConvertedBlockInfo info(block, converter); 473 info.argInfo.resize(origArgCount); 474 475 OpBuilder::InsertionGuard guard(rewriter); 476 rewriter.setInsertionPointToStart(newBlock); 477 for (unsigned i = 0; i != origArgCount; ++i) { 478 auto inputMap = signatureConversion.getInputMapping(i); 479 if (!inputMap) 480 continue; 481 BlockArgument origArg = block->getArgument(i); 482 483 // If inputMap->replacementValue is not nullptr, then the argument is 484 // dropped and a replacement value is provided to be the remappedValue. 485 if (inputMap->replacementValue) { 486 assert(inputMap->size == 0 && 487 "invalid to provide a replacement value when the argument isn't " 488 "dropped"); 489 mapping.map(origArg, inputMap->replacementValue); 490 argReplacements.push_back(origArg); 491 continue; 492 } 493 494 // Otherwise, this is a 1->1+ mapping. Call into the provided type converter 495 // to pack the new values. For 1->1 mappings, if there is no materialization 496 // provided, use the argument directly instead. 497 auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size); 498 Value newArg = converter.materializeArgumentConversion( 499 rewriter, origArg.getLoc(), origArg.getType(), replArgs); 500 if (!newArg) { 501 assert(replArgs.size() == 1 && 502 "couldn't materialize the result of 1->N conversion"); 503 newArg = replArgs.front(); 504 } 505 mapping.map(origArg, newArg); 506 argReplacements.push_back(origArg); 507 info.argInfo[i] = 508 ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg); 509 } 510 511 // Remove the original block from the region and return the new one. 512 insertConversion(newBlock, std::move(info)); 513 return newBlock; 514 } 515 516 void ArgConverter::insertConversion(Block *newBlock, 517 ConvertedBlockInfo &&info) { 518 // Get a region to insert the old block. 519 Region *region = newBlock->getParent(); 520 std::unique_ptr<Region> &mappedRegion = regionMapping[region]; 521 if (!mappedRegion) 522 mappedRegion = std::make_unique<Region>(region->getParentOp()); 523 524 // Move the original block to the mapped region and emplace the conversion. 525 mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(), 526 info.origBlock->getIterator()); 527 convertedBlocks.insert(info.origBlock); 528 conversionInfo.insert({newBlock, std::move(info)}); 529 } 530 531 //===----------------------------------------------------------------------===// 532 // Rewriter and Translation State 533 //===----------------------------------------------------------------------===// 534 namespace { 535 /// This class contains a snapshot of the current conversion rewriter state. 536 /// This is useful when saving and undoing a set of rewrites. 537 struct RewriterState { 538 RewriterState(unsigned numCreatedOps, unsigned numReplacements, 539 unsigned numArgReplacements, unsigned numBlockActions, 540 unsigned numIgnoredOperations, unsigned numRootUpdates) 541 : numCreatedOps(numCreatedOps), numReplacements(numReplacements), 542 numArgReplacements(numArgReplacements), 543 numBlockActions(numBlockActions), 544 numIgnoredOperations(numIgnoredOperations), 545 numRootUpdates(numRootUpdates) {} 546 547 /// The current number of created operations. 548 unsigned numCreatedOps; 549 550 /// The current number of replacements queued. 551 unsigned numReplacements; 552 553 /// The current number of argument replacements queued. 554 unsigned numArgReplacements; 555 556 /// The current number of block actions performed. 557 unsigned numBlockActions; 558 559 /// The current number of ignored operations. 560 unsigned numIgnoredOperations; 561 562 /// The current number of operations that were updated in place. 563 unsigned numRootUpdates; 564 }; 565 566 /// The state of an operation that was updated by a pattern in-place. This 567 /// contains all of the necessary information to reconstruct an operation that 568 /// was updated in place. 569 class OperationTransactionState { 570 public: 571 OperationTransactionState() = default; 572 OperationTransactionState(Operation *op) 573 : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()), 574 operands(op->operand_begin(), op->operand_end()), 575 successors(op->successor_begin(), op->successor_end()) {} 576 577 /// Discard the transaction state and reset the state of the original 578 /// operation. 579 void resetOperation() const { 580 op->setLoc(loc); 581 op->setAttrs(attrs); 582 op->setOperands(operands); 583 for (auto it : llvm::enumerate(successors)) 584 op->setSuccessor(it.value(), it.index()); 585 } 586 587 /// Return the original operation of this state. 588 Operation *getOperation() const { return op; } 589 590 private: 591 Operation *op; 592 LocationAttr loc; 593 DictionaryAttr attrs; 594 SmallVector<Value, 8> operands; 595 SmallVector<Block *, 2> successors; 596 }; 597 598 /// This class represents one requested operation replacement via 'replaceOp' or 599 /// 'eraseOp`. 600 struct OpReplacement { 601 OpReplacement() = default; 602 OpReplacement(TypeConverter *converter) : converter(converter) {} 603 604 /// An optional type converter that can be used to materialize conversions 605 /// between the new and old values if necessary. 606 TypeConverter *converter = nullptr; 607 }; 608 609 /// The kind of the block action performed during the rewrite. Actions can be 610 /// undone if the conversion fails. 611 enum class BlockActionKind { 612 Create, 613 Erase, 614 Merge, 615 Move, 616 Split, 617 TypeConversion 618 }; 619 620 /// Original position of the given block in its parent region. During undo 621 /// actions, the block needs to be placed after `insertAfterBlock`. 622 struct BlockPosition { 623 Region *region; 624 Block *insertAfterBlock; 625 }; 626 627 /// Information needed to undo the merge actions. 628 /// - the source block, and 629 /// - the Operation that was the last operation in the dest block before the 630 /// merge (could be null if the dest block was empty). 631 struct MergeInfo { 632 Block *sourceBlock; 633 Operation *destBlockLastInst; 634 }; 635 636 /// The storage class for an undoable block action (one of BlockActionKind), 637 /// contains the information necessary to undo this action. 638 struct BlockAction { 639 static BlockAction getCreate(Block *block) { 640 return {BlockActionKind::Create, block, {}}; 641 } 642 static BlockAction getErase(Block *block, BlockPosition originalPosition) { 643 return {BlockActionKind::Erase, block, {originalPosition}}; 644 } 645 static BlockAction getMerge(Block *block, Block *sourceBlock) { 646 BlockAction action{BlockActionKind::Merge, block, {}}; 647 action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()}; 648 return action; 649 } 650 static BlockAction getMove(Block *block, BlockPosition originalPosition) { 651 return {BlockActionKind::Move, block, {originalPosition}}; 652 } 653 static BlockAction getSplit(Block *block, Block *originalBlock) { 654 BlockAction action{BlockActionKind::Split, block, {}}; 655 action.originalBlock = originalBlock; 656 return action; 657 } 658 static BlockAction getTypeConversion(Block *block) { 659 return BlockAction{BlockActionKind::TypeConversion, block, {}}; 660 } 661 662 // The action kind. 663 BlockActionKind kind; 664 665 // A pointer to the block that was created by the action. 666 Block *block; 667 668 union { 669 // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and 670 // contains a pointer to the region that originally contained the block as 671 // well as the position of the block in that region. 672 BlockPosition originalPosition; 673 // In use if kind == BlockActionKind::Split and contains a pointer to the 674 // block that was split into two parts. 675 Block *originalBlock; 676 // In use if kind == BlockActionKind::Merge, and contains the information 677 // needed to undo the merge. 678 MergeInfo mergeInfo; 679 }; 680 }; 681 } // end anonymous namespace 682 683 //===----------------------------------------------------------------------===// 684 // ConversionPatternRewriterImpl 685 //===----------------------------------------------------------------------===// 686 namespace mlir { 687 namespace detail { 688 struct ConversionPatternRewriterImpl { 689 ConversionPatternRewriterImpl(PatternRewriter &rewriter) 690 : argConverter(rewriter) {} 691 692 /// Cleanup and destroy any generated rewrite operations. This method is 693 /// invoked when the conversion process fails. 694 void discardRewrites(); 695 696 /// Apply all requested operation rewrites. This method is invoked when the 697 /// conversion process succeeds. 698 void applyRewrites(); 699 700 //===--------------------------------------------------------------------===// 701 // State Management 702 //===--------------------------------------------------------------------===// 703 704 /// Return the current state of the rewriter. 705 RewriterState getCurrentState(); 706 707 /// Reset the state of the rewriter to a previously saved point. 708 void resetState(RewriterState state); 709 710 /// Erase any blocks that were unlinked from their regions and stored in block 711 /// actions. 712 void eraseDanglingBlocks(); 713 714 /// Undo the block actions (motions, splits) one by one in reverse order until 715 /// "numActionsToKeep" actions remains. 716 void undoBlockActions(unsigned numActionsToKeep = 0); 717 718 /// Remap the given operands to those with potentially different types. The 719 /// provided type converter is used to ensure that the remapped types are 720 /// legal. Returns success if the operands could be remapped, failure 721 /// otherwise. 722 LogicalResult remapValues(Location loc, PatternRewriter &rewriter, 723 TypeConverter *converter, 724 Operation::operand_range operands, 725 SmallVectorImpl<Value> &remapped); 726 727 /// Returns true if the given operation is ignored, and does not need to be 728 /// converted. 729 bool isOpIgnored(Operation *op) const; 730 731 /// Recursively marks the nested operations under 'op' as ignored. This 732 /// removes them from being considered for legalization. 733 void markNestedOpsIgnored(Operation *op); 734 735 //===--------------------------------------------------------------------===// 736 // Type Conversion 737 //===--------------------------------------------------------------------===// 738 739 /// Convert the signature of the given block. 740 FailureOr<Block *> convertBlockSignature( 741 Block *block, TypeConverter &converter, 742 TypeConverter::SignatureConversion *conversion = nullptr); 743 744 /// Apply a signature conversion on the given region. 745 Block * 746 applySignatureConversion(Region *region, 747 TypeConverter::SignatureConversion &conversion); 748 749 /// Convert the types of block arguments within the given region. 750 FailureOr<Block *> 751 convertRegionTypes(Region *region, TypeConverter &converter, 752 TypeConverter::SignatureConversion *entryConversion); 753 754 /// Convert the types of non-entry block arguments within the given region. 755 LogicalResult convertNonEntryRegionTypes(Region *region, 756 TypeConverter &converter); 757 758 //===--------------------------------------------------------------------===// 759 // Rewriter Notification Hooks 760 //===--------------------------------------------------------------------===// 761 762 /// PatternRewriter hook for replacing the results of an operation. 763 void notifyOpReplaced(Operation *op, ValueRange newValues); 764 765 /// Notifies that a block is about to be erased. 766 void notifyBlockIsBeingErased(Block *block); 767 768 /// Notifies that a block was created. 769 void notifyCreatedBlock(Block *block); 770 771 /// Notifies that a block was split. 772 void notifySplitBlock(Block *block, Block *continuation); 773 774 /// Notifies that `block` is being merged with `srcBlock`. 775 void notifyBlocksBeingMerged(Block *block, Block *srcBlock); 776 777 /// Notifies that the blocks of a region are about to be moved. 778 void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent, 779 Region::iterator before); 780 781 /// Notifies that the blocks of a region were cloned into another. 782 void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks, 783 Location origRegionLoc); 784 785 /// Notifies that a pattern match failed for the given reason. 786 LogicalResult 787 notifyMatchFailure(Location loc, 788 function_ref<void(Diagnostic &)> reasonCallback); 789 790 //===--------------------------------------------------------------------===// 791 // State 792 //===--------------------------------------------------------------------===// 793 794 // Mapping between replaced values that differ in type. This happens when 795 // replacing a value with one of a different type. 796 ConversionValueMapping mapping; 797 798 /// Utility used to convert block arguments. 799 ArgConverter argConverter; 800 801 /// Ordered vector of all of the newly created operations during conversion. 802 std::vector<Operation *> createdOps; 803 804 /// Ordered map of requested operation replacements. 805 llvm::MapVector<Operation *, OpReplacement> replacements; 806 807 /// Ordered vector of any requested block argument replacements. 808 SmallVector<BlockArgument, 4> argReplacements; 809 810 /// Ordered list of block operations (creations, splits, motions). 811 SmallVector<BlockAction, 4> blockActions; 812 813 /// A set of operations that should no longer be considered for legalization, 814 /// but were not directly replace/erased/etc. by a pattern. These are 815 /// generally child operations of other operations who were 816 /// replaced/erased/etc. This is not meant to be an exhaustive list of all 817 /// operations, but the minimal set that can be used to detect if a given 818 /// operation should be `ignored`. For example, we may add the operations that 819 /// define non-empty regions to the set, but not any of the others. This 820 /// simplifies the amount of memory needed as we can query if the parent 821 /// operation was ignored. 822 llvm::SetVector<Operation *> ignoredOps; 823 824 /// A transaction state for each of operations that were updated in-place. 825 SmallVector<OperationTransactionState, 4> rootUpdates; 826 827 /// A vector of indices into `replacements` of operations that were replaced 828 /// with values with different result types than the original operation, e.g. 829 /// 1->N conversion of some kind. 830 SmallVector<unsigned, 4> operationsWithChangedResults; 831 832 /// A default type converter, used when block conversions do not have one 833 /// explicitly provided. 834 TypeConverter defaultTypeConverter; 835 836 /// The current conversion pattern that is being rewritten, or nullptr if 837 /// called from outside of a conversion pattern rewrite. 838 const ConversionPattern *currentConversionPattern = nullptr; 839 840 #ifndef NDEBUG 841 /// A set of operations that have pending updates. This tracking isn't 842 /// strictly necessary, and is thus only active during debug builds for extra 843 /// verification. 844 SmallPtrSet<Operation *, 1> pendingRootUpdates; 845 846 /// A logger used to emit diagnostics during the conversion process. 847 llvm::ScopedPrinter logger{llvm::dbgs()}; 848 #endif 849 }; 850 } // end namespace detail 851 } // end namespace mlir 852 853 /// Detach any operations nested in the given operation from their parent 854 /// blocks, and erase the given operation. This can be used when the nested 855 /// operations are scheduled for erasure themselves, so deleting the regions of 856 /// the given operation together with their content would result in double-free. 857 /// This happens, for example, when rolling back op creation in the reverse 858 /// order and if the nested ops were created before the parent op. This function 859 /// does not need to collect nested ops recursively because it is expected to 860 /// also be called for each nested op when it is about to be deleted. 861 static void detachNestedAndErase(Operation *op) { 862 for (Region ®ion : op->getRegions()) { 863 for (Block &block : region.getBlocks()) { 864 while (!block.getOperations().empty()) 865 block.getOperations().remove(block.getOperations().begin()); 866 block.dropAllDefinedValueUses(); 867 } 868 } 869 op->dropAllUses(); 870 op->erase(); 871 } 872 873 void ConversionPatternRewriterImpl::discardRewrites() { 874 // Reset any operations that were updated in place. 875 for (auto &state : rootUpdates) 876 state.resetOperation(); 877 878 undoBlockActions(); 879 880 // Remove any newly created ops. 881 for (auto *op : llvm::reverse(createdOps)) 882 detachNestedAndErase(op); 883 } 884 885 void ConversionPatternRewriterImpl::applyRewrites() { 886 // Apply all of the rewrites replacements requested during conversion. 887 for (auto &repl : replacements) { 888 for (OpResult result : repl.first->getResults()) 889 if (Value newValue = mapping.lookupOrNull(result)) 890 result.replaceAllUsesWith(newValue); 891 892 // If this operation defines any regions, drop any pending argument 893 // rewrites. 894 if (repl.first->getNumRegions()) 895 argConverter.notifyOpRemoved(repl.first); 896 } 897 898 // Apply all of the requested argument replacements. 899 for (BlockArgument arg : argReplacements) { 900 Value repl = mapping.lookupOrDefault(arg); 901 if (repl.isa<BlockArgument>()) { 902 arg.replaceAllUsesWith(repl); 903 continue; 904 } 905 906 // If the replacement value is an operation, we check to make sure that we 907 // don't replace uses that are within the parent operation of the 908 // replacement value. 909 Operation *replOp = repl.cast<OpResult>().getOwner(); 910 Block *replBlock = replOp->getBlock(); 911 arg.replaceUsesWithIf(repl, [&](OpOperand &operand) { 912 Operation *user = operand.getOwner(); 913 return user->getBlock() != replBlock || replOp->isBeforeInBlock(user); 914 }); 915 } 916 917 // In a second pass, erase all of the replaced operations in reverse. This 918 // allows processing nested operations before their parent region is 919 // destroyed. Because we process in reverse order, producers may be deleted 920 // before their users (a pattern deleting a producer and then the consumer) 921 // so we first drop all uses explicitly. 922 for (auto &repl : llvm::reverse(replacements)) { 923 repl.first->dropAllUses(); 924 repl.first->erase(); 925 } 926 927 argConverter.applyRewrites(mapping); 928 929 // Now that the ops have been erased, also erase dangling blocks. 930 eraseDanglingBlocks(); 931 } 932 933 //===----------------------------------------------------------------------===// 934 // State Management 935 936 RewriterState ConversionPatternRewriterImpl::getCurrentState() { 937 return RewriterState(createdOps.size(), replacements.size(), 938 argReplacements.size(), blockActions.size(), 939 ignoredOps.size(), rootUpdates.size()); 940 } 941 942 void ConversionPatternRewriterImpl::resetState(RewriterState state) { 943 // Reset any operations that were updated in place. 944 for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i) 945 rootUpdates[i].resetOperation(); 946 rootUpdates.resize(state.numRootUpdates); 947 948 // Reset any replaced arguments. 949 for (BlockArgument replacedArg : 950 llvm::drop_begin(argReplacements, state.numArgReplacements)) 951 mapping.erase(replacedArg); 952 argReplacements.resize(state.numArgReplacements); 953 954 // Undo any block actions. 955 undoBlockActions(state.numBlockActions); 956 957 // Reset any replaced operations and undo any saved mappings. 958 for (auto &repl : llvm::drop_begin(replacements, state.numReplacements)) 959 for (auto result : repl.first->getResults()) 960 mapping.erase(result); 961 while (replacements.size() != state.numReplacements) 962 replacements.pop_back(); 963 964 // Pop all of the newly created operations. 965 while (createdOps.size() != state.numCreatedOps) { 966 detachNestedAndErase(createdOps.back()); 967 createdOps.pop_back(); 968 } 969 970 // Pop all of the recorded ignored operations that are no longer valid. 971 while (ignoredOps.size() != state.numIgnoredOperations) 972 ignoredOps.pop_back(); 973 974 // Reset operations with changed results. 975 while (!operationsWithChangedResults.empty() && 976 operationsWithChangedResults.back() >= state.numReplacements) 977 operationsWithChangedResults.pop_back(); 978 } 979 980 void ConversionPatternRewriterImpl::eraseDanglingBlocks() { 981 for (auto &action : blockActions) 982 if (action.kind == BlockActionKind::Erase) 983 delete action.block; 984 } 985 986 void ConversionPatternRewriterImpl::undoBlockActions( 987 unsigned numActionsToKeep) { 988 for (auto &action : 989 llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) { 990 switch (action.kind) { 991 // Delete the created block. 992 case BlockActionKind::Create: { 993 // Unlink all of the operations within this block, they will be deleted 994 // separately. 995 auto &blockOps = action.block->getOperations(); 996 while (!blockOps.empty()) 997 blockOps.remove(blockOps.begin()); 998 action.block->dropAllDefinedValueUses(); 999 action.block->erase(); 1000 break; 1001 } 1002 // Put the block (owned by action) back into its original position. 1003 case BlockActionKind::Erase: { 1004 auto &blockList = action.originalPosition.region->getBlocks(); 1005 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 1006 blockList.insert((insertAfterBlock 1007 ? std::next(Region::iterator(insertAfterBlock)) 1008 : blockList.begin()), 1009 action.block); 1010 break; 1011 } 1012 // Split the block at the position which was originally the end of the 1013 // destination block (owned by action), and put the instructions back into 1014 // the block used before the merge. 1015 case BlockActionKind::Merge: { 1016 Block *sourceBlock = action.mergeInfo.sourceBlock; 1017 Block::iterator splitPoint = 1018 (action.mergeInfo.destBlockLastInst 1019 ? ++Block::iterator(action.mergeInfo.destBlockLastInst) 1020 : action.block->begin()); 1021 sourceBlock->getOperations().splice(sourceBlock->begin(), 1022 action.block->getOperations(), 1023 splitPoint, action.block->end()); 1024 break; 1025 } 1026 // Move the block back to its original position. 1027 case BlockActionKind::Move: { 1028 Region *originalRegion = action.originalPosition.region; 1029 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 1030 originalRegion->getBlocks().splice( 1031 (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock)) 1032 : originalRegion->end()), 1033 action.block->getParent()->getBlocks(), action.block); 1034 break; 1035 } 1036 // Merge back the block that was split out. 1037 case BlockActionKind::Split: { 1038 action.originalBlock->getOperations().splice( 1039 action.originalBlock->end(), action.block->getOperations()); 1040 action.block->dropAllDefinedValueUses(); 1041 action.block->erase(); 1042 break; 1043 } 1044 // Undo the type conversion. 1045 case BlockActionKind::TypeConversion: { 1046 argConverter.discardRewrites(action.block); 1047 break; 1048 } 1049 } 1050 } 1051 blockActions.resize(numActionsToKeep); 1052 } 1053 1054 LogicalResult ConversionPatternRewriterImpl::remapValues( 1055 Location loc, PatternRewriter &rewriter, TypeConverter *converter, 1056 Operation::operand_range operands, SmallVectorImpl<Value> &remapped) { 1057 remapped.reserve(llvm::size(operands)); 1058 1059 SmallVector<Type, 1> legalTypes; 1060 for (auto it : llvm::enumerate(operands)) { 1061 Value operand = it.value(); 1062 Type origType = operand.getType(); 1063 1064 // If a converter was provided, get the desired legal types for this 1065 // operand. 1066 Type desiredType; 1067 if (converter) { 1068 // If there is no legal conversion, fail to match this pattern. 1069 legalTypes.clear(); 1070 if (failed(converter->convertType(origType, legalTypes))) { 1071 return notifyMatchFailure(loc, [=](Diagnostic &diag) { 1072 diag << "unable to convert type for operand #" << it.index() 1073 << ", type was " << origType; 1074 }); 1075 } 1076 // TODO: There currently isn't any mechanism to do 1->N type conversion 1077 // via the PatternRewriter replacement API, so for now we just ignore it. 1078 if (legalTypes.size() == 1) 1079 desiredType = legalTypes.front(); 1080 } else { 1081 // TODO: What we should do here is just set `desiredType` to `origType` 1082 // and then handle the necessary type conversions after the conversion 1083 // process has finished. Unfortunately a lot of patterns currently rely on 1084 // receiving the new operands even if the types change, so we keep the 1085 // original behavior here for now until all of the patterns relying on 1086 // this get updated. 1087 } 1088 Value newOperand = mapping.lookupOrDefault(operand, desiredType); 1089 1090 // Handle the case where the conversion was 1->1 and the new operand type 1091 // isn't legal. 1092 Type newOperandType = newOperand.getType(); 1093 if (converter && desiredType && newOperandType != desiredType) { 1094 // Attempt to materialize a conversion for this new value. 1095 newOperand = converter->materializeTargetConversion( 1096 rewriter, loc, desiredType, newOperand); 1097 if (!newOperand) { 1098 return notifyMatchFailure(loc, [=](Diagnostic &diag) { 1099 diag << "unable to materialize a conversion for " 1100 "operand #" 1101 << it.index() << ", from " << newOperandType << " to " 1102 << desiredType; 1103 }); 1104 } 1105 } 1106 remapped.push_back(newOperand); 1107 } 1108 return success(); 1109 } 1110 1111 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const { 1112 // Check to see if this operation was replaced or its parent ignored. 1113 return replacements.count(op) || ignoredOps.count(op->getParentOp()); 1114 } 1115 1116 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) { 1117 // Walk this operation and collect nested operations that define non-empty 1118 // regions. We mark such operations as 'ignored' so that we know we don't have 1119 // to convert them, or their nested ops. 1120 if (op->getNumRegions() == 0) 1121 return; 1122 op->walk([&](Operation *op) { 1123 if (llvm::any_of(op->getRegions(), 1124 [](Region ®ion) { return !region.empty(); })) 1125 ignoredOps.insert(op); 1126 }); 1127 } 1128 1129 //===----------------------------------------------------------------------===// 1130 // Type Conversion 1131 1132 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature( 1133 Block *block, TypeConverter &converter, 1134 TypeConverter::SignatureConversion *conversion) { 1135 FailureOr<Block *> result = 1136 conversion ? argConverter.applySignatureConversion( 1137 block, converter, *conversion, mapping, argReplacements) 1138 : argConverter.convertSignature(block, converter, mapping, 1139 argReplacements); 1140 if (Block *newBlock = result.getValue()) { 1141 if (newBlock != block) 1142 blockActions.push_back(BlockAction::getTypeConversion(newBlock)); 1143 } 1144 return result; 1145 } 1146 1147 Block *ConversionPatternRewriterImpl::applySignatureConversion( 1148 Region *region, TypeConverter::SignatureConversion &conversion) { 1149 if (!region->empty()) { 1150 return *convertBlockSignature(®ion->front(), defaultTypeConverter, 1151 &conversion); 1152 } 1153 return nullptr; 1154 } 1155 1156 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes( 1157 Region *region, TypeConverter &converter, 1158 TypeConverter::SignatureConversion *entryConversion) { 1159 argConverter.setConverter(region, &converter); 1160 if (region->empty()) 1161 return nullptr; 1162 1163 if (failed(convertNonEntryRegionTypes(region, converter))) 1164 return failure(); 1165 1166 FailureOr<Block *> newEntry = 1167 convertBlockSignature(®ion->front(), converter, entryConversion); 1168 return newEntry; 1169 } 1170 1171 LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes( 1172 Region *region, TypeConverter &converter) { 1173 argConverter.setConverter(region, &converter); 1174 if (region->empty()) 1175 return success(); 1176 1177 // Convert the arguments of each block within the region. 1178 for (Block &block : llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) 1179 if (failed(convertBlockSignature(&block, converter))) 1180 return failure(); 1181 return success(); 1182 } 1183 1184 //===----------------------------------------------------------------------===// 1185 // Rewriter Notification Hooks 1186 1187 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op, 1188 ValueRange newValues) { 1189 assert(newValues.size() == op->getNumResults()); 1190 assert(!replacements.count(op) && "operation was already replaced"); 1191 1192 // Track if any of the results changed, e.g. erased and replaced with null. 1193 bool resultChanged = false; 1194 1195 // Create mappings for each of the new result values. 1196 Value newValue, result; 1197 for (auto it : llvm::zip(newValues, op->getResults())) { 1198 std::tie(newValue, result) = it; 1199 if (!newValue) { 1200 resultChanged = true; 1201 continue; 1202 } 1203 // Remap, and check for any result type changes. 1204 mapping.map(result, newValue); 1205 resultChanged |= (newValue.getType() != result.getType()); 1206 } 1207 if (resultChanged) 1208 operationsWithChangedResults.push_back(replacements.size()); 1209 1210 // Record the requested operation replacement. 1211 TypeConverter *converter = nullptr; 1212 if (currentConversionPattern) 1213 converter = currentConversionPattern->getTypeConverter(); 1214 replacements.insert(std::make_pair(op, OpReplacement(converter))); 1215 1216 // Mark this operation as recursively ignored so that we don't need to 1217 // convert any nested operations. 1218 markNestedOpsIgnored(op); 1219 } 1220 1221 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) { 1222 Region *region = block->getParent(); 1223 Block *origPrevBlock = block->getPrevNode(); 1224 blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock})); 1225 } 1226 1227 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) { 1228 blockActions.push_back(BlockAction::getCreate(block)); 1229 } 1230 1231 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block, 1232 Block *continuation) { 1233 blockActions.push_back(BlockAction::getSplit(continuation, block)); 1234 } 1235 1236 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block, 1237 Block *srcBlock) { 1238 blockActions.push_back(BlockAction::getMerge(block, srcBlock)); 1239 } 1240 1241 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore( 1242 Region ®ion, Region &parent, Region::iterator before) { 1243 if (region.empty()) 1244 return; 1245 Block *laterBlock = ®ion.back(); 1246 for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) { 1247 blockActions.push_back( 1248 BlockAction::getMove(laterBlock, {®ion, &earlierBlock})); 1249 laterBlock = &earlierBlock; 1250 } 1251 blockActions.push_back(BlockAction::getMove(laterBlock, {®ion, nullptr})); 1252 } 1253 1254 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore( 1255 iterator_range<Region::iterator> &blocks, Location origRegionLoc) { 1256 for (Block &block : blocks) 1257 blockActions.push_back(BlockAction::getCreate(&block)); 1258 1259 // Compute the conversion set for the inlined region. 1260 auto result = computeConversionSet(blocks, origRegionLoc, createdOps); 1261 1262 // This original region has already had its conversion set computed, so there 1263 // shouldn't be any new failures. 1264 (void)result; 1265 assert(succeeded(result) && "expected region to have no unreachable blocks"); 1266 } 1267 1268 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure( 1269 Location loc, function_ref<void(Diagnostic &)> reasonCallback) { 1270 LLVM_DEBUG({ 1271 Diagnostic diag(loc, DiagnosticSeverity::Remark); 1272 reasonCallback(diag); 1273 logger.startLine() << "** Failure : " << diag.str() << "\n"; 1274 }); 1275 return failure(); 1276 } 1277 1278 //===----------------------------------------------------------------------===// 1279 // ConversionPatternRewriter 1280 //===----------------------------------------------------------------------===// 1281 1282 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx) 1283 : PatternRewriter(ctx), 1284 impl(new detail::ConversionPatternRewriterImpl(*this)) {} 1285 ConversionPatternRewriter::~ConversionPatternRewriter() {} 1286 1287 /// PatternRewriter hook for replacing the results of an operation when the 1288 /// given functor returns true. 1289 void ConversionPatternRewriter::replaceOpWithIf( 1290 Operation *op, ValueRange newValues, bool *allUsesReplaced, 1291 llvm::unique_function<bool(OpOperand &) const> functor) { 1292 // TODO: To support this we will need to rework a bit of how replacements are 1293 // tracked, given that this isn't guranteed to replace all of the uses of an 1294 // operation. The main change is that now an operation can be replaced 1295 // multiple times, in parts. The current "set" based tracking is mainly useful 1296 // for tracking if a replaced operation should be ignored, i.e. if all of the 1297 // uses will be replaced. 1298 llvm_unreachable( 1299 "replaceOpWithIf is currently not supported by DialectConversion"); 1300 } 1301 1302 /// PatternRewriter hook for replacing the results of an operation. 1303 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) { 1304 LLVM_DEBUG({ 1305 impl->logger.startLine() 1306 << "** Replace : '" << op->getName() << "'(" << op << ")\n"; 1307 }); 1308 impl->notifyOpReplaced(op, newValues); 1309 } 1310 1311 /// PatternRewriter hook for erasing a dead operation. The uses of this 1312 /// operation *must* be made dead by the end of the conversion process, 1313 /// otherwise an assert will be issued. 1314 void ConversionPatternRewriter::eraseOp(Operation *op) { 1315 LLVM_DEBUG({ 1316 impl->logger.startLine() 1317 << "** Erase : '" << op->getName() << "'(" << op << ")\n"; 1318 }); 1319 SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr); 1320 impl->notifyOpReplaced(op, nullRepls); 1321 } 1322 1323 void ConversionPatternRewriter::eraseBlock(Block *block) { 1324 impl->notifyBlockIsBeingErased(block); 1325 1326 // Mark all ops for erasure. 1327 for (Operation &op : *block) 1328 eraseOp(&op); 1329 1330 // Unlink the block from its parent region. The block is kept in the block 1331 // action and will be actually destroyed when rewrites are applied. This 1332 // allows us to keep the operations in the block live and undo the removal by 1333 // re-inserting the block. 1334 block->getParent()->getBlocks().remove(block); 1335 } 1336 1337 Block *ConversionPatternRewriter::applySignatureConversion( 1338 Region *region, TypeConverter::SignatureConversion &conversion) { 1339 return impl->applySignatureConversion(region, conversion); 1340 } 1341 1342 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes( 1343 Region *region, TypeConverter &converter, 1344 TypeConverter::SignatureConversion *entryConversion) { 1345 return impl->convertRegionTypes(region, converter, entryConversion); 1346 } 1347 1348 LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes( 1349 Region *region, TypeConverter &converter) { 1350 return impl->convertNonEntryRegionTypes(region, converter); 1351 } 1352 1353 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from, 1354 Value to) { 1355 LLVM_DEBUG({ 1356 Operation *parentOp = from.getOwner()->getParentOp(); 1357 impl->logger.startLine() << "** Replace Argument : '" << from 1358 << "'(in region of '" << parentOp->getName() 1359 << "'(" << from.getOwner()->getParentOp() << ")\n"; 1360 }); 1361 impl->argReplacements.push_back(from); 1362 impl->mapping.map(impl->mapping.lookupOrDefault(from), to); 1363 } 1364 1365 /// Return the converted value that replaces 'key'. Return 'key' if there is 1366 /// no such a converted value. 1367 Value ConversionPatternRewriter::getRemappedValue(Value key) { 1368 return impl->mapping.lookupOrDefault(key); 1369 } 1370 1371 /// PatternRewriter hook for creating a new block with the given arguments. 1372 void ConversionPatternRewriter::notifyBlockCreated(Block *block) { 1373 impl->notifyCreatedBlock(block); 1374 } 1375 1376 /// PatternRewriter hook for splitting a block into two parts. 1377 Block *ConversionPatternRewriter::splitBlock(Block *block, 1378 Block::iterator before) { 1379 auto *continuation = PatternRewriter::splitBlock(block, before); 1380 impl->notifySplitBlock(block, continuation); 1381 return continuation; 1382 } 1383 1384 /// PatternRewriter hook for merging a block into another. 1385 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest, 1386 ValueRange argValues) { 1387 impl->notifyBlocksBeingMerged(dest, source); 1388 assert(llvm::all_of(source->getPredecessors(), 1389 [dest](Block *succ) { return succ == dest; }) && 1390 "expected 'source' to have no predecessors or only 'dest'"); 1391 assert(argValues.size() == source->getNumArguments() && 1392 "incorrect # of argument replacement values"); 1393 for (auto it : llvm::zip(source->getArguments(), argValues)) 1394 replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it)); 1395 dest->getOperations().splice(dest->end(), source->getOperations()); 1396 eraseBlock(source); 1397 } 1398 1399 /// PatternRewriter hook for moving blocks out of a region. 1400 void ConversionPatternRewriter::inlineRegionBefore(Region ®ion, 1401 Region &parent, 1402 Region::iterator before) { 1403 impl->notifyRegionIsBeingInlinedBefore(region, parent, before); 1404 PatternRewriter::inlineRegionBefore(region, parent, before); 1405 } 1406 1407 /// PatternRewriter hook for cloning blocks of one region into another. 1408 void ConversionPatternRewriter::cloneRegionBefore( 1409 Region ®ion, Region &parent, Region::iterator before, 1410 BlockAndValueMapping &mapping) { 1411 if (region.empty()) 1412 return; 1413 PatternRewriter::cloneRegionBefore(region, parent, before, mapping); 1414 1415 // Collect the range of the cloned blocks. 1416 auto clonedBeginIt = mapping.lookup(®ion.front())->getIterator(); 1417 auto clonedBlocks = llvm::make_range(clonedBeginIt, before); 1418 impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc()); 1419 } 1420 1421 /// PatternRewriter hook for creating a new operation. 1422 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) { 1423 LLVM_DEBUG({ 1424 impl->logger.startLine() 1425 << "** Insert : '" << op->getName() << "'(" << op << ")\n"; 1426 }); 1427 impl->createdOps.push_back(op); 1428 } 1429 1430 /// PatternRewriter hook for updating the root operation in-place. 1431 void ConversionPatternRewriter::startRootUpdate(Operation *op) { 1432 #ifndef NDEBUG 1433 impl->pendingRootUpdates.insert(op); 1434 #endif 1435 impl->rootUpdates.emplace_back(op); 1436 } 1437 1438 /// PatternRewriter hook for updating the root operation in-place. 1439 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) { 1440 // There is nothing to do here, we only need to track the operation at the 1441 // start of the update. 1442 #ifndef NDEBUG 1443 assert(impl->pendingRootUpdates.erase(op) && 1444 "operation did not have a pending in-place update"); 1445 #endif 1446 } 1447 1448 /// PatternRewriter hook for updating the root operation in-place. 1449 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) { 1450 #ifndef NDEBUG 1451 assert(impl->pendingRootUpdates.erase(op) && 1452 "operation did not have a pending in-place update"); 1453 #endif 1454 // Erase the last update for this operation. 1455 auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; }; 1456 auto &rootUpdates = impl->rootUpdates; 1457 auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp); 1458 rootUpdates.erase(rootUpdates.begin() + (rootUpdates.rend() - it)); 1459 } 1460 1461 /// PatternRewriter hook for notifying match failure reasons. 1462 LogicalResult ConversionPatternRewriter::notifyMatchFailure( 1463 Operation *op, function_ref<void(Diagnostic &)> reasonCallback) { 1464 return impl->notifyMatchFailure(op->getLoc(), reasonCallback); 1465 } 1466 1467 /// Return a reference to the internal implementation. 1468 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() { 1469 return *impl; 1470 } 1471 1472 //===----------------------------------------------------------------------===// 1473 // ConversionPattern 1474 //===----------------------------------------------------------------------===// 1475 1476 /// Attempt to match and rewrite the IR root at the specified operation. 1477 LogicalResult 1478 ConversionPattern::matchAndRewrite(Operation *op, 1479 PatternRewriter &rewriter) const { 1480 auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter); 1481 auto &rewriterImpl = dialectRewriter.getImpl(); 1482 1483 // Track the current conversion pattern in the rewriter. 1484 assert(!rewriterImpl.currentConversionPattern && 1485 "already inside of a pattern rewrite"); 1486 llvm::SaveAndRestore<const ConversionPattern *> currentPatternGuard( 1487 rewriterImpl.currentConversionPattern, this); 1488 1489 // Remap the operands of the operation. 1490 SmallVector<Value, 4> operands; 1491 if (failed(rewriterImpl.remapValues(op->getLoc(), rewriter, 1492 getTypeConverter(), op->getOperands(), 1493 operands))) { 1494 return failure(); 1495 } 1496 return matchAndRewrite(op, operands, dialectRewriter); 1497 } 1498 1499 //===----------------------------------------------------------------------===// 1500 // OperationLegalizer 1501 //===----------------------------------------------------------------------===// 1502 1503 namespace { 1504 /// A set of rewrite patterns that can be used to legalize a given operation. 1505 using LegalizationPatterns = SmallVector<const Pattern *, 1>; 1506 1507 /// This class defines a recursive operation legalizer. 1508 class OperationLegalizer { 1509 public: 1510 using LegalizationAction = ConversionTarget::LegalizationAction; 1511 1512 OperationLegalizer(ConversionTarget &targetInfo, 1513 const FrozenRewritePatternSet &patterns); 1514 1515 /// Returns true if the given operation is known to be illegal on the target. 1516 bool isIllegal(Operation *op) const; 1517 1518 /// Attempt to legalize the given operation. Returns success if the operation 1519 /// was legalized, failure otherwise. 1520 LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter); 1521 1522 /// Returns the conversion target in use by the legalizer. 1523 ConversionTarget &getTarget() { return target; } 1524 1525 private: 1526 /// Attempt to legalize the given operation by folding it. 1527 LogicalResult legalizeWithFold(Operation *op, 1528 ConversionPatternRewriter &rewriter); 1529 1530 /// Attempt to legalize the given operation by applying a pattern. Returns 1531 /// success if the operation was legalized, failure otherwise. 1532 LogicalResult legalizeWithPattern(Operation *op, 1533 ConversionPatternRewriter &rewriter); 1534 1535 /// Return true if the given pattern may be applied to the given operation, 1536 /// false otherwise. 1537 bool canApplyPattern(Operation *op, const Pattern &pattern, 1538 ConversionPatternRewriter &rewriter); 1539 1540 /// Legalize the resultant IR after successfully applying the given pattern. 1541 LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern, 1542 ConversionPatternRewriter &rewriter, 1543 RewriterState &curState); 1544 1545 /// Legalizes the actions registered during the execution of a pattern. 1546 LogicalResult legalizePatternBlockActions(Operation *op, 1547 ConversionPatternRewriter &rewriter, 1548 ConversionPatternRewriterImpl &impl, 1549 RewriterState &state, 1550 RewriterState &newState); 1551 LogicalResult legalizePatternCreatedOperations( 1552 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1553 RewriterState &state, RewriterState &newState); 1554 LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter, 1555 ConversionPatternRewriterImpl &impl, 1556 RewriterState &state, 1557 RewriterState &newState); 1558 1559 //===--------------------------------------------------------------------===// 1560 // Cost Model 1561 //===--------------------------------------------------------------------===// 1562 1563 /// Build an optimistic legalization graph given the provided patterns. This 1564 /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with 1565 /// patterns for operations that are not directly legal, but may be 1566 /// transitively legal for the current target given the provided patterns. 1567 void buildLegalizationGraph( 1568 LegalizationPatterns &anyOpLegalizerPatterns, 1569 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1570 1571 /// Compute the benefit of each node within the computed legalization graph. 1572 /// This orders the patterns within 'legalizerPatterns' based upon two 1573 /// criteria: 1574 /// 1) Prefer patterns that have the lowest legalization depth, i.e. 1575 /// represent the more direct mapping to the target. 1576 /// 2) When comparing patterns with the same legalization depth, prefer the 1577 /// pattern with the highest PatternBenefit. This allows for users to 1578 /// prefer specific legalizations over others. 1579 void computeLegalizationGraphBenefit( 1580 LegalizationPatterns &anyOpLegalizerPatterns, 1581 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1582 1583 /// Compute the legalization depth when legalizing an operation of the given 1584 /// type. 1585 unsigned computeOpLegalizationDepth( 1586 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 1587 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1588 1589 /// Apply the conversion cost model to the given set of patterns, and return 1590 /// the smallest legalization depth of any of the patterns. See 1591 /// `computeLegalizationGraphBenefit` for the breakdown of the cost model. 1592 unsigned applyCostModelToPatterns( 1593 LegalizationPatterns &patterns, 1594 DenseMap<OperationName, unsigned> &minOpPatternDepth, 1595 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1596 1597 /// The current set of patterns that have been applied. 1598 SmallPtrSet<const Pattern *, 8> appliedPatterns; 1599 1600 /// The legalization information provided by the target. 1601 ConversionTarget ⌖ 1602 1603 /// The pattern applicator to use for conversions. 1604 PatternApplicator applicator; 1605 }; 1606 } // namespace 1607 1608 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo, 1609 const FrozenRewritePatternSet &patterns) 1610 : target(targetInfo), applicator(patterns) { 1611 // The set of patterns that can be applied to illegal operations to transform 1612 // them into legal ones. 1613 DenseMap<OperationName, LegalizationPatterns> legalizerPatterns; 1614 LegalizationPatterns anyOpLegalizerPatterns; 1615 1616 buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns); 1617 computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns); 1618 } 1619 1620 bool OperationLegalizer::isIllegal(Operation *op) const { 1621 // Check if the target explicitly marked this operation as illegal. 1622 return target.getOpAction(op->getName()) == LegalizationAction::Illegal; 1623 } 1624 1625 LogicalResult 1626 OperationLegalizer::legalize(Operation *op, 1627 ConversionPatternRewriter &rewriter) { 1628 #ifndef NDEBUG 1629 const char *logLineComment = 1630 "//===-------------------------------------------===//\n"; 1631 1632 auto &rewriterImpl = rewriter.getImpl(); 1633 #endif 1634 LLVM_DEBUG({ 1635 auto &os = rewriterImpl.logger; 1636 os.getOStream() << "\n"; 1637 os.startLine() << logLineComment; 1638 os.startLine() << "Legalizing operation : '" << op->getName() << "'(" << op 1639 << ") {\n"; 1640 os.indent(); 1641 1642 // If the operation has no regions, just print it here. 1643 if (op->getNumRegions() == 0) { 1644 op->print(os.startLine(), OpPrintingFlags().printGenericOpForm()); 1645 os.getOStream() << "\n\n"; 1646 } 1647 }); 1648 1649 // Check if this operation is legal on the target. 1650 if (auto legalityInfo = target.isLegal(op)) { 1651 LLVM_DEBUG({ 1652 logSuccess( 1653 rewriterImpl.logger, "operation marked legal by the target{0}", 1654 legalityInfo->isRecursivelyLegal 1655 ? "; NOTE: operation is recursively legal; skipping internals" 1656 : ""); 1657 rewriterImpl.logger.startLine() << logLineComment; 1658 }); 1659 1660 // If this operation is recursively legal, mark its children as ignored so 1661 // that we don't consider them for legalization. 1662 if (legalityInfo->isRecursivelyLegal) 1663 rewriter.getImpl().markNestedOpsIgnored(op); 1664 return success(); 1665 } 1666 1667 // Check to see if the operation is ignored and doesn't need to be converted. 1668 if (rewriter.getImpl().isOpIgnored(op)) { 1669 LLVM_DEBUG({ 1670 logSuccess(rewriterImpl.logger, 1671 "operation marked 'ignored' during conversion"); 1672 rewriterImpl.logger.startLine() << logLineComment; 1673 }); 1674 return success(); 1675 } 1676 1677 // If the operation isn't legal, try to fold it in-place. 1678 // TODO: Should we always try to do this, even if the op is 1679 // already legal? 1680 if (succeeded(legalizeWithFold(op, rewriter))) { 1681 LLVM_DEBUG({ 1682 logSuccess(rewriterImpl.logger, "operation was folded"); 1683 rewriterImpl.logger.startLine() << logLineComment; 1684 }); 1685 return success(); 1686 } 1687 1688 // Otherwise, we need to apply a legalization pattern to this operation. 1689 if (succeeded(legalizeWithPattern(op, rewriter))) { 1690 LLVM_DEBUG({ 1691 logSuccess(rewriterImpl.logger, ""); 1692 rewriterImpl.logger.startLine() << logLineComment; 1693 }); 1694 return success(); 1695 } 1696 1697 LLVM_DEBUG({ 1698 logFailure(rewriterImpl.logger, "no matched legalization pattern"); 1699 rewriterImpl.logger.startLine() << logLineComment; 1700 }); 1701 return failure(); 1702 } 1703 1704 LogicalResult 1705 OperationLegalizer::legalizeWithFold(Operation *op, 1706 ConversionPatternRewriter &rewriter) { 1707 auto &rewriterImpl = rewriter.getImpl(); 1708 RewriterState curState = rewriterImpl.getCurrentState(); 1709 1710 LLVM_DEBUG({ 1711 rewriterImpl.logger.startLine() << "* Fold {\n"; 1712 rewriterImpl.logger.indent(); 1713 }); 1714 1715 // Try to fold the operation. 1716 SmallVector<Value, 2> replacementValues; 1717 rewriter.setInsertionPoint(op); 1718 if (failed(rewriter.tryFold(op, replacementValues))) { 1719 LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold")); 1720 return failure(); 1721 } 1722 1723 // Insert a replacement for 'op' with the folded replacement values. 1724 rewriter.replaceOp(op, replacementValues); 1725 1726 // Recursively legalize any new constant operations. 1727 for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size(); 1728 i != e; ++i) { 1729 Operation *cstOp = rewriterImpl.createdOps[i]; 1730 if (failed(legalize(cstOp, rewriter))) { 1731 LLVM_DEBUG(logFailure(rewriterImpl.logger, 1732 "generated constant '{0}' was illegal", 1733 cstOp->getName())); 1734 rewriterImpl.resetState(curState); 1735 return failure(); 1736 } 1737 } 1738 1739 LLVM_DEBUG(logSuccess(rewriterImpl.logger, "")); 1740 return success(); 1741 } 1742 1743 LogicalResult 1744 OperationLegalizer::legalizeWithPattern(Operation *op, 1745 ConversionPatternRewriter &rewriter) { 1746 auto &rewriterImpl = rewriter.getImpl(); 1747 1748 // Functor that returns if the given pattern may be applied. 1749 auto canApply = [&](const Pattern &pattern) { 1750 return canApplyPattern(op, pattern, rewriter); 1751 }; 1752 1753 // Functor that cleans up the rewriter state after a pattern failed to match. 1754 RewriterState curState = rewriterImpl.getCurrentState(); 1755 auto onFailure = [&](const Pattern &pattern) { 1756 LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match")); 1757 rewriterImpl.resetState(curState); 1758 appliedPatterns.erase(&pattern); 1759 }; 1760 1761 // Functor that performs additional legalization when a pattern is 1762 // successfully applied. 1763 auto onSuccess = [&](const Pattern &pattern) { 1764 auto result = legalizePatternResult(op, pattern, rewriter, curState); 1765 appliedPatterns.erase(&pattern); 1766 if (failed(result)) 1767 rewriterImpl.resetState(curState); 1768 return result; 1769 }; 1770 1771 // Try to match and rewrite a pattern on this operation. 1772 return applicator.matchAndRewrite(op, rewriter, canApply, onFailure, 1773 onSuccess); 1774 } 1775 1776 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern, 1777 ConversionPatternRewriter &rewriter) { 1778 LLVM_DEBUG({ 1779 auto &os = rewriter.getImpl().logger; 1780 os.getOStream() << "\n"; 1781 os.startLine() << "* Pattern : '" << op->getName() << " -> ("; 1782 llvm::interleaveComma(pattern.getGeneratedOps(), llvm::dbgs()); 1783 os.getOStream() << ")' {\n"; 1784 os.indent(); 1785 }); 1786 1787 // Ensure that we don't cycle by not allowing the same pattern to be 1788 // applied twice in the same recursion stack if it is not known to be safe. 1789 if (!pattern.hasBoundedRewriteRecursion() && 1790 !appliedPatterns.insert(&pattern).second) { 1791 LLVM_DEBUG( 1792 logFailure(rewriter.getImpl().logger, "pattern was already applied")); 1793 return false; 1794 } 1795 return true; 1796 } 1797 1798 LogicalResult 1799 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern, 1800 ConversionPatternRewriter &rewriter, 1801 RewriterState &curState) { 1802 auto &impl = rewriter.getImpl(); 1803 1804 #ifndef NDEBUG 1805 assert(impl.pendingRootUpdates.empty() && "dangling root updates"); 1806 #endif 1807 1808 // Check that the root was either replaced or updated in place. 1809 auto replacedRoot = [&] { 1810 return llvm::any_of( 1811 llvm::drop_begin(impl.replacements, curState.numReplacements), 1812 [op](auto &it) { return it.first == op; }); 1813 }; 1814 auto updatedRootInPlace = [&] { 1815 return llvm::any_of( 1816 llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates), 1817 [op](auto &state) { return state.getOperation() == op; }); 1818 }; 1819 (void)replacedRoot; 1820 (void)updatedRootInPlace; 1821 assert((replacedRoot() || updatedRootInPlace()) && 1822 "expected pattern to replace the root operation"); 1823 1824 // Legalize each of the actions registered during application. 1825 RewriterState newState = impl.getCurrentState(); 1826 if (failed(legalizePatternBlockActions(op, rewriter, impl, curState, 1827 newState)) || 1828 failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) || 1829 failed(legalizePatternCreatedOperations(rewriter, impl, curState, 1830 newState))) { 1831 return failure(); 1832 } 1833 1834 LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully")); 1835 return success(); 1836 } 1837 1838 LogicalResult OperationLegalizer::legalizePatternBlockActions( 1839 Operation *op, ConversionPatternRewriter &rewriter, 1840 ConversionPatternRewriterImpl &impl, RewriterState &state, 1841 RewriterState &newState) { 1842 SmallPtrSet<Operation *, 16> operationsToIgnore; 1843 1844 // If the pattern moved or created any blocks, make sure the types of block 1845 // arguments get legalized. 1846 for (int i = state.numBlockActions, e = newState.numBlockActions; i != e; 1847 ++i) { 1848 auto &action = impl.blockActions[i]; 1849 if (action.kind == BlockActionKind::TypeConversion || 1850 action.kind == BlockActionKind::Erase) 1851 continue; 1852 // Only check blocks outside of the current operation. 1853 Operation *parentOp = action.block->getParentOp(); 1854 if (!parentOp || parentOp == op || action.block->getNumArguments() == 0) 1855 continue; 1856 1857 // If the region of the block has a type converter, try to convert the block 1858 // directly. 1859 if (auto *converter = 1860 impl.argConverter.getConverter(action.block->getParent())) { 1861 if (failed(impl.convertBlockSignature(action.block, *converter))) { 1862 LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved " 1863 "block")); 1864 return failure(); 1865 } 1866 continue; 1867 } 1868 1869 // Otherwise, check that this operation isn't one generated by this pattern. 1870 // This is because we will attempt to legalize the parent operation, and 1871 // blocks in regions created by this pattern will already be legalized later 1872 // on. If we haven't built the set yet, build it now. 1873 if (operationsToIgnore.empty()) { 1874 auto createdOps = ArrayRef<Operation *>(impl.createdOps) 1875 .drop_front(state.numCreatedOps); 1876 operationsToIgnore.insert(createdOps.begin(), createdOps.end()); 1877 } 1878 1879 // If this operation should be considered for re-legalization, try it. 1880 if (operationsToIgnore.insert(parentOp).second && 1881 failed(legalize(parentOp, rewriter))) { 1882 LLVM_DEBUG(logFailure( 1883 impl.logger, "operation '{0}'({1}) became illegal after block action", 1884 parentOp->getName(), parentOp)); 1885 return failure(); 1886 } 1887 } 1888 return success(); 1889 } 1890 LogicalResult OperationLegalizer::legalizePatternCreatedOperations( 1891 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1892 RewriterState &state, RewriterState &newState) { 1893 for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) { 1894 Operation *op = impl.createdOps[i]; 1895 if (failed(legalize(op, rewriter))) { 1896 LLVM_DEBUG(logFailure(impl.logger, 1897 "generated operation '{0}'({1}) was illegal", 1898 op->getName(), op)); 1899 return failure(); 1900 } 1901 } 1902 return success(); 1903 } 1904 LogicalResult OperationLegalizer::legalizePatternRootUpdates( 1905 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1906 RewriterState &state, RewriterState &newState) { 1907 for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) { 1908 Operation *op = impl.rootUpdates[i].getOperation(); 1909 if (failed(legalize(op, rewriter))) { 1910 LLVM_DEBUG(logFailure(impl.logger, 1911 "operation updated in-place '{0}' was illegal", 1912 op->getName())); 1913 return failure(); 1914 } 1915 } 1916 return success(); 1917 } 1918 1919 //===----------------------------------------------------------------------===// 1920 // Cost Model 1921 1922 void OperationLegalizer::buildLegalizationGraph( 1923 LegalizationPatterns &anyOpLegalizerPatterns, 1924 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 1925 // A mapping between an operation and a set of operations that can be used to 1926 // generate it. 1927 DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps; 1928 // A mapping between an operation and any currently invalid patterns it has. 1929 DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns; 1930 // A worklist of patterns to consider for legality. 1931 llvm::SetVector<const Pattern *> patternWorklist; 1932 1933 // Build the mapping from operations to the parent ops that may generate them. 1934 applicator.walkAllPatterns([&](const Pattern &pattern) { 1935 Optional<OperationName> root = pattern.getRootKind(); 1936 1937 // If the pattern has no specific root, we can't analyze the relationship 1938 // between the root op and generated operations. Given that, add all such 1939 // patterns to the legalization set. 1940 if (!root) { 1941 anyOpLegalizerPatterns.push_back(&pattern); 1942 return; 1943 } 1944 1945 // Skip operations that are always known to be legal. 1946 if (target.getOpAction(*root) == LegalizationAction::Legal) 1947 return; 1948 1949 // Add this pattern to the invalid set for the root op and record this root 1950 // as a parent for any generated operations. 1951 invalidPatterns[*root].insert(&pattern); 1952 for (auto op : pattern.getGeneratedOps()) 1953 parentOps[op].insert(*root); 1954 1955 // Add this pattern to the worklist. 1956 patternWorklist.insert(&pattern); 1957 }); 1958 1959 // If there are any patterns that don't have a specific root kind, we can't 1960 // make direct assumptions about what operations will never be legalized. 1961 // Note: Technically we could, but it would require an analysis that may 1962 // recurse into itself. It would be better to perform this kind of filtering 1963 // at a higher level than here anyways. 1964 if (!anyOpLegalizerPatterns.empty()) { 1965 for (const Pattern *pattern : patternWorklist) 1966 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 1967 return; 1968 } 1969 1970 while (!patternWorklist.empty()) { 1971 auto *pattern = patternWorklist.pop_back_val(); 1972 1973 // Check to see if any of the generated operations are invalid. 1974 if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) { 1975 Optional<LegalizationAction> action = target.getOpAction(op); 1976 return !legalizerPatterns.count(op) && 1977 (!action || action == LegalizationAction::Illegal); 1978 })) 1979 continue; 1980 1981 // Otherwise, if all of the generated operation are valid, this op is now 1982 // legal so add all of the child patterns to the worklist. 1983 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 1984 invalidPatterns[*pattern->getRootKind()].erase(pattern); 1985 1986 // Add any invalid patterns of the parent operations to see if they have now 1987 // become legal. 1988 for (auto op : parentOps[*pattern->getRootKind()]) 1989 patternWorklist.set_union(invalidPatterns[op]); 1990 } 1991 } 1992 1993 void OperationLegalizer::computeLegalizationGraphBenefit( 1994 LegalizationPatterns &anyOpLegalizerPatterns, 1995 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 1996 // The smallest pattern depth, when legalizing an operation. 1997 DenseMap<OperationName, unsigned> minOpPatternDepth; 1998 1999 // For each operation that is transitively legal, compute a cost for it. 2000 for (auto &opIt : legalizerPatterns) 2001 if (!minOpPatternDepth.count(opIt.first)) 2002 computeOpLegalizationDepth(opIt.first, minOpPatternDepth, 2003 legalizerPatterns); 2004 2005 // Apply the cost model to the patterns that can match any operation. Those 2006 // with a specific operation type are already resolved when computing the op 2007 // legalization depth. 2008 if (!anyOpLegalizerPatterns.empty()) 2009 applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth, 2010 legalizerPatterns); 2011 2012 // Apply a cost model to the pattern applicator. We order patterns first by 2013 // depth then benefit. `legalizerPatterns` contains per-op patterns by 2014 // decreasing benefit. 2015 applicator.applyCostModel([&](const Pattern &pattern) { 2016 ArrayRef<const Pattern *> orderedPatternList; 2017 if (Optional<OperationName> rootName = pattern.getRootKind()) 2018 orderedPatternList = legalizerPatterns[*rootName]; 2019 else 2020 orderedPatternList = anyOpLegalizerPatterns; 2021 2022 // If the pattern is not found, then it was removed and cannot be matched. 2023 auto it = llvm::find(orderedPatternList, &pattern); 2024 if (it == orderedPatternList.end()) 2025 return PatternBenefit::impossibleToMatch(); 2026 2027 // Patterns found earlier in the list have higher benefit. 2028 return PatternBenefit(std::distance(it, orderedPatternList.end())); 2029 }); 2030 } 2031 2032 unsigned OperationLegalizer::computeOpLegalizationDepth( 2033 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 2034 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2035 // Check for existing depth. 2036 auto depthIt = minOpPatternDepth.find(op); 2037 if (depthIt != minOpPatternDepth.end()) 2038 return depthIt->second; 2039 2040 // If a mapping for this operation does not exist, then this operation 2041 // is always legal. Return 0 as the depth for a directly legal operation. 2042 auto opPatternsIt = legalizerPatterns.find(op); 2043 if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty()) 2044 return 0u; 2045 2046 // Record this initial depth in case we encounter this op again when 2047 // recursively computing the depth. 2048 minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max()); 2049 2050 // Apply the cost model to the operation patterns, and update the minimum 2051 // depth. 2052 unsigned minDepth = applyCostModelToPatterns( 2053 opPatternsIt->second, minOpPatternDepth, legalizerPatterns); 2054 minOpPatternDepth[op] = minDepth; 2055 return minDepth; 2056 } 2057 2058 unsigned OperationLegalizer::applyCostModelToPatterns( 2059 LegalizationPatterns &patterns, 2060 DenseMap<OperationName, unsigned> &minOpPatternDepth, 2061 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2062 unsigned minDepth = std::numeric_limits<unsigned>::max(); 2063 2064 // Compute the depth for each pattern within the set. 2065 SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth; 2066 patternsByDepth.reserve(patterns.size()); 2067 for (const Pattern *pattern : patterns) { 2068 unsigned depth = 0; 2069 for (auto generatedOp : pattern->getGeneratedOps()) { 2070 unsigned generatedOpDepth = computeOpLegalizationDepth( 2071 generatedOp, minOpPatternDepth, legalizerPatterns); 2072 depth = std::max(depth, generatedOpDepth + 1); 2073 } 2074 patternsByDepth.emplace_back(pattern, depth); 2075 2076 // Update the minimum depth of the pattern list. 2077 minDepth = std::min(minDepth, depth); 2078 } 2079 2080 // If the operation only has one legalization pattern, there is no need to 2081 // sort them. 2082 if (patternsByDepth.size() == 1) 2083 return minDepth; 2084 2085 // Sort the patterns by those likely to be the most beneficial. 2086 llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(), 2087 [](const std::pair<const Pattern *, unsigned> *lhs, 2088 const std::pair<const Pattern *, unsigned> *rhs) { 2089 // First sort by the smaller pattern legalization 2090 // depth. 2091 if (lhs->second != rhs->second) 2092 return llvm::array_pod_sort_comparator<unsigned>( 2093 &lhs->second, &rhs->second); 2094 2095 // Then sort by the larger pattern benefit. 2096 auto lhsBenefit = lhs->first->getBenefit(); 2097 auto rhsBenefit = rhs->first->getBenefit(); 2098 return llvm::array_pod_sort_comparator<PatternBenefit>( 2099 &rhsBenefit, &lhsBenefit); 2100 }); 2101 2102 // Update the legalization pattern to use the new sorted list. 2103 patterns.clear(); 2104 for (auto &patternIt : patternsByDepth) 2105 patterns.push_back(patternIt.first); 2106 return minDepth; 2107 } 2108 2109 //===----------------------------------------------------------------------===// 2110 // OperationConverter 2111 //===----------------------------------------------------------------------===// 2112 namespace { 2113 enum OpConversionMode { 2114 // In this mode, the conversion will ignore failed conversions to allow 2115 // illegal operations to co-exist in the IR. 2116 Partial, 2117 2118 // In this mode, all operations must be legal for the given target for the 2119 // conversion to succeed. 2120 Full, 2121 2122 // In this mode, operations are analyzed for legality. No actual rewrites are 2123 // applied to the operations on success. 2124 Analysis, 2125 }; 2126 2127 // This class converts operations to a given conversion target via a set of 2128 // rewrite patterns. The conversion behaves differently depending on the 2129 // conversion mode. 2130 struct OperationConverter { 2131 explicit OperationConverter(ConversionTarget &target, 2132 const FrozenRewritePatternSet &patterns, 2133 OpConversionMode mode, 2134 DenseSet<Operation *> *trackedOps = nullptr) 2135 : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {} 2136 2137 /// Converts the given operations to the conversion target. 2138 LogicalResult convertOperations(ArrayRef<Operation *> ops); 2139 2140 private: 2141 /// Converts an operation with the given rewriter. 2142 LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op); 2143 2144 /// This method is called after the conversion process to legalize any 2145 /// remaining artifacts and complete the conversion. 2146 LogicalResult finalize(ConversionPatternRewriter &rewriter); 2147 2148 /// Legalize the types of converted block arguments. 2149 LogicalResult 2150 legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter, 2151 ConversionPatternRewriterImpl &rewriterImpl); 2152 2153 /// Legalize an operation result that was marked as "erased". 2154 LogicalResult 2155 legalizeErasedResult(Operation *op, OpResult result, 2156 ConversionPatternRewriterImpl &rewriterImpl); 2157 2158 /// Legalize an operation result that was replaced with a value of a different 2159 /// type. 2160 LogicalResult 2161 legalizeChangedResultType(Operation *op, OpResult result, Value newValue, 2162 TypeConverter *replConverter, 2163 ConversionPatternRewriter &rewriter, 2164 ConversionPatternRewriterImpl &rewriterImpl, 2165 const BlockAndValueMapping &inverseMapping); 2166 2167 /// The legalizer to use when converting operations. 2168 OperationLegalizer opLegalizer; 2169 2170 /// The conversion mode to use when legalizing operations. 2171 OpConversionMode mode; 2172 2173 /// A set of pre-existing operations. When mode == OpConversionMode::Analysis, 2174 /// this is populated with ops found to be legalizable to the target. 2175 /// When mode == OpConversionMode::Partial, this is populated with ops found 2176 /// *not* to be legalizable to the target. 2177 DenseSet<Operation *> *trackedOps; 2178 }; 2179 } // end anonymous namespace 2180 2181 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter, 2182 Operation *op) { 2183 // Legalize the given operation. 2184 if (failed(opLegalizer.legalize(op, rewriter))) { 2185 // Handle the case of a failed conversion for each of the different modes. 2186 // Full conversions expect all operations to be converted. 2187 if (mode == OpConversionMode::Full) 2188 return op->emitError() 2189 << "failed to legalize operation '" << op->getName() << "'"; 2190 // Partial conversions allow conversions to fail iff the operation was not 2191 // explicitly marked as illegal. If the user provided a nonlegalizableOps 2192 // set, non-legalizable ops are included. 2193 if (mode == OpConversionMode::Partial) { 2194 if (opLegalizer.isIllegal(op)) 2195 return op->emitError() 2196 << "failed to legalize operation '" << op->getName() 2197 << "' that was explicitly marked illegal"; 2198 if (trackedOps) 2199 trackedOps->insert(op); 2200 } 2201 } else if (mode == OpConversionMode::Analysis) { 2202 // Analysis conversions don't fail if any operations fail to legalize, 2203 // they are only interested in the operations that were successfully 2204 // legalized. 2205 trackedOps->insert(op); 2206 } 2207 return success(); 2208 } 2209 2210 LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) { 2211 if (ops.empty()) 2212 return success(); 2213 ConversionTarget &target = opLegalizer.getTarget(); 2214 2215 // Compute the set of operations and blocks to convert. 2216 std::vector<Operation *> toConvert; 2217 for (auto *op : ops) { 2218 toConvert.emplace_back(op); 2219 for (auto ®ion : op->getRegions()) 2220 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 2221 toConvert, &target))) 2222 return failure(); 2223 } 2224 2225 // Convert each operation and discard rewrites on failure. 2226 ConversionPatternRewriter rewriter(ops.front()->getContext()); 2227 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2228 for (auto *op : toConvert) 2229 if (failed(convert(rewriter, op))) 2230 return rewriterImpl.discardRewrites(), failure(); 2231 2232 // Now that all of the operations have been converted, finalize the conversion 2233 // process to ensure any lingering conversion artifacts are cleaned up and 2234 // legalized. 2235 if (failed(finalize(rewriter))) 2236 return rewriterImpl.discardRewrites(), failure(); 2237 // After a successful conversion, apply rewrites if this is not an analysis 2238 // conversion. 2239 if (mode == OpConversionMode::Analysis) 2240 rewriterImpl.discardRewrites(); 2241 else { 2242 rewriterImpl.applyRewrites(); 2243 2244 // It is possible for a later pattern to erase an op that was originally 2245 // identified as illegal and added to the trackedOps, remove it now after 2246 // replacements have been computed. 2247 if (trackedOps) 2248 for (auto &repl : rewriterImpl.replacements) 2249 trackedOps->erase(repl.first); 2250 } 2251 return success(); 2252 } 2253 2254 LogicalResult 2255 OperationConverter::finalize(ConversionPatternRewriter &rewriter) { 2256 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2257 2258 // Legalize converted block arguments. 2259 if (failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl))) 2260 return failure(); 2261 2262 if (rewriterImpl.operationsWithChangedResults.empty()) 2263 return success(); 2264 2265 Optional<BlockAndValueMapping> inverseMapping; 2266 2267 // Process requested operation replacements. 2268 for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size(); 2269 i != e; ++i) { 2270 unsigned replIdx = rewriterImpl.operationsWithChangedResults[i]; 2271 auto &repl = *(rewriterImpl.replacements.begin() + replIdx); 2272 for (OpResult result : repl.first->getResults()) { 2273 Value newValue = rewriterImpl.mapping.lookupOrNull(result); 2274 2275 // If the operation result was replaced with null, all of the uses of this 2276 // value should be replaced. 2277 if (!newValue) { 2278 if (failed(legalizeErasedResult(repl.first, result, rewriterImpl))) 2279 return failure(); 2280 continue; 2281 } 2282 2283 // Otherwise, check to see if the type of the result changed. 2284 if (result.getType() == newValue.getType()) 2285 continue; 2286 2287 // Compute the inverse mapping only if it is really needed. 2288 if (!inverseMapping) 2289 inverseMapping = rewriterImpl.mapping.getInverse(); 2290 2291 // Legalize this result. 2292 rewriter.setInsertionPoint(repl.first); 2293 if (failed(legalizeChangedResultType(repl.first, result, newValue, 2294 repl.second.converter, rewriter, 2295 rewriterImpl, *inverseMapping))) 2296 return failure(); 2297 2298 // Update the end iterator for this loop in the case it was updated 2299 // when legalizing generated conversion operations. 2300 e = rewriterImpl.operationsWithChangedResults.size(); 2301 } 2302 } 2303 return success(); 2304 } 2305 2306 LogicalResult OperationConverter::legalizeConvertedArgumentTypes( 2307 ConversionPatternRewriter &rewriter, 2308 ConversionPatternRewriterImpl &rewriterImpl) { 2309 // Functor used to check if all users of a value will be dead after 2310 // conversion. 2311 auto findLiveUser = [&](Value val) { 2312 auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) { 2313 return rewriterImpl.isOpIgnored(user); 2314 }); 2315 return liveUserIt == val.user_end() ? nullptr : *liveUserIt; 2316 }; 2317 2318 // Materialize any necessary conversions for converted block arguments that 2319 // are still live. 2320 size_t numCreatedOps = rewriterImpl.createdOps.size(); 2321 if (failed(rewriterImpl.argConverter.materializeLiveConversions( 2322 rewriterImpl.mapping, rewriter, findLiveUser))) 2323 return failure(); 2324 2325 // Legalize any newly created operations during argument materialization. 2326 for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) { 2327 if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) { 2328 return rewriterImpl.createdOps[i]->emitError() 2329 << "failed to legalize conversion operation generated for block " 2330 "argument that remained live after conversion"; 2331 } 2332 } 2333 return success(); 2334 } 2335 2336 LogicalResult OperationConverter::legalizeErasedResult( 2337 Operation *op, OpResult result, 2338 ConversionPatternRewriterImpl &rewriterImpl) { 2339 // If the operation result was replaced with null, all of the uses of this 2340 // value should be replaced. 2341 auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) { 2342 return rewriterImpl.isOpIgnored(user); 2343 }); 2344 if (liveUserIt != result.user_end()) { 2345 InFlightDiagnostic diag = op->emitError("failed to legalize operation '") 2346 << op->getName() << "' marked as erased"; 2347 diag.attachNote(liveUserIt->getLoc()) 2348 << "found live user of result #" << result.getResultNumber() << ": " 2349 << *liveUserIt; 2350 return failure(); 2351 } 2352 return success(); 2353 } 2354 2355 /// Finds a user of the given value, or of any other value that the given value 2356 /// replaced, that was not replaced in the conversion process. 2357 static Operation * 2358 findLiveUserOfReplaced(Value value, ConversionPatternRewriterImpl &rewriterImpl, 2359 const BlockAndValueMapping &inverseMapping) { 2360 do { 2361 // Walk the users of this value to see if there are any live users that 2362 // weren't replaced during conversion. 2363 auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) { 2364 return rewriterImpl.isOpIgnored(user); 2365 }); 2366 if (liveUserIt != value.user_end()) 2367 return *liveUserIt; 2368 value = inverseMapping.lookupOrNull(value); 2369 } while (value != nullptr); 2370 return nullptr; 2371 } 2372 2373 LogicalResult OperationConverter::legalizeChangedResultType( 2374 Operation *op, OpResult result, Value newValue, 2375 TypeConverter *replConverter, ConversionPatternRewriter &rewriter, 2376 ConversionPatternRewriterImpl &rewriterImpl, 2377 const BlockAndValueMapping &inverseMapping) { 2378 Operation *liveUser = 2379 findLiveUserOfReplaced(result, rewriterImpl, inverseMapping); 2380 if (!liveUser) 2381 return success(); 2382 2383 // If the replacement has a type converter, attempt to materialize a 2384 // conversion back to the original type. 2385 if (!replConverter) { 2386 // TODO: We should emit an error here, similarly to the case where the 2387 // result is replaced with null. Unfortunately a lot of existing 2388 // patterns rely on this behavior, so until those patterns are updated 2389 // we keep the legacy behavior here of just forwarding the new value. 2390 return success(); 2391 } 2392 2393 // Track the number of created operations so that new ones can be legalized. 2394 size_t numCreatedOps = rewriterImpl.createdOps.size(); 2395 2396 // Materialize a conversion for this live result value. 2397 Type resultType = result.getType(); 2398 Value convertedValue = replConverter->materializeSourceConversion( 2399 rewriter, op->getLoc(), resultType, newValue); 2400 if (!convertedValue) { 2401 InFlightDiagnostic diag = op->emitError() 2402 << "failed to materialize conversion for result #" 2403 << result.getResultNumber() << " of operation '" 2404 << op->getName() 2405 << "' that remained live after conversion"; 2406 diag.attachNote(liveUser->getLoc()) 2407 << "see existing live user here: " << *liveUser; 2408 return failure(); 2409 } 2410 2411 // Legalize all of the newly created conversion operations. 2412 for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) { 2413 if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) { 2414 return op->emitError("failed to legalize conversion operation generated ") 2415 << "for result #" << result.getResultNumber() << " of operation '" 2416 << op->getName() << "' that remained live after conversion"; 2417 } 2418 } 2419 2420 rewriterImpl.mapping.map(result, convertedValue); 2421 return success(); 2422 } 2423 2424 //===----------------------------------------------------------------------===// 2425 // Type Conversion 2426 //===----------------------------------------------------------------------===// 2427 2428 /// Remap an input of the original signature with a new set of types. The 2429 /// new types are appended to the new signature conversion. 2430 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo, 2431 ArrayRef<Type> types) { 2432 assert(!types.empty() && "expected valid types"); 2433 remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size()); 2434 addInputs(types); 2435 } 2436 2437 /// Append new input types to the signature conversion, this should only be 2438 /// used if the new types are not intended to remap an existing input. 2439 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) { 2440 assert(!types.empty() && 2441 "1->0 type remappings don't need to be added explicitly"); 2442 argTypes.append(types.begin(), types.end()); 2443 } 2444 2445 /// Remap an input of the original signature with a range of types in the 2446 /// new signature. 2447 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2448 unsigned newInputNo, 2449 unsigned newInputCount) { 2450 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2451 assert(newInputCount != 0 && "expected valid input count"); 2452 remappedInputs[origInputNo] = 2453 InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr}; 2454 } 2455 2456 /// Remap an input of the original signature to another `replacementValue` 2457 /// value. This would make the signature converter drop this argument. 2458 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2459 Value replacementValue) { 2460 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2461 remappedInputs[origInputNo] = 2462 InputMapping{origInputNo, /*size=*/0, replacementValue}; 2463 } 2464 2465 /// This hooks allows for converting a type. 2466 LogicalResult TypeConverter::convertType(Type t, 2467 SmallVectorImpl<Type> &results) { 2468 auto existingIt = cachedDirectConversions.find(t); 2469 if (existingIt != cachedDirectConversions.end()) { 2470 if (existingIt->second) 2471 results.push_back(existingIt->second); 2472 return success(existingIt->second != nullptr); 2473 } 2474 auto multiIt = cachedMultiConversions.find(t); 2475 if (multiIt != cachedMultiConversions.end()) { 2476 results.append(multiIt->second.begin(), multiIt->second.end()); 2477 return success(); 2478 } 2479 2480 // Walk the added converters in reverse order to apply the most recently 2481 // registered first. 2482 size_t currentCount = results.size(); 2483 for (ConversionCallbackFn &converter : llvm::reverse(conversions)) { 2484 if (Optional<LogicalResult> result = converter(t, results)) { 2485 if (!succeeded(*result)) { 2486 cachedDirectConversions.try_emplace(t, nullptr); 2487 return failure(); 2488 } 2489 auto newTypes = ArrayRef<Type>(results).drop_front(currentCount); 2490 if (newTypes.size() == 1) 2491 cachedDirectConversions.try_emplace(t, newTypes.front()); 2492 else 2493 cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes)); 2494 return success(); 2495 } 2496 } 2497 return failure(); 2498 } 2499 2500 /// This hook simplifies defining 1-1 type conversions. This function returns 2501 /// the type to convert to on success, and a null type on failure. 2502 Type TypeConverter::convertType(Type t) { 2503 // Use the multi-type result version to convert the type. 2504 SmallVector<Type, 1> results; 2505 if (failed(convertType(t, results))) 2506 return nullptr; 2507 2508 // Check to ensure that only one type was produced. 2509 return results.size() == 1 ? results.front() : nullptr; 2510 } 2511 2512 /// Convert the given set of types, filling 'results' as necessary. This 2513 /// returns failure if the conversion of any of the types fails, success 2514 /// otherwise. 2515 LogicalResult TypeConverter::convertTypes(TypeRange types, 2516 SmallVectorImpl<Type> &results) { 2517 for (Type type : types) 2518 if (failed(convertType(type, results))) 2519 return failure(); 2520 return success(); 2521 } 2522 2523 /// Return true if the given type is legal for this type converter, i.e. the 2524 /// type converts to itself. 2525 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; } 2526 /// Return true if the given operation has legal operand and result types. 2527 bool TypeConverter::isLegal(Operation *op) { 2528 return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes()); 2529 } 2530 2531 /// Return true if the types of block arguments within the region are legal. 2532 bool TypeConverter::isLegal(Region *region) { 2533 return llvm::all_of(*region, [this](Block &block) { 2534 return isLegal(block.getArgumentTypes()); 2535 }); 2536 } 2537 2538 /// Return true if the inputs and outputs of the given function type are 2539 /// legal. 2540 bool TypeConverter::isSignatureLegal(FunctionType ty) { 2541 return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults())); 2542 } 2543 2544 /// This hook allows for converting a specific argument of a signature. 2545 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type, 2546 SignatureConversion &result) { 2547 // Try to convert the given input type. 2548 SmallVector<Type, 1> convertedTypes; 2549 if (failed(convertType(type, convertedTypes))) 2550 return failure(); 2551 2552 // If this argument is being dropped, there is nothing left to do. 2553 if (convertedTypes.empty()) 2554 return success(); 2555 2556 // Otherwise, add the new inputs. 2557 result.addInputs(inputNo, convertedTypes); 2558 return success(); 2559 } 2560 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types, 2561 SignatureConversion &result, 2562 unsigned origInputOffset) { 2563 for (unsigned i = 0, e = types.size(); i != e; ++i) 2564 if (failed(convertSignatureArg(origInputOffset + i, types[i], result))) 2565 return failure(); 2566 return success(); 2567 } 2568 2569 Value TypeConverter::materializeConversion( 2570 MutableArrayRef<MaterializationCallbackFn> materializations, 2571 OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) { 2572 for (MaterializationCallbackFn &fn : llvm::reverse(materializations)) 2573 if (Optional<Value> result = fn(builder, resultType, inputs, loc)) 2574 return result.getValue(); 2575 return nullptr; 2576 } 2577 2578 /// This function converts the type signature of the given block, by invoking 2579 /// 'convertSignatureArg' for each argument. This function should return a valid 2580 /// conversion for the signature on success, None otherwise. 2581 auto TypeConverter::convertBlockSignature(Block *block) 2582 -> Optional<SignatureConversion> { 2583 SignatureConversion conversion(block->getNumArguments()); 2584 if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion))) 2585 return llvm::None; 2586 return conversion; 2587 } 2588 2589 /// Create a default conversion pattern that rewrites the type signature of a 2590 /// FunctionLike op. This only supports FunctionLike ops which use FunctionType 2591 /// to represent their type. 2592 namespace { 2593 struct FunctionLikeSignatureConversion : public ConversionPattern { 2594 FunctionLikeSignatureConversion(StringRef functionLikeOpName, 2595 MLIRContext *ctx, TypeConverter &converter) 2596 : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {} 2597 2598 /// Hook to implement combined matching and rewriting for FunctionLike ops. 2599 LogicalResult 2600 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 2601 ConversionPatternRewriter &rewriter) const override { 2602 FunctionType type = mlir::impl::getFunctionType(op); 2603 2604 // Convert the original function types. 2605 TypeConverter::SignatureConversion result(type.getNumInputs()); 2606 SmallVector<Type, 1> newResults; 2607 if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) || 2608 failed(typeConverter->convertTypes(type.getResults(), newResults)) || 2609 failed(rewriter.convertRegionTypes(&mlir::impl::getFunctionBody(op), 2610 *typeConverter, &result))) 2611 return failure(); 2612 2613 // Update the function signature in-place. 2614 auto newType = FunctionType::get(rewriter.getContext(), 2615 result.getConvertedTypes(), newResults); 2616 2617 rewriter.updateRootInPlace( 2618 op, [&] { mlir::impl::setFunctionType(op, newType); }); 2619 2620 return success(); 2621 } 2622 }; 2623 } // end anonymous namespace 2624 2625 void mlir::populateFunctionLikeTypeConversionPattern( 2626 StringRef functionLikeOpName, RewritePatternSet &patterns, 2627 TypeConverter &converter) { 2628 patterns.add<FunctionLikeSignatureConversion>( 2629 functionLikeOpName, patterns.getContext(), converter); 2630 } 2631 2632 void mlir::populateFuncOpTypeConversionPattern(RewritePatternSet &patterns, 2633 TypeConverter &converter) { 2634 populateFunctionLikeTypeConversionPattern<FuncOp>(patterns, converter); 2635 } 2636 2637 //===----------------------------------------------------------------------===// 2638 // ConversionTarget 2639 //===----------------------------------------------------------------------===// 2640 2641 /// Register a legality action for the given operation. 2642 void ConversionTarget::setOpAction(OperationName op, 2643 LegalizationAction action) { 2644 legalOperations[op] = {action, /*isRecursivelyLegal=*/false, llvm::None}; 2645 } 2646 2647 /// Register a legality action for the given dialects. 2648 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames, 2649 LegalizationAction action) { 2650 for (StringRef dialect : dialectNames) 2651 legalDialects[dialect] = action; 2652 } 2653 2654 /// Get the legality action for the given operation. 2655 auto ConversionTarget::getOpAction(OperationName op) const 2656 -> Optional<LegalizationAction> { 2657 Optional<LegalizationInfo> info = getOpInfo(op); 2658 return info ? info->action : Optional<LegalizationAction>(); 2659 } 2660 2661 /// If the given operation instance is legal on this target, a structure 2662 /// containing legality information is returned. If the operation is not legal, 2663 /// None is returned. 2664 auto ConversionTarget::isLegal(Operation *op) const 2665 -> Optional<LegalOpDetails> { 2666 Optional<LegalizationInfo> info = getOpInfo(op->getName()); 2667 if (!info) 2668 return llvm::None; 2669 2670 // Returns true if this operation instance is known to be legal. 2671 auto isOpLegal = [&] { 2672 // Handle dynamic legality either with the provided legality function, or 2673 // the default hook on the derived instance. 2674 if (info->action == LegalizationAction::Dynamic) 2675 return info->legalityFn ? (*info->legalityFn)(op) 2676 : isDynamicallyLegal(op); 2677 2678 // Otherwise, the operation is only legal if it was marked 'Legal'. 2679 return info->action == LegalizationAction::Legal; 2680 }; 2681 if (!isOpLegal()) 2682 return llvm::None; 2683 2684 // This operation is legal, compute any additional legality information. 2685 LegalOpDetails legalityDetails; 2686 if (info->isRecursivelyLegal) { 2687 auto legalityFnIt = opRecursiveLegalityFns.find(op->getName()); 2688 if (legalityFnIt != opRecursiveLegalityFns.end()) 2689 legalityDetails.isRecursivelyLegal = legalityFnIt->second(op); 2690 else 2691 legalityDetails.isRecursivelyLegal = true; 2692 } 2693 return legalityDetails; 2694 } 2695 2696 /// Set the dynamic legality callback for the given operation. 2697 void ConversionTarget::setLegalityCallback( 2698 OperationName name, const DynamicLegalityCallbackFn &callback) { 2699 assert(callback && "expected valid legality callback"); 2700 auto infoIt = legalOperations.find(name); 2701 assert(infoIt != legalOperations.end() && 2702 infoIt->second.action == LegalizationAction::Dynamic && 2703 "expected operation to already be marked as dynamically legal"); 2704 infoIt->second.legalityFn = callback; 2705 } 2706 2707 /// Set the recursive legality callback for the given operation and mark the 2708 /// operation as recursively legal. 2709 void ConversionTarget::markOpRecursivelyLegal( 2710 OperationName name, const DynamicLegalityCallbackFn &callback) { 2711 auto infoIt = legalOperations.find(name); 2712 assert(infoIt != legalOperations.end() && 2713 infoIt->second.action != LegalizationAction::Illegal && 2714 "expected operation to already be marked as legal"); 2715 infoIt->second.isRecursivelyLegal = true; 2716 if (callback) 2717 opRecursiveLegalityFns[name] = callback; 2718 else 2719 opRecursiveLegalityFns.erase(name); 2720 } 2721 2722 /// Set the dynamic legality callback for the given dialects. 2723 void ConversionTarget::setLegalityCallback( 2724 ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) { 2725 assert(callback && "expected valid legality callback"); 2726 for (StringRef dialect : dialects) 2727 dialectLegalityFns[dialect] = callback; 2728 } 2729 2730 /// Get the legalization information for the given operation. 2731 auto ConversionTarget::getOpInfo(OperationName op) const 2732 -> Optional<LegalizationInfo> { 2733 // Check for info for this specific operation. 2734 auto it = legalOperations.find(op); 2735 if (it != legalOperations.end()) 2736 return it->second; 2737 // Check for info for the parent dialect. 2738 auto dialectIt = legalDialects.find(op.getDialectNamespace()); 2739 if (dialectIt != legalDialects.end()) { 2740 Optional<DynamicLegalityCallbackFn> callback; 2741 auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace()); 2742 if (dialectFn != dialectLegalityFns.end()) 2743 callback = dialectFn->second; 2744 return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false, 2745 callback}; 2746 } 2747 // Otherwise, check if we mark unknown operations as dynamic. 2748 if (unknownOpsDynamicallyLegal) 2749 return LegalizationInfo{LegalizationAction::Dynamic, 2750 /*isRecursivelyLegal=*/false, unknownLegalityFn}; 2751 return llvm::None; 2752 } 2753 2754 //===----------------------------------------------------------------------===// 2755 // Op Conversion Entry Points 2756 //===----------------------------------------------------------------------===// 2757 2758 /// Apply a partial conversion on the given operations and all nested 2759 /// operations. This method converts as many operations to the target as 2760 /// possible, ignoring operations that failed to legalize. This method only 2761 /// returns failure if there ops explicitly marked as illegal. 2762 /// If an `unconvertedOps` set is provided, all operations that are found not 2763 /// to be legalizable to the given `target` are placed within that set. (Note 2764 /// that if there is an op explicitly marked as illegal, the conversion 2765 /// terminates and the `unconvertedOps` set will not necessarily be complete.) 2766 LogicalResult 2767 mlir::applyPartialConversion(ArrayRef<Operation *> ops, 2768 ConversionTarget &target, 2769 const FrozenRewritePatternSet &patterns, 2770 DenseSet<Operation *> *unconvertedOps) { 2771 OperationConverter opConverter(target, patterns, OpConversionMode::Partial, 2772 unconvertedOps); 2773 return opConverter.convertOperations(ops); 2774 } 2775 LogicalResult 2776 mlir::applyPartialConversion(Operation *op, ConversionTarget &target, 2777 const FrozenRewritePatternSet &patterns, 2778 DenseSet<Operation *> *unconvertedOps) { 2779 return applyPartialConversion(llvm::makeArrayRef(op), target, patterns, 2780 unconvertedOps); 2781 } 2782 2783 /// Apply a complete conversion on the given operations, and all nested 2784 /// operations. This method will return failure if the conversion of any 2785 /// operation fails. 2786 LogicalResult 2787 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target, 2788 const FrozenRewritePatternSet &patterns) { 2789 OperationConverter opConverter(target, patterns, OpConversionMode::Full); 2790 return opConverter.convertOperations(ops); 2791 } 2792 LogicalResult 2793 mlir::applyFullConversion(Operation *op, ConversionTarget &target, 2794 const FrozenRewritePatternSet &patterns) { 2795 return applyFullConversion(llvm::makeArrayRef(op), target, patterns); 2796 } 2797 2798 /// Apply an analysis conversion on the given operations, and all nested 2799 /// operations. This method analyzes which operations would be successfully 2800 /// converted to the target if a conversion was applied. All operations that 2801 /// were found to be legalizable to the given 'target' are placed within the 2802 /// provided 'convertedOps' set; note that no actual rewrites are applied to the 2803 /// operations on success and only pre-existing operations are added to the set. 2804 LogicalResult 2805 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops, 2806 ConversionTarget &target, 2807 const FrozenRewritePatternSet &patterns, 2808 DenseSet<Operation *> &convertedOps) { 2809 OperationConverter opConverter(target, patterns, OpConversionMode::Analysis, 2810 &convertedOps); 2811 return opConverter.convertOperations(ops); 2812 } 2813 LogicalResult 2814 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target, 2815 const FrozenRewritePatternSet &patterns, 2816 DenseSet<Operation *> &convertedOps) { 2817 return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns, 2818 convertedOps); 2819 } 2820