1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Transforms/DialectConversion.h"
10 #include "mlir/IR/Block.h"
11 #include "mlir/IR/BlockAndValueMapping.h"
12 #include "mlir/IR/Builders.h"
13 #include "mlir/IR/BuiltinOps.h"
14 #include "mlir/IR/FunctionInterfaces.h"
15 #include "mlir/Rewrite/PatternApplicator.h"
16 #include "mlir/Transforms/Utils.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/FormatVariadic.h"
22 #include "llvm/Support/SaveAndRestore.h"
23 #include "llvm/Support/ScopedPrinter.h"
24 
25 using namespace mlir;
26 using namespace mlir::detail;
27 
28 #define DEBUG_TYPE "dialect-conversion"
29 
30 /// Recursively collect all of the operations to convert from within 'region'.
31 /// If 'target' is nonnull, operations that are recursively legal have their
32 /// regions pre-filtered to avoid considering them for legalization.
33 static LogicalResult
34 computeConversionSet(iterator_range<Region::iterator> region,
35                      Location regionLoc,
36                      SmallVectorImpl<Operation *> &toConvert,
37                      ConversionTarget *target = nullptr) {
38   if (llvm::empty(region))
39     return success();
40 
41   // Traverse starting from the entry block.
42   SmallVector<Block *, 16> worklist(1, &*region.begin());
43   DenseSet<Block *> visitedBlocks;
44   visitedBlocks.insert(worklist.front());
45   while (!worklist.empty()) {
46     Block *block = worklist.pop_back_val();
47 
48     // Compute the conversion set of each of the nested operations.
49     for (Operation &op : *block) {
50       toConvert.emplace_back(&op);
51 
52       // Don't check this operation's children for conversion if the operation
53       // is recursively legal.
54       auto legalityInfo = target ? target->isLegal(&op)
55                                  : Optional<ConversionTarget::LegalOpDetails>();
56       if (legalityInfo && legalityInfo->isRecursivelyLegal)
57         continue;
58       for (auto &region : op.getRegions()) {
59         if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
60                                         toConvert, target)))
61           return failure();
62       }
63     }
64 
65     // Recurse to children that haven't been visited.
66     for (Block *succ : block->getSuccessors())
67       if (visitedBlocks.insert(succ).second)
68         worklist.push_back(succ);
69   }
70 
71   // Check that all blocks in the region were visited.
72   if (llvm::any_of(llvm::drop_begin(region, 1),
73                    [&](Block &block) { return !visitedBlocks.count(&block); }))
74     return emitError(regionLoc, "unreachable blocks were not converted");
75   return success();
76 }
77 
78 /// A utility function to log a successful result for the given reason.
79 template <typename... Args>
80 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
81   LLVM_DEBUG({
82     os.unindent();
83     os.startLine() << "} -> SUCCESS";
84     if (!fmt.empty())
85       os.getOStream() << " : "
86                       << llvm::formatv(fmt.data(), std::forward<Args>(args)...);
87     os.getOStream() << "\n";
88   });
89 }
90 
91 /// A utility function to log a failure result for the given reason.
92 template <typename... Args>
93 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
94   LLVM_DEBUG({
95     os.unindent();
96     os.startLine() << "} -> FAILURE : "
97                    << llvm::formatv(fmt.data(), std::forward<Args>(args)...)
98                    << "\n";
99   });
100 }
101 
102 //===----------------------------------------------------------------------===//
103 // ConversionValueMapping
104 //===----------------------------------------------------------------------===//
105 
106 namespace {
107 /// This class wraps a BlockAndValueMapping to provide recursive lookup
108 /// functionality, i.e. we will traverse if the mapped value also has a mapping.
109 struct ConversionValueMapping {
110   /// Lookup a mapped value within the map. If a mapping for the provided value
111   /// does not exist then return the provided value. If `desiredType` is
112   /// non-null, returns the most recently mapped value with that type. If an
113   /// operand of that type does not exist, defaults to normal behavior.
114   Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
115 
116   /// Lookup a mapped value within the map, or return null if a mapping does not
117   /// exist. If a mapping exists, this follows the same behavior of
118   /// `lookupOrDefault`.
119   Value lookupOrNull(Value from, Type desiredType = nullptr) const;
120 
121   /// Map a value to the one provided.
122   void map(Value oldVal, Value newVal) {
123     LLVM_DEBUG({
124       for (Value it = newVal; it; it = mapping.lookupOrNull(it))
125         assert(it != oldVal && "inserting cyclic mapping");
126     });
127     mapping.map(oldVal, newVal);
128   }
129 
130   /// Try to map a value to the one provided. Returns false if a transitive
131   /// mapping from the new value to the old value already exists, true if the
132   /// map was updated.
133   bool tryMap(Value oldVal, Value newVal);
134 
135   /// Drop the last mapping for the given value.
136   void erase(Value value) { mapping.erase(value); }
137 
138   /// Returns the inverse raw value mapping (without recursive query support).
139   DenseMap<Value, SmallVector<Value>> getInverse() const {
140     DenseMap<Value, SmallVector<Value>> inverse;
141     for (auto &it : mapping.getValueMap())
142       inverse[it.second].push_back(it.first);
143     return inverse;
144   }
145 
146 private:
147   /// Current value mappings.
148   BlockAndValueMapping mapping;
149 };
150 } // namespace
151 
152 Value ConversionValueMapping::lookupOrDefault(Value from,
153                                               Type desiredType) const {
154   // If there was no desired type, simply find the leaf value.
155   if (!desiredType) {
156     // If this value had a valid mapping, unmap that value as well in the case
157     // that it was also replaced.
158     while (auto mappedValue = mapping.lookupOrNull(from))
159       from = mappedValue;
160     return from;
161   }
162 
163   // Otherwise, try to find the deepest value that has the desired type.
164   Value desiredValue;
165   do {
166     if (from.getType() == desiredType)
167       desiredValue = from;
168 
169     Value mappedValue = mapping.lookupOrNull(from);
170     if (!mappedValue)
171       break;
172     from = mappedValue;
173   } while (true);
174 
175   // If the desired value was found use it, otherwise default to the leaf value.
176   return desiredValue ? desiredValue : from;
177 }
178 
179 Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const {
180   Value result = lookupOrDefault(from, desiredType);
181   if (result == from || (desiredType && result.getType() != desiredType))
182     return nullptr;
183   return result;
184 }
185 
186 bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) {
187   for (Value it = newVal; it; it = mapping.lookupOrNull(it))
188     if (it == oldVal)
189       return false;
190   map(oldVal, newVal);
191   return true;
192 }
193 
194 //===----------------------------------------------------------------------===//
195 // Rewriter and Translation State
196 //===----------------------------------------------------------------------===//
197 namespace {
198 /// This class contains a snapshot of the current conversion rewriter state.
199 /// This is useful when saving and undoing a set of rewrites.
200 struct RewriterState {
201   RewriterState(unsigned numCreatedOps, unsigned numUnresolvedMaterializations,
202                 unsigned numReplacements, unsigned numArgReplacements,
203                 unsigned numBlockActions, unsigned numIgnoredOperations,
204                 unsigned numRootUpdates)
205       : numCreatedOps(numCreatedOps),
206         numUnresolvedMaterializations(numUnresolvedMaterializations),
207         numReplacements(numReplacements),
208         numArgReplacements(numArgReplacements),
209         numBlockActions(numBlockActions),
210         numIgnoredOperations(numIgnoredOperations),
211         numRootUpdates(numRootUpdates) {}
212 
213   /// The current number of created operations.
214   unsigned numCreatedOps;
215 
216   /// The current number of unresolved materializations.
217   unsigned numUnresolvedMaterializations;
218 
219   /// The current number of replacements queued.
220   unsigned numReplacements;
221 
222   /// The current number of argument replacements queued.
223   unsigned numArgReplacements;
224 
225   /// The current number of block actions performed.
226   unsigned numBlockActions;
227 
228   /// The current number of ignored operations.
229   unsigned numIgnoredOperations;
230 
231   /// The current number of operations that were updated in place.
232   unsigned numRootUpdates;
233 };
234 
235 //===----------------------------------------------------------------------===//
236 // OperationTransactionState
237 
238 /// The state of an operation that was updated by a pattern in-place. This
239 /// contains all of the necessary information to reconstruct an operation that
240 /// was updated in place.
241 class OperationTransactionState {
242 public:
243   OperationTransactionState() = default;
244   OperationTransactionState(Operation *op)
245       : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()),
246         operands(op->operand_begin(), op->operand_end()),
247         successors(op->successor_begin(), op->successor_end()) {}
248 
249   /// Discard the transaction state and reset the state of the original
250   /// operation.
251   void resetOperation() const {
252     op->setLoc(loc);
253     op->setAttrs(attrs);
254     op->setOperands(operands);
255     for (const auto &it : llvm::enumerate(successors))
256       op->setSuccessor(it.value(), it.index());
257   }
258 
259   /// Return the original operation of this state.
260   Operation *getOperation() const { return op; }
261 
262 private:
263   Operation *op;
264   LocationAttr loc;
265   DictionaryAttr attrs;
266   SmallVector<Value, 8> operands;
267   SmallVector<Block *, 2> successors;
268 };
269 
270 //===----------------------------------------------------------------------===//
271 // OpReplacement
272 
273 /// This class represents one requested operation replacement via 'replaceOp' or
274 /// 'eraseOp`.
275 struct OpReplacement {
276   OpReplacement(TypeConverter *converter = nullptr) : converter(converter) {}
277 
278   /// An optional type converter that can be used to materialize conversions
279   /// between the new and old values if necessary.
280   TypeConverter *converter;
281 };
282 
283 //===----------------------------------------------------------------------===//
284 // BlockAction
285 
286 /// The kind of the block action performed during the rewrite.  Actions can be
287 /// undone if the conversion fails.
288 enum class BlockActionKind {
289   Create,
290   Erase,
291   Merge,
292   Move,
293   Split,
294   TypeConversion
295 };
296 
297 /// Original position of the given block in its parent region. During undo
298 /// actions, the block needs to be placed after `insertAfterBlock`.
299 struct BlockPosition {
300   Region *region;
301   Block *insertAfterBlock;
302 };
303 
304 /// Information needed to undo the merge actions.
305 /// - the source block, and
306 /// - the Operation that was the last operation in the dest block before the
307 ///   merge (could be null if the dest block was empty).
308 struct MergeInfo {
309   Block *sourceBlock;
310   Operation *destBlockLastInst;
311 };
312 
313 /// The storage class for an undoable block action (one of BlockActionKind),
314 /// contains the information necessary to undo this action.
315 struct BlockAction {
316   static BlockAction getCreate(Block *block) {
317     return {BlockActionKind::Create, block, {}};
318   }
319   static BlockAction getErase(Block *block, BlockPosition originalPosition) {
320     return {BlockActionKind::Erase, block, {originalPosition}};
321   }
322   static BlockAction getMerge(Block *block, Block *sourceBlock) {
323     BlockAction action{BlockActionKind::Merge, block, {}};
324     action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()};
325     return action;
326   }
327   static BlockAction getMove(Block *block, BlockPosition originalPosition) {
328     return {BlockActionKind::Move, block, {originalPosition}};
329   }
330   static BlockAction getSplit(Block *block, Block *originalBlock) {
331     BlockAction action{BlockActionKind::Split, block, {}};
332     action.originalBlock = originalBlock;
333     return action;
334   }
335   static BlockAction getTypeConversion(Block *block) {
336     return BlockAction{BlockActionKind::TypeConversion, block, {}};
337   }
338 
339   // The action kind.
340   BlockActionKind kind;
341 
342   // A pointer to the block that was created by the action.
343   Block *block;
344 
345   union {
346     // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and
347     // contains a pointer to the region that originally contained the block as
348     // well as the position of the block in that region.
349     BlockPosition originalPosition;
350     // In use if kind == BlockActionKind::Split and contains a pointer to the
351     // block that was split into two parts.
352     Block *originalBlock;
353     // In use if kind == BlockActionKind::Merge, and contains the information
354     // needed to undo the merge.
355     MergeInfo mergeInfo;
356   };
357 };
358 
359 //===----------------------------------------------------------------------===//
360 // UnresolvedMaterialization
361 
362 /// This class represents an unresolved materialization, i.e. a materialization
363 /// that was inserted during conversion that needs to be legalized at the end of
364 /// the conversion process.
365 class UnresolvedMaterialization {
366 public:
367   /// The type of materialization.
368   enum Kind {
369     /// This materialization materializes a conversion for an illegal block
370     /// argument type, to a legal one.
371     Argument,
372 
373     /// This materialization materializes a conversion from an illegal type to a
374     /// legal one.
375     Target
376   };
377 
378   UnresolvedMaterialization(UnrealizedConversionCastOp op = nullptr,
379                             TypeConverter *converter = nullptr,
380                             Kind kind = Target, Type origOutputType = nullptr)
381       : op(op), converterAndKind(converter, kind),
382         origOutputType(origOutputType) {}
383 
384   /// Return the temporary conversion operation inserted for this
385   /// materialization.
386   UnrealizedConversionCastOp getOp() const { return op; }
387 
388   /// Return the type converter of this materialization (which may be null).
389   TypeConverter *getConverter() const { return converterAndKind.getPointer(); }
390 
391   /// Return the kind of this materialization.
392   Kind getKind() const { return converterAndKind.getInt(); }
393 
394   /// Set the kind of this materialization.
395   void setKind(Kind kind) { converterAndKind.setInt(kind); }
396 
397   /// Return the original illegal output type of the input values.
398   Type getOrigOutputType() const { return origOutputType; }
399 
400 private:
401   /// The unresolved materialization operation created during conversion.
402   UnrealizedConversionCastOp op;
403 
404   /// The corresponding type converter to use when resolving this
405   /// materialization, and the kind of this materialization.
406   llvm::PointerIntPair<TypeConverter *, 1, Kind> converterAndKind;
407 
408   /// The original output type. This is only used for argument conversions.
409   Type origOutputType;
410 };
411 } // namespace
412 
413 /// Build an unresolved materialization operation given an output type and set
414 /// of input operands.
415 static Value buildUnresolvedMaterialization(
416     UnresolvedMaterialization::Kind kind, Block *insertBlock,
417     Block::iterator insertPt, Location loc, ValueRange inputs, Type outputType,
418     Type origOutputType, TypeConverter *converter,
419     SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
420   // Avoid materializing an unnecessary cast.
421   if (inputs.size() == 1 && inputs.front().getType() == outputType)
422     return inputs.front();
423 
424   // Create an unresolved materialization. We use a new OpBuilder to avoid
425   // tracking the materialization like we do for other operations.
426   OpBuilder builder(insertBlock, insertPt);
427   auto convertOp =
428       builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs);
429   unresolvedMaterializations.emplace_back(convertOp, converter, kind,
430                                           origOutputType);
431   return convertOp.getResult(0);
432 }
433 static Value buildUnresolvedArgumentMaterialization(
434     PatternRewriter &rewriter, Location loc, ValueRange inputs,
435     Type origOutputType, Type outputType, TypeConverter *converter,
436     SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
437   return buildUnresolvedMaterialization(
438       UnresolvedMaterialization::Argument, rewriter.getInsertionBlock(),
439       rewriter.getInsertionPoint(), loc, inputs, outputType, origOutputType,
440       converter, unresolvedMaterializations);
441 }
442 static Value buildUnresolvedTargetMaterialization(
443     Location loc, Value input, Type outputType, TypeConverter *converter,
444     SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
445   Block *insertBlock = input.getParentBlock();
446   Block::iterator insertPt = insertBlock->begin();
447   if (OpResult inputRes = input.dyn_cast<OpResult>())
448     insertPt = ++inputRes.getOwner()->getIterator();
449 
450   return buildUnresolvedMaterialization(
451       UnresolvedMaterialization::Target, insertBlock, insertPt, loc, input,
452       outputType, outputType, converter, unresolvedMaterializations);
453 }
454 
455 //===----------------------------------------------------------------------===//
456 // ArgConverter
457 //===----------------------------------------------------------------------===//
458 namespace {
459 /// This class provides a simple interface for converting the types of block
460 /// arguments. This is done by creating a new block that contains the new legal
461 /// types and extracting the block that contains the old illegal types to allow
462 /// for undoing pending rewrites in the case of failure.
463 struct ArgConverter {
464   ArgConverter(
465       PatternRewriter &rewriter,
466       SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations)
467       : rewriter(rewriter),
468         unresolvedMaterializations(unresolvedMaterializations) {}
469 
470   /// This structure contains the information pertaining to an argument that has
471   /// been converted.
472   struct ConvertedArgInfo {
473     ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
474                      Value castValue = nullptr)
475         : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
476 
477     /// The start index of in the new argument list that contains arguments that
478     /// replace the original.
479     unsigned newArgIdx;
480 
481     /// The number of arguments that replaced the original argument.
482     unsigned newArgSize;
483 
484     /// The cast value that was created to cast from the new arguments to the
485     /// old. This only used if 'newArgSize' > 1.
486     Value castValue;
487   };
488 
489   /// This structure contains information pertaining to a block that has had its
490   /// signature converted.
491   struct ConvertedBlockInfo {
492     ConvertedBlockInfo(Block *origBlock, TypeConverter *converter)
493         : origBlock(origBlock), converter(converter) {}
494 
495     /// The original block that was requested to have its signature converted.
496     Block *origBlock;
497 
498     /// The conversion information for each of the arguments. The information is
499     /// None if the argument was dropped during conversion.
500     SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
501 
502     /// The type converter used to convert the arguments.
503     TypeConverter *converter;
504   };
505 
506   /// Return if the signature of the given block has already been converted.
507   bool hasBeenConverted(Block *block) const {
508     return conversionInfo.count(block) || convertedBlocks.count(block);
509   }
510 
511   /// Set the type converter to use for the given region.
512   void setConverter(Region *region, TypeConverter *typeConverter) {
513     assert(typeConverter && "expected valid type converter");
514     regionToConverter[region] = typeConverter;
515   }
516 
517   /// Return the type converter to use for the given region, or null if there
518   /// isn't one.
519   TypeConverter *getConverter(Region *region) {
520     return regionToConverter.lookup(region);
521   }
522 
523   //===--------------------------------------------------------------------===//
524   // Rewrite Application
525   //===--------------------------------------------------------------------===//
526 
527   /// Erase any rewrites registered for the blocks within the given operation
528   /// which is about to be removed. This merely drops the rewrites without
529   /// undoing them.
530   void notifyOpRemoved(Operation *op);
531 
532   /// Cleanup and undo any generated conversions for the arguments of block.
533   /// This method replaces the new block with the original, reverting the IR to
534   /// its original state.
535   void discardRewrites(Block *block);
536 
537   /// Fully replace uses of the old arguments with the new.
538   void applyRewrites(ConversionValueMapping &mapping);
539 
540   /// Materialize any necessary conversions for converted arguments that have
541   /// live users, using the provided `findLiveUser` to search for a user that
542   /// survives the conversion process.
543   LogicalResult
544   materializeLiveConversions(ConversionValueMapping &mapping,
545                              OpBuilder &builder,
546                              function_ref<Operation *(Value)> findLiveUser);
547 
548   //===--------------------------------------------------------------------===//
549   // Conversion
550   //===--------------------------------------------------------------------===//
551 
552   /// Attempt to convert the signature of the given block, if successful a new
553   /// block is returned containing the new arguments. Returns `block` if it did
554   /// not require conversion.
555   FailureOr<Block *>
556   convertSignature(Block *block, TypeConverter *converter,
557                    ConversionValueMapping &mapping,
558                    SmallVectorImpl<BlockArgument> &argReplacements);
559 
560   /// Apply the given signature conversion on the given block. The new block
561   /// containing the updated signature is returned. If no conversions were
562   /// necessary, e.g. if the block has no arguments, `block` is returned.
563   /// `converter` is used to generate any necessary cast operations that
564   /// translate between the origin argument types and those specified in the
565   /// signature conversion.
566   Block *applySignatureConversion(
567       Block *block, TypeConverter *converter,
568       TypeConverter::SignatureConversion &signatureConversion,
569       ConversionValueMapping &mapping,
570       SmallVectorImpl<BlockArgument> &argReplacements);
571 
572   /// Insert a new conversion into the cache.
573   void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
574 
575   /// A collection of blocks that have had their arguments converted. This is a
576   /// map from the new replacement block, back to the original block.
577   llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
578 
579   /// The set of original blocks that were converted.
580   DenseSet<Block *> convertedBlocks;
581 
582   /// A mapping from valid regions, to those containing the original blocks of a
583   /// conversion.
584   DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
585 
586   /// A mapping of regions to type converters that should be used when
587   /// converting the arguments of blocks within that region.
588   DenseMap<Region *, TypeConverter *> regionToConverter;
589 
590   /// The pattern rewriter to use when materializing conversions.
591   PatternRewriter &rewriter;
592 
593   /// An ordered set of unresolved materializations during conversion.
594   SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations;
595 };
596 } // namespace
597 
598 //===----------------------------------------------------------------------===//
599 // Rewrite Application
600 
601 void ArgConverter::notifyOpRemoved(Operation *op) {
602   if (conversionInfo.empty())
603     return;
604 
605   for (Region &region : op->getRegions()) {
606     for (Block &block : region) {
607       // Drop any rewrites from within.
608       for (Operation &nestedOp : block)
609         if (nestedOp.getNumRegions())
610           notifyOpRemoved(&nestedOp);
611 
612       // Check if this block was converted.
613       auto it = conversionInfo.find(&block);
614       if (it == conversionInfo.end())
615         continue;
616 
617       // Drop all uses of the original arguments and delete the original block.
618       Block *origBlock = it->second.origBlock;
619       for (BlockArgument arg : origBlock->getArguments())
620         arg.dropAllUses();
621       conversionInfo.erase(it);
622     }
623   }
624 }
625 
626 void ArgConverter::discardRewrites(Block *block) {
627   auto it = conversionInfo.find(block);
628   if (it == conversionInfo.end())
629     return;
630   Block *origBlock = it->second.origBlock;
631 
632   // Drop all uses of the new block arguments and replace uses of the new block.
633   for (int i = block->getNumArguments() - 1; i >= 0; --i)
634     block->getArgument(i).dropAllUses();
635   block->replaceAllUsesWith(origBlock);
636 
637   // Move the operations back the original block and the delete the new block.
638   origBlock->getOperations().splice(origBlock->end(), block->getOperations());
639   origBlock->moveBefore(block);
640   block->erase();
641 
642   convertedBlocks.erase(origBlock);
643   conversionInfo.erase(it);
644 }
645 
646 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
647   for (auto &info : conversionInfo) {
648     ConvertedBlockInfo &blockInfo = info.second;
649     Block *origBlock = blockInfo.origBlock;
650 
651     // Process the remapping for each of the original arguments.
652     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
653       Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
654       BlockArgument origArg = origBlock->getArgument(i);
655 
656       // Handle the case of a 1->0 value mapping.
657       if (!argInfo) {
658         if (Value newArg = mapping.lookupOrNull(origArg, origArg.getType()))
659           origArg.replaceAllUsesWith(newArg);
660         continue;
661       }
662 
663       // Otherwise this is a 1->1+ value mapping.
664       Value castValue = argInfo->castValue;
665       assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
666 
667       // If the argument is still used, replace it with the generated cast.
668       if (!origArg.use_empty()) {
669         origArg.replaceAllUsesWith(
670             mapping.lookupOrDefault(castValue, origArg.getType()));
671       }
672     }
673   }
674 }
675 
676 LogicalResult ArgConverter::materializeLiveConversions(
677     ConversionValueMapping &mapping, OpBuilder &builder,
678     function_ref<Operation *(Value)> findLiveUser) {
679   for (auto &info : conversionInfo) {
680     Block *newBlock = info.first;
681     ConvertedBlockInfo &blockInfo = info.second;
682     Block *origBlock = blockInfo.origBlock;
683 
684     // Process the remapping for each of the original arguments.
685     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
686       // If the type of this argument changed and the argument is still live, we
687       // need to materialize a conversion.
688       BlockArgument origArg = origBlock->getArgument(i);
689       if (mapping.lookupOrNull(origArg, origArg.getType()))
690         continue;
691       Operation *liveUser = findLiveUser(origArg);
692       if (!liveUser)
693         continue;
694 
695       Value replacementValue = mapping.lookupOrDefault(origArg);
696       bool isDroppedArg = replacementValue == origArg;
697       if (isDroppedArg)
698         rewriter.setInsertionPointToStart(newBlock);
699       else
700         rewriter.setInsertionPointAfterValue(replacementValue);
701       Value newArg;
702       if (blockInfo.converter) {
703         newArg = blockInfo.converter->materializeSourceConversion(
704             rewriter, origArg.getLoc(), origArg.getType(),
705             isDroppedArg ? ValueRange() : ValueRange(replacementValue));
706         assert((!newArg || newArg.getType() == origArg.getType()) &&
707                "materialization hook did not provide a value of the expected "
708                "type");
709       }
710       if (!newArg) {
711         InFlightDiagnostic diag =
712             emitError(origArg.getLoc())
713             << "failed to materialize conversion for block argument #" << i
714             << " that remained live after conversion, type was "
715             << origArg.getType();
716         if (!isDroppedArg)
717           diag << ", with target type " << replacementValue.getType();
718         diag.attachNote(liveUser->getLoc())
719             << "see existing live user here: " << *liveUser;
720         return failure();
721       }
722       mapping.map(origArg, newArg);
723     }
724   }
725   return success();
726 }
727 
728 //===----------------------------------------------------------------------===//
729 // Conversion
730 
731 FailureOr<Block *> ArgConverter::convertSignature(
732     Block *block, TypeConverter *converter, ConversionValueMapping &mapping,
733     SmallVectorImpl<BlockArgument> &argReplacements) {
734   // Check if the block was already converted. If the block is detached,
735   // conservatively assume it is going to be deleted.
736   if (hasBeenConverted(block) || !block->getParent())
737     return block;
738   // If a converter wasn't provided, and the block wasn't already converted,
739   // there is nothing we can do.
740   if (!converter)
741     return failure();
742 
743   // Try to convert the signature for the block with the provided converter.
744   if (auto conversion = converter->convertBlockSignature(block))
745     return applySignatureConversion(block, converter, *conversion, mapping,
746                                     argReplacements);
747   return failure();
748 }
749 
750 Block *ArgConverter::applySignatureConversion(
751     Block *block, TypeConverter *converter,
752     TypeConverter::SignatureConversion &signatureConversion,
753     ConversionValueMapping &mapping,
754     SmallVectorImpl<BlockArgument> &argReplacements) {
755   // If no arguments are being changed or added, there is nothing to do.
756   unsigned origArgCount = block->getNumArguments();
757   auto convertedTypes = signatureConversion.getConvertedTypes();
758   if (origArgCount == 0 && convertedTypes.empty())
759     return block;
760 
761   // Split the block at the beginning to get a new block to use for the updated
762   // signature.
763   Block *newBlock = block->splitBlock(block->begin());
764   block->replaceAllUsesWith(newBlock);
765 
766   // FIXME: We should map the new arguments to proper locations.
767   SmallVector<Location> newLocs(convertedTypes.size(),
768                                 rewriter.getUnknownLoc());
769   SmallVector<Value, 4> newArgRange(
770       newBlock->addArguments(convertedTypes, newLocs));
771   ArrayRef<Value> newArgs(newArgRange);
772 
773   // Remap each of the original arguments as determined by the signature
774   // conversion.
775   ConvertedBlockInfo info(block, converter);
776   info.argInfo.resize(origArgCount);
777 
778   OpBuilder::InsertionGuard guard(rewriter);
779   rewriter.setInsertionPointToStart(newBlock);
780   for (unsigned i = 0; i != origArgCount; ++i) {
781     auto inputMap = signatureConversion.getInputMapping(i);
782     if (!inputMap)
783       continue;
784     BlockArgument origArg = block->getArgument(i);
785 
786     // If inputMap->replacementValue is not nullptr, then the argument is
787     // dropped and a replacement value is provided to be the remappedValue.
788     if (inputMap->replacementValue) {
789       assert(inputMap->size == 0 &&
790              "invalid to provide a replacement value when the argument isn't "
791              "dropped");
792       mapping.map(origArg, inputMap->replacementValue);
793       argReplacements.push_back(origArg);
794       continue;
795     }
796 
797     // Otherwise, this is a 1->1+ mapping.
798     auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
799     Value newArg;
800 
801     // If this is a 1->1 mapping and the types of new and replacement arguments
802     // match (i.e. it's an identity map), then the argument is mapped to its
803     // original type.
804     // FIXME: We simply pass through the replacement argument if there wasn't a
805     // converter, which isn't great as it allows implicit type conversions to
806     // appear. We should properly restructure this code to handle cases where a
807     // converter isn't provided and also to properly handle the case where an
808     // argument materialization is actually a temporary source materialization
809     // (e.g. in the case of 1->N).
810     if (replArgs.size() == 1 &&
811         (!converter || replArgs[0].getType() == origArg.getType())) {
812       newArg = replArgs.front();
813     } else {
814       Type origOutputType = origArg.getType();
815 
816       // Legalize the argument output type.
817       Type outputType = origOutputType;
818       if (Type legalOutputType = converter->convertType(outputType))
819         outputType = legalOutputType;
820 
821       newArg = buildUnresolvedArgumentMaterialization(
822           rewriter, origArg.getLoc(), replArgs, origOutputType, outputType,
823           converter, unresolvedMaterializations);
824     }
825 
826     mapping.map(origArg, newArg);
827     argReplacements.push_back(origArg);
828     info.argInfo[i] =
829         ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
830   }
831 
832   // Remove the original block from the region and return the new one.
833   insertConversion(newBlock, std::move(info));
834   return newBlock;
835 }
836 
837 void ArgConverter::insertConversion(Block *newBlock,
838                                     ConvertedBlockInfo &&info) {
839   // Get a region to insert the old block.
840   Region *region = newBlock->getParent();
841   std::unique_ptr<Region> &mappedRegion = regionMapping[region];
842   if (!mappedRegion)
843     mappedRegion = std::make_unique<Region>(region->getParentOp());
844 
845   // Move the original block to the mapped region and emplace the conversion.
846   mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
847                                    info.origBlock->getIterator());
848   convertedBlocks.insert(info.origBlock);
849   conversionInfo.insert({newBlock, std::move(info)});
850 }
851 
852 //===----------------------------------------------------------------------===//
853 // ConversionPatternRewriterImpl
854 //===----------------------------------------------------------------------===//
855 namespace mlir {
856 namespace detail {
857 struct ConversionPatternRewriterImpl {
858   explicit ConversionPatternRewriterImpl(PatternRewriter &rewriter)
859       : argConverter(rewriter, unresolvedMaterializations),
860         notifyCallback(nullptr) {}
861 
862   /// Cleanup and destroy any generated rewrite operations. This method is
863   /// invoked when the conversion process fails.
864   void discardRewrites();
865 
866   /// Apply all requested operation rewrites. This method is invoked when the
867   /// conversion process succeeds.
868   void applyRewrites();
869 
870   //===--------------------------------------------------------------------===//
871   // State Management
872   //===--------------------------------------------------------------------===//
873 
874   /// Return the current state of the rewriter.
875   RewriterState getCurrentState();
876 
877   /// Reset the state of the rewriter to a previously saved point.
878   void resetState(RewriterState state);
879 
880   /// Erase any blocks that were unlinked from their regions and stored in block
881   /// actions.
882   void eraseDanglingBlocks();
883 
884   /// Undo the block actions (motions, splits) one by one in reverse order until
885   /// "numActionsToKeep" actions remains.
886   void undoBlockActions(unsigned numActionsToKeep = 0);
887 
888   /// Remap the given values to those with potentially different types. Returns
889   /// success if the values could be remapped, failure otherwise. `valueDiagTag`
890   /// is the tag used when describing a value within a diagnostic, e.g.
891   /// "operand".
892   LogicalResult remapValues(StringRef valueDiagTag, Optional<Location> inputLoc,
893                             PatternRewriter &rewriter, ValueRange values,
894                             SmallVectorImpl<Value> &remapped);
895 
896   /// Returns true if the given operation is ignored, and does not need to be
897   /// converted.
898   bool isOpIgnored(Operation *op) const;
899 
900   /// Recursively marks the nested operations under 'op' as ignored. This
901   /// removes them from being considered for legalization.
902   void markNestedOpsIgnored(Operation *op);
903 
904   //===--------------------------------------------------------------------===//
905   // Type Conversion
906   //===--------------------------------------------------------------------===//
907 
908   /// Convert the signature of the given block.
909   FailureOr<Block *> convertBlockSignature(
910       Block *block, TypeConverter *converter,
911       TypeConverter::SignatureConversion *conversion = nullptr);
912 
913   /// Apply a signature conversion on the given region, using `converter` for
914   /// materializations if not null.
915   Block *
916   applySignatureConversion(Region *region,
917                            TypeConverter::SignatureConversion &conversion,
918                            TypeConverter *converter);
919 
920   /// Convert the types of block arguments within the given region.
921   FailureOr<Block *>
922   convertRegionTypes(Region *region, TypeConverter &converter,
923                      TypeConverter::SignatureConversion *entryConversion);
924 
925   /// Convert the types of non-entry block arguments within the given region.
926   LogicalResult convertNonEntryRegionTypes(
927       Region *region, TypeConverter &converter,
928       ArrayRef<TypeConverter::SignatureConversion> blockConversions = {});
929 
930   //===--------------------------------------------------------------------===//
931   // Rewriter Notification Hooks
932   //===--------------------------------------------------------------------===//
933 
934   /// PatternRewriter hook for replacing the results of an operation.
935   void notifyOpReplaced(Operation *op, ValueRange newValues);
936 
937   /// Notifies that a block is about to be erased.
938   void notifyBlockIsBeingErased(Block *block);
939 
940   /// Notifies that a block was created.
941   void notifyCreatedBlock(Block *block);
942 
943   /// Notifies that a block was split.
944   void notifySplitBlock(Block *block, Block *continuation);
945 
946   /// Notifies that `block` is being merged with `srcBlock`.
947   void notifyBlocksBeingMerged(Block *block, Block *srcBlock);
948 
949   /// Notifies that the blocks of a region are about to be moved.
950   void notifyRegionIsBeingInlinedBefore(Region &region, Region &parent,
951                                         Region::iterator before);
952 
953   /// Notifies that the blocks of a region were cloned into another.
954   void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
955                                    Location origRegionLoc);
956 
957   /// Notifies that a pattern match failed for the given reason.
958   LogicalResult
959   notifyMatchFailure(Location loc,
960                      function_ref<void(Diagnostic &)> reasonCallback);
961 
962   //===--------------------------------------------------------------------===//
963   // State
964   //===--------------------------------------------------------------------===//
965 
966   // Mapping between replaced values that differ in type. This happens when
967   // replacing a value with one of a different type.
968   ConversionValueMapping mapping;
969 
970   /// Utility used to convert block arguments.
971   ArgConverter argConverter;
972 
973   /// Ordered vector of all of the newly created operations during conversion.
974   SmallVector<Operation *> createdOps;
975 
976   /// Ordered vector of all unresolved type conversion materializations during
977   /// conversion.
978   SmallVector<UnresolvedMaterialization> unresolvedMaterializations;
979 
980   /// Ordered map of requested operation replacements.
981   llvm::MapVector<Operation *, OpReplacement> replacements;
982 
983   /// Ordered vector of any requested block argument replacements.
984   SmallVector<BlockArgument, 4> argReplacements;
985 
986   /// Ordered list of block operations (creations, splits, motions).
987   SmallVector<BlockAction, 4> blockActions;
988 
989   /// A set of operations that should no longer be considered for legalization,
990   /// but were not directly replace/erased/etc. by a pattern. These are
991   /// generally child operations of other operations who were
992   /// replaced/erased/etc. This is not meant to be an exhaustive list of all
993   /// operations, but the minimal set that can be used to detect if a given
994   /// operation should be `ignored`. For example, we may add the operations that
995   /// define non-empty regions to the set, but not any of the others. This
996   /// simplifies the amount of memory needed as we can query if the parent
997   /// operation was ignored.
998   SetVector<Operation *> ignoredOps;
999 
1000   /// A transaction state for each of operations that were updated in-place.
1001   SmallVector<OperationTransactionState, 4> rootUpdates;
1002 
1003   /// A vector of indices into `replacements` of operations that were replaced
1004   /// with values with different result types than the original operation, e.g.
1005   /// 1->N conversion of some kind.
1006   SmallVector<unsigned, 4> operationsWithChangedResults;
1007 
1008   /// The current type converter, or nullptr if no type converter is currently
1009   /// active.
1010   TypeConverter *currentTypeConverter = nullptr;
1011 
1012   /// This allows the user to collect the match failure message.
1013   function_ref<void(Diagnostic &)> notifyCallback;
1014 
1015 #ifndef NDEBUG
1016   /// A set of operations that have pending updates. This tracking isn't
1017   /// strictly necessary, and is thus only active during debug builds for extra
1018   /// verification.
1019   SmallPtrSet<Operation *, 1> pendingRootUpdates;
1020 
1021   /// A logger used to emit diagnostics during the conversion process.
1022   llvm::ScopedPrinter logger{llvm::dbgs()};
1023 #endif
1024 };
1025 } // namespace detail
1026 } // namespace mlir
1027 
1028 /// Detach any operations nested in the given operation from their parent
1029 /// blocks, and erase the given operation. This can be used when the nested
1030 /// operations are scheduled for erasure themselves, so deleting the regions of
1031 /// the given operation together with their content would result in double-free.
1032 /// This happens, for example, when rolling back op creation in the reverse
1033 /// order and if the nested ops were created before the parent op. This function
1034 /// does not need to collect nested ops recursively because it is expected to
1035 /// also be called for each nested op when it is about to be deleted.
1036 static void detachNestedAndErase(Operation *op) {
1037   for (Region &region : op->getRegions()) {
1038     for (Block &block : region.getBlocks()) {
1039       while (!block.getOperations().empty())
1040         block.getOperations().remove(block.getOperations().begin());
1041       block.dropAllDefinedValueUses();
1042     }
1043   }
1044   op->dropAllUses();
1045   op->erase();
1046 }
1047 
1048 void ConversionPatternRewriterImpl::discardRewrites() {
1049   // Reset any operations that were updated in place.
1050   for (auto &state : rootUpdates)
1051     state.resetOperation();
1052 
1053   undoBlockActions();
1054 
1055   // Remove any newly created ops.
1056   for (UnresolvedMaterialization &materialization : unresolvedMaterializations)
1057     detachNestedAndErase(materialization.getOp());
1058   for (auto *op : llvm::reverse(createdOps))
1059     detachNestedAndErase(op);
1060 }
1061 
1062 void ConversionPatternRewriterImpl::applyRewrites() {
1063   // Apply all of the rewrites replacements requested during conversion.
1064   for (auto &repl : replacements) {
1065     for (OpResult result : repl.first->getResults())
1066       if (Value newValue = mapping.lookupOrNull(result, result.getType()))
1067         result.replaceAllUsesWith(newValue);
1068 
1069     // If this operation defines any regions, drop any pending argument
1070     // rewrites.
1071     if (repl.first->getNumRegions())
1072       argConverter.notifyOpRemoved(repl.first);
1073   }
1074 
1075   // Apply all of the requested argument replacements.
1076   for (BlockArgument arg : argReplacements) {
1077     Value repl = mapping.lookupOrNull(arg, arg.getType());
1078     if (!repl)
1079       continue;
1080 
1081     if (repl.isa<BlockArgument>()) {
1082       arg.replaceAllUsesWith(repl);
1083       continue;
1084     }
1085 
1086     // If the replacement value is an operation, we check to make sure that we
1087     // don't replace uses that are within the parent operation of the
1088     // replacement value.
1089     Operation *replOp = repl.cast<OpResult>().getOwner();
1090     Block *replBlock = replOp->getBlock();
1091     arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
1092       Operation *user = operand.getOwner();
1093       return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
1094     });
1095   }
1096 
1097   // Drop all of the unresolved materialization operations created during
1098   // conversion.
1099   for (auto &mat : unresolvedMaterializations) {
1100     mat.getOp()->dropAllUses();
1101     mat.getOp()->erase();
1102   }
1103 
1104   // In a second pass, erase all of the replaced operations in reverse. This
1105   // allows processing nested operations before their parent region is
1106   // destroyed. Because we process in reverse order, producers may be deleted
1107   // before their users (a pattern deleting a producer and then the consumer)
1108   // so we first drop all uses explicitly.
1109   for (auto &repl : llvm::reverse(replacements)) {
1110     repl.first->dropAllUses();
1111     repl.first->erase();
1112   }
1113 
1114   argConverter.applyRewrites(mapping);
1115 
1116   // Now that the ops have been erased, also erase dangling blocks.
1117   eraseDanglingBlocks();
1118 }
1119 
1120 //===----------------------------------------------------------------------===//
1121 // State Management
1122 
1123 RewriterState ConversionPatternRewriterImpl::getCurrentState() {
1124   return RewriterState(createdOps.size(), unresolvedMaterializations.size(),
1125                        replacements.size(), argReplacements.size(),
1126                        blockActions.size(), ignoredOps.size(),
1127                        rootUpdates.size());
1128 }
1129 
1130 void ConversionPatternRewriterImpl::resetState(RewriterState state) {
1131   // Reset any operations that were updated in place.
1132   for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
1133     rootUpdates[i].resetOperation();
1134   rootUpdates.resize(state.numRootUpdates);
1135 
1136   // Reset any replaced arguments.
1137   for (BlockArgument replacedArg :
1138        llvm::drop_begin(argReplacements, state.numArgReplacements))
1139     mapping.erase(replacedArg);
1140   argReplacements.resize(state.numArgReplacements);
1141 
1142   // Undo any block actions.
1143   undoBlockActions(state.numBlockActions);
1144 
1145   // Reset any replaced operations and undo any saved mappings.
1146   for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
1147     for (auto result : repl.first->getResults())
1148       mapping.erase(result);
1149   while (replacements.size() != state.numReplacements)
1150     replacements.pop_back();
1151 
1152   // Pop all of the newly inserted materializations.
1153   while (unresolvedMaterializations.size() !=
1154          state.numUnresolvedMaterializations) {
1155     UnresolvedMaterialization mat = unresolvedMaterializations.pop_back_val();
1156     UnrealizedConversionCastOp op = mat.getOp();
1157 
1158     // If this was a target materialization, drop the mapping that was inserted.
1159     if (mat.getKind() == UnresolvedMaterialization::Target) {
1160       for (Value input : op->getOperands())
1161         mapping.erase(input);
1162     }
1163     detachNestedAndErase(op);
1164   }
1165 
1166   // Pop all of the newly created operations.
1167   while (createdOps.size() != state.numCreatedOps) {
1168     detachNestedAndErase(createdOps.back());
1169     createdOps.pop_back();
1170   }
1171 
1172   // Pop all of the recorded ignored operations that are no longer valid.
1173   while (ignoredOps.size() != state.numIgnoredOperations)
1174     ignoredOps.pop_back();
1175 
1176   // Reset operations with changed results.
1177   while (!operationsWithChangedResults.empty() &&
1178          operationsWithChangedResults.back() >= state.numReplacements)
1179     operationsWithChangedResults.pop_back();
1180 }
1181 
1182 void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
1183   for (auto &action : blockActions)
1184     if (action.kind == BlockActionKind::Erase)
1185       delete action.block;
1186 }
1187 
1188 void ConversionPatternRewriterImpl::undoBlockActions(
1189     unsigned numActionsToKeep) {
1190   for (auto &action :
1191        llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
1192     switch (action.kind) {
1193     // Delete the created block.
1194     case BlockActionKind::Create: {
1195       // Unlink all of the operations within this block, they will be deleted
1196       // separately.
1197       auto &blockOps = action.block->getOperations();
1198       while (!blockOps.empty())
1199         blockOps.remove(blockOps.begin());
1200       action.block->dropAllDefinedValueUses();
1201       action.block->erase();
1202       break;
1203     }
1204     // Put the block (owned by action) back into its original position.
1205     case BlockActionKind::Erase: {
1206       auto &blockList = action.originalPosition.region->getBlocks();
1207       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1208       blockList.insert((insertAfterBlock
1209                             ? std::next(Region::iterator(insertAfterBlock))
1210                             : blockList.begin()),
1211                        action.block);
1212       break;
1213     }
1214     // Split the block at the position which was originally the end of the
1215     // destination block (owned by action), and put the instructions back into
1216     // the block used before the merge.
1217     case BlockActionKind::Merge: {
1218       Block *sourceBlock = action.mergeInfo.sourceBlock;
1219       Block::iterator splitPoint =
1220           (action.mergeInfo.destBlockLastInst
1221                ? ++Block::iterator(action.mergeInfo.destBlockLastInst)
1222                : action.block->begin());
1223       sourceBlock->getOperations().splice(sourceBlock->begin(),
1224                                           action.block->getOperations(),
1225                                           splitPoint, action.block->end());
1226       break;
1227     }
1228     // Move the block back to its original position.
1229     case BlockActionKind::Move: {
1230       Region *originalRegion = action.originalPosition.region;
1231       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1232       originalRegion->getBlocks().splice(
1233           (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
1234                             : originalRegion->end()),
1235           action.block->getParent()->getBlocks(), action.block);
1236       break;
1237     }
1238     // Merge back the block that was split out.
1239     case BlockActionKind::Split: {
1240       action.originalBlock->getOperations().splice(
1241           action.originalBlock->end(), action.block->getOperations());
1242       action.block->dropAllDefinedValueUses();
1243       action.block->erase();
1244       break;
1245     }
1246     // Undo the type conversion.
1247     case BlockActionKind::TypeConversion: {
1248       argConverter.discardRewrites(action.block);
1249       break;
1250     }
1251     }
1252   }
1253   blockActions.resize(numActionsToKeep);
1254 }
1255 
1256 LogicalResult ConversionPatternRewriterImpl::remapValues(
1257     StringRef valueDiagTag, Optional<Location> inputLoc,
1258     PatternRewriter &rewriter, ValueRange values,
1259     SmallVectorImpl<Value> &remapped) {
1260   remapped.reserve(llvm::size(values));
1261 
1262   SmallVector<Type, 1> legalTypes;
1263   for (const auto &it : llvm::enumerate(values)) {
1264     Value operand = it.value();
1265     Type origType = operand.getType();
1266 
1267     // If a converter was provided, get the desired legal types for this
1268     // operand.
1269     Type desiredType;
1270     if (currentTypeConverter) {
1271       // If there is no legal conversion, fail to match this pattern.
1272       legalTypes.clear();
1273       if (failed(currentTypeConverter->convertType(origType, legalTypes))) {
1274         Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
1275         return notifyMatchFailure(operandLoc, [=](Diagnostic &diag) {
1276           diag << "unable to convert type for " << valueDiagTag << " #"
1277                << it.index() << ", type was " << origType;
1278         });
1279       }
1280       // TODO: There currently isn't any mechanism to do 1->N type conversion
1281       // via the PatternRewriter replacement API, so for now we just ignore it.
1282       if (legalTypes.size() == 1)
1283         desiredType = legalTypes.front();
1284     } else {
1285       // TODO: What we should do here is just set `desiredType` to `origType`
1286       // and then handle the necessary type conversions after the conversion
1287       // process has finished. Unfortunately a lot of patterns currently rely on
1288       // receiving the new operands even if the types change, so we keep the
1289       // original behavior here for now until all of the patterns relying on
1290       // this get updated.
1291     }
1292     Value newOperand = mapping.lookupOrDefault(operand, desiredType);
1293 
1294     // Handle the case where the conversion was 1->1 and the new operand type
1295     // isn't legal.
1296     Type newOperandType = newOperand.getType();
1297     if (currentTypeConverter && desiredType && newOperandType != desiredType) {
1298       Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
1299       Value castValue = buildUnresolvedTargetMaterialization(
1300           operandLoc, newOperand, desiredType, currentTypeConverter,
1301           unresolvedMaterializations);
1302       mapping.map(mapping.lookupOrDefault(newOperand), castValue);
1303       newOperand = castValue;
1304     }
1305     remapped.push_back(newOperand);
1306   }
1307   return success();
1308 }
1309 
1310 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
1311   // Check to see if this operation was replaced or its parent ignored.
1312   return replacements.count(op) || ignoredOps.count(op->getParentOp());
1313 }
1314 
1315 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
1316   // Walk this operation and collect nested operations that define non-empty
1317   // regions. We mark such operations as 'ignored' so that we know we don't have
1318   // to convert them, or their nested ops.
1319   if (op->getNumRegions() == 0)
1320     return;
1321   op->walk([&](Operation *op) {
1322     if (llvm::any_of(op->getRegions(),
1323                      [](Region &region) { return !region.empty(); }))
1324       ignoredOps.insert(op);
1325   });
1326 }
1327 
1328 //===----------------------------------------------------------------------===//
1329 // Type Conversion
1330 
1331 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
1332     Block *block, TypeConverter *converter,
1333     TypeConverter::SignatureConversion *conversion) {
1334   FailureOr<Block *> result =
1335       conversion ? argConverter.applySignatureConversion(
1336                        block, converter, *conversion, mapping, argReplacements)
1337                  : argConverter.convertSignature(block, converter, mapping,
1338                                                  argReplacements);
1339   if (failed(result))
1340     return failure();
1341   if (Block *newBlock = result.getValue()) {
1342     if (newBlock != block)
1343       blockActions.push_back(BlockAction::getTypeConversion(newBlock));
1344   }
1345   return result;
1346 }
1347 
1348 Block *ConversionPatternRewriterImpl::applySignatureConversion(
1349     Region *region, TypeConverter::SignatureConversion &conversion,
1350     TypeConverter *converter) {
1351   if (!region->empty())
1352     return *convertBlockSignature(&region->front(), converter, &conversion);
1353   return nullptr;
1354 }
1355 
1356 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
1357     Region *region, TypeConverter &converter,
1358     TypeConverter::SignatureConversion *entryConversion) {
1359   argConverter.setConverter(region, &converter);
1360   if (region->empty())
1361     return nullptr;
1362 
1363   if (failed(convertNonEntryRegionTypes(region, converter)))
1364     return failure();
1365 
1366   FailureOr<Block *> newEntry =
1367       convertBlockSignature(&region->front(), &converter, entryConversion);
1368   return newEntry;
1369 }
1370 
1371 LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes(
1372     Region *region, TypeConverter &converter,
1373     ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1374   argConverter.setConverter(region, &converter);
1375   if (region->empty())
1376     return success();
1377 
1378   // Convert the arguments of each block within the region.
1379   int blockIdx = 0;
1380   assert((blockConversions.empty() ||
1381           blockConversions.size() == region->getBlocks().size() - 1) &&
1382          "expected either to provide no SignatureConversions at all or to "
1383          "provide a SignatureConversion for each non-entry block");
1384 
1385   for (Block &block :
1386        llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
1387     TypeConverter::SignatureConversion *blockConversion =
1388         blockConversions.empty()
1389             ? nullptr
1390             : const_cast<TypeConverter::SignatureConversion *>(
1391                   &blockConversions[blockIdx++]);
1392 
1393     if (failed(convertBlockSignature(&block, &converter, blockConversion)))
1394       return failure();
1395   }
1396   return success();
1397 }
1398 
1399 //===----------------------------------------------------------------------===//
1400 // Rewriter Notification Hooks
1401 
1402 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
1403                                                      ValueRange newValues) {
1404   assert(newValues.size() == op->getNumResults());
1405   assert(!replacements.count(op) && "operation was already replaced");
1406 
1407   // Track if any of the results changed, e.g. erased and replaced with null.
1408   bool resultChanged = false;
1409 
1410   // Create mappings for each of the new result values.
1411   Value newValue, result;
1412   for (auto it : llvm::zip(newValues, op->getResults())) {
1413     std::tie(newValue, result) = it;
1414     if (!newValue) {
1415       resultChanged = true;
1416       continue;
1417     }
1418     // Remap, and check for any result type changes.
1419     mapping.map(result, newValue);
1420     resultChanged |= (newValue.getType() != result.getType());
1421   }
1422   if (resultChanged)
1423     operationsWithChangedResults.push_back(replacements.size());
1424 
1425   // Record the requested operation replacement.
1426   replacements.insert(std::make_pair(op, OpReplacement(currentTypeConverter)));
1427 
1428   // Mark this operation as recursively ignored so that we don't need to
1429   // convert any nested operations.
1430   markNestedOpsIgnored(op);
1431 }
1432 
1433 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
1434   Region *region = block->getParent();
1435   Block *origPrevBlock = block->getPrevNode();
1436   blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
1437 }
1438 
1439 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
1440   blockActions.push_back(BlockAction::getCreate(block));
1441 }
1442 
1443 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
1444                                                      Block *continuation) {
1445   blockActions.push_back(BlockAction::getSplit(continuation, block));
1446 }
1447 
1448 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block,
1449                                                             Block *srcBlock) {
1450   blockActions.push_back(BlockAction::getMerge(block, srcBlock));
1451 }
1452 
1453 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
1454     Region &region, Region &parent, Region::iterator before) {
1455   if (region.empty())
1456     return;
1457   Block *laterBlock = &region.back();
1458   for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) {
1459     blockActions.push_back(
1460         BlockAction::getMove(laterBlock, {&region, &earlierBlock}));
1461     laterBlock = &earlierBlock;
1462   }
1463   blockActions.push_back(BlockAction::getMove(laterBlock, {&region, nullptr}));
1464 }
1465 
1466 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
1467     iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
1468   for (Block &block : blocks)
1469     blockActions.push_back(BlockAction::getCreate(&block));
1470 
1471   // Compute the conversion set for the inlined region.
1472   auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
1473 
1474   // This original region has already had its conversion set computed, so there
1475   // shouldn't be any new failures.
1476   (void)result;
1477   assert(succeeded(result) && "expected region to have no unreachable blocks");
1478 }
1479 
1480 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
1481     Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
1482   LLVM_DEBUG({
1483     Diagnostic diag(loc, DiagnosticSeverity::Remark);
1484     reasonCallback(diag);
1485     logger.startLine() << "** Failure : " << diag.str() << "\n";
1486     if (notifyCallback)
1487       notifyCallback(diag);
1488   });
1489   return failure();
1490 }
1491 
1492 //===----------------------------------------------------------------------===//
1493 // ConversionPatternRewriter
1494 //===----------------------------------------------------------------------===//
1495 
1496 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
1497     : PatternRewriter(ctx),
1498       impl(new detail::ConversionPatternRewriterImpl(*this)) {}
1499 ConversionPatternRewriter::~ConversionPatternRewriter() = default;
1500 
1501 void ConversionPatternRewriter::replaceOpWithIf(
1502     Operation *op, ValueRange newValues, bool *allUsesReplaced,
1503     llvm::unique_function<bool(OpOperand &) const> functor) {
1504   // TODO: To support this we will need to rework a bit of how replacements are
1505   // tracked, given that this isn't guranteed to replace all of the uses of an
1506   // operation. The main change is that now an operation can be replaced
1507   // multiple times, in parts. The current "set" based tracking is mainly useful
1508   // for tracking if a replaced operation should be ignored, i.e. if all of the
1509   // uses will be replaced.
1510   llvm_unreachable(
1511       "replaceOpWithIf is currently not supported by DialectConversion");
1512 }
1513 
1514 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
1515   LLVM_DEBUG({
1516     impl->logger.startLine()
1517         << "** Replace : '" << op->getName() << "'(" << op << ")\n";
1518   });
1519   impl->notifyOpReplaced(op, newValues);
1520 }
1521 
1522 void ConversionPatternRewriter::eraseOp(Operation *op) {
1523   LLVM_DEBUG({
1524     impl->logger.startLine()
1525         << "** Erase   : '" << op->getName() << "'(" << op << ")\n";
1526   });
1527   SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
1528   impl->notifyOpReplaced(op, nullRepls);
1529 }
1530 
1531 void ConversionPatternRewriter::eraseBlock(Block *block) {
1532   impl->notifyBlockIsBeingErased(block);
1533 
1534   // Mark all ops for erasure.
1535   for (Operation &op : *block)
1536     eraseOp(&op);
1537 
1538   // Unlink the block from its parent region. The block is kept in the block
1539   // action and will be actually destroyed when rewrites are applied. This
1540   // allows us to keep the operations in the block live and undo the removal by
1541   // re-inserting the block.
1542   block->getParent()->getBlocks().remove(block);
1543 }
1544 
1545 Block *ConversionPatternRewriter::applySignatureConversion(
1546     Region *region, TypeConverter::SignatureConversion &conversion,
1547     TypeConverter *converter) {
1548   return impl->applySignatureConversion(region, conversion, converter);
1549 }
1550 
1551 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
1552     Region *region, TypeConverter &converter,
1553     TypeConverter::SignatureConversion *entryConversion) {
1554   return impl->convertRegionTypes(region, converter, entryConversion);
1555 }
1556 
1557 LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes(
1558     Region *region, TypeConverter &converter,
1559     ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1560   return impl->convertNonEntryRegionTypes(region, converter, blockConversions);
1561 }
1562 
1563 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
1564                                                            Value to) {
1565   LLVM_DEBUG({
1566     Operation *parentOp = from.getOwner()->getParentOp();
1567     impl->logger.startLine() << "** Replace Argument : '" << from
1568                              << "'(in region of '" << parentOp->getName()
1569                              << "'(" << from.getOwner()->getParentOp() << ")\n";
1570   });
1571   impl->argReplacements.push_back(from);
1572   impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
1573 }
1574 
1575 Value ConversionPatternRewriter::getRemappedValue(Value key) {
1576   SmallVector<Value> remappedValues;
1577   if (failed(impl->remapValues("value", /*inputLoc=*/llvm::None, *this, key,
1578                                remappedValues)))
1579     return nullptr;
1580   return remappedValues.front();
1581 }
1582 
1583 LogicalResult
1584 ConversionPatternRewriter::getRemappedValues(ValueRange keys,
1585                                              SmallVectorImpl<Value> &results) {
1586   if (keys.empty())
1587     return success();
1588   return impl->remapValues("value", /*inputLoc=*/llvm::None, *this, keys,
1589                            results);
1590 }
1591 
1592 void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
1593   impl->notifyCreatedBlock(block);
1594 }
1595 
1596 Block *ConversionPatternRewriter::splitBlock(Block *block,
1597                                              Block::iterator before) {
1598   auto *continuation = PatternRewriter::splitBlock(block, before);
1599   impl->notifySplitBlock(block, continuation);
1600   return continuation;
1601 }
1602 
1603 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
1604                                             ValueRange argValues) {
1605   impl->notifyBlocksBeingMerged(dest, source);
1606   assert(llvm::all_of(source->getPredecessors(),
1607                       [dest](Block *succ) { return succ == dest; }) &&
1608          "expected 'source' to have no predecessors or only 'dest'");
1609   assert(argValues.size() == source->getNumArguments() &&
1610          "incorrect # of argument replacement values");
1611   for (auto it : llvm::zip(source->getArguments(), argValues))
1612     replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
1613   dest->getOperations().splice(dest->end(), source->getOperations());
1614   eraseBlock(source);
1615 }
1616 
1617 void ConversionPatternRewriter::inlineRegionBefore(Region &region,
1618                                                    Region &parent,
1619                                                    Region::iterator before) {
1620   impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
1621   PatternRewriter::inlineRegionBefore(region, parent, before);
1622 }
1623 
1624 void ConversionPatternRewriter::cloneRegionBefore(
1625     Region &region, Region &parent, Region::iterator before,
1626     BlockAndValueMapping &mapping) {
1627   if (region.empty())
1628     return;
1629   PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
1630 
1631   // Collect the range of the cloned blocks.
1632   auto clonedBeginIt = mapping.lookup(&region.front())->getIterator();
1633   auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
1634   impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
1635 }
1636 
1637 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
1638   LLVM_DEBUG({
1639     impl->logger.startLine()
1640         << "** Insert  : '" << op->getName() << "'(" << op << ")\n";
1641   });
1642   impl->createdOps.push_back(op);
1643 }
1644 
1645 void ConversionPatternRewriter::startRootUpdate(Operation *op) {
1646 #ifndef NDEBUG
1647   impl->pendingRootUpdates.insert(op);
1648 #endif
1649   impl->rootUpdates.emplace_back(op);
1650 }
1651 
1652 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
1653   // There is nothing to do here, we only need to track the operation at the
1654   // start of the update.
1655 #ifndef NDEBUG
1656   assert(impl->pendingRootUpdates.erase(op) &&
1657          "operation did not have a pending in-place update");
1658 #endif
1659 }
1660 
1661 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
1662 #ifndef NDEBUG
1663   assert(impl->pendingRootUpdates.erase(op) &&
1664          "operation did not have a pending in-place update");
1665 #endif
1666   // Erase the last update for this operation.
1667   auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
1668   auto &rootUpdates = impl->rootUpdates;
1669   auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
1670   assert(it != rootUpdates.rend() && "no root update started on op");
1671   (*it).resetOperation();
1672   int updateIdx = std::prev(rootUpdates.rend()) - it;
1673   rootUpdates.erase(rootUpdates.begin() + updateIdx);
1674 }
1675 
1676 LogicalResult ConversionPatternRewriter::notifyMatchFailure(
1677     Operation *op, function_ref<void(Diagnostic &)> reasonCallback) {
1678   return impl->notifyMatchFailure(op->getLoc(), reasonCallback);
1679 }
1680 
1681 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
1682   return *impl;
1683 }
1684 
1685 //===----------------------------------------------------------------------===//
1686 // ConversionPattern
1687 //===----------------------------------------------------------------------===//
1688 
1689 LogicalResult
1690 ConversionPattern::matchAndRewrite(Operation *op,
1691                                    PatternRewriter &rewriter) const {
1692   auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
1693   auto &rewriterImpl = dialectRewriter.getImpl();
1694 
1695   // Track the current conversion pattern type converter in the rewriter.
1696   llvm::SaveAndRestore<TypeConverter *> currentConverterGuard(
1697       rewriterImpl.currentTypeConverter, getTypeConverter());
1698 
1699   // Remap the operands of the operation.
1700   SmallVector<Value, 4> operands;
1701   if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter,
1702                                       op->getOperands(), operands))) {
1703     return failure();
1704   }
1705   return matchAndRewrite(op, operands, dialectRewriter);
1706 }
1707 
1708 //===----------------------------------------------------------------------===//
1709 // OperationLegalizer
1710 //===----------------------------------------------------------------------===//
1711 
1712 namespace {
1713 /// A set of rewrite patterns that can be used to legalize a given operation.
1714 using LegalizationPatterns = SmallVector<const Pattern *, 1>;
1715 
1716 /// This class defines a recursive operation legalizer.
1717 class OperationLegalizer {
1718 public:
1719   using LegalizationAction = ConversionTarget::LegalizationAction;
1720 
1721   OperationLegalizer(ConversionTarget &targetInfo,
1722                      const FrozenRewritePatternSet &patterns);
1723 
1724   /// Returns true if the given operation is known to be illegal on the target.
1725   bool isIllegal(Operation *op) const;
1726 
1727   /// Attempt to legalize the given operation. Returns success if the operation
1728   /// was legalized, failure otherwise.
1729   LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
1730 
1731   /// Returns the conversion target in use by the legalizer.
1732   ConversionTarget &getTarget() { return target; }
1733 
1734 private:
1735   /// Attempt to legalize the given operation by folding it.
1736   LogicalResult legalizeWithFold(Operation *op,
1737                                  ConversionPatternRewriter &rewriter);
1738 
1739   /// Attempt to legalize the given operation by applying a pattern. Returns
1740   /// success if the operation was legalized, failure otherwise.
1741   LogicalResult legalizeWithPattern(Operation *op,
1742                                     ConversionPatternRewriter &rewriter);
1743 
1744   /// Return true if the given pattern may be applied to the given operation,
1745   /// false otherwise.
1746   bool canApplyPattern(Operation *op, const Pattern &pattern,
1747                        ConversionPatternRewriter &rewriter);
1748 
1749   /// Legalize the resultant IR after successfully applying the given pattern.
1750   LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
1751                                       ConversionPatternRewriter &rewriter,
1752                                       RewriterState &curState);
1753 
1754   /// Legalizes the actions registered during the execution of a pattern.
1755   LogicalResult legalizePatternBlockActions(Operation *op,
1756                                             ConversionPatternRewriter &rewriter,
1757                                             ConversionPatternRewriterImpl &impl,
1758                                             RewriterState &state,
1759                                             RewriterState &newState);
1760   LogicalResult legalizePatternCreatedOperations(
1761       ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1762       RewriterState &state, RewriterState &newState);
1763   LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
1764                                            ConversionPatternRewriterImpl &impl,
1765                                            RewriterState &state,
1766                                            RewriterState &newState);
1767 
1768   //===--------------------------------------------------------------------===//
1769   // Cost Model
1770   //===--------------------------------------------------------------------===//
1771 
1772   /// Build an optimistic legalization graph given the provided patterns. This
1773   /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
1774   /// patterns for operations that are not directly legal, but may be
1775   /// transitively legal for the current target given the provided patterns.
1776   void buildLegalizationGraph(
1777       LegalizationPatterns &anyOpLegalizerPatterns,
1778       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1779 
1780   /// Compute the benefit of each node within the computed legalization graph.
1781   /// This orders the patterns within 'legalizerPatterns' based upon two
1782   /// criteria:
1783   ///  1) Prefer patterns that have the lowest legalization depth, i.e.
1784   ///     represent the more direct mapping to the target.
1785   ///  2) When comparing patterns with the same legalization depth, prefer the
1786   ///     pattern with the highest PatternBenefit. This allows for users to
1787   ///     prefer specific legalizations over others.
1788   void computeLegalizationGraphBenefit(
1789       LegalizationPatterns &anyOpLegalizerPatterns,
1790       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1791 
1792   /// Compute the legalization depth when legalizing an operation of the given
1793   /// type.
1794   unsigned computeOpLegalizationDepth(
1795       OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
1796       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1797 
1798   /// Apply the conversion cost model to the given set of patterns, and return
1799   /// the smallest legalization depth of any of the patterns. See
1800   /// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
1801   unsigned applyCostModelToPatterns(
1802       LegalizationPatterns &patterns,
1803       DenseMap<OperationName, unsigned> &minOpPatternDepth,
1804       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1805 
1806   /// The current set of patterns that have been applied.
1807   SmallPtrSet<const Pattern *, 8> appliedPatterns;
1808 
1809   /// The legalization information provided by the target.
1810   ConversionTarget &target;
1811 
1812   /// The pattern applicator to use for conversions.
1813   PatternApplicator applicator;
1814 };
1815 } // namespace
1816 
1817 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo,
1818                                        const FrozenRewritePatternSet &patterns)
1819     : target(targetInfo), applicator(patterns) {
1820   // The set of patterns that can be applied to illegal operations to transform
1821   // them into legal ones.
1822   DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
1823   LegalizationPatterns anyOpLegalizerPatterns;
1824 
1825   buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
1826   computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
1827 }
1828 
1829 bool OperationLegalizer::isIllegal(Operation *op) const {
1830   return target.isIllegal(op);
1831 }
1832 
1833 LogicalResult
1834 OperationLegalizer::legalize(Operation *op,
1835                              ConversionPatternRewriter &rewriter) {
1836 #ifndef NDEBUG
1837   const char *logLineComment =
1838       "//===-------------------------------------------===//\n";
1839 
1840   auto &logger = rewriter.getImpl().logger;
1841 #endif
1842   LLVM_DEBUG({
1843     logger.getOStream() << "\n";
1844     logger.startLine() << logLineComment;
1845     logger.startLine() << "Legalizing operation : '" << op->getName() << "'("
1846                        << op << ") {\n";
1847     logger.indent();
1848 
1849     // If the operation has no regions, just print it here.
1850     if (op->getNumRegions() == 0) {
1851       op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm());
1852       logger.getOStream() << "\n\n";
1853     }
1854   });
1855 
1856   // Check if this operation is legal on the target.
1857   if (auto legalityInfo = target.isLegal(op)) {
1858     LLVM_DEBUG({
1859       logSuccess(
1860           logger, "operation marked legal by the target{0}",
1861           legalityInfo->isRecursivelyLegal
1862               ? "; NOTE: operation is recursively legal; skipping internals"
1863               : "");
1864       logger.startLine() << logLineComment;
1865     });
1866 
1867     // If this operation is recursively legal, mark its children as ignored so
1868     // that we don't consider them for legalization.
1869     if (legalityInfo->isRecursivelyLegal)
1870       rewriter.getImpl().markNestedOpsIgnored(op);
1871     return success();
1872   }
1873 
1874   // Check to see if the operation is ignored and doesn't need to be converted.
1875   if (rewriter.getImpl().isOpIgnored(op)) {
1876     LLVM_DEBUG({
1877       logSuccess(logger, "operation marked 'ignored' during conversion");
1878       logger.startLine() << logLineComment;
1879     });
1880     return success();
1881   }
1882 
1883   // If the operation isn't legal, try to fold it in-place.
1884   // TODO: Should we always try to do this, even if the op is
1885   // already legal?
1886   if (succeeded(legalizeWithFold(op, rewriter))) {
1887     LLVM_DEBUG({
1888       logSuccess(logger, "operation was folded");
1889       logger.startLine() << logLineComment;
1890     });
1891     return success();
1892   }
1893 
1894   // Otherwise, we need to apply a legalization pattern to this operation.
1895   if (succeeded(legalizeWithPattern(op, rewriter))) {
1896     LLVM_DEBUG({
1897       logSuccess(logger, "");
1898       logger.startLine() << logLineComment;
1899     });
1900     return success();
1901   }
1902 
1903   LLVM_DEBUG({
1904     logFailure(logger, "no matched legalization pattern");
1905     logger.startLine() << logLineComment;
1906   });
1907   return failure();
1908 }
1909 
1910 LogicalResult
1911 OperationLegalizer::legalizeWithFold(Operation *op,
1912                                      ConversionPatternRewriter &rewriter) {
1913   auto &rewriterImpl = rewriter.getImpl();
1914   RewriterState curState = rewriterImpl.getCurrentState();
1915 
1916   LLVM_DEBUG({
1917     rewriterImpl.logger.startLine() << "* Fold {\n";
1918     rewriterImpl.logger.indent();
1919   });
1920 
1921   // Try to fold the operation.
1922   SmallVector<Value, 2> replacementValues;
1923   rewriter.setInsertionPoint(op);
1924   if (failed(rewriter.tryFold(op, replacementValues))) {
1925     LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
1926     return failure();
1927   }
1928 
1929   // Insert a replacement for 'op' with the folded replacement values.
1930   rewriter.replaceOp(op, replacementValues);
1931 
1932   // Recursively legalize any new constant operations.
1933   for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
1934        i != e; ++i) {
1935     Operation *cstOp = rewriterImpl.createdOps[i];
1936     if (failed(legalize(cstOp, rewriter))) {
1937       LLVM_DEBUG(logFailure(rewriterImpl.logger,
1938                             "failed to legalize generated constant '{0}'",
1939                             cstOp->getName()));
1940       rewriterImpl.resetState(curState);
1941       return failure();
1942     }
1943   }
1944 
1945   LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
1946   return success();
1947 }
1948 
1949 LogicalResult
1950 OperationLegalizer::legalizeWithPattern(Operation *op,
1951                                         ConversionPatternRewriter &rewriter) {
1952   auto &rewriterImpl = rewriter.getImpl();
1953 
1954   // Functor that returns if the given pattern may be applied.
1955   auto canApply = [&](const Pattern &pattern) {
1956     return canApplyPattern(op, pattern, rewriter);
1957   };
1958 
1959   // Functor that cleans up the rewriter state after a pattern failed to match.
1960   RewriterState curState = rewriterImpl.getCurrentState();
1961   auto onFailure = [&](const Pattern &pattern) {
1962     LLVM_DEBUG({
1963       logFailure(rewriterImpl.logger, "pattern failed to match");
1964       if (rewriterImpl.notifyCallback) {
1965         Diagnostic diag(op->getLoc(), DiagnosticSeverity::Remark);
1966         diag << "Failed to apply pattern \"" << pattern.getDebugName()
1967              << "\" on op:\n"
1968              << *op;
1969         rewriterImpl.notifyCallback(diag);
1970       }
1971     });
1972     rewriterImpl.resetState(curState);
1973     appliedPatterns.erase(&pattern);
1974   };
1975 
1976   // Functor that performs additional legalization when a pattern is
1977   // successfully applied.
1978   auto onSuccess = [&](const Pattern &pattern) {
1979     auto result = legalizePatternResult(op, pattern, rewriter, curState);
1980     appliedPatterns.erase(&pattern);
1981     if (failed(result))
1982       rewriterImpl.resetState(curState);
1983     return result;
1984   };
1985 
1986   // Try to match and rewrite a pattern on this operation.
1987   return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
1988                                     onSuccess);
1989 }
1990 
1991 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
1992                                          ConversionPatternRewriter &rewriter) {
1993   LLVM_DEBUG({
1994     auto &os = rewriter.getImpl().logger;
1995     os.getOStream() << "\n";
1996     os.startLine() << "* Pattern : '" << op->getName() << " -> (";
1997     llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream());
1998     os.getOStream() << ")' {\n";
1999     os.indent();
2000   });
2001 
2002   // Ensure that we don't cycle by not allowing the same pattern to be
2003   // applied twice in the same recursion stack if it is not known to be safe.
2004   if (!pattern.hasBoundedRewriteRecursion() &&
2005       !appliedPatterns.insert(&pattern).second) {
2006     LLVM_DEBUG(
2007         logFailure(rewriter.getImpl().logger, "pattern was already applied"));
2008     return false;
2009   }
2010   return true;
2011 }
2012 
2013 LogicalResult
2014 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
2015                                           ConversionPatternRewriter &rewriter,
2016                                           RewriterState &curState) {
2017   auto &impl = rewriter.getImpl();
2018 
2019 #ifndef NDEBUG
2020   assert(impl.pendingRootUpdates.empty() && "dangling root updates");
2021 #endif
2022 
2023   // Check that the root was either replaced or updated in place.
2024   auto replacedRoot = [&] {
2025     return llvm::any_of(
2026         llvm::drop_begin(impl.replacements, curState.numReplacements),
2027         [op](auto &it) { return it.first == op; });
2028   };
2029   auto updatedRootInPlace = [&] {
2030     return llvm::any_of(
2031         llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
2032         [op](auto &state) { return state.getOperation() == op; });
2033   };
2034   (void)replacedRoot;
2035   (void)updatedRootInPlace;
2036   assert((replacedRoot() || updatedRootInPlace()) &&
2037          "expected pattern to replace the root operation");
2038 
2039   // Legalize each of the actions registered during application.
2040   RewriterState newState = impl.getCurrentState();
2041   if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
2042                                          newState)) ||
2043       failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
2044       failed(legalizePatternCreatedOperations(rewriter, impl, curState,
2045                                               newState))) {
2046     return failure();
2047   }
2048 
2049   LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
2050   return success();
2051 }
2052 
2053 LogicalResult OperationLegalizer::legalizePatternBlockActions(
2054     Operation *op, ConversionPatternRewriter &rewriter,
2055     ConversionPatternRewriterImpl &impl, RewriterState &state,
2056     RewriterState &newState) {
2057   SmallPtrSet<Operation *, 16> operationsToIgnore;
2058 
2059   // If the pattern moved or created any blocks, make sure the types of block
2060   // arguments get legalized.
2061   for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
2062        ++i) {
2063     auto &action = impl.blockActions[i];
2064     if (action.kind == BlockActionKind::TypeConversion ||
2065         action.kind == BlockActionKind::Erase)
2066       continue;
2067     // Only check blocks outside of the current operation.
2068     Operation *parentOp = action.block->getParentOp();
2069     if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
2070       continue;
2071 
2072     // If the region of the block has a type converter, try to convert the block
2073     // directly.
2074     if (auto *converter =
2075             impl.argConverter.getConverter(action.block->getParent())) {
2076       if (failed(impl.convertBlockSignature(action.block, converter))) {
2077         LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
2078                                            "block"));
2079         return failure();
2080       }
2081       continue;
2082     }
2083 
2084     // Otherwise, check that this operation isn't one generated by this pattern.
2085     // This is because we will attempt to legalize the parent operation, and
2086     // blocks in regions created by this pattern will already be legalized later
2087     // on. If we haven't built the set yet, build it now.
2088     if (operationsToIgnore.empty()) {
2089       auto createdOps = ArrayRef<Operation *>(impl.createdOps)
2090                             .drop_front(state.numCreatedOps);
2091       operationsToIgnore.insert(createdOps.begin(), createdOps.end());
2092     }
2093 
2094     // If this operation should be considered for re-legalization, try it.
2095     if (operationsToIgnore.insert(parentOp).second &&
2096         failed(legalize(parentOp, rewriter))) {
2097       LLVM_DEBUG(logFailure(
2098           impl.logger, "operation '{0}'({1}) became illegal after block action",
2099           parentOp->getName(), parentOp));
2100       return failure();
2101     }
2102   }
2103   return success();
2104 }
2105 
2106 LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
2107     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
2108     RewriterState &state, RewriterState &newState) {
2109   for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
2110     Operation *op = impl.createdOps[i];
2111     if (failed(legalize(op, rewriter))) {
2112       LLVM_DEBUG(logFailure(impl.logger,
2113                             "failed to legalize generated operation '{0}'({1})",
2114                             op->getName(), op));
2115       return failure();
2116     }
2117   }
2118   return success();
2119 }
2120 
2121 LogicalResult OperationLegalizer::legalizePatternRootUpdates(
2122     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
2123     RewriterState &state, RewriterState &newState) {
2124   for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
2125     Operation *op = impl.rootUpdates[i].getOperation();
2126     if (failed(legalize(op, rewriter))) {
2127       LLVM_DEBUG(logFailure(
2128           impl.logger, "failed to legalize operation updated in-place '{0}'",
2129           op->getName()));
2130       return failure();
2131     }
2132   }
2133   return success();
2134 }
2135 
2136 //===----------------------------------------------------------------------===//
2137 // Cost Model
2138 
2139 void OperationLegalizer::buildLegalizationGraph(
2140     LegalizationPatterns &anyOpLegalizerPatterns,
2141     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2142   // A mapping between an operation and a set of operations that can be used to
2143   // generate it.
2144   DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
2145   // A mapping between an operation and any currently invalid patterns it has.
2146   DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
2147   // A worklist of patterns to consider for legality.
2148   SetVector<const Pattern *> patternWorklist;
2149 
2150   // Build the mapping from operations to the parent ops that may generate them.
2151   applicator.walkAllPatterns([&](const Pattern &pattern) {
2152     Optional<OperationName> root = pattern.getRootKind();
2153 
2154     // If the pattern has no specific root, we can't analyze the relationship
2155     // between the root op and generated operations. Given that, add all such
2156     // patterns to the legalization set.
2157     if (!root) {
2158       anyOpLegalizerPatterns.push_back(&pattern);
2159       return;
2160     }
2161 
2162     // Skip operations that are always known to be legal.
2163     if (target.getOpAction(*root) == LegalizationAction::Legal)
2164       return;
2165 
2166     // Add this pattern to the invalid set for the root op and record this root
2167     // as a parent for any generated operations.
2168     invalidPatterns[*root].insert(&pattern);
2169     for (auto op : pattern.getGeneratedOps())
2170       parentOps[op].insert(*root);
2171 
2172     // Add this pattern to the worklist.
2173     patternWorklist.insert(&pattern);
2174   });
2175 
2176   // If there are any patterns that don't have a specific root kind, we can't
2177   // make direct assumptions about what operations will never be legalized.
2178   // Note: Technically we could, but it would require an analysis that may
2179   // recurse into itself. It would be better to perform this kind of filtering
2180   // at a higher level than here anyways.
2181   if (!anyOpLegalizerPatterns.empty()) {
2182     for (const Pattern *pattern : patternWorklist)
2183       legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2184     return;
2185   }
2186 
2187   while (!patternWorklist.empty()) {
2188     auto *pattern = patternWorklist.pop_back_val();
2189 
2190     // Check to see if any of the generated operations are invalid.
2191     if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
2192           Optional<LegalizationAction> action = target.getOpAction(op);
2193           return !legalizerPatterns.count(op) &&
2194                  (!action || action == LegalizationAction::Illegal);
2195         }))
2196       continue;
2197 
2198     // Otherwise, if all of the generated operation are valid, this op is now
2199     // legal so add all of the child patterns to the worklist.
2200     legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2201     invalidPatterns[*pattern->getRootKind()].erase(pattern);
2202 
2203     // Add any invalid patterns of the parent operations to see if they have now
2204     // become legal.
2205     for (auto op : parentOps[*pattern->getRootKind()])
2206       patternWorklist.set_union(invalidPatterns[op]);
2207   }
2208 }
2209 
2210 void OperationLegalizer::computeLegalizationGraphBenefit(
2211     LegalizationPatterns &anyOpLegalizerPatterns,
2212     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2213   // The smallest pattern depth, when legalizing an operation.
2214   DenseMap<OperationName, unsigned> minOpPatternDepth;
2215 
2216   // For each operation that is transitively legal, compute a cost for it.
2217   for (auto &opIt : legalizerPatterns)
2218     if (!minOpPatternDepth.count(opIt.first))
2219       computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
2220                                  legalizerPatterns);
2221 
2222   // Apply the cost model to the patterns that can match any operation. Those
2223   // with a specific operation type are already resolved when computing the op
2224   // legalization depth.
2225   if (!anyOpLegalizerPatterns.empty())
2226     applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
2227                              legalizerPatterns);
2228 
2229   // Apply a cost model to the pattern applicator. We order patterns first by
2230   // depth then benefit. `legalizerPatterns` contains per-op patterns by
2231   // decreasing benefit.
2232   applicator.applyCostModel([&](const Pattern &pattern) {
2233     ArrayRef<const Pattern *> orderedPatternList;
2234     if (Optional<OperationName> rootName = pattern.getRootKind())
2235       orderedPatternList = legalizerPatterns[*rootName];
2236     else
2237       orderedPatternList = anyOpLegalizerPatterns;
2238 
2239     // If the pattern is not found, then it was removed and cannot be matched.
2240     auto *it = llvm::find(orderedPatternList, &pattern);
2241     if (it == orderedPatternList.end())
2242       return PatternBenefit::impossibleToMatch();
2243 
2244     // Patterns found earlier in the list have higher benefit.
2245     return PatternBenefit(std::distance(it, orderedPatternList.end()));
2246   });
2247 }
2248 
2249 unsigned OperationLegalizer::computeOpLegalizationDepth(
2250     OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
2251     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2252   // Check for existing depth.
2253   auto depthIt = minOpPatternDepth.find(op);
2254   if (depthIt != minOpPatternDepth.end())
2255     return depthIt->second;
2256 
2257   // If a mapping for this operation does not exist, then this operation
2258   // is always legal. Return 0 as the depth for a directly legal operation.
2259   auto opPatternsIt = legalizerPatterns.find(op);
2260   if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
2261     return 0u;
2262 
2263   // Record this initial depth in case we encounter this op again when
2264   // recursively computing the depth.
2265   minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
2266 
2267   // Apply the cost model to the operation patterns, and update the minimum
2268   // depth.
2269   unsigned minDepth = applyCostModelToPatterns(
2270       opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
2271   minOpPatternDepth[op] = minDepth;
2272   return minDepth;
2273 }
2274 
2275 unsigned OperationLegalizer::applyCostModelToPatterns(
2276     LegalizationPatterns &patterns,
2277     DenseMap<OperationName, unsigned> &minOpPatternDepth,
2278     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2279   unsigned minDepth = std::numeric_limits<unsigned>::max();
2280 
2281   // Compute the depth for each pattern within the set.
2282   SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
2283   patternsByDepth.reserve(patterns.size());
2284   for (const Pattern *pattern : patterns) {
2285     unsigned depth = 1;
2286     for (auto generatedOp : pattern->getGeneratedOps()) {
2287       unsigned generatedOpDepth = computeOpLegalizationDepth(
2288           generatedOp, minOpPatternDepth, legalizerPatterns);
2289       depth = std::max(depth, generatedOpDepth + 1);
2290     }
2291     patternsByDepth.emplace_back(pattern, depth);
2292 
2293     // Update the minimum depth of the pattern list.
2294     minDepth = std::min(minDepth, depth);
2295   }
2296 
2297   // If the operation only has one legalization pattern, there is no need to
2298   // sort them.
2299   if (patternsByDepth.size() == 1)
2300     return minDepth;
2301 
2302   // Sort the patterns by those likely to be the most beneficial.
2303   llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(),
2304                        [](const std::pair<const Pattern *, unsigned> *lhs,
2305                           const std::pair<const Pattern *, unsigned> *rhs) {
2306                          // First sort by the smaller pattern legalization
2307                          // depth.
2308                          if (lhs->second != rhs->second)
2309                            return llvm::array_pod_sort_comparator<unsigned>(
2310                                &lhs->second, &rhs->second);
2311 
2312                          // Then sort by the larger pattern benefit.
2313                          auto lhsBenefit = lhs->first->getBenefit();
2314                          auto rhsBenefit = rhs->first->getBenefit();
2315                          return llvm::array_pod_sort_comparator<PatternBenefit>(
2316                              &rhsBenefit, &lhsBenefit);
2317                        });
2318 
2319   // Update the legalization pattern to use the new sorted list.
2320   patterns.clear();
2321   for (auto &patternIt : patternsByDepth)
2322     patterns.push_back(patternIt.first);
2323   return minDepth;
2324 }
2325 
2326 //===----------------------------------------------------------------------===//
2327 // OperationConverter
2328 //===----------------------------------------------------------------------===//
2329 namespace {
2330 enum OpConversionMode {
2331   /// In this mode, the conversion will ignore failed conversions to allow
2332   /// illegal operations to co-exist in the IR.
2333   Partial,
2334 
2335   /// In this mode, all operations must be legal for the given target for the
2336   /// conversion to succeed.
2337   Full,
2338 
2339   /// In this mode, operations are analyzed for legality. No actual rewrites are
2340   /// applied to the operations on success.
2341   Analysis,
2342 };
2343 
2344 // This class converts operations to a given conversion target via a set of
2345 // rewrite patterns. The conversion behaves differently depending on the
2346 // conversion mode.
2347 struct OperationConverter {
2348   explicit OperationConverter(ConversionTarget &target,
2349                               const FrozenRewritePatternSet &patterns,
2350                               OpConversionMode mode,
2351                               DenseSet<Operation *> *trackedOps = nullptr)
2352       : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}
2353 
2354   /// Converts the given operations to the conversion target.
2355   LogicalResult
2356   convertOperations(ArrayRef<Operation *> ops,
2357                     function_ref<void(Diagnostic &)> notifyCallback = nullptr);
2358 
2359 private:
2360   /// Converts an operation with the given rewriter.
2361   LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
2362 
2363   /// This method is called after the conversion process to legalize any
2364   /// remaining artifacts and complete the conversion.
2365   LogicalResult finalize(ConversionPatternRewriter &rewriter);
2366 
2367   /// Legalize the types of converted block arguments.
2368   LogicalResult
2369   legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
2370                                  ConversionPatternRewriterImpl &rewriterImpl);
2371 
2372   /// Legalize any unresolved type materializations.
2373   LogicalResult legalizeUnresolvedMaterializations(
2374       ConversionPatternRewriter &rewriter,
2375       ConversionPatternRewriterImpl &rewriterImpl,
2376       Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping);
2377 
2378   /// Legalize an operation result that was marked as "erased".
2379   LogicalResult
2380   legalizeErasedResult(Operation *op, OpResult result,
2381                        ConversionPatternRewriterImpl &rewriterImpl);
2382 
2383   /// Legalize an operation result that was replaced with a value of a different
2384   /// type.
2385   LogicalResult legalizeChangedResultType(
2386       Operation *op, OpResult result, Value newValue,
2387       TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2388       ConversionPatternRewriterImpl &rewriterImpl,
2389       const DenseMap<Value, SmallVector<Value>> &inverseMapping);
2390 
2391   /// The legalizer to use when converting operations.
2392   OperationLegalizer opLegalizer;
2393 
2394   /// The conversion mode to use when legalizing operations.
2395   OpConversionMode mode;
2396 
2397   /// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
2398   /// this is populated with ops found to be legalizable to the target.
2399   /// When mode == OpConversionMode::Partial, this is populated with ops found
2400   /// *not* to be legalizable to the target.
2401   DenseSet<Operation *> *trackedOps;
2402 };
2403 } // namespace
2404 
2405 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
2406                                           Operation *op) {
2407   // Legalize the given operation.
2408   if (failed(opLegalizer.legalize(op, rewriter))) {
2409     // Handle the case of a failed conversion for each of the different modes.
2410     // Full conversions expect all operations to be converted.
2411     if (mode == OpConversionMode::Full)
2412       return op->emitError()
2413              << "failed to legalize operation '" << op->getName() << "'";
2414     // Partial conversions allow conversions to fail iff the operation was not
2415     // explicitly marked as illegal. If the user provided a nonlegalizableOps
2416     // set, non-legalizable ops are included.
2417     if (mode == OpConversionMode::Partial) {
2418       if (opLegalizer.isIllegal(op))
2419         return op->emitError()
2420                << "failed to legalize operation '" << op->getName()
2421                << "' that was explicitly marked illegal";
2422       if (trackedOps)
2423         trackedOps->insert(op);
2424     }
2425   } else if (mode == OpConversionMode::Analysis) {
2426     // Analysis conversions don't fail if any operations fail to legalize,
2427     // they are only interested in the operations that were successfully
2428     // legalized.
2429     trackedOps->insert(op);
2430   }
2431   return success();
2432 }
2433 
2434 LogicalResult OperationConverter::convertOperations(
2435     ArrayRef<Operation *> ops,
2436     function_ref<void(Diagnostic &)> notifyCallback) {
2437   if (ops.empty())
2438     return success();
2439   ConversionTarget &target = opLegalizer.getTarget();
2440 
2441   // Compute the set of operations and blocks to convert.
2442   SmallVector<Operation *> toConvert;
2443   for (auto *op : ops) {
2444     toConvert.emplace_back(op);
2445     for (auto &region : op->getRegions())
2446       if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
2447                                       toConvert, &target)))
2448         return failure();
2449   }
2450 
2451   // Convert each operation and discard rewrites on failure.
2452   ConversionPatternRewriter rewriter(ops.front()->getContext());
2453   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2454   rewriterImpl.notifyCallback = notifyCallback;
2455 
2456   for (auto *op : toConvert)
2457     if (failed(convert(rewriter, op)))
2458       return rewriterImpl.discardRewrites(), failure();
2459 
2460   // Now that all of the operations have been converted, finalize the conversion
2461   // process to ensure any lingering conversion artifacts are cleaned up and
2462   // legalized.
2463   if (failed(finalize(rewriter)))
2464     return rewriterImpl.discardRewrites(), failure();
2465 
2466   // After a successful conversion, apply rewrites if this is not an analysis
2467   // conversion.
2468   if (mode == OpConversionMode::Analysis) {
2469     rewriterImpl.discardRewrites();
2470   } else {
2471     rewriterImpl.applyRewrites();
2472 
2473     // It is possible for a later pattern to erase an op that was originally
2474     // identified as illegal and added to the trackedOps, remove it now after
2475     // replacements have been computed.
2476     if (trackedOps)
2477       for (auto &repl : rewriterImpl.replacements)
2478         trackedOps->erase(repl.first);
2479   }
2480   return success();
2481 }
2482 
2483 LogicalResult
2484 OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
2485   Optional<DenseMap<Value, SmallVector<Value>>> inverseMapping;
2486   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2487   if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl,
2488                                                 inverseMapping)) ||
2489       failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
2490     return failure();
2491 
2492   if (rewriterImpl.operationsWithChangedResults.empty())
2493     return success();
2494 
2495   // Process requested operation replacements.
2496   for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
2497        i != e; ++i) {
2498     unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
2499     auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
2500     for (OpResult result : repl.first->getResults()) {
2501       Value newValue = rewriterImpl.mapping.lookupOrNull(result);
2502 
2503       // If the operation result was replaced with null, all of the uses of this
2504       // value should be replaced.
2505       if (!newValue) {
2506         if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
2507           return failure();
2508         continue;
2509       }
2510 
2511       // Otherwise, check to see if the type of the result changed.
2512       if (result.getType() == newValue.getType())
2513         continue;
2514 
2515       // Compute the inverse mapping only if it is really needed.
2516       if (!inverseMapping)
2517         inverseMapping = rewriterImpl.mapping.getInverse();
2518 
2519       // Legalize this result.
2520       rewriter.setInsertionPoint(repl.first);
2521       if (failed(legalizeChangedResultType(repl.first, result, newValue,
2522                                            repl.second.converter, rewriter,
2523                                            rewriterImpl, *inverseMapping)))
2524         return failure();
2525 
2526       // Update the end iterator for this loop in the case it was updated
2527       // when legalizing generated conversion operations.
2528       e = rewriterImpl.operationsWithChangedResults.size();
2529     }
2530   }
2531   return success();
2532 }
2533 
2534 LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
2535     ConversionPatternRewriter &rewriter,
2536     ConversionPatternRewriterImpl &rewriterImpl) {
2537   // Functor used to check if all users of a value will be dead after
2538   // conversion.
2539   auto findLiveUser = [&](Value val) {
2540     auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
2541       return rewriterImpl.isOpIgnored(user);
2542     });
2543     return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
2544   };
2545   return rewriterImpl.argConverter.materializeLiveConversions(
2546       rewriterImpl.mapping, rewriter, findLiveUser);
2547 }
2548 
2549 /// Replace the results of a materialization operation with the given values.
2550 static void
2551 replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl,
2552                        ResultRange matResults, ValueRange values,
2553                        DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2554   matResults.replaceAllUsesWith(values);
2555 
2556   // For each of the materialization results, update the inverse mappings to
2557   // point to the replacement values.
2558   for (auto it : llvm::zip(matResults, values)) {
2559     Value matResult, newValue;
2560     std::tie(matResult, newValue) = it;
2561     auto inverseMapIt = inverseMapping.find(matResult);
2562     if (inverseMapIt == inverseMapping.end())
2563       continue;
2564 
2565     // Update the reverse mapping, or remove the mapping if we couldn't update
2566     // it. Not being able to update signals that the mapping would have become
2567     // circular (i.e. %foo -> newValue -> %foo), which may occur as values are
2568     // propagated through temporary materializations. We simply drop the
2569     // mapping, and let the post-conversion replacement logic handle updating
2570     // uses.
2571     for (Value inverseMapVal : inverseMapIt->second)
2572       if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue))
2573         rewriterImpl.mapping.erase(inverseMapVal);
2574   }
2575 }
2576 
2577 /// Compute all of the unresolved materializations that will persist beyond the
2578 /// conversion process, and require inserting a proper user materialization for.
2579 static void computeNecessaryMaterializations(
2580     DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
2581     ConversionPatternRewriter &rewriter,
2582     ConversionPatternRewriterImpl &rewriterImpl,
2583     DenseMap<Value, SmallVector<Value>> &inverseMapping,
2584     SetVector<UnresolvedMaterialization *> &necessaryMaterializations) {
2585   auto isLive = [&](Value value) {
2586     auto findFn = [&](Operation *user) {
2587       auto matIt = materializationOps.find(user);
2588       if (matIt != materializationOps.end())
2589         return !necessaryMaterializations.count(matIt->second);
2590       return rewriterImpl.isOpIgnored(user);
2591     };
2592     return llvm::find_if_not(value.getUsers(), findFn) != value.user_end();
2593   };
2594 
2595   llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue =
2596       [&](Value invalidRoot, Value value, Type type) {
2597         // Check to see if the input operation was remapped to a variant of the
2598         // output.
2599         Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
2600         if (remappedValue.getType() == type && remappedValue != invalidRoot)
2601           return remappedValue;
2602 
2603         // Check to see if the input is a materialization operation that
2604         // provides an inverse conversion. We just check blindly for
2605         // UnrealizedConversionCastOp here, but it has no effect on correctness.
2606         auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>();
2607         if (inputCastOp && inputCastOp->getNumOperands() == 1)
2608           return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0),
2609                                      type);
2610 
2611         return Value();
2612       };
2613 
2614   SetVector<UnresolvedMaterialization *> worklist;
2615   for (auto &mat : rewriterImpl.unresolvedMaterializations) {
2616     materializationOps.try_emplace(mat.getOp(), &mat);
2617     worklist.insert(&mat);
2618   }
2619   while (!worklist.empty()) {
2620     UnresolvedMaterialization *mat = worklist.pop_back_val();
2621     UnrealizedConversionCastOp op = mat->getOp();
2622 
2623     // We currently only handle target materializations here.
2624     assert(op->getNumResults() == 1 && "unexpected materialization type");
2625     OpResult opResult = op->getOpResult(0);
2626     Type outputType = opResult.getType();
2627     Operation::operand_range inputOperands = op.getOperands();
2628 
2629     // Try to forward propagate operands for user conversion casts that result
2630     // in the input types of the current cast.
2631     for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) {
2632       auto castOp = dyn_cast<UnrealizedConversionCastOp>(user);
2633       if (!castOp)
2634         continue;
2635       if (castOp->getResultTypes() == inputOperands.getTypes()) {
2636         replaceMaterialization(rewriterImpl, opResult, inputOperands,
2637                                inverseMapping);
2638         necessaryMaterializations.remove(materializationOps.lookup(user));
2639       }
2640     }
2641 
2642     // Try to avoid materializing a resolved materialization if possible.
2643     // Handle the case of a 1-1 materialization.
2644     if (inputOperands.size() == 1) {
2645       // Check to see if the input operation was remapped to a variant of the
2646       // output.
2647       Value remappedValue =
2648           lookupRemappedValue(opResult, inputOperands[0], outputType);
2649       if (remappedValue && remappedValue != opResult) {
2650         replaceMaterialization(rewriterImpl, opResult, remappedValue,
2651                                inverseMapping);
2652         necessaryMaterializations.remove(mat);
2653         continue;
2654       }
2655     } else {
2656       // TODO: Avoid materializing other types of conversions here.
2657     }
2658 
2659     // Check to see if this is an argument materialization.
2660     auto isBlockArg = [](Value v) { return v.isa<BlockArgument>(); };
2661     if (llvm::any_of(op->getOperands(), isBlockArg) ||
2662         llvm::any_of(inverseMapping[op->getResult(0)], isBlockArg)) {
2663       mat->setKind(UnresolvedMaterialization::Argument);
2664     }
2665 
2666     // If the materialization does not have any live users, we don't need to
2667     // generate a user materialization for it.
2668     // FIXME: For argument materializations, we currently need to check if any
2669     // of the inverse mapped values are used because some patterns expect blind
2670     // value replacement even if the types differ in some cases. When those
2671     // patterns are fixed, we can drop the argument special case here.
2672     bool isMaterializationLive = isLive(opResult);
2673     if (mat->getKind() == UnresolvedMaterialization::Argument)
2674       isMaterializationLive |= llvm::any_of(inverseMapping[opResult], isLive);
2675     if (!isMaterializationLive)
2676       continue;
2677     if (!necessaryMaterializations.insert(mat))
2678       continue;
2679 
2680     // Reprocess input materializations to see if they have an updated status.
2681     for (Value input : inputOperands) {
2682       if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) {
2683         if (auto *mat = materializationOps.lookup(parentOp))
2684           worklist.insert(mat);
2685       }
2686     }
2687   }
2688 }
2689 
2690 /// Legalize the given unresolved materialization. Returns success if the
2691 /// materialization was legalized, failure otherise.
2692 static LogicalResult legalizeUnresolvedMaterialization(
2693     UnresolvedMaterialization &mat,
2694     DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
2695     ConversionPatternRewriter &rewriter,
2696     ConversionPatternRewriterImpl &rewriterImpl,
2697     DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2698   auto findLiveUser = [&](auto &&users) {
2699     auto liveUserIt = llvm::find_if_not(
2700         users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); });
2701     return liveUserIt == users.end() ? nullptr : *liveUserIt;
2702   };
2703 
2704   llvm::unique_function<Value(Value, Type)> lookupRemappedValue =
2705       [&](Value value, Type type) {
2706         // Check to see if the input operation was remapped to a variant of the
2707         // output.
2708         Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
2709         if (remappedValue.getType() == type)
2710           return remappedValue;
2711         return Value();
2712       };
2713 
2714   UnrealizedConversionCastOp op = mat.getOp();
2715   if (!rewriterImpl.ignoredOps.insert(op))
2716     return success();
2717 
2718   // We currently only handle target materializations here.
2719   OpResult opResult = op->getOpResult(0);
2720   Operation::operand_range inputOperands = op.getOperands();
2721   Type outputType = opResult.getType();
2722 
2723   // If any input to this materialization is another materialization, resolve
2724   // the input first.
2725   for (Value value : op->getOperands()) {
2726     auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>();
2727     if (!valueCast)
2728       continue;
2729 
2730     auto matIt = materializationOps.find(valueCast);
2731     if (matIt != materializationOps.end())
2732       if (failed(legalizeUnresolvedMaterialization(
2733               *matIt->second, materializationOps, rewriter, rewriterImpl,
2734               inverseMapping)))
2735         return failure();
2736   }
2737 
2738   // Perform a last ditch attempt to avoid materializing a resolved
2739   // materialization if possible.
2740   // Handle the case of a 1-1 materialization.
2741   if (inputOperands.size() == 1) {
2742     // Check to see if the input operation was remapped to a variant of the
2743     // output.
2744     Value remappedValue = lookupRemappedValue(inputOperands[0], outputType);
2745     if (remappedValue && remappedValue != opResult) {
2746       replaceMaterialization(rewriterImpl, opResult, remappedValue,
2747                              inverseMapping);
2748       return success();
2749     }
2750   } else {
2751     // TODO: Avoid materializing other types of conversions here.
2752   }
2753 
2754   // Try to materialize the conversion.
2755   if (TypeConverter *converter = mat.getConverter()) {
2756     // FIXME: Determine a suitable insertion location when there are multiple
2757     // inputs.
2758     if (inputOperands.size() == 1)
2759       rewriter.setInsertionPointAfterValue(inputOperands.front());
2760     else
2761       rewriter.setInsertionPoint(op);
2762 
2763     Value newMaterialization;
2764     switch (mat.getKind()) {
2765     case UnresolvedMaterialization::Argument:
2766       // Try to materialize an argument conversion.
2767       // FIXME: The current argument materialization hook expects the original
2768       // output type, even though it doesn't use that as the actual output type
2769       // of the generated IR. The output type is just used as an indicator of
2770       // the type of materialization to do. This behavior is really awkward in
2771       // that it diverges from the behavior of the other hooks, and can be
2772       // easily misunderstood. We should clean up the argument hooks to better
2773       // represent the desired invariants we actually care about.
2774       newMaterialization = converter->materializeArgumentConversion(
2775           rewriter, op->getLoc(), mat.getOrigOutputType(), inputOperands);
2776       if (newMaterialization)
2777         break;
2778 
2779       // If an argument materialization failed, fallback to trying a target
2780       // materialization.
2781       LLVM_FALLTHROUGH;
2782     case UnresolvedMaterialization::Target:
2783       newMaterialization = converter->materializeTargetConversion(
2784           rewriter, op->getLoc(), outputType, inputOperands);
2785       break;
2786     }
2787     if (newMaterialization) {
2788       replaceMaterialization(rewriterImpl, opResult, newMaterialization,
2789                              inverseMapping);
2790       return success();
2791     }
2792   }
2793 
2794   InFlightDiagnostic diag = op->emitError()
2795                             << "failed to legalize unresolved materialization "
2796                                "from "
2797                             << inputOperands.getTypes() << " to " << outputType
2798                             << " that remained live after conversion";
2799   if (Operation *liveUser = findLiveUser(op->getUsers())) {
2800     diag.attachNote(liveUser->getLoc())
2801         << "see existing live user here: " << *liveUser;
2802   }
2803   return failure();
2804 }
2805 
2806 LogicalResult OperationConverter::legalizeUnresolvedMaterializations(
2807     ConversionPatternRewriter &rewriter,
2808     ConversionPatternRewriterImpl &rewriterImpl,
2809     Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) {
2810   if (rewriterImpl.unresolvedMaterializations.empty())
2811     return success();
2812   inverseMapping = rewriterImpl.mapping.getInverse();
2813 
2814   // As an initial step, compute all of the inserted materializations that we
2815   // expect to persist beyond the conversion process.
2816   DenseMap<Operation *, UnresolvedMaterialization *> materializationOps;
2817   SetVector<UnresolvedMaterialization *> necessaryMaterializations;
2818   computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl,
2819                                    *inverseMapping, necessaryMaterializations);
2820 
2821   // Once computed, legalize any necessary materializations.
2822   for (auto *mat : necessaryMaterializations) {
2823     if (failed(legalizeUnresolvedMaterialization(
2824             *mat, materializationOps, rewriter, rewriterImpl, *inverseMapping)))
2825       return failure();
2826   }
2827   return success();
2828 }
2829 
2830 LogicalResult OperationConverter::legalizeErasedResult(
2831     Operation *op, OpResult result,
2832     ConversionPatternRewriterImpl &rewriterImpl) {
2833   // If the operation result was replaced with null, all of the uses of this
2834   // value should be replaced.
2835   auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
2836     return rewriterImpl.isOpIgnored(user);
2837   });
2838   if (liveUserIt != result.user_end()) {
2839     InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
2840                               << op->getName() << "' marked as erased";
2841     diag.attachNote(liveUserIt->getLoc())
2842         << "found live user of result #" << result.getResultNumber() << ": "
2843         << *liveUserIt;
2844     return failure();
2845   }
2846   return success();
2847 }
2848 
2849 /// Finds a user of the given value, or of any other value that the given value
2850 /// replaced, that was not replaced in the conversion process.
2851 static Operation *findLiveUserOfReplaced(
2852     Value initialValue, ConversionPatternRewriterImpl &rewriterImpl,
2853     const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2854   SmallVector<Value> worklist(1, initialValue);
2855   while (!worklist.empty()) {
2856     Value value = worklist.pop_back_val();
2857 
2858     // Walk the users of this value to see if there are any live users that
2859     // weren't replaced during conversion.
2860     auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
2861       return rewriterImpl.isOpIgnored(user);
2862     });
2863     if (liveUserIt != value.user_end())
2864       return *liveUserIt;
2865     auto mapIt = inverseMapping.find(value);
2866     if (mapIt != inverseMapping.end())
2867       worklist.append(mapIt->second);
2868   }
2869   return nullptr;
2870 }
2871 
2872 LogicalResult OperationConverter::legalizeChangedResultType(
2873     Operation *op, OpResult result, Value newValue,
2874     TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2875     ConversionPatternRewriterImpl &rewriterImpl,
2876     const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2877   Operation *liveUser =
2878       findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
2879   if (!liveUser)
2880     return success();
2881 
2882   // Functor used to emit a conversion error for a failed materialization.
2883   auto emitConversionError = [&] {
2884     InFlightDiagnostic diag = op->emitError()
2885                               << "failed to materialize conversion for result #"
2886                               << result.getResultNumber() << " of operation '"
2887                               << op->getName()
2888                               << "' that remained live after conversion";
2889     diag.attachNote(liveUser->getLoc())
2890         << "see existing live user here: " << *liveUser;
2891     return failure();
2892   };
2893 
2894   // If the replacement has a type converter, attempt to materialize a
2895   // conversion back to the original type.
2896   if (!replConverter)
2897     return emitConversionError();
2898 
2899   // Materialize a conversion for this live result value.
2900   Type resultType = result.getType();
2901   Value convertedValue = replConverter->materializeSourceConversion(
2902       rewriter, op->getLoc(), resultType, newValue);
2903   if (!convertedValue)
2904     return emitConversionError();
2905 
2906   rewriterImpl.mapping.map(result, convertedValue);
2907   return success();
2908 }
2909 
2910 //===----------------------------------------------------------------------===//
2911 // Type Conversion
2912 //===----------------------------------------------------------------------===//
2913 
2914 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
2915                                                    ArrayRef<Type> types) {
2916   assert(!types.empty() && "expected valid types");
2917   remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
2918   addInputs(types);
2919 }
2920 
2921 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
2922   assert(!types.empty() &&
2923          "1->0 type remappings don't need to be added explicitly");
2924   argTypes.append(types.begin(), types.end());
2925 }
2926 
2927 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2928                                                     unsigned newInputNo,
2929                                                     unsigned newInputCount) {
2930   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2931   assert(newInputCount != 0 && "expected valid input count");
2932   remappedInputs[origInputNo] =
2933       InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
2934 }
2935 
2936 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2937                                                     Value replacementValue) {
2938   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2939   remappedInputs[origInputNo] =
2940       InputMapping{origInputNo, /*size=*/0, replacementValue};
2941 }
2942 
2943 LogicalResult TypeConverter::convertType(Type t,
2944                                          SmallVectorImpl<Type> &results) {
2945   auto existingIt = cachedDirectConversions.find(t);
2946   if (existingIt != cachedDirectConversions.end()) {
2947     if (existingIt->second)
2948       results.push_back(existingIt->second);
2949     return success(existingIt->second != nullptr);
2950   }
2951   auto multiIt = cachedMultiConversions.find(t);
2952   if (multiIt != cachedMultiConversions.end()) {
2953     results.append(multiIt->second.begin(), multiIt->second.end());
2954     return success();
2955   }
2956 
2957   // Walk the added converters in reverse order to apply the most recently
2958   // registered first.
2959   size_t currentCount = results.size();
2960   conversionCallStack.push_back(t);
2961   auto popConversionCallStack =
2962       llvm::make_scope_exit([this]() { conversionCallStack.pop_back(); });
2963   for (ConversionCallbackFn &converter : llvm::reverse(conversions)) {
2964     if (Optional<LogicalResult> result =
2965             converter(t, results, conversionCallStack)) {
2966       if (!succeeded(*result)) {
2967         cachedDirectConversions.try_emplace(t, nullptr);
2968         return failure();
2969       }
2970       auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
2971       if (newTypes.size() == 1)
2972         cachedDirectConversions.try_emplace(t, newTypes.front());
2973       else
2974         cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
2975       return success();
2976     }
2977   }
2978   return failure();
2979 }
2980 
2981 Type TypeConverter::convertType(Type t) {
2982   // Use the multi-type result version to convert the type.
2983   SmallVector<Type, 1> results;
2984   if (failed(convertType(t, results)))
2985     return nullptr;
2986 
2987   // Check to ensure that only one type was produced.
2988   return results.size() == 1 ? results.front() : nullptr;
2989 }
2990 
2991 LogicalResult TypeConverter::convertTypes(TypeRange types,
2992                                           SmallVectorImpl<Type> &results) {
2993   for (Type type : types)
2994     if (failed(convertType(type, results)))
2995       return failure();
2996   return success();
2997 }
2998 
2999 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; }
3000 bool TypeConverter::isLegal(Operation *op) {
3001   return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
3002 }
3003 
3004 bool TypeConverter::isLegal(Region *region) {
3005   return llvm::all_of(*region, [this](Block &block) {
3006     return isLegal(block.getArgumentTypes());
3007   });
3008 }
3009 
3010 bool TypeConverter::isSignatureLegal(FunctionType ty) {
3011   return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
3012 }
3013 
3014 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
3015                                                  SignatureConversion &result) {
3016   // Try to convert the given input type.
3017   SmallVector<Type, 1> convertedTypes;
3018   if (failed(convertType(type, convertedTypes)))
3019     return failure();
3020 
3021   // If this argument is being dropped, there is nothing left to do.
3022   if (convertedTypes.empty())
3023     return success();
3024 
3025   // Otherwise, add the new inputs.
3026   result.addInputs(inputNo, convertedTypes);
3027   return success();
3028 }
3029 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types,
3030                                                   SignatureConversion &result,
3031                                                   unsigned origInputOffset) {
3032   for (unsigned i = 0, e = types.size(); i != e; ++i)
3033     if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
3034       return failure();
3035   return success();
3036 }
3037 
3038 Value TypeConverter::materializeConversion(
3039     MutableArrayRef<MaterializationCallbackFn> materializations,
3040     OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) {
3041   for (MaterializationCallbackFn &fn : llvm::reverse(materializations))
3042     if (Optional<Value> result = fn(builder, resultType, inputs, loc))
3043       return result.getValue();
3044   return nullptr;
3045 }
3046 
3047 auto TypeConverter::convertBlockSignature(Block *block)
3048     -> Optional<SignatureConversion> {
3049   SignatureConversion conversion(block->getNumArguments());
3050   if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
3051     return llvm::None;
3052   return conversion;
3053 }
3054 
3055 //===----------------------------------------------------------------------===//
3056 // FunctionOpInterfaceSignatureConversion
3057 //===----------------------------------------------------------------------===//
3058 
3059 /// Create a default conversion pattern that rewrites the type signature of a
3060 /// FunctionOpInterface op. This only supports ops which use FunctionType to
3061 /// represent their type.
3062 namespace {
3063 struct FunctionOpInterfaceSignatureConversion : public ConversionPattern {
3064   FunctionOpInterfaceSignatureConversion(StringRef functionLikeOpName,
3065                                          MLIRContext *ctx,
3066                                          TypeConverter &converter)
3067       : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
3068 
3069   LogicalResult
3070   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
3071                   ConversionPatternRewriter &rewriter) const override {
3072     FunctionOpInterface funcOp = cast<FunctionOpInterface>(op);
3073     FunctionType type = funcOp.getType().cast<FunctionType>();
3074 
3075     // Convert the original function types.
3076     TypeConverter::SignatureConversion result(type.getNumInputs());
3077     SmallVector<Type, 1> newResults;
3078     if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) ||
3079         failed(typeConverter->convertTypes(type.getResults(), newResults)) ||
3080         failed(rewriter.convertRegionTypes(&funcOp.getBody(), *typeConverter,
3081                                            &result)))
3082       return failure();
3083 
3084     // Update the function signature in-place.
3085     auto newType = FunctionType::get(rewriter.getContext(),
3086                                      result.getConvertedTypes(), newResults);
3087 
3088     rewriter.updateRootInPlace(op, [&] { funcOp.setType(newType); });
3089 
3090     return success();
3091   }
3092 };
3093 } // namespace
3094 
3095 void mlir::populateFunctionOpInterfaceTypeConversionPattern(
3096     StringRef functionLikeOpName, RewritePatternSet &patterns,
3097     TypeConverter &converter) {
3098   patterns.add<FunctionOpInterfaceSignatureConversion>(
3099       functionLikeOpName, patterns.getContext(), converter);
3100 }
3101 
3102 //===----------------------------------------------------------------------===//
3103 // ConversionTarget
3104 //===----------------------------------------------------------------------===//
3105 
3106 void ConversionTarget::setOpAction(OperationName op,
3107                                    LegalizationAction action) {
3108   legalOperations[op].action = action;
3109 }
3110 
3111 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
3112                                         LegalizationAction action) {
3113   for (StringRef dialect : dialectNames)
3114     legalDialects[dialect] = action;
3115 }
3116 
3117 auto ConversionTarget::getOpAction(OperationName op) const
3118     -> Optional<LegalizationAction> {
3119   Optional<LegalizationInfo> info = getOpInfo(op);
3120   return info ? info->action : Optional<LegalizationAction>();
3121 }
3122 
3123 auto ConversionTarget::isLegal(Operation *op) const
3124     -> Optional<LegalOpDetails> {
3125   Optional<LegalizationInfo> info = getOpInfo(op->getName());
3126   if (!info)
3127     return llvm::None;
3128 
3129   // Returns true if this operation instance is known to be legal.
3130   auto isOpLegal = [&] {
3131     // Handle dynamic legality either with the provided legality function.
3132     if (info->action == LegalizationAction::Dynamic) {
3133       Optional<bool> result = info->legalityFn(op);
3134       if (result)
3135         return *result;
3136     }
3137 
3138     // Otherwise, the operation is only legal if it was marked 'Legal'.
3139     return info->action == LegalizationAction::Legal;
3140   };
3141   if (!isOpLegal())
3142     return llvm::None;
3143 
3144   // This operation is legal, compute any additional legality information.
3145   LegalOpDetails legalityDetails;
3146   if (info->isRecursivelyLegal) {
3147     auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
3148     if (legalityFnIt != opRecursiveLegalityFns.end()) {
3149       legalityDetails.isRecursivelyLegal =
3150           legalityFnIt->second(op).getValueOr(true);
3151     } else {
3152       legalityDetails.isRecursivelyLegal = true;
3153     }
3154   }
3155   return legalityDetails;
3156 }
3157 
3158 bool ConversionTarget::isIllegal(Operation *op) const {
3159   Optional<LegalizationInfo> info = getOpInfo(op->getName());
3160   if (!info)
3161     return false;
3162 
3163   if (info->action == LegalizationAction::Dynamic) {
3164     Optional<bool> result = info->legalityFn(op);
3165     if (!result)
3166       return false;
3167 
3168     return !(*result);
3169   }
3170 
3171   return info->action == LegalizationAction::Illegal;
3172 }
3173 
3174 static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks(
3175     ConversionTarget::DynamicLegalityCallbackFn oldCallback,
3176     ConversionTarget::DynamicLegalityCallbackFn newCallback) {
3177   if (!oldCallback)
3178     return newCallback;
3179 
3180   auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)](
3181                    Operation *op) -> Optional<bool> {
3182     if (Optional<bool> result = newCl(op))
3183       return *result;
3184 
3185     return oldCl(op);
3186   };
3187   return chain;
3188 }
3189 
3190 void ConversionTarget::setLegalityCallback(
3191     OperationName name, const DynamicLegalityCallbackFn &callback) {
3192   assert(callback && "expected valid legality callback");
3193   auto infoIt = legalOperations.find(name);
3194   assert(infoIt != legalOperations.end() &&
3195          infoIt->second.action == LegalizationAction::Dynamic &&
3196          "expected operation to already be marked as dynamically legal");
3197   infoIt->second.legalityFn =
3198       composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback);
3199 }
3200 
3201 void ConversionTarget::markOpRecursivelyLegal(
3202     OperationName name, const DynamicLegalityCallbackFn &callback) {
3203   auto infoIt = legalOperations.find(name);
3204   assert(infoIt != legalOperations.end() &&
3205          infoIt->second.action != LegalizationAction::Illegal &&
3206          "expected operation to already be marked as legal");
3207   infoIt->second.isRecursivelyLegal = true;
3208   if (callback)
3209     opRecursiveLegalityFns[name] = composeLegalityCallbacks(
3210         std::move(opRecursiveLegalityFns[name]), callback);
3211   else
3212     opRecursiveLegalityFns.erase(name);
3213 }
3214 
3215 void ConversionTarget::setLegalityCallback(
3216     ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
3217   assert(callback && "expected valid legality callback");
3218   for (StringRef dialect : dialects)
3219     dialectLegalityFns[dialect] = composeLegalityCallbacks(
3220         std::move(dialectLegalityFns[dialect]), callback);
3221 }
3222 
3223 void ConversionTarget::setLegalityCallback(
3224     const DynamicLegalityCallbackFn &callback) {
3225   assert(callback && "expected valid legality callback");
3226   unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback);
3227 }
3228 
3229 auto ConversionTarget::getOpInfo(OperationName op) const
3230     -> Optional<LegalizationInfo> {
3231   // Check for info for this specific operation.
3232   auto it = legalOperations.find(op);
3233   if (it != legalOperations.end())
3234     return it->second;
3235   // Check for info for the parent dialect.
3236   auto dialectIt = legalDialects.find(op.getDialectNamespace());
3237   if (dialectIt != legalDialects.end()) {
3238     DynamicLegalityCallbackFn callback;
3239     auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
3240     if (dialectFn != dialectLegalityFns.end())
3241       callback = dialectFn->second;
3242     return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
3243                             callback};
3244   }
3245   // Otherwise, check if we mark unknown operations as dynamic.
3246   if (unknownLegalityFn)
3247     return LegalizationInfo{LegalizationAction::Dynamic,
3248                             /*isRecursivelyLegal=*/false, unknownLegalityFn};
3249   return llvm::None;
3250 }
3251 
3252 //===----------------------------------------------------------------------===//
3253 // Op Conversion Entry Points
3254 //===----------------------------------------------------------------------===//
3255 
3256 //===----------------------------------------------------------------------===//
3257 // Partial Conversion
3258 
3259 LogicalResult
3260 mlir::applyPartialConversion(ArrayRef<Operation *> ops,
3261                              ConversionTarget &target,
3262                              const FrozenRewritePatternSet &patterns,
3263                              DenseSet<Operation *> *unconvertedOps) {
3264   OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
3265                                  unconvertedOps);
3266   return opConverter.convertOperations(ops);
3267 }
3268 LogicalResult
3269 mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
3270                              const FrozenRewritePatternSet &patterns,
3271                              DenseSet<Operation *> *unconvertedOps) {
3272   return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
3273                                 unconvertedOps);
3274 }
3275 
3276 //===----------------------------------------------------------------------===//
3277 // Full Conversion
3278 
3279 LogicalResult
3280 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
3281                           const FrozenRewritePatternSet &patterns) {
3282   OperationConverter opConverter(target, patterns, OpConversionMode::Full);
3283   return opConverter.convertOperations(ops);
3284 }
3285 LogicalResult
3286 mlir::applyFullConversion(Operation *op, ConversionTarget &target,
3287                           const FrozenRewritePatternSet &patterns) {
3288   return applyFullConversion(llvm::makeArrayRef(op), target, patterns);
3289 }
3290 
3291 //===----------------------------------------------------------------------===//
3292 // Analysis Conversion
3293 
3294 LogicalResult
3295 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
3296                               ConversionTarget &target,
3297                               const FrozenRewritePatternSet &patterns,
3298                               DenseSet<Operation *> &convertedOps,
3299                               function_ref<void(Diagnostic &)> notifyCallback) {
3300   OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
3301                                  &convertedOps);
3302   return opConverter.convertOperations(ops, notifyCallback);
3303 }
3304 LogicalResult
3305 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
3306                               const FrozenRewritePatternSet &patterns,
3307                               DenseSet<Operation *> &convertedOps,
3308                               function_ref<void(Diagnostic &)> notifyCallback) {
3309   return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
3310                                  convertedOps, notifyCallback);
3311 }
3312