1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Transforms/DialectConversion.h"
10 #include "mlir/IR/Block.h"
11 #include "mlir/IR/BlockAndValueMapping.h"
12 #include "mlir/IR/Builders.h"
13 #include "mlir/IR/BuiltinOps.h"
14 #include "mlir/IR/FunctionSupport.h"
15 #include "mlir/Rewrite/PatternApplicator.h"
16 #include "mlir/Transforms/Utils.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/FormatVariadic.h"
21 #include "llvm/Support/SaveAndRestore.h"
22 #include "llvm/Support/ScopedPrinter.h"
23 
24 using namespace mlir;
25 using namespace mlir::detail;
26 
27 #define DEBUG_TYPE "dialect-conversion"
28 
29 /// Recursively collect all of the operations to convert from within 'region'.
30 /// If 'target' is nonnull, operations that are recursively legal have their
31 /// regions pre-filtered to avoid considering them for legalization.
32 static LogicalResult
33 computeConversionSet(iterator_range<Region::iterator> region,
34                      Location regionLoc, std::vector<Operation *> &toConvert,
35                      ConversionTarget *target = nullptr) {
36   if (llvm::empty(region))
37     return success();
38 
39   // Traverse starting from the entry block.
40   SmallVector<Block *, 16> worklist(1, &*region.begin());
41   DenseSet<Block *> visitedBlocks;
42   visitedBlocks.insert(worklist.front());
43   while (!worklist.empty()) {
44     Block *block = worklist.pop_back_val();
45 
46     // Compute the conversion set of each of the nested operations.
47     for (Operation &op : *block) {
48       toConvert.emplace_back(&op);
49 
50       // Don't check this operation's children for conversion if the operation
51       // is recursively legal.
52       auto legalityInfo = target ? target->isLegal(&op)
53                                  : Optional<ConversionTarget::LegalOpDetails>();
54       if (legalityInfo && legalityInfo->isRecursivelyLegal)
55         continue;
56       for (auto &region : op.getRegions()) {
57         if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
58                                         toConvert, target)))
59           return failure();
60       }
61     }
62 
63     // Recurse to children that haven't been visited.
64     for (Block *succ : block->getSuccessors())
65       if (visitedBlocks.insert(succ).second)
66         worklist.push_back(succ);
67   }
68 
69   // Check that all blocks in the region were visited.
70   if (llvm::any_of(llvm::drop_begin(region, 1),
71                    [&](Block &block) { return !visitedBlocks.count(&block); }))
72     return emitError(regionLoc, "unreachable blocks were not converted");
73   return success();
74 }
75 
76 /// A utility function to log a successful result for the given reason.
77 template <typename... Args>
78 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt,
79                        Args &&... args) {
80   LLVM_DEBUG({
81     os.unindent();
82     os.startLine() << "} -> SUCCESS";
83     if (!fmt.empty())
84       os.getOStream() << " : "
85                       << llvm::formatv(fmt.data(), std::forward<Args>(args)...);
86     os.getOStream() << "\n";
87   });
88 }
89 
90 /// A utility function to log a failure result for the given reason.
91 template <typename... Args>
92 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt,
93                        Args &&... args) {
94   LLVM_DEBUG({
95     os.unindent();
96     os.startLine() << "} -> FAILURE : "
97                    << llvm::formatv(fmt.data(), std::forward<Args>(args)...)
98                    << "\n";
99   });
100 }
101 
102 //===----------------------------------------------------------------------===//
103 // ConversionValueMapping
104 //===----------------------------------------------------------------------===//
105 
106 namespace {
107 /// This class wraps a BlockAndValueMapping to provide recursive lookup
108 /// functionality, i.e. we will traverse if the mapped value also has a mapping.
109 struct ConversionValueMapping {
110   /// Lookup a mapped value within the map. If a mapping for the provided value
111   /// does not exist then return the provided value. If `desiredType` is
112   /// non-null, returns the most recently mapped value with that type. If an
113   /// operand of that type does not exist, defaults to normal behavior.
114   Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
115 
116   /// Lookup a mapped value within the map, or return null if a mapping does not
117   /// exist. If a mapping exists, this follows the same behavior of
118   /// `lookupOrDefault`.
119   Value lookupOrNull(Value from) const;
120 
121   /// Map a value to the one provided.
122   void map(Value oldVal, Value newVal) { mapping.map(oldVal, newVal); }
123 
124   /// Drop the last mapping for the given value.
125   void erase(Value value) { mapping.erase(value); }
126 
127   /// Returns the inverse raw value mapping (without recursive query support).
128   BlockAndValueMapping getInverse() const { return mapping.getInverse(); }
129 
130 private:
131   /// Current value mappings.
132   BlockAndValueMapping mapping;
133 };
134 } // end anonymous namespace
135 
136 Value ConversionValueMapping::lookupOrDefault(Value from,
137                                               Type desiredType) const {
138   // If there was no desired type, simply find the leaf value.
139   if (!desiredType) {
140     // If this value had a valid mapping, unmap that value as well in the case
141     // that it was also replaced.
142     while (auto mappedValue = mapping.lookupOrNull(from))
143       from = mappedValue;
144     return from;
145   }
146 
147   // Otherwise, try to find the deepest value that has the desired type.
148   Value desiredValue;
149   do {
150     if (from.getType() == desiredType)
151       desiredValue = from;
152 
153     Value mappedValue = mapping.lookupOrNull(from);
154     if (!mappedValue)
155       break;
156     from = mappedValue;
157   } while (true);
158 
159   // If the desired value was found use it, otherwise default to the leaf value.
160   return desiredValue ? desiredValue : from;
161 }
162 
163 Value ConversionValueMapping::lookupOrNull(Value from) const {
164   Value result = lookupOrDefault(from);
165   return result == from ? nullptr : result;
166 }
167 
168 //===----------------------------------------------------------------------===//
169 // ArgConverter
170 //===----------------------------------------------------------------------===//
171 namespace {
172 /// This class provides a simple interface for converting the types of block
173 /// arguments. This is done by creating a new block that contains the new legal
174 /// types and extracting the block that contains the old illegal types to allow
175 /// for undoing pending rewrites in the case of failure.
176 struct ArgConverter {
177   ArgConverter(PatternRewriter &rewriter) : rewriter(rewriter) {}
178 
179   /// This structure contains the information pertaining to an argument that has
180   /// been converted.
181   struct ConvertedArgInfo {
182     ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
183                      Value castValue = nullptr)
184         : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
185 
186     /// The start index of in the new argument list that contains arguments that
187     /// replace the original.
188     unsigned newArgIdx;
189 
190     /// The number of arguments that replaced the original argument.
191     unsigned newArgSize;
192 
193     /// The cast value that was created to cast from the new arguments to the
194     /// old. This only used if 'newArgSize' > 1.
195     Value castValue;
196   };
197 
198   /// This structure contains information pertaining to a block that has had its
199   /// signature converted.
200   struct ConvertedBlockInfo {
201     ConvertedBlockInfo(Block *origBlock, TypeConverter &converter)
202         : origBlock(origBlock), converter(&converter) {}
203 
204     /// The original block that was requested to have its signature converted.
205     Block *origBlock;
206 
207     /// The conversion information for each of the arguments. The information is
208     /// None if the argument was dropped during conversion.
209     SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
210 
211     /// The type converter used to convert the arguments.
212     TypeConverter *converter;
213   };
214 
215   /// Return if the signature of the given block has already been converted.
216   bool hasBeenConverted(Block *block) const {
217     return conversionInfo.count(block) || convertedBlocks.count(block);
218   }
219 
220   /// Set the type converter to use for the given region.
221   void setConverter(Region *region, TypeConverter *typeConverter) {
222     assert(typeConverter && "expected valid type converter");
223     regionToConverter[region] = typeConverter;
224   }
225 
226   /// Return the type converter to use for the given region, or null if there
227   /// isn't one.
228   TypeConverter *getConverter(Region *region) {
229     return regionToConverter.lookup(region);
230   }
231 
232   //===--------------------------------------------------------------------===//
233   // Rewrite Application
234   //===--------------------------------------------------------------------===//
235 
236   /// Erase any rewrites registered for the blocks within the given operation
237   /// which is about to be removed. This merely drops the rewrites without
238   /// undoing them.
239   void notifyOpRemoved(Operation *op);
240 
241   /// Cleanup and undo any generated conversions for the arguments of block.
242   /// This method replaces the new block with the original, reverting the IR to
243   /// its original state.
244   void discardRewrites(Block *block);
245 
246   /// Fully replace uses of the old arguments with the new.
247   void applyRewrites(ConversionValueMapping &mapping);
248 
249   /// Materialize any necessary conversions for converted arguments that have
250   /// live users, using the provided `findLiveUser` to search for a user that
251   /// survives the conversion process.
252   LogicalResult
253   materializeLiveConversions(ConversionValueMapping &mapping,
254                              OpBuilder &builder,
255                              function_ref<Operation *(Value)> findLiveUser);
256 
257   //===--------------------------------------------------------------------===//
258   // Conversion
259   //===--------------------------------------------------------------------===//
260 
261   /// Attempt to convert the signature of the given block, if successful a new
262   /// block is returned containing the new arguments. Returns `block` if it did
263   /// not require conversion.
264   FailureOr<Block *>
265   convertSignature(Block *block, TypeConverter &converter,
266                    ConversionValueMapping &mapping,
267                    SmallVectorImpl<BlockArgument> &argReplacements);
268 
269   /// Apply the given signature conversion on the given block. The new block
270   /// containing the updated signature is returned. If no conversions were
271   /// necessary, e.g. if the block has no arguments, `block` is returned.
272   /// `converter` is used to generate any necessary cast operations that
273   /// translate between the origin argument types and those specified in the
274   /// signature conversion.
275   Block *applySignatureConversion(
276       Block *block, TypeConverter &converter,
277       TypeConverter::SignatureConversion &signatureConversion,
278       ConversionValueMapping &mapping,
279       SmallVectorImpl<BlockArgument> &argReplacements);
280 
281   /// Insert a new conversion into the cache.
282   void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
283 
284   /// A collection of blocks that have had their arguments converted. This is a
285   /// map from the new replacement block, back to the original block.
286   llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
287 
288   /// The set of original blocks that were converted.
289   DenseSet<Block *> convertedBlocks;
290 
291   /// A mapping from valid regions, to those containing the original blocks of a
292   /// conversion.
293   DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
294 
295   /// A mapping of regions to type converters that should be used when
296   /// converting the arguments of blocks within that region.
297   DenseMap<Region *, TypeConverter *> regionToConverter;
298 
299   /// The pattern rewriter to use when materializing conversions.
300   PatternRewriter &rewriter;
301 };
302 } // end anonymous namespace
303 
304 //===----------------------------------------------------------------------===//
305 // Rewrite Application
306 
307 void ArgConverter::notifyOpRemoved(Operation *op) {
308   if (conversionInfo.empty())
309     return;
310 
311   for (Region &region : op->getRegions()) {
312     for (Block &block : region) {
313       // Drop any rewrites from within.
314       for (Operation &nestedOp : block)
315         if (nestedOp.getNumRegions())
316           notifyOpRemoved(&nestedOp);
317 
318       // Check if this block was converted.
319       auto it = conversionInfo.find(&block);
320       if (it == conversionInfo.end())
321         continue;
322 
323       // Drop all uses of the original arguments and delete the original block.
324       Block *origBlock = it->second.origBlock;
325       for (BlockArgument arg : origBlock->getArguments())
326         arg.dropAllUses();
327       conversionInfo.erase(it);
328     }
329   }
330 }
331 
332 void ArgConverter::discardRewrites(Block *block) {
333   auto it = conversionInfo.find(block);
334   if (it == conversionInfo.end())
335     return;
336   Block *origBlock = it->second.origBlock;
337 
338   // Drop all uses of the new block arguments and replace uses of the new block.
339   for (int i = block->getNumArguments() - 1; i >= 0; --i)
340     block->getArgument(i).dropAllUses();
341   block->replaceAllUsesWith(origBlock);
342 
343   // Move the operations back the original block and the delete the new block.
344   origBlock->getOperations().splice(origBlock->end(), block->getOperations());
345   origBlock->moveBefore(block);
346   block->erase();
347 
348   convertedBlocks.erase(origBlock);
349   conversionInfo.erase(it);
350 }
351 
352 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
353   for (auto &info : conversionInfo) {
354     ConvertedBlockInfo &blockInfo = info.second;
355     Block *origBlock = blockInfo.origBlock;
356 
357     // Process the remapping for each of the original arguments.
358     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
359       Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
360       BlockArgument origArg = origBlock->getArgument(i);
361 
362       // Handle the case of a 1->0 value mapping.
363       if (!argInfo) {
364         if (Value newArg = mapping.lookupOrNull(origArg))
365           origArg.replaceAllUsesWith(newArg);
366         continue;
367       }
368 
369       // Otherwise this is a 1->1+ value mapping.
370       Value castValue = argInfo->castValue;
371       assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
372 
373       // If the argument is still used, replace it with the generated cast.
374       if (!origArg.use_empty())
375         origArg.replaceAllUsesWith(mapping.lookupOrDefault(castValue));
376     }
377   }
378 }
379 
380 LogicalResult ArgConverter::materializeLiveConversions(
381     ConversionValueMapping &mapping, OpBuilder &builder,
382     function_ref<Operation *(Value)> findLiveUser) {
383   for (auto &info : conversionInfo) {
384     Block *newBlock = info.first;
385     ConvertedBlockInfo &blockInfo = info.second;
386     Block *origBlock = blockInfo.origBlock;
387 
388     // Process the remapping for each of the original arguments.
389     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
390       // FIXME: We should run the below checks even if the type conversion was
391       // 1->N, but a lot of existing lowering rely on the block argument being
392       // blindly replaced. Those usages should be updated, and this if should be
393       // removed.
394       if (blockInfo.argInfo[i])
395         continue;
396 
397       // If the type of this argument changed and the argument is still live, we
398       // need to materialize a conversion.
399       BlockArgument origArg = origBlock->getArgument(i);
400       auto argReplacementValue = mapping.lookupOrDefault(origArg);
401       bool isDroppedArg = argReplacementValue == origArg;
402       if (argReplacementValue.getType() == origArg.getType() && !isDroppedArg)
403         continue;
404       Operation *liveUser = findLiveUser(origArg);
405       if (!liveUser)
406         continue;
407 
408       if (OpResult result = argReplacementValue.dyn_cast<OpResult>())
409         rewriter.setInsertionPointAfter(result.getOwner());
410       else
411         rewriter.setInsertionPointToStart(newBlock);
412       Value newArg = blockInfo.converter->materializeSourceConversion(
413           rewriter, origArg.getLoc(), origArg.getType(),
414           isDroppedArg ? ValueRange() : ValueRange(argReplacementValue));
415       if (!newArg) {
416         InFlightDiagnostic diag =
417             emitError(origArg.getLoc())
418             << "failed to materialize conversion for block argument #" << i
419             << " that remained live after conversion, type was "
420             << origArg.getType();
421         if (!isDroppedArg)
422           diag << ", with target type " << argReplacementValue.getType();
423         diag.attachNote(liveUser->getLoc())
424             << "see existing live user here: " << *liveUser;
425         return failure();
426       }
427       mapping.map(origArg, newArg);
428     }
429   }
430   return success();
431 }
432 
433 //===----------------------------------------------------------------------===//
434 // Conversion
435 
436 FailureOr<Block *> ArgConverter::convertSignature(
437     Block *block, TypeConverter &converter, ConversionValueMapping &mapping,
438     SmallVectorImpl<BlockArgument> &argReplacements) {
439   // Check if the block was already converted. If the block is detached,
440   // conservatively assume it is going to be deleted.
441   if (hasBeenConverted(block) || !block->getParent())
442     return block;
443 
444   // Try to convert the signature for the block with the provided converter.
445   if (auto conversion = converter.convertBlockSignature(block))
446     return applySignatureConversion(block, converter, *conversion, mapping,
447                                     argReplacements);
448   return failure();
449 }
450 
451 Block *ArgConverter::applySignatureConversion(
452     Block *block, TypeConverter &converter,
453     TypeConverter::SignatureConversion &signatureConversion,
454     ConversionValueMapping &mapping,
455     SmallVectorImpl<BlockArgument> &argReplacements) {
456   // If no arguments are being changed or added, there is nothing to do.
457   unsigned origArgCount = block->getNumArguments();
458   auto convertedTypes = signatureConversion.getConvertedTypes();
459   if (origArgCount == 0 && convertedTypes.empty())
460     return block;
461 
462   // Split the block at the beginning to get a new block to use for the updated
463   // signature.
464   Block *newBlock = block->splitBlock(block->begin());
465   block->replaceAllUsesWith(newBlock);
466 
467   SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes));
468   ArrayRef<Value> newArgs(newArgRange);
469 
470   // Remap each of the original arguments as determined by the signature
471   // conversion.
472   ConvertedBlockInfo info(block, converter);
473   info.argInfo.resize(origArgCount);
474 
475   OpBuilder::InsertionGuard guard(rewriter);
476   rewriter.setInsertionPointToStart(newBlock);
477   for (unsigned i = 0; i != origArgCount; ++i) {
478     auto inputMap = signatureConversion.getInputMapping(i);
479     if (!inputMap)
480       continue;
481     BlockArgument origArg = block->getArgument(i);
482 
483     // If inputMap->replacementValue is not nullptr, then the argument is
484     // dropped and a replacement value is provided to be the remappedValue.
485     if (inputMap->replacementValue) {
486       assert(inputMap->size == 0 &&
487              "invalid to provide a replacement value when the argument isn't "
488              "dropped");
489       mapping.map(origArg, inputMap->replacementValue);
490       argReplacements.push_back(origArg);
491       continue;
492     }
493 
494     // Otherwise, this is a 1->1+ mapping. Call into the provided type converter
495     // to pack the new values. For 1->1 mappings, if there is no materialization
496     // provided, use the argument directly instead.
497     auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
498     Value newArg;
499 
500     // If this is a 1->1 mapping and the types of new and replacement arguments
501     // match (i.e. it's an identity map), then the argument is mapped to its
502     // original type.
503     if (replArgs.size() == 1 && replArgs[0].getType() == origArg.getType())
504       newArg = replArgs[0];
505     else
506       newArg = converter.materializeArgumentConversion(
507           rewriter, origArg.getLoc(), origArg.getType(), replArgs);
508 
509     if (!newArg) {
510       assert(replArgs.size() == 1 &&
511              "couldn't materialize the result of 1->N conversion");
512       newArg = replArgs.front();
513     }
514     mapping.map(origArg, newArg);
515     argReplacements.push_back(origArg);
516     info.argInfo[i] =
517         ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
518   }
519 
520   // Remove the original block from the region and return the new one.
521   insertConversion(newBlock, std::move(info));
522   return newBlock;
523 }
524 
525 void ArgConverter::insertConversion(Block *newBlock,
526                                     ConvertedBlockInfo &&info) {
527   // Get a region to insert the old block.
528   Region *region = newBlock->getParent();
529   std::unique_ptr<Region> &mappedRegion = regionMapping[region];
530   if (!mappedRegion)
531     mappedRegion = std::make_unique<Region>(region->getParentOp());
532 
533   // Move the original block to the mapped region and emplace the conversion.
534   mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
535                                    info.origBlock->getIterator());
536   convertedBlocks.insert(info.origBlock);
537   conversionInfo.insert({newBlock, std::move(info)});
538 }
539 
540 //===----------------------------------------------------------------------===//
541 // Rewriter and Translation State
542 //===----------------------------------------------------------------------===//
543 namespace {
544 /// This class contains a snapshot of the current conversion rewriter state.
545 /// This is useful when saving and undoing a set of rewrites.
546 struct RewriterState {
547   RewriterState(unsigned numCreatedOps, unsigned numReplacements,
548                 unsigned numArgReplacements, unsigned numBlockActions,
549                 unsigned numIgnoredOperations, unsigned numRootUpdates)
550       : numCreatedOps(numCreatedOps), numReplacements(numReplacements),
551         numArgReplacements(numArgReplacements),
552         numBlockActions(numBlockActions),
553         numIgnoredOperations(numIgnoredOperations),
554         numRootUpdates(numRootUpdates) {}
555 
556   /// The current number of created operations.
557   unsigned numCreatedOps;
558 
559   /// The current number of replacements queued.
560   unsigned numReplacements;
561 
562   /// The current number of argument replacements queued.
563   unsigned numArgReplacements;
564 
565   /// The current number of block actions performed.
566   unsigned numBlockActions;
567 
568   /// The current number of ignored operations.
569   unsigned numIgnoredOperations;
570 
571   /// The current number of operations that were updated in place.
572   unsigned numRootUpdates;
573 };
574 
575 /// The state of an operation that was updated by a pattern in-place. This
576 /// contains all of the necessary information to reconstruct an operation that
577 /// was updated in place.
578 class OperationTransactionState {
579 public:
580   OperationTransactionState() = default;
581   OperationTransactionState(Operation *op)
582       : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()),
583         operands(op->operand_begin(), op->operand_end()),
584         successors(op->successor_begin(), op->successor_end()) {}
585 
586   /// Discard the transaction state and reset the state of the original
587   /// operation.
588   void resetOperation() const {
589     op->setLoc(loc);
590     op->setAttrs(attrs);
591     op->setOperands(operands);
592     for (auto it : llvm::enumerate(successors))
593       op->setSuccessor(it.value(), it.index());
594   }
595 
596   /// Return the original operation of this state.
597   Operation *getOperation() const { return op; }
598 
599 private:
600   Operation *op;
601   LocationAttr loc;
602   DictionaryAttr attrs;
603   SmallVector<Value, 8> operands;
604   SmallVector<Block *, 2> successors;
605 };
606 
607 /// This class represents one requested operation replacement via 'replaceOp' or
608 /// 'eraseOp`.
609 struct OpReplacement {
610   OpReplacement() = default;
611   OpReplacement(TypeConverter *converter) : converter(converter) {}
612 
613   /// An optional type converter that can be used to materialize conversions
614   /// between the new and old values if necessary.
615   TypeConverter *converter = nullptr;
616 };
617 
618 /// The kind of the block action performed during the rewrite.  Actions can be
619 /// undone if the conversion fails.
620 enum class BlockActionKind {
621   Create,
622   Erase,
623   Merge,
624   Move,
625   Split,
626   TypeConversion
627 };
628 
629 /// Original position of the given block in its parent region. During undo
630 /// actions, the block needs to be placed after `insertAfterBlock`.
631 struct BlockPosition {
632   Region *region;
633   Block *insertAfterBlock;
634 };
635 
636 /// Information needed to undo the merge actions.
637 /// - the source block, and
638 /// - the Operation that was the last operation in the dest block before the
639 ///   merge (could be null if the dest block was empty).
640 struct MergeInfo {
641   Block *sourceBlock;
642   Operation *destBlockLastInst;
643 };
644 
645 /// The storage class for an undoable block action (one of BlockActionKind),
646 /// contains the information necessary to undo this action.
647 struct BlockAction {
648   static BlockAction getCreate(Block *block) {
649     return {BlockActionKind::Create, block, {}};
650   }
651   static BlockAction getErase(Block *block, BlockPosition originalPosition) {
652     return {BlockActionKind::Erase, block, {originalPosition}};
653   }
654   static BlockAction getMerge(Block *block, Block *sourceBlock) {
655     BlockAction action{BlockActionKind::Merge, block, {}};
656     action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()};
657     return action;
658   }
659   static BlockAction getMove(Block *block, BlockPosition originalPosition) {
660     return {BlockActionKind::Move, block, {originalPosition}};
661   }
662   static BlockAction getSplit(Block *block, Block *originalBlock) {
663     BlockAction action{BlockActionKind::Split, block, {}};
664     action.originalBlock = originalBlock;
665     return action;
666   }
667   static BlockAction getTypeConversion(Block *block) {
668     return BlockAction{BlockActionKind::TypeConversion, block, {}};
669   }
670 
671   // The action kind.
672   BlockActionKind kind;
673 
674   // A pointer to the block that was created by the action.
675   Block *block;
676 
677   union {
678     // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and
679     // contains a pointer to the region that originally contained the block as
680     // well as the position of the block in that region.
681     BlockPosition originalPosition;
682     // In use if kind == BlockActionKind::Split and contains a pointer to the
683     // block that was split into two parts.
684     Block *originalBlock;
685     // In use if kind == BlockActionKind::Merge, and contains the information
686     // needed to undo the merge.
687     MergeInfo mergeInfo;
688   };
689 };
690 } // end anonymous namespace
691 
692 //===----------------------------------------------------------------------===//
693 // ConversionPatternRewriterImpl
694 //===----------------------------------------------------------------------===//
695 namespace mlir {
696 namespace detail {
697 struct ConversionPatternRewriterImpl {
698   ConversionPatternRewriterImpl(PatternRewriter &rewriter)
699       : argConverter(rewriter) {}
700 
701   /// Cleanup and destroy any generated rewrite operations. This method is
702   /// invoked when the conversion process fails.
703   void discardRewrites();
704 
705   /// Apply all requested operation rewrites. This method is invoked when the
706   /// conversion process succeeds.
707   void applyRewrites();
708 
709   //===--------------------------------------------------------------------===//
710   // State Management
711   //===--------------------------------------------------------------------===//
712 
713   /// Return the current state of the rewriter.
714   RewriterState getCurrentState();
715 
716   /// Reset the state of the rewriter to a previously saved point.
717   void resetState(RewriterState state);
718 
719   /// Erase any blocks that were unlinked from their regions and stored in block
720   /// actions.
721   void eraseDanglingBlocks();
722 
723   /// Undo the block actions (motions, splits) one by one in reverse order until
724   /// "numActionsToKeep" actions remains.
725   void undoBlockActions(unsigned numActionsToKeep = 0);
726 
727   /// Remap the given operands to those with potentially different types. The
728   /// provided type converter is used to ensure that the remapped types are
729   /// legal. Returns success if the operands could be remapped, failure
730   /// otherwise.
731   LogicalResult remapValues(Location loc, PatternRewriter &rewriter,
732                             TypeConverter *converter,
733                             Operation::operand_range operands,
734                             SmallVectorImpl<Value> &remapped);
735 
736   /// Returns true if the given operation is ignored, and does not need to be
737   /// converted.
738   bool isOpIgnored(Operation *op) const;
739 
740   /// Recursively marks the nested operations under 'op' as ignored. This
741   /// removes them from being considered for legalization.
742   void markNestedOpsIgnored(Operation *op);
743 
744   //===--------------------------------------------------------------------===//
745   // Type Conversion
746   //===--------------------------------------------------------------------===//
747 
748   /// Convert the signature of the given block.
749   FailureOr<Block *> convertBlockSignature(
750       Block *block, TypeConverter &converter,
751       TypeConverter::SignatureConversion *conversion = nullptr);
752 
753   /// Apply a signature conversion on the given region, using `converter` for
754   /// materializations if not null.
755   Block *
756   applySignatureConversion(Region *region,
757                            TypeConverter::SignatureConversion &conversion,
758                            TypeConverter *converter);
759 
760   /// Convert the types of block arguments within the given region.
761   FailureOr<Block *>
762   convertRegionTypes(Region *region, TypeConverter &converter,
763                      TypeConverter::SignatureConversion *entryConversion);
764 
765   /// Convert the types of non-entry block arguments within the given region.
766   LogicalResult convertNonEntryRegionTypes(
767       Region *region, TypeConverter &converter,
768       ArrayRef<TypeConverter::SignatureConversion> blockConversions = {});
769 
770   //===--------------------------------------------------------------------===//
771   // Rewriter Notification Hooks
772   //===--------------------------------------------------------------------===//
773 
774   /// PatternRewriter hook for replacing the results of an operation.
775   void notifyOpReplaced(Operation *op, ValueRange newValues);
776 
777   /// Notifies that a block is about to be erased.
778   void notifyBlockIsBeingErased(Block *block);
779 
780   /// Notifies that a block was created.
781   void notifyCreatedBlock(Block *block);
782 
783   /// Notifies that a block was split.
784   void notifySplitBlock(Block *block, Block *continuation);
785 
786   /// Notifies that `block` is being merged with `srcBlock`.
787   void notifyBlocksBeingMerged(Block *block, Block *srcBlock);
788 
789   /// Notifies that the blocks of a region are about to be moved.
790   void notifyRegionIsBeingInlinedBefore(Region &region, Region &parent,
791                                         Region::iterator before);
792 
793   /// Notifies that the blocks of a region were cloned into another.
794   void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
795                                    Location origRegionLoc);
796 
797   /// Notifies that a pattern match failed for the given reason.
798   LogicalResult
799   notifyMatchFailure(Location loc,
800                      function_ref<void(Diagnostic &)> reasonCallback);
801 
802   //===--------------------------------------------------------------------===//
803   // State
804   //===--------------------------------------------------------------------===//
805 
806   // Mapping between replaced values that differ in type. This happens when
807   // replacing a value with one of a different type.
808   ConversionValueMapping mapping;
809 
810   /// Utility used to convert block arguments.
811   ArgConverter argConverter;
812 
813   /// Ordered vector of all of the newly created operations during conversion.
814   std::vector<Operation *> createdOps;
815 
816   /// Ordered map of requested operation replacements.
817   llvm::MapVector<Operation *, OpReplacement> replacements;
818 
819   /// Ordered vector of any requested block argument replacements.
820   SmallVector<BlockArgument, 4> argReplacements;
821 
822   /// Ordered list of block operations (creations, splits, motions).
823   SmallVector<BlockAction, 4> blockActions;
824 
825   /// A set of operations that should no longer be considered for legalization,
826   /// but were not directly replace/erased/etc. by a pattern. These are
827   /// generally child operations of other operations who were
828   /// replaced/erased/etc. This is not meant to be an exhaustive list of all
829   /// operations, but the minimal set that can be used to detect if a given
830   /// operation should be `ignored`. For example, we may add the operations that
831   /// define non-empty regions to the set, but not any of the others. This
832   /// simplifies the amount of memory needed as we can query if the parent
833   /// operation was ignored.
834   llvm::SetVector<Operation *> ignoredOps;
835 
836   /// A transaction state for each of operations that were updated in-place.
837   SmallVector<OperationTransactionState, 4> rootUpdates;
838 
839   /// A vector of indices into `replacements` of operations that were replaced
840   /// with values with different result types than the original operation, e.g.
841   /// 1->N conversion of some kind.
842   SmallVector<unsigned, 4> operationsWithChangedResults;
843 
844   /// A default type converter, used when block conversions do not have one
845   /// explicitly provided.
846   TypeConverter defaultTypeConverter;
847 
848   /// The current conversion pattern that is being rewritten, or nullptr if
849   /// called from outside of a conversion pattern rewrite.
850   const ConversionPattern *currentConversionPattern = nullptr;
851 
852 #ifndef NDEBUG
853   /// A set of operations that have pending updates. This tracking isn't
854   /// strictly necessary, and is thus only active during debug builds for extra
855   /// verification.
856   SmallPtrSet<Operation *, 1> pendingRootUpdates;
857 
858   /// A logger used to emit diagnostics during the conversion process.
859   llvm::ScopedPrinter logger{llvm::dbgs()};
860 #endif
861 };
862 } // end namespace detail
863 } // end namespace mlir
864 
865 /// Detach any operations nested in the given operation from their parent
866 /// blocks, and erase the given operation. This can be used when the nested
867 /// operations are scheduled for erasure themselves, so deleting the regions of
868 /// the given operation together with their content would result in double-free.
869 /// This happens, for example, when rolling back op creation in the reverse
870 /// order and if the nested ops were created before the parent op. This function
871 /// does not need to collect nested ops recursively because it is expected to
872 /// also be called for each nested op when it is about to be deleted.
873 static void detachNestedAndErase(Operation *op) {
874   for (Region &region : op->getRegions()) {
875     for (Block &block : region.getBlocks()) {
876       while (!block.getOperations().empty())
877         block.getOperations().remove(block.getOperations().begin());
878       block.dropAllDefinedValueUses();
879     }
880   }
881   op->dropAllUses();
882   op->erase();
883 }
884 
885 void ConversionPatternRewriterImpl::discardRewrites() {
886   // Reset any operations that were updated in place.
887   for (auto &state : rootUpdates)
888     state.resetOperation();
889 
890   undoBlockActions();
891 
892   // Remove any newly created ops.
893   for (auto *op : llvm::reverse(createdOps))
894     detachNestedAndErase(op);
895 }
896 
897 void ConversionPatternRewriterImpl::applyRewrites() {
898   // Apply all of the rewrites replacements requested during conversion.
899   for (auto &repl : replacements) {
900     for (OpResult result : repl.first->getResults())
901       if (Value newValue = mapping.lookupOrNull(result))
902         result.replaceAllUsesWith(newValue);
903 
904     // If this operation defines any regions, drop any pending argument
905     // rewrites.
906     if (repl.first->getNumRegions())
907       argConverter.notifyOpRemoved(repl.first);
908   }
909 
910   // Apply all of the requested argument replacements.
911   for (BlockArgument arg : argReplacements) {
912     Value repl = mapping.lookupOrDefault(arg);
913     if (repl.isa<BlockArgument>()) {
914       arg.replaceAllUsesWith(repl);
915       continue;
916     }
917 
918     // If the replacement value is an operation, we check to make sure that we
919     // don't replace uses that are within the parent operation of the
920     // replacement value.
921     Operation *replOp = repl.cast<OpResult>().getOwner();
922     Block *replBlock = replOp->getBlock();
923     arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
924       Operation *user = operand.getOwner();
925       return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
926     });
927   }
928 
929   // In a second pass, erase all of the replaced operations in reverse. This
930   // allows processing nested operations before their parent region is
931   // destroyed. Because we process in reverse order, producers may be deleted
932   // before their users (a pattern deleting a producer and then the consumer)
933   // so we first drop all uses explicitly.
934   for (auto &repl : llvm::reverse(replacements)) {
935     repl.first->dropAllUses();
936     repl.first->erase();
937   }
938 
939   argConverter.applyRewrites(mapping);
940 
941   // Now that the ops have been erased, also erase dangling blocks.
942   eraseDanglingBlocks();
943 }
944 
945 //===----------------------------------------------------------------------===//
946 // State Management
947 
948 RewriterState ConversionPatternRewriterImpl::getCurrentState() {
949   return RewriterState(createdOps.size(), replacements.size(),
950                        argReplacements.size(), blockActions.size(),
951                        ignoredOps.size(), rootUpdates.size());
952 }
953 
954 void ConversionPatternRewriterImpl::resetState(RewriterState state) {
955   // Reset any operations that were updated in place.
956   for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
957     rootUpdates[i].resetOperation();
958   rootUpdates.resize(state.numRootUpdates);
959 
960   // Reset any replaced arguments.
961   for (BlockArgument replacedArg :
962        llvm::drop_begin(argReplacements, state.numArgReplacements))
963     mapping.erase(replacedArg);
964   argReplacements.resize(state.numArgReplacements);
965 
966   // Undo any block actions.
967   undoBlockActions(state.numBlockActions);
968 
969   // Reset any replaced operations and undo any saved mappings.
970   for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
971     for (auto result : repl.first->getResults())
972       mapping.erase(result);
973   while (replacements.size() != state.numReplacements)
974     replacements.pop_back();
975 
976   // Pop all of the newly created operations.
977   while (createdOps.size() != state.numCreatedOps) {
978     detachNestedAndErase(createdOps.back());
979     createdOps.pop_back();
980   }
981 
982   // Pop all of the recorded ignored operations that are no longer valid.
983   while (ignoredOps.size() != state.numIgnoredOperations)
984     ignoredOps.pop_back();
985 
986   // Reset operations with changed results.
987   while (!operationsWithChangedResults.empty() &&
988          operationsWithChangedResults.back() >= state.numReplacements)
989     operationsWithChangedResults.pop_back();
990 }
991 
992 void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
993   for (auto &action : blockActions)
994     if (action.kind == BlockActionKind::Erase)
995       delete action.block;
996 }
997 
998 void ConversionPatternRewriterImpl::undoBlockActions(
999     unsigned numActionsToKeep) {
1000   for (auto &action :
1001        llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
1002     switch (action.kind) {
1003     // Delete the created block.
1004     case BlockActionKind::Create: {
1005       // Unlink all of the operations within this block, they will be deleted
1006       // separately.
1007       auto &blockOps = action.block->getOperations();
1008       while (!blockOps.empty())
1009         blockOps.remove(blockOps.begin());
1010       action.block->dropAllDefinedValueUses();
1011       action.block->erase();
1012       break;
1013     }
1014     // Put the block (owned by action) back into its original position.
1015     case BlockActionKind::Erase: {
1016       auto &blockList = action.originalPosition.region->getBlocks();
1017       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1018       blockList.insert((insertAfterBlock
1019                             ? std::next(Region::iterator(insertAfterBlock))
1020                             : blockList.begin()),
1021                        action.block);
1022       break;
1023     }
1024     // Split the block at the position which was originally the end of the
1025     // destination block (owned by action), and put the instructions back into
1026     // the block used before the merge.
1027     case BlockActionKind::Merge: {
1028       Block *sourceBlock = action.mergeInfo.sourceBlock;
1029       Block::iterator splitPoint =
1030           (action.mergeInfo.destBlockLastInst
1031                ? ++Block::iterator(action.mergeInfo.destBlockLastInst)
1032                : action.block->begin());
1033       sourceBlock->getOperations().splice(sourceBlock->begin(),
1034                                           action.block->getOperations(),
1035                                           splitPoint, action.block->end());
1036       break;
1037     }
1038     // Move the block back to its original position.
1039     case BlockActionKind::Move: {
1040       Region *originalRegion = action.originalPosition.region;
1041       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1042       originalRegion->getBlocks().splice(
1043           (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
1044                             : originalRegion->end()),
1045           action.block->getParent()->getBlocks(), action.block);
1046       break;
1047     }
1048     // Merge back the block that was split out.
1049     case BlockActionKind::Split: {
1050       action.originalBlock->getOperations().splice(
1051           action.originalBlock->end(), action.block->getOperations());
1052       action.block->dropAllDefinedValueUses();
1053       action.block->erase();
1054       break;
1055     }
1056     // Undo the type conversion.
1057     case BlockActionKind::TypeConversion: {
1058       argConverter.discardRewrites(action.block);
1059       break;
1060     }
1061     }
1062   }
1063   blockActions.resize(numActionsToKeep);
1064 }
1065 
1066 LogicalResult ConversionPatternRewriterImpl::remapValues(
1067     Location loc, PatternRewriter &rewriter, TypeConverter *converter,
1068     Operation::operand_range operands, SmallVectorImpl<Value> &remapped) {
1069   remapped.reserve(llvm::size(operands));
1070 
1071   SmallVector<Type, 1> legalTypes;
1072   for (auto it : llvm::enumerate(operands)) {
1073     Value operand = it.value();
1074     Type origType = operand.getType();
1075 
1076     // If a converter was provided, get the desired legal types for this
1077     // operand.
1078     Type desiredType;
1079     if (converter) {
1080       // If there is no legal conversion, fail to match this pattern.
1081       legalTypes.clear();
1082       if (failed(converter->convertType(origType, legalTypes))) {
1083         return notifyMatchFailure(loc, [=](Diagnostic &diag) {
1084           diag << "unable to convert type for operand #" << it.index()
1085                << ", type was " << origType;
1086         });
1087       }
1088       // TODO: There currently isn't any mechanism to do 1->N type conversion
1089       // via the PatternRewriter replacement API, so for now we just ignore it.
1090       if (legalTypes.size() == 1)
1091         desiredType = legalTypes.front();
1092     } else {
1093       // TODO: What we should do here is just set `desiredType` to `origType`
1094       // and then handle the necessary type conversions after the conversion
1095       // process has finished. Unfortunately a lot of patterns currently rely on
1096       // receiving the new operands even if the types change, so we keep the
1097       // original behavior here for now until all of the patterns relying on
1098       // this get updated.
1099     }
1100     Value newOperand = mapping.lookupOrDefault(operand, desiredType);
1101 
1102     // Handle the case where the conversion was 1->1 and the new operand type
1103     // isn't legal.
1104     Type newOperandType = newOperand.getType();
1105     if (converter && desiredType && newOperandType != desiredType) {
1106       // Attempt to materialize a conversion for this new value.
1107       newOperand = converter->materializeTargetConversion(
1108           rewriter, loc, desiredType, newOperand);
1109       if (!newOperand) {
1110         return notifyMatchFailure(loc, [=](Diagnostic &diag) {
1111           diag << "unable to materialize a conversion for "
1112                   "operand #"
1113                << it.index() << ", from " << newOperandType << " to "
1114                << desiredType;
1115         });
1116       }
1117     }
1118     remapped.push_back(newOperand);
1119   }
1120   return success();
1121 }
1122 
1123 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
1124   // Check to see if this operation was replaced or its parent ignored.
1125   return replacements.count(op) || ignoredOps.count(op->getParentOp());
1126 }
1127 
1128 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
1129   // Walk this operation and collect nested operations that define non-empty
1130   // regions. We mark such operations as 'ignored' so that we know we don't have
1131   // to convert them, or their nested ops.
1132   if (op->getNumRegions() == 0)
1133     return;
1134   op->walk([&](Operation *op) {
1135     if (llvm::any_of(op->getRegions(),
1136                      [](Region &region) { return !region.empty(); }))
1137       ignoredOps.insert(op);
1138   });
1139 }
1140 
1141 //===----------------------------------------------------------------------===//
1142 // Type Conversion
1143 
1144 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
1145     Block *block, TypeConverter &converter,
1146     TypeConverter::SignatureConversion *conversion) {
1147   FailureOr<Block *> result =
1148       conversion ? argConverter.applySignatureConversion(
1149                        block, converter, *conversion, mapping, argReplacements)
1150                  : argConverter.convertSignature(block, converter, mapping,
1151                                                  argReplacements);
1152   if (Block *newBlock = result.getValue()) {
1153     if (newBlock != block)
1154       blockActions.push_back(BlockAction::getTypeConversion(newBlock));
1155   }
1156   return result;
1157 }
1158 
1159 Block *ConversionPatternRewriterImpl::applySignatureConversion(
1160     Region *region, TypeConverter::SignatureConversion &conversion,
1161     TypeConverter *converter) {
1162   if (!region->empty()) {
1163     return *convertBlockSignature(&region->front(),
1164                                   converter ? *converter : defaultTypeConverter,
1165                                   &conversion);
1166   }
1167   return nullptr;
1168 }
1169 
1170 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
1171     Region *region, TypeConverter &converter,
1172     TypeConverter::SignatureConversion *entryConversion) {
1173   argConverter.setConverter(region, &converter);
1174   if (region->empty())
1175     return nullptr;
1176 
1177   if (failed(convertNonEntryRegionTypes(region, converter)))
1178     return failure();
1179 
1180   FailureOr<Block *> newEntry =
1181       convertBlockSignature(&region->front(), converter, entryConversion);
1182   return newEntry;
1183 }
1184 
1185 LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes(
1186     Region *region, TypeConverter &converter,
1187     ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1188   argConverter.setConverter(region, &converter);
1189   if (region->empty())
1190     return success();
1191 
1192   // Convert the arguments of each block within the region.
1193   int blockIdx = 0;
1194   assert((blockConversions.empty() ||
1195           blockConversions.size() == region->getBlocks().size() - 1) &&
1196          "expected either to provide no SignatureConversions at all or to "
1197          "provide a SignatureConversion for each non-entry block");
1198 
1199   for (Block &block :
1200        llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
1201     TypeConverter::SignatureConversion *blockConversion =
1202         blockConversions.empty()
1203             ? nullptr
1204             : const_cast<TypeConverter::SignatureConversion *>(
1205                   &blockConversions[blockIdx++]);
1206 
1207     if (failed(convertBlockSignature(&block, converter, blockConversion)))
1208       return failure();
1209   }
1210   return success();
1211 }
1212 
1213 //===----------------------------------------------------------------------===//
1214 // Rewriter Notification Hooks
1215 
1216 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
1217                                                      ValueRange newValues) {
1218   assert(newValues.size() == op->getNumResults());
1219   assert(!replacements.count(op) && "operation was already replaced");
1220 
1221   // Track if any of the results changed, e.g. erased and replaced with null.
1222   bool resultChanged = false;
1223 
1224   // Create mappings for each of the new result values.
1225   Value newValue, result;
1226   for (auto it : llvm::zip(newValues, op->getResults())) {
1227     std::tie(newValue, result) = it;
1228     if (!newValue) {
1229       resultChanged = true;
1230       continue;
1231     }
1232     // Remap, and check for any result type changes.
1233     mapping.map(result, newValue);
1234     resultChanged |= (newValue.getType() != result.getType());
1235   }
1236   if (resultChanged)
1237     operationsWithChangedResults.push_back(replacements.size());
1238 
1239   // Record the requested operation replacement.
1240   TypeConverter *converter = nullptr;
1241   if (currentConversionPattern)
1242     converter = currentConversionPattern->getTypeConverter();
1243   replacements.insert(std::make_pair(op, OpReplacement(converter)));
1244 
1245   // Mark this operation as recursively ignored so that we don't need to
1246   // convert any nested operations.
1247   markNestedOpsIgnored(op);
1248 }
1249 
1250 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
1251   Region *region = block->getParent();
1252   Block *origPrevBlock = block->getPrevNode();
1253   blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
1254 }
1255 
1256 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
1257   blockActions.push_back(BlockAction::getCreate(block));
1258 }
1259 
1260 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
1261                                                      Block *continuation) {
1262   blockActions.push_back(BlockAction::getSplit(continuation, block));
1263 }
1264 
1265 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block,
1266                                                             Block *srcBlock) {
1267   blockActions.push_back(BlockAction::getMerge(block, srcBlock));
1268 }
1269 
1270 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
1271     Region &region, Region &parent, Region::iterator before) {
1272   if (region.empty())
1273     return;
1274   Block *laterBlock = &region.back();
1275   for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) {
1276     blockActions.push_back(
1277         BlockAction::getMove(laterBlock, {&region, &earlierBlock}));
1278     laterBlock = &earlierBlock;
1279   }
1280   blockActions.push_back(BlockAction::getMove(laterBlock, {&region, nullptr}));
1281 }
1282 
1283 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
1284     iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
1285   for (Block &block : blocks)
1286     blockActions.push_back(BlockAction::getCreate(&block));
1287 
1288   // Compute the conversion set for the inlined region.
1289   auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
1290 
1291   // This original region has already had its conversion set computed, so there
1292   // shouldn't be any new failures.
1293   (void)result;
1294   assert(succeeded(result) && "expected region to have no unreachable blocks");
1295 }
1296 
1297 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
1298     Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
1299   LLVM_DEBUG({
1300     Diagnostic diag(loc, DiagnosticSeverity::Remark);
1301     reasonCallback(diag);
1302     logger.startLine() << "** Failure : " << diag.str() << "\n";
1303   });
1304   return failure();
1305 }
1306 
1307 //===----------------------------------------------------------------------===//
1308 // ConversionPatternRewriter
1309 //===----------------------------------------------------------------------===//
1310 
1311 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
1312     : PatternRewriter(ctx),
1313       impl(new detail::ConversionPatternRewriterImpl(*this)) {}
1314 ConversionPatternRewriter::~ConversionPatternRewriter() {}
1315 
1316 /// PatternRewriter hook for replacing the results of an operation when the
1317 /// given functor returns true.
1318 void ConversionPatternRewriter::replaceOpWithIf(
1319     Operation *op, ValueRange newValues, bool *allUsesReplaced,
1320     llvm::unique_function<bool(OpOperand &) const> functor) {
1321   // TODO: To support this we will need to rework a bit of how replacements are
1322   // tracked, given that this isn't guranteed to replace all of the uses of an
1323   // operation. The main change is that now an operation can be replaced
1324   // multiple times, in parts. The current "set" based tracking is mainly useful
1325   // for tracking if a replaced operation should be ignored, i.e. if all of the
1326   // uses will be replaced.
1327   llvm_unreachable(
1328       "replaceOpWithIf is currently not supported by DialectConversion");
1329 }
1330 
1331 /// PatternRewriter hook for replacing the results of an operation.
1332 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
1333   LLVM_DEBUG({
1334     impl->logger.startLine()
1335         << "** Replace : '" << op->getName() << "'(" << op << ")\n";
1336   });
1337   impl->notifyOpReplaced(op, newValues);
1338 }
1339 
1340 /// PatternRewriter hook for erasing a dead operation. The uses of this
1341 /// operation *must* be made dead by the end of the conversion process,
1342 /// otherwise an assert will be issued.
1343 void ConversionPatternRewriter::eraseOp(Operation *op) {
1344   LLVM_DEBUG({
1345     impl->logger.startLine()
1346         << "** Erase   : '" << op->getName() << "'(" << op << ")\n";
1347   });
1348   SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
1349   impl->notifyOpReplaced(op, nullRepls);
1350 }
1351 
1352 void ConversionPatternRewriter::eraseBlock(Block *block) {
1353   impl->notifyBlockIsBeingErased(block);
1354 
1355   // Mark all ops for erasure.
1356   for (Operation &op : *block)
1357     eraseOp(&op);
1358 
1359   // Unlink the block from its parent region. The block is kept in the block
1360   // action and will be actually destroyed when rewrites are applied. This
1361   // allows us to keep the operations in the block live and undo the removal by
1362   // re-inserting the block.
1363   block->getParent()->getBlocks().remove(block);
1364 }
1365 
1366 Block *ConversionPatternRewriter::applySignatureConversion(
1367     Region *region, TypeConverter::SignatureConversion &conversion,
1368     TypeConverter *converter) {
1369   return impl->applySignatureConversion(region, conversion, converter);
1370 }
1371 
1372 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
1373     Region *region, TypeConverter &converter,
1374     TypeConverter::SignatureConversion *entryConversion) {
1375   return impl->convertRegionTypes(region, converter, entryConversion);
1376 }
1377 
1378 LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes(
1379     Region *region, TypeConverter &converter,
1380     ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1381   return impl->convertNonEntryRegionTypes(region, converter, blockConversions);
1382 }
1383 
1384 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
1385                                                            Value to) {
1386   LLVM_DEBUG({
1387     Operation *parentOp = from.getOwner()->getParentOp();
1388     impl->logger.startLine() << "** Replace Argument : '" << from
1389                              << "'(in region of '" << parentOp->getName()
1390                              << "'(" << from.getOwner()->getParentOp() << ")\n";
1391   });
1392   impl->argReplacements.push_back(from);
1393   impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
1394 }
1395 
1396 /// Return the converted value that replaces 'key'. Return 'key' if there is
1397 /// no such a converted value.
1398 Value ConversionPatternRewriter::getRemappedValue(Value key) {
1399   return impl->mapping.lookupOrDefault(key);
1400 }
1401 
1402 /// PatternRewriter hook for creating a new block with the given arguments.
1403 void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
1404   impl->notifyCreatedBlock(block);
1405 }
1406 
1407 /// PatternRewriter hook for splitting a block into two parts.
1408 Block *ConversionPatternRewriter::splitBlock(Block *block,
1409                                              Block::iterator before) {
1410   auto *continuation = PatternRewriter::splitBlock(block, before);
1411   impl->notifySplitBlock(block, continuation);
1412   return continuation;
1413 }
1414 
1415 /// PatternRewriter hook for merging a block into another.
1416 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
1417                                             ValueRange argValues) {
1418   impl->notifyBlocksBeingMerged(dest, source);
1419   assert(llvm::all_of(source->getPredecessors(),
1420                       [dest](Block *succ) { return succ == dest; }) &&
1421          "expected 'source' to have no predecessors or only 'dest'");
1422   assert(argValues.size() == source->getNumArguments() &&
1423          "incorrect # of argument replacement values");
1424   for (auto it : llvm::zip(source->getArguments(), argValues))
1425     replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
1426   dest->getOperations().splice(dest->end(), source->getOperations());
1427   eraseBlock(source);
1428 }
1429 
1430 /// PatternRewriter hook for moving blocks out of a region.
1431 void ConversionPatternRewriter::inlineRegionBefore(Region &region,
1432                                                    Region &parent,
1433                                                    Region::iterator before) {
1434   impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
1435   PatternRewriter::inlineRegionBefore(region, parent, before);
1436 }
1437 
1438 /// PatternRewriter hook for cloning blocks of one region into another.
1439 void ConversionPatternRewriter::cloneRegionBefore(
1440     Region &region, Region &parent, Region::iterator before,
1441     BlockAndValueMapping &mapping) {
1442   if (region.empty())
1443     return;
1444   PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
1445 
1446   // Collect the range of the cloned blocks.
1447   auto clonedBeginIt = mapping.lookup(&region.front())->getIterator();
1448   auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
1449   impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
1450 }
1451 
1452 /// PatternRewriter hook for creating a new operation.
1453 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
1454   LLVM_DEBUG({
1455     impl->logger.startLine()
1456         << "** Insert  : '" << op->getName() << "'(" << op << ")\n";
1457   });
1458   impl->createdOps.push_back(op);
1459 }
1460 
1461 /// PatternRewriter hook for updating the root operation in-place.
1462 void ConversionPatternRewriter::startRootUpdate(Operation *op) {
1463 #ifndef NDEBUG
1464   impl->pendingRootUpdates.insert(op);
1465 #endif
1466   impl->rootUpdates.emplace_back(op);
1467 }
1468 
1469 /// PatternRewriter hook for updating the root operation in-place.
1470 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
1471   // There is nothing to do here, we only need to track the operation at the
1472   // start of the update.
1473 #ifndef NDEBUG
1474   assert(impl->pendingRootUpdates.erase(op) &&
1475          "operation did not have a pending in-place update");
1476 #endif
1477 }
1478 
1479 /// PatternRewriter hook for updating the root operation in-place.
1480 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
1481 #ifndef NDEBUG
1482   assert(impl->pendingRootUpdates.erase(op) &&
1483          "operation did not have a pending in-place update");
1484 #endif
1485   // Erase the last update for this operation.
1486   auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
1487   auto &rootUpdates = impl->rootUpdates;
1488   auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
1489   rootUpdates.erase(rootUpdates.begin() + (rootUpdates.rend() - it));
1490 }
1491 
1492 /// PatternRewriter hook for notifying match failure reasons.
1493 LogicalResult ConversionPatternRewriter::notifyMatchFailure(
1494     Operation *op, function_ref<void(Diagnostic &)> reasonCallback) {
1495   return impl->notifyMatchFailure(op->getLoc(), reasonCallback);
1496 }
1497 
1498 /// Return a reference to the internal implementation.
1499 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
1500   return *impl;
1501 }
1502 
1503 //===----------------------------------------------------------------------===//
1504 // ConversionPattern
1505 //===----------------------------------------------------------------------===//
1506 
1507 /// Attempt to match and rewrite the IR root at the specified operation.
1508 LogicalResult
1509 ConversionPattern::matchAndRewrite(Operation *op,
1510                                    PatternRewriter &rewriter) const {
1511   auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
1512   auto &rewriterImpl = dialectRewriter.getImpl();
1513 
1514   // Track the current conversion pattern in the rewriter.
1515   assert(!rewriterImpl.currentConversionPattern &&
1516          "already inside of a pattern rewrite");
1517   llvm::SaveAndRestore<const ConversionPattern *> currentPatternGuard(
1518       rewriterImpl.currentConversionPattern, this);
1519 
1520   // Remap the operands of the operation.
1521   SmallVector<Value, 4> operands;
1522   if (failed(rewriterImpl.remapValues(op->getLoc(), rewriter,
1523                                       getTypeConverter(), op->getOperands(),
1524                                       operands))) {
1525     return failure();
1526   }
1527   return matchAndRewrite(op, operands, dialectRewriter);
1528 }
1529 
1530 //===----------------------------------------------------------------------===//
1531 // OperationLegalizer
1532 //===----------------------------------------------------------------------===//
1533 
1534 namespace {
1535 /// A set of rewrite patterns that can be used to legalize a given operation.
1536 using LegalizationPatterns = SmallVector<const Pattern *, 1>;
1537 
1538 /// This class defines a recursive operation legalizer.
1539 class OperationLegalizer {
1540 public:
1541   using LegalizationAction = ConversionTarget::LegalizationAction;
1542 
1543   OperationLegalizer(ConversionTarget &targetInfo,
1544                      const FrozenRewritePatternSet &patterns);
1545 
1546   /// Returns true if the given operation is known to be illegal on the target.
1547   bool isIllegal(Operation *op) const;
1548 
1549   /// Attempt to legalize the given operation. Returns success if the operation
1550   /// was legalized, failure otherwise.
1551   LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
1552 
1553   /// Returns the conversion target in use by the legalizer.
1554   ConversionTarget &getTarget() { return target; }
1555 
1556 private:
1557   /// Attempt to legalize the given operation by folding it.
1558   LogicalResult legalizeWithFold(Operation *op,
1559                                  ConversionPatternRewriter &rewriter);
1560 
1561   /// Attempt to legalize the given operation by applying a pattern. Returns
1562   /// success if the operation was legalized, failure otherwise.
1563   LogicalResult legalizeWithPattern(Operation *op,
1564                                     ConversionPatternRewriter &rewriter);
1565 
1566   /// Return true if the given pattern may be applied to the given operation,
1567   /// false otherwise.
1568   bool canApplyPattern(Operation *op, const Pattern &pattern,
1569                        ConversionPatternRewriter &rewriter);
1570 
1571   /// Legalize the resultant IR after successfully applying the given pattern.
1572   LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
1573                                       ConversionPatternRewriter &rewriter,
1574                                       RewriterState &curState);
1575 
1576   /// Legalizes the actions registered during the execution of a pattern.
1577   LogicalResult legalizePatternBlockActions(Operation *op,
1578                                             ConversionPatternRewriter &rewriter,
1579                                             ConversionPatternRewriterImpl &impl,
1580                                             RewriterState &state,
1581                                             RewriterState &newState);
1582   LogicalResult legalizePatternCreatedOperations(
1583       ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1584       RewriterState &state, RewriterState &newState);
1585   LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
1586                                            ConversionPatternRewriterImpl &impl,
1587                                            RewriterState &state,
1588                                            RewriterState &newState);
1589 
1590   //===--------------------------------------------------------------------===//
1591   // Cost Model
1592   //===--------------------------------------------------------------------===//
1593 
1594   /// Build an optimistic legalization graph given the provided patterns. This
1595   /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
1596   /// patterns for operations that are not directly legal, but may be
1597   /// transitively legal for the current target given the provided patterns.
1598   void buildLegalizationGraph(
1599       LegalizationPatterns &anyOpLegalizerPatterns,
1600       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1601 
1602   /// Compute the benefit of each node within the computed legalization graph.
1603   /// This orders the patterns within 'legalizerPatterns' based upon two
1604   /// criteria:
1605   ///  1) Prefer patterns that have the lowest legalization depth, i.e.
1606   ///     represent the more direct mapping to the target.
1607   ///  2) When comparing patterns with the same legalization depth, prefer the
1608   ///     pattern with the highest PatternBenefit. This allows for users to
1609   ///     prefer specific legalizations over others.
1610   void computeLegalizationGraphBenefit(
1611       LegalizationPatterns &anyOpLegalizerPatterns,
1612       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1613 
1614   /// Compute the legalization depth when legalizing an operation of the given
1615   /// type.
1616   unsigned computeOpLegalizationDepth(
1617       OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
1618       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1619 
1620   /// Apply the conversion cost model to the given set of patterns, and return
1621   /// the smallest legalization depth of any of the patterns. See
1622   /// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
1623   unsigned applyCostModelToPatterns(
1624       LegalizationPatterns &patterns,
1625       DenseMap<OperationName, unsigned> &minOpPatternDepth,
1626       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1627 
1628   /// The current set of patterns that have been applied.
1629   SmallPtrSet<const Pattern *, 8> appliedPatterns;
1630 
1631   /// The legalization information provided by the target.
1632   ConversionTarget &target;
1633 
1634   /// The pattern applicator to use for conversions.
1635   PatternApplicator applicator;
1636 };
1637 } // namespace
1638 
1639 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo,
1640                                        const FrozenRewritePatternSet &patterns)
1641     : target(targetInfo), applicator(patterns) {
1642   // The set of patterns that can be applied to illegal operations to transform
1643   // them into legal ones.
1644   DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
1645   LegalizationPatterns anyOpLegalizerPatterns;
1646 
1647   buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
1648   computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
1649 }
1650 
1651 bool OperationLegalizer::isIllegal(Operation *op) const {
1652   // Check if the target explicitly marked this operation as illegal.
1653   return target.getOpAction(op->getName()) == LegalizationAction::Illegal;
1654 }
1655 
1656 LogicalResult
1657 OperationLegalizer::legalize(Operation *op,
1658                              ConversionPatternRewriter &rewriter) {
1659 #ifndef NDEBUG
1660   const char *logLineComment =
1661       "//===-------------------------------------------===//\n";
1662 
1663   auto &rewriterImpl = rewriter.getImpl();
1664 #endif
1665   LLVM_DEBUG({
1666     auto &os = rewriterImpl.logger;
1667     os.getOStream() << "\n";
1668     os.startLine() << logLineComment;
1669     os.startLine() << "Legalizing operation : '" << op->getName() << "'(" << op
1670                    << ") {\n";
1671     os.indent();
1672 
1673     // If the operation has no regions, just print it here.
1674     if (op->getNumRegions() == 0) {
1675       op->print(os.startLine(), OpPrintingFlags().printGenericOpForm());
1676       os.getOStream() << "\n\n";
1677     }
1678   });
1679 
1680   // Check if this operation is legal on the target.
1681   if (auto legalityInfo = target.isLegal(op)) {
1682     LLVM_DEBUG({
1683       logSuccess(
1684           rewriterImpl.logger, "operation marked legal by the target{0}",
1685           legalityInfo->isRecursivelyLegal
1686               ? "; NOTE: operation is recursively legal; skipping internals"
1687               : "");
1688       rewriterImpl.logger.startLine() << logLineComment;
1689     });
1690 
1691     // If this operation is recursively legal, mark its children as ignored so
1692     // that we don't consider them for legalization.
1693     if (legalityInfo->isRecursivelyLegal)
1694       rewriter.getImpl().markNestedOpsIgnored(op);
1695     return success();
1696   }
1697 
1698   // Check to see if the operation is ignored and doesn't need to be converted.
1699   if (rewriter.getImpl().isOpIgnored(op)) {
1700     LLVM_DEBUG({
1701       logSuccess(rewriterImpl.logger,
1702                  "operation marked 'ignored' during conversion");
1703       rewriterImpl.logger.startLine() << logLineComment;
1704     });
1705     return success();
1706   }
1707 
1708   // If the operation isn't legal, try to fold it in-place.
1709   // TODO: Should we always try to do this, even if the op is
1710   // already legal?
1711   if (succeeded(legalizeWithFold(op, rewriter))) {
1712     LLVM_DEBUG({
1713       logSuccess(rewriterImpl.logger, "operation was folded");
1714       rewriterImpl.logger.startLine() << logLineComment;
1715     });
1716     return success();
1717   }
1718 
1719   // Otherwise, we need to apply a legalization pattern to this operation.
1720   if (succeeded(legalizeWithPattern(op, rewriter))) {
1721     LLVM_DEBUG({
1722       logSuccess(rewriterImpl.logger, "");
1723       rewriterImpl.logger.startLine() << logLineComment;
1724     });
1725     return success();
1726   }
1727 
1728   LLVM_DEBUG({
1729     logFailure(rewriterImpl.logger, "no matched legalization pattern");
1730     rewriterImpl.logger.startLine() << logLineComment;
1731   });
1732   return failure();
1733 }
1734 
1735 LogicalResult
1736 OperationLegalizer::legalizeWithFold(Operation *op,
1737                                      ConversionPatternRewriter &rewriter) {
1738   auto &rewriterImpl = rewriter.getImpl();
1739   RewriterState curState = rewriterImpl.getCurrentState();
1740 
1741   LLVM_DEBUG({
1742     rewriterImpl.logger.startLine() << "* Fold {\n";
1743     rewriterImpl.logger.indent();
1744   });
1745 
1746   // Try to fold the operation.
1747   SmallVector<Value, 2> replacementValues;
1748   rewriter.setInsertionPoint(op);
1749   if (failed(rewriter.tryFold(op, replacementValues))) {
1750     LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
1751     return failure();
1752   }
1753 
1754   // Insert a replacement for 'op' with the folded replacement values.
1755   rewriter.replaceOp(op, replacementValues);
1756 
1757   // Recursively legalize any new constant operations.
1758   for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
1759        i != e; ++i) {
1760     Operation *cstOp = rewriterImpl.createdOps[i];
1761     if (failed(legalize(cstOp, rewriter))) {
1762       LLVM_DEBUG(logFailure(rewriterImpl.logger,
1763                             "generated constant '{0}' was illegal",
1764                             cstOp->getName()));
1765       rewriterImpl.resetState(curState);
1766       return failure();
1767     }
1768   }
1769 
1770   LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
1771   return success();
1772 }
1773 
1774 LogicalResult
1775 OperationLegalizer::legalizeWithPattern(Operation *op,
1776                                         ConversionPatternRewriter &rewriter) {
1777   auto &rewriterImpl = rewriter.getImpl();
1778 
1779   // Functor that returns if the given pattern may be applied.
1780   auto canApply = [&](const Pattern &pattern) {
1781     return canApplyPattern(op, pattern, rewriter);
1782   };
1783 
1784   // Functor that cleans up the rewriter state after a pattern failed to match.
1785   RewriterState curState = rewriterImpl.getCurrentState();
1786   auto onFailure = [&](const Pattern &pattern) {
1787     LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match"));
1788     rewriterImpl.resetState(curState);
1789     appliedPatterns.erase(&pattern);
1790   };
1791 
1792   // Functor that performs additional legalization when a pattern is
1793   // successfully applied.
1794   auto onSuccess = [&](const Pattern &pattern) {
1795     auto result = legalizePatternResult(op, pattern, rewriter, curState);
1796     appliedPatterns.erase(&pattern);
1797     if (failed(result))
1798       rewriterImpl.resetState(curState);
1799     return result;
1800   };
1801 
1802   // Try to match and rewrite a pattern on this operation.
1803   return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
1804                                     onSuccess);
1805 }
1806 
1807 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
1808                                          ConversionPatternRewriter &rewriter) {
1809   LLVM_DEBUG({
1810     auto &os = rewriter.getImpl().logger;
1811     os.getOStream() << "\n";
1812     os.startLine() << "* Pattern : '" << op->getName() << " -> (";
1813     llvm::interleaveComma(pattern.getGeneratedOps(), llvm::dbgs());
1814     os.getOStream() << ")' {\n";
1815     os.indent();
1816   });
1817 
1818   // Ensure that we don't cycle by not allowing the same pattern to be
1819   // applied twice in the same recursion stack if it is not known to be safe.
1820   if (!pattern.hasBoundedRewriteRecursion() &&
1821       !appliedPatterns.insert(&pattern).second) {
1822     LLVM_DEBUG(
1823         logFailure(rewriter.getImpl().logger, "pattern was already applied"));
1824     return false;
1825   }
1826   return true;
1827 }
1828 
1829 LogicalResult
1830 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
1831                                           ConversionPatternRewriter &rewriter,
1832                                           RewriterState &curState) {
1833   auto &impl = rewriter.getImpl();
1834 
1835 #ifndef NDEBUG
1836   assert(impl.pendingRootUpdates.empty() && "dangling root updates");
1837 #endif
1838 
1839   // Check that the root was either replaced or updated in place.
1840   auto replacedRoot = [&] {
1841     return llvm::any_of(
1842         llvm::drop_begin(impl.replacements, curState.numReplacements),
1843         [op](auto &it) { return it.first == op; });
1844   };
1845   auto updatedRootInPlace = [&] {
1846     return llvm::any_of(
1847         llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
1848         [op](auto &state) { return state.getOperation() == op; });
1849   };
1850   (void)replacedRoot;
1851   (void)updatedRootInPlace;
1852   assert((replacedRoot() || updatedRootInPlace()) &&
1853          "expected pattern to replace the root operation");
1854 
1855   // Legalize each of the actions registered during application.
1856   RewriterState newState = impl.getCurrentState();
1857   if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
1858                                          newState)) ||
1859       failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
1860       failed(legalizePatternCreatedOperations(rewriter, impl, curState,
1861                                               newState))) {
1862     return failure();
1863   }
1864 
1865   LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
1866   return success();
1867 }
1868 
1869 LogicalResult OperationLegalizer::legalizePatternBlockActions(
1870     Operation *op, ConversionPatternRewriter &rewriter,
1871     ConversionPatternRewriterImpl &impl, RewriterState &state,
1872     RewriterState &newState) {
1873   SmallPtrSet<Operation *, 16> operationsToIgnore;
1874 
1875   // If the pattern moved or created any blocks, make sure the types of block
1876   // arguments get legalized.
1877   for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
1878        ++i) {
1879     auto &action = impl.blockActions[i];
1880     if (action.kind == BlockActionKind::TypeConversion ||
1881         action.kind == BlockActionKind::Erase)
1882       continue;
1883     // Only check blocks outside of the current operation.
1884     Operation *parentOp = action.block->getParentOp();
1885     if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
1886       continue;
1887 
1888     // If the region of the block has a type converter, try to convert the block
1889     // directly.
1890     if (auto *converter =
1891             impl.argConverter.getConverter(action.block->getParent())) {
1892       if (failed(impl.convertBlockSignature(action.block, *converter))) {
1893         LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
1894                                            "block"));
1895         return failure();
1896       }
1897       continue;
1898     }
1899 
1900     // Otherwise, check that this operation isn't one generated by this pattern.
1901     // This is because we will attempt to legalize the parent operation, and
1902     // blocks in regions created by this pattern will already be legalized later
1903     // on. If we haven't built the set yet, build it now.
1904     if (operationsToIgnore.empty()) {
1905       auto createdOps = ArrayRef<Operation *>(impl.createdOps)
1906                             .drop_front(state.numCreatedOps);
1907       operationsToIgnore.insert(createdOps.begin(), createdOps.end());
1908     }
1909 
1910     // If this operation should be considered for re-legalization, try it.
1911     if (operationsToIgnore.insert(parentOp).second &&
1912         failed(legalize(parentOp, rewriter))) {
1913       LLVM_DEBUG(logFailure(
1914           impl.logger, "operation '{0}'({1}) became illegal after block action",
1915           parentOp->getName(), parentOp));
1916       return failure();
1917     }
1918   }
1919   return success();
1920 }
1921 LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
1922     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1923     RewriterState &state, RewriterState &newState) {
1924   for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
1925     Operation *op = impl.createdOps[i];
1926     if (failed(legalize(op, rewriter))) {
1927       LLVM_DEBUG(logFailure(impl.logger,
1928                             "generated operation '{0}'({1}) was illegal",
1929                             op->getName(), op));
1930       return failure();
1931     }
1932   }
1933   return success();
1934 }
1935 LogicalResult OperationLegalizer::legalizePatternRootUpdates(
1936     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1937     RewriterState &state, RewriterState &newState) {
1938   for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
1939     Operation *op = impl.rootUpdates[i].getOperation();
1940     if (failed(legalize(op, rewriter))) {
1941       LLVM_DEBUG(logFailure(impl.logger,
1942                             "operation updated in-place '{0}' was illegal",
1943                             op->getName()));
1944       return failure();
1945     }
1946   }
1947   return success();
1948 }
1949 
1950 //===----------------------------------------------------------------------===//
1951 // Cost Model
1952 
1953 void OperationLegalizer::buildLegalizationGraph(
1954     LegalizationPatterns &anyOpLegalizerPatterns,
1955     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
1956   // A mapping between an operation and a set of operations that can be used to
1957   // generate it.
1958   DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
1959   // A mapping between an operation and any currently invalid patterns it has.
1960   DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
1961   // A worklist of patterns to consider for legality.
1962   llvm::SetVector<const Pattern *> patternWorklist;
1963 
1964   // Build the mapping from operations to the parent ops that may generate them.
1965   applicator.walkAllPatterns([&](const Pattern &pattern) {
1966     Optional<OperationName> root = pattern.getRootKind();
1967 
1968     // If the pattern has no specific root, we can't analyze the relationship
1969     // between the root op and generated operations. Given that, add all such
1970     // patterns to the legalization set.
1971     if (!root) {
1972       anyOpLegalizerPatterns.push_back(&pattern);
1973       return;
1974     }
1975 
1976     // Skip operations that are always known to be legal.
1977     if (target.getOpAction(*root) == LegalizationAction::Legal)
1978       return;
1979 
1980     // Add this pattern to the invalid set for the root op and record this root
1981     // as a parent for any generated operations.
1982     invalidPatterns[*root].insert(&pattern);
1983     for (auto op : pattern.getGeneratedOps())
1984       parentOps[op].insert(*root);
1985 
1986     // Add this pattern to the worklist.
1987     patternWorklist.insert(&pattern);
1988   });
1989 
1990   // If there are any patterns that don't have a specific root kind, we can't
1991   // make direct assumptions about what operations will never be legalized.
1992   // Note: Technically we could, but it would require an analysis that may
1993   // recurse into itself. It would be better to perform this kind of filtering
1994   // at a higher level than here anyways.
1995   if (!anyOpLegalizerPatterns.empty()) {
1996     for (const Pattern *pattern : patternWorklist)
1997       legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
1998     return;
1999   }
2000 
2001   while (!patternWorklist.empty()) {
2002     auto *pattern = patternWorklist.pop_back_val();
2003 
2004     // Check to see if any of the generated operations are invalid.
2005     if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
2006           Optional<LegalizationAction> action = target.getOpAction(op);
2007           return !legalizerPatterns.count(op) &&
2008                  (!action || action == LegalizationAction::Illegal);
2009         }))
2010       continue;
2011 
2012     // Otherwise, if all of the generated operation are valid, this op is now
2013     // legal so add all of the child patterns to the worklist.
2014     legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2015     invalidPatterns[*pattern->getRootKind()].erase(pattern);
2016 
2017     // Add any invalid patterns of the parent operations to see if they have now
2018     // become legal.
2019     for (auto op : parentOps[*pattern->getRootKind()])
2020       patternWorklist.set_union(invalidPatterns[op]);
2021   }
2022 }
2023 
2024 void OperationLegalizer::computeLegalizationGraphBenefit(
2025     LegalizationPatterns &anyOpLegalizerPatterns,
2026     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2027   // The smallest pattern depth, when legalizing an operation.
2028   DenseMap<OperationName, unsigned> minOpPatternDepth;
2029 
2030   // For each operation that is transitively legal, compute a cost for it.
2031   for (auto &opIt : legalizerPatterns)
2032     if (!minOpPatternDepth.count(opIt.first))
2033       computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
2034                                  legalizerPatterns);
2035 
2036   // Apply the cost model to the patterns that can match any operation. Those
2037   // with a specific operation type are already resolved when computing the op
2038   // legalization depth.
2039   if (!anyOpLegalizerPatterns.empty())
2040     applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
2041                              legalizerPatterns);
2042 
2043   // Apply a cost model to the pattern applicator. We order patterns first by
2044   // depth then benefit. `legalizerPatterns` contains per-op patterns by
2045   // decreasing benefit.
2046   applicator.applyCostModel([&](const Pattern &pattern) {
2047     ArrayRef<const Pattern *> orderedPatternList;
2048     if (Optional<OperationName> rootName = pattern.getRootKind())
2049       orderedPatternList = legalizerPatterns[*rootName];
2050     else
2051       orderedPatternList = anyOpLegalizerPatterns;
2052 
2053     // If the pattern is not found, then it was removed and cannot be matched.
2054     auto it = llvm::find(orderedPatternList, &pattern);
2055     if (it == orderedPatternList.end())
2056       return PatternBenefit::impossibleToMatch();
2057 
2058     // Patterns found earlier in the list have higher benefit.
2059     return PatternBenefit(std::distance(it, orderedPatternList.end()));
2060   });
2061 }
2062 
2063 unsigned OperationLegalizer::computeOpLegalizationDepth(
2064     OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
2065     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2066   // Check for existing depth.
2067   auto depthIt = minOpPatternDepth.find(op);
2068   if (depthIt != minOpPatternDepth.end())
2069     return depthIt->second;
2070 
2071   // If a mapping for this operation does not exist, then this operation
2072   // is always legal. Return 0 as the depth for a directly legal operation.
2073   auto opPatternsIt = legalizerPatterns.find(op);
2074   if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
2075     return 0u;
2076 
2077   // Record this initial depth in case we encounter this op again when
2078   // recursively computing the depth.
2079   minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
2080 
2081   // Apply the cost model to the operation patterns, and update the minimum
2082   // depth.
2083   unsigned minDepth = applyCostModelToPatterns(
2084       opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
2085   minOpPatternDepth[op] = minDepth;
2086   return minDepth;
2087 }
2088 
2089 unsigned OperationLegalizer::applyCostModelToPatterns(
2090     LegalizationPatterns &patterns,
2091     DenseMap<OperationName, unsigned> &minOpPatternDepth,
2092     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2093   unsigned minDepth = std::numeric_limits<unsigned>::max();
2094 
2095   // Compute the depth for each pattern within the set.
2096   SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
2097   patternsByDepth.reserve(patterns.size());
2098   for (const Pattern *pattern : patterns) {
2099     unsigned depth = 0;
2100     for (auto generatedOp : pattern->getGeneratedOps()) {
2101       unsigned generatedOpDepth = computeOpLegalizationDepth(
2102           generatedOp, minOpPatternDepth, legalizerPatterns);
2103       depth = std::max(depth, generatedOpDepth + 1);
2104     }
2105     patternsByDepth.emplace_back(pattern, depth);
2106 
2107     // Update the minimum depth of the pattern list.
2108     minDepth = std::min(minDepth, depth);
2109   }
2110 
2111   // If the operation only has one legalization pattern, there is no need to
2112   // sort them.
2113   if (patternsByDepth.size() == 1)
2114     return minDepth;
2115 
2116   // Sort the patterns by those likely to be the most beneficial.
2117   llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(),
2118                        [](const std::pair<const Pattern *, unsigned> *lhs,
2119                           const std::pair<const Pattern *, unsigned> *rhs) {
2120                          // First sort by the smaller pattern legalization
2121                          // depth.
2122                          if (lhs->second != rhs->second)
2123                            return llvm::array_pod_sort_comparator<unsigned>(
2124                                &lhs->second, &rhs->second);
2125 
2126                          // Then sort by the larger pattern benefit.
2127                          auto lhsBenefit = lhs->first->getBenefit();
2128                          auto rhsBenefit = rhs->first->getBenefit();
2129                          return llvm::array_pod_sort_comparator<PatternBenefit>(
2130                              &rhsBenefit, &lhsBenefit);
2131                        });
2132 
2133   // Update the legalization pattern to use the new sorted list.
2134   patterns.clear();
2135   for (auto &patternIt : patternsByDepth)
2136     patterns.push_back(patternIt.first);
2137   return minDepth;
2138 }
2139 
2140 //===----------------------------------------------------------------------===//
2141 // OperationConverter
2142 //===----------------------------------------------------------------------===//
2143 namespace {
2144 enum OpConversionMode {
2145   // In this mode, the conversion will ignore failed conversions to allow
2146   // illegal operations to co-exist in the IR.
2147   Partial,
2148 
2149   // In this mode, all operations must be legal for the given target for the
2150   // conversion to succeed.
2151   Full,
2152 
2153   // In this mode, operations are analyzed for legality. No actual rewrites are
2154   // applied to the operations on success.
2155   Analysis,
2156 };
2157 
2158 // This class converts operations to a given conversion target via a set of
2159 // rewrite patterns. The conversion behaves differently depending on the
2160 // conversion mode.
2161 struct OperationConverter {
2162   explicit OperationConverter(ConversionTarget &target,
2163                               const FrozenRewritePatternSet &patterns,
2164                               OpConversionMode mode,
2165                               DenseSet<Operation *> *trackedOps = nullptr)
2166       : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}
2167 
2168   /// Converts the given operations to the conversion target.
2169   LogicalResult convertOperations(ArrayRef<Operation *> ops);
2170 
2171 private:
2172   /// Converts an operation with the given rewriter.
2173   LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
2174 
2175   /// This method is called after the conversion process to legalize any
2176   /// remaining artifacts and complete the conversion.
2177   LogicalResult finalize(ConversionPatternRewriter &rewriter);
2178 
2179   /// Legalize the types of converted block arguments.
2180   LogicalResult
2181   legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
2182                                  ConversionPatternRewriterImpl &rewriterImpl);
2183 
2184   /// Legalize an operation result that was marked as "erased".
2185   LogicalResult
2186   legalizeErasedResult(Operation *op, OpResult result,
2187                        ConversionPatternRewriterImpl &rewriterImpl);
2188 
2189   /// Legalize an operation result that was replaced with a value of a different
2190   /// type.
2191   LogicalResult
2192   legalizeChangedResultType(Operation *op, OpResult result, Value newValue,
2193                             TypeConverter *replConverter,
2194                             ConversionPatternRewriter &rewriter,
2195                             ConversionPatternRewriterImpl &rewriterImpl,
2196                             const BlockAndValueMapping &inverseMapping);
2197 
2198   /// The legalizer to use when converting operations.
2199   OperationLegalizer opLegalizer;
2200 
2201   /// The conversion mode to use when legalizing operations.
2202   OpConversionMode mode;
2203 
2204   /// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
2205   /// this is populated with ops found to be legalizable to the target.
2206   /// When mode == OpConversionMode::Partial, this is populated with ops found
2207   /// *not* to be legalizable to the target.
2208   DenseSet<Operation *> *trackedOps;
2209 };
2210 } // end anonymous namespace
2211 
2212 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
2213                                           Operation *op) {
2214   // Legalize the given operation.
2215   if (failed(opLegalizer.legalize(op, rewriter))) {
2216     // Handle the case of a failed conversion for each of the different modes.
2217     // Full conversions expect all operations to be converted.
2218     if (mode == OpConversionMode::Full)
2219       return op->emitError()
2220              << "failed to legalize operation '" << op->getName() << "'";
2221     // Partial conversions allow conversions to fail iff the operation was not
2222     // explicitly marked as illegal. If the user provided a nonlegalizableOps
2223     // set, non-legalizable ops are included.
2224     if (mode == OpConversionMode::Partial) {
2225       if (opLegalizer.isIllegal(op))
2226         return op->emitError()
2227                << "failed to legalize operation '" << op->getName()
2228                << "' that was explicitly marked illegal";
2229       if (trackedOps)
2230         trackedOps->insert(op);
2231     }
2232   } else if (mode == OpConversionMode::Analysis) {
2233     // Analysis conversions don't fail if any operations fail to legalize,
2234     // they are only interested in the operations that were successfully
2235     // legalized.
2236     trackedOps->insert(op);
2237   }
2238   return success();
2239 }
2240 
2241 LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
2242   if (ops.empty())
2243     return success();
2244   ConversionTarget &target = opLegalizer.getTarget();
2245 
2246   // Compute the set of operations and blocks to convert.
2247   std::vector<Operation *> toConvert;
2248   for (auto *op : ops) {
2249     toConvert.emplace_back(op);
2250     for (auto &region : op->getRegions())
2251       if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
2252                                       toConvert, &target)))
2253         return failure();
2254   }
2255 
2256   // Convert each operation and discard rewrites on failure.
2257   ConversionPatternRewriter rewriter(ops.front()->getContext());
2258   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2259   for (auto *op : toConvert)
2260     if (failed(convert(rewriter, op)))
2261       return rewriterImpl.discardRewrites(), failure();
2262 
2263   // Now that all of the operations have been converted, finalize the conversion
2264   // process to ensure any lingering conversion artifacts are cleaned up and
2265   // legalized.
2266   if (failed(finalize(rewriter)))
2267     return rewriterImpl.discardRewrites(), failure();
2268   // After a successful conversion, apply rewrites if this is not an analysis
2269   // conversion.
2270   if (mode == OpConversionMode::Analysis)
2271     rewriterImpl.discardRewrites();
2272   else {
2273     rewriterImpl.applyRewrites();
2274 
2275     // It is possible for a later pattern to erase an op that was originally
2276     // identified as illegal and added to the trackedOps, remove it now after
2277     // replacements have been computed.
2278     if (trackedOps)
2279       for (auto &repl : rewriterImpl.replacements)
2280         trackedOps->erase(repl.first);
2281   }
2282   return success();
2283 }
2284 
2285 LogicalResult
2286 OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
2287   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2288 
2289   // Legalize converted block arguments.
2290   if (failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
2291     return failure();
2292 
2293   if (rewriterImpl.operationsWithChangedResults.empty())
2294     return success();
2295 
2296   Optional<BlockAndValueMapping> inverseMapping;
2297 
2298   // Process requested operation replacements.
2299   for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
2300        i != e; ++i) {
2301     unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
2302     auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
2303     for (OpResult result : repl.first->getResults()) {
2304       Value newValue = rewriterImpl.mapping.lookupOrNull(result);
2305 
2306       // If the operation result was replaced with null, all of the uses of this
2307       // value should be replaced.
2308       if (!newValue) {
2309         if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
2310           return failure();
2311         continue;
2312       }
2313 
2314       // Otherwise, check to see if the type of the result changed.
2315       if (result.getType() == newValue.getType())
2316         continue;
2317 
2318       // Compute the inverse mapping only if it is really needed.
2319       if (!inverseMapping)
2320         inverseMapping = rewriterImpl.mapping.getInverse();
2321 
2322       // Legalize this result.
2323       rewriter.setInsertionPoint(repl.first);
2324       if (failed(legalizeChangedResultType(repl.first, result, newValue,
2325                                            repl.second.converter, rewriter,
2326                                            rewriterImpl, *inverseMapping)))
2327         return failure();
2328 
2329       // Update the end iterator for this loop in the case it was updated
2330       // when legalizing generated conversion operations.
2331       e = rewriterImpl.operationsWithChangedResults.size();
2332     }
2333   }
2334   return success();
2335 }
2336 
2337 LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
2338     ConversionPatternRewriter &rewriter,
2339     ConversionPatternRewriterImpl &rewriterImpl) {
2340   // Functor used to check if all users of a value will be dead after
2341   // conversion.
2342   auto findLiveUser = [&](Value val) {
2343     auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
2344       return rewriterImpl.isOpIgnored(user);
2345     });
2346     return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
2347   };
2348 
2349   // Materialize any necessary conversions for converted block arguments that
2350   // are still live.
2351   size_t numCreatedOps = rewriterImpl.createdOps.size();
2352   if (failed(rewriterImpl.argConverter.materializeLiveConversions(
2353           rewriterImpl.mapping, rewriter, findLiveUser)))
2354     return failure();
2355 
2356   // Legalize any newly created operations during argument materialization.
2357   for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) {
2358     if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) {
2359       return rewriterImpl.createdOps[i]->emitError()
2360              << "failed to legalize conversion operation generated for block "
2361                 "argument that remained live after conversion";
2362     }
2363   }
2364   return success();
2365 }
2366 
2367 LogicalResult OperationConverter::legalizeErasedResult(
2368     Operation *op, OpResult result,
2369     ConversionPatternRewriterImpl &rewriterImpl) {
2370   // If the operation result was replaced with null, all of the uses of this
2371   // value should be replaced.
2372   auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
2373     return rewriterImpl.isOpIgnored(user);
2374   });
2375   if (liveUserIt != result.user_end()) {
2376     InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
2377                               << op->getName() << "' marked as erased";
2378     diag.attachNote(liveUserIt->getLoc())
2379         << "found live user of result #" << result.getResultNumber() << ": "
2380         << *liveUserIt;
2381     return failure();
2382   }
2383   return success();
2384 }
2385 
2386 /// Finds a user of the given value, or of any other value that the given value
2387 /// replaced, that was not replaced in the conversion process.
2388 static Operation *
2389 findLiveUserOfReplaced(Value value, ConversionPatternRewriterImpl &rewriterImpl,
2390                        const BlockAndValueMapping &inverseMapping) {
2391   do {
2392     // Walk the users of this value to see if there are any live users that
2393     // weren't replaced during conversion.
2394     auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
2395       return rewriterImpl.isOpIgnored(user);
2396     });
2397     if (liveUserIt != value.user_end())
2398       return *liveUserIt;
2399     value = inverseMapping.lookupOrNull(value);
2400   } while (value != nullptr);
2401   return nullptr;
2402 }
2403 
2404 LogicalResult OperationConverter::legalizeChangedResultType(
2405     Operation *op, OpResult result, Value newValue,
2406     TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2407     ConversionPatternRewriterImpl &rewriterImpl,
2408     const BlockAndValueMapping &inverseMapping) {
2409   Operation *liveUser =
2410       findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
2411   if (!liveUser)
2412     return success();
2413 
2414   // If the replacement has a type converter, attempt to materialize a
2415   // conversion back to the original type.
2416   if (!replConverter) {
2417     // TODO: We should emit an error here, similarly to the case where the
2418     // result is replaced with null. Unfortunately a lot of existing
2419     // patterns rely on this behavior, so until those patterns are updated
2420     // we keep the legacy behavior here of just forwarding the new value.
2421     return success();
2422   }
2423 
2424   // Track the number of created operations so that new ones can be legalized.
2425   size_t numCreatedOps = rewriterImpl.createdOps.size();
2426 
2427   // Materialize a conversion for this live result value.
2428   Type resultType = result.getType();
2429   Value convertedValue = replConverter->materializeSourceConversion(
2430       rewriter, op->getLoc(), resultType, newValue);
2431   if (!convertedValue) {
2432     InFlightDiagnostic diag = op->emitError()
2433                               << "failed to materialize conversion for result #"
2434                               << result.getResultNumber() << " of operation '"
2435                               << op->getName()
2436                               << "' that remained live after conversion";
2437     diag.attachNote(liveUser->getLoc())
2438         << "see existing live user here: " << *liveUser;
2439     return failure();
2440   }
2441 
2442   // Legalize all of the newly created conversion operations.
2443   for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) {
2444     if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) {
2445       return op->emitError("failed to legalize conversion operation generated ")
2446              << "for result #" << result.getResultNumber() << " of operation '"
2447              << op->getName() << "' that remained live after conversion";
2448     }
2449   }
2450 
2451   rewriterImpl.mapping.map(result, convertedValue);
2452   return success();
2453 }
2454 
2455 //===----------------------------------------------------------------------===//
2456 // Type Conversion
2457 //===----------------------------------------------------------------------===//
2458 
2459 /// Remap an input of the original signature with a new set of types. The
2460 /// new types are appended to the new signature conversion.
2461 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
2462                                                    ArrayRef<Type> types) {
2463   assert(!types.empty() && "expected valid types");
2464   remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
2465   addInputs(types);
2466 }
2467 
2468 /// Append new input types to the signature conversion, this should only be
2469 /// used if the new types are not intended to remap an existing input.
2470 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
2471   assert(!types.empty() &&
2472          "1->0 type remappings don't need to be added explicitly");
2473   argTypes.append(types.begin(), types.end());
2474 }
2475 
2476 /// Remap an input of the original signature with a range of types in the
2477 /// new signature.
2478 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2479                                                     unsigned newInputNo,
2480                                                     unsigned newInputCount) {
2481   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2482   assert(newInputCount != 0 && "expected valid input count");
2483   remappedInputs[origInputNo] =
2484       InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
2485 }
2486 
2487 /// Remap an input of the original signature to another `replacementValue`
2488 /// value. This would make the signature converter drop this argument.
2489 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2490                                                     Value replacementValue) {
2491   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2492   remappedInputs[origInputNo] =
2493       InputMapping{origInputNo, /*size=*/0, replacementValue};
2494 }
2495 
2496 /// This hooks allows for converting a type.
2497 LogicalResult TypeConverter::convertType(Type t,
2498                                          SmallVectorImpl<Type> &results) {
2499   auto existingIt = cachedDirectConversions.find(t);
2500   if (existingIt != cachedDirectConversions.end()) {
2501     if (existingIt->second)
2502       results.push_back(existingIt->second);
2503     return success(existingIt->second != nullptr);
2504   }
2505   auto multiIt = cachedMultiConversions.find(t);
2506   if (multiIt != cachedMultiConversions.end()) {
2507     results.append(multiIt->second.begin(), multiIt->second.end());
2508     return success();
2509   }
2510 
2511   // Walk the added converters in reverse order to apply the most recently
2512   // registered first.
2513   size_t currentCount = results.size();
2514   for (ConversionCallbackFn &converter : llvm::reverse(conversions)) {
2515     if (Optional<LogicalResult> result = converter(t, results)) {
2516       if (!succeeded(*result)) {
2517         cachedDirectConversions.try_emplace(t, nullptr);
2518         return failure();
2519       }
2520       auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
2521       if (newTypes.size() == 1)
2522         cachedDirectConversions.try_emplace(t, newTypes.front());
2523       else
2524         cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
2525       return success();
2526     }
2527   }
2528   return failure();
2529 }
2530 
2531 /// This hook simplifies defining 1-1 type conversions. This function returns
2532 /// the type to convert to on success, and a null type on failure.
2533 Type TypeConverter::convertType(Type t) {
2534   // Use the multi-type result version to convert the type.
2535   SmallVector<Type, 1> results;
2536   if (failed(convertType(t, results)))
2537     return nullptr;
2538 
2539   // Check to ensure that only one type was produced.
2540   return results.size() == 1 ? results.front() : nullptr;
2541 }
2542 
2543 /// Convert the given set of types, filling 'results' as necessary. This
2544 /// returns failure if the conversion of any of the types fails, success
2545 /// otherwise.
2546 LogicalResult TypeConverter::convertTypes(TypeRange types,
2547                                           SmallVectorImpl<Type> &results) {
2548   for (Type type : types)
2549     if (failed(convertType(type, results)))
2550       return failure();
2551   return success();
2552 }
2553 
2554 /// Return true if the given type is legal for this type converter, i.e. the
2555 /// type converts to itself.
2556 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; }
2557 /// Return true if the given operation has legal operand and result types.
2558 bool TypeConverter::isLegal(Operation *op) {
2559   return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
2560 }
2561 
2562 /// Return true if the types of block arguments within the region are legal.
2563 bool TypeConverter::isLegal(Region *region) {
2564   return llvm::all_of(*region, [this](Block &block) {
2565     return isLegal(block.getArgumentTypes());
2566   });
2567 }
2568 
2569 /// Return true if the inputs and outputs of the given function type are
2570 /// legal.
2571 bool TypeConverter::isSignatureLegal(FunctionType ty) {
2572   return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
2573 }
2574 
2575 /// This hook allows for converting a specific argument of a signature.
2576 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
2577                                                  SignatureConversion &result) {
2578   // Try to convert the given input type.
2579   SmallVector<Type, 1> convertedTypes;
2580   if (failed(convertType(type, convertedTypes)))
2581     return failure();
2582 
2583   // If this argument is being dropped, there is nothing left to do.
2584   if (convertedTypes.empty())
2585     return success();
2586 
2587   // Otherwise, add the new inputs.
2588   result.addInputs(inputNo, convertedTypes);
2589   return success();
2590 }
2591 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types,
2592                                                   SignatureConversion &result,
2593                                                   unsigned origInputOffset) {
2594   for (unsigned i = 0, e = types.size(); i != e; ++i)
2595     if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
2596       return failure();
2597   return success();
2598 }
2599 
2600 Value TypeConverter::materializeConversion(
2601     MutableArrayRef<MaterializationCallbackFn> materializations,
2602     OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) {
2603   for (MaterializationCallbackFn &fn : llvm::reverse(materializations))
2604     if (Optional<Value> result = fn(builder, resultType, inputs, loc))
2605       return result.getValue();
2606   return nullptr;
2607 }
2608 
2609 /// This function converts the type signature of the given block, by invoking
2610 /// 'convertSignatureArg' for each argument. This function should return a valid
2611 /// conversion for the signature on success, None otherwise.
2612 auto TypeConverter::convertBlockSignature(Block *block)
2613     -> Optional<SignatureConversion> {
2614   SignatureConversion conversion(block->getNumArguments());
2615   if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
2616     return llvm::None;
2617   return conversion;
2618 }
2619 
2620 /// Create a default conversion pattern that rewrites the type signature of a
2621 /// FunctionLike op. This only supports FunctionLike ops which use FunctionType
2622 /// to represent their type.
2623 namespace {
2624 struct FunctionLikeSignatureConversion : public ConversionPattern {
2625   FunctionLikeSignatureConversion(StringRef functionLikeOpName,
2626                                   MLIRContext *ctx, TypeConverter &converter)
2627       : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
2628 
2629   /// Hook to implement combined matching and rewriting for FunctionLike ops.
2630   LogicalResult
2631   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
2632                   ConversionPatternRewriter &rewriter) const override {
2633     FunctionType type = mlir::impl::getFunctionType(op);
2634 
2635     // Convert the original function types.
2636     TypeConverter::SignatureConversion result(type.getNumInputs());
2637     SmallVector<Type, 1> newResults;
2638     if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) ||
2639         failed(typeConverter->convertTypes(type.getResults(), newResults)) ||
2640         failed(rewriter.convertRegionTypes(&mlir::impl::getFunctionBody(op),
2641                                            *typeConverter, &result)))
2642       return failure();
2643 
2644     // Update the function signature in-place.
2645     auto newType = FunctionType::get(rewriter.getContext(),
2646                                      result.getConvertedTypes(), newResults);
2647 
2648     rewriter.updateRootInPlace(
2649         op, [&] { mlir::impl::setFunctionType(op, newType); });
2650 
2651     return success();
2652   }
2653 };
2654 } // end anonymous namespace
2655 
2656 void mlir::populateFunctionLikeTypeConversionPattern(
2657     StringRef functionLikeOpName, RewritePatternSet &patterns,
2658     TypeConverter &converter) {
2659   patterns.add<FunctionLikeSignatureConversion>(
2660       functionLikeOpName, patterns.getContext(), converter);
2661 }
2662 
2663 void mlir::populateFuncOpTypeConversionPattern(RewritePatternSet &patterns,
2664                                                TypeConverter &converter) {
2665   populateFunctionLikeTypeConversionPattern<FuncOp>(patterns, converter);
2666 }
2667 
2668 //===----------------------------------------------------------------------===//
2669 // ConversionTarget
2670 //===----------------------------------------------------------------------===//
2671 
2672 /// Register a legality action for the given operation.
2673 void ConversionTarget::setOpAction(OperationName op,
2674                                    LegalizationAction action) {
2675   legalOperations[op] = {action, /*isRecursivelyLegal=*/false, llvm::None};
2676 }
2677 
2678 /// Register a legality action for the given dialects.
2679 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
2680                                         LegalizationAction action) {
2681   for (StringRef dialect : dialectNames)
2682     legalDialects[dialect] = action;
2683 }
2684 
2685 /// Get the legality action for the given operation.
2686 auto ConversionTarget::getOpAction(OperationName op) const
2687     -> Optional<LegalizationAction> {
2688   Optional<LegalizationInfo> info = getOpInfo(op);
2689   return info ? info->action : Optional<LegalizationAction>();
2690 }
2691 
2692 /// If the given operation instance is legal on this target, a structure
2693 /// containing legality information is returned. If the operation is not legal,
2694 /// None is returned.
2695 auto ConversionTarget::isLegal(Operation *op) const
2696     -> Optional<LegalOpDetails> {
2697   Optional<LegalizationInfo> info = getOpInfo(op->getName());
2698   if (!info)
2699     return llvm::None;
2700 
2701   // Returns true if this operation instance is known to be legal.
2702   auto isOpLegal = [&] {
2703     // Handle dynamic legality either with the provided legality function, or
2704     // the default hook on the derived instance.
2705     if (info->action == LegalizationAction::Dynamic)
2706       return info->legalityFn ? (*info->legalityFn)(op)
2707                               : isDynamicallyLegal(op);
2708 
2709     // Otherwise, the operation is only legal if it was marked 'Legal'.
2710     return info->action == LegalizationAction::Legal;
2711   };
2712   if (!isOpLegal())
2713     return llvm::None;
2714 
2715   // This operation is legal, compute any additional legality information.
2716   LegalOpDetails legalityDetails;
2717   if (info->isRecursivelyLegal) {
2718     auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
2719     if (legalityFnIt != opRecursiveLegalityFns.end())
2720       legalityDetails.isRecursivelyLegal = legalityFnIt->second(op);
2721     else
2722       legalityDetails.isRecursivelyLegal = true;
2723   }
2724   return legalityDetails;
2725 }
2726 
2727 /// Set the dynamic legality callback for the given operation.
2728 void ConversionTarget::setLegalityCallback(
2729     OperationName name, const DynamicLegalityCallbackFn &callback) {
2730   assert(callback && "expected valid legality callback");
2731   auto infoIt = legalOperations.find(name);
2732   assert(infoIt != legalOperations.end() &&
2733          infoIt->second.action == LegalizationAction::Dynamic &&
2734          "expected operation to already be marked as dynamically legal");
2735   infoIt->second.legalityFn = callback;
2736 }
2737 
2738 /// Set the recursive legality callback for the given operation and mark the
2739 /// operation as recursively legal.
2740 void ConversionTarget::markOpRecursivelyLegal(
2741     OperationName name, const DynamicLegalityCallbackFn &callback) {
2742   auto infoIt = legalOperations.find(name);
2743   assert(infoIt != legalOperations.end() &&
2744          infoIt->second.action != LegalizationAction::Illegal &&
2745          "expected operation to already be marked as legal");
2746   infoIt->second.isRecursivelyLegal = true;
2747   if (callback)
2748     opRecursiveLegalityFns[name] = callback;
2749   else
2750     opRecursiveLegalityFns.erase(name);
2751 }
2752 
2753 /// Set the dynamic legality callback for the given dialects.
2754 void ConversionTarget::setLegalityCallback(
2755     ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
2756   assert(callback && "expected valid legality callback");
2757   for (StringRef dialect : dialects)
2758     dialectLegalityFns[dialect] = callback;
2759 }
2760 
2761 /// Get the legalization information for the given operation.
2762 auto ConversionTarget::getOpInfo(OperationName op) const
2763     -> Optional<LegalizationInfo> {
2764   // Check for info for this specific operation.
2765   auto it = legalOperations.find(op);
2766   if (it != legalOperations.end())
2767     return it->second;
2768   // Check for info for the parent dialect.
2769   auto dialectIt = legalDialects.find(op.getDialectNamespace());
2770   if (dialectIt != legalDialects.end()) {
2771     Optional<DynamicLegalityCallbackFn> callback;
2772     auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
2773     if (dialectFn != dialectLegalityFns.end())
2774       callback = dialectFn->second;
2775     return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
2776                             callback};
2777   }
2778   // Otherwise, check if we mark unknown operations as dynamic.
2779   if (unknownOpsDynamicallyLegal)
2780     return LegalizationInfo{LegalizationAction::Dynamic,
2781                             /*isRecursivelyLegal=*/false, unknownLegalityFn};
2782   return llvm::None;
2783 }
2784 
2785 //===----------------------------------------------------------------------===//
2786 // Op Conversion Entry Points
2787 //===----------------------------------------------------------------------===//
2788 
2789 /// Apply a partial conversion on the given operations and all nested
2790 /// operations. This method converts as many operations to the target as
2791 /// possible, ignoring operations that failed to legalize. This method only
2792 /// returns failure if there ops explicitly marked as illegal.
2793 /// If an `unconvertedOps` set is provided, all operations that are found not
2794 /// to be legalizable to the given `target` are placed within that set. (Note
2795 /// that if there is an op explicitly marked as illegal, the conversion
2796 /// terminates and the `unconvertedOps` set will not necessarily be complete.)
2797 LogicalResult
2798 mlir::applyPartialConversion(ArrayRef<Operation *> ops,
2799                              ConversionTarget &target,
2800                              const FrozenRewritePatternSet &patterns,
2801                              DenseSet<Operation *> *unconvertedOps) {
2802   OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
2803                                  unconvertedOps);
2804   return opConverter.convertOperations(ops);
2805 }
2806 LogicalResult
2807 mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
2808                              const FrozenRewritePatternSet &patterns,
2809                              DenseSet<Operation *> *unconvertedOps) {
2810   return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
2811                                 unconvertedOps);
2812 }
2813 
2814 /// Apply a complete conversion on the given operations, and all nested
2815 /// operations. This method will return failure if the conversion of any
2816 /// operation fails.
2817 LogicalResult
2818 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
2819                           const FrozenRewritePatternSet &patterns) {
2820   OperationConverter opConverter(target, patterns, OpConversionMode::Full);
2821   return opConverter.convertOperations(ops);
2822 }
2823 LogicalResult
2824 mlir::applyFullConversion(Operation *op, ConversionTarget &target,
2825                           const FrozenRewritePatternSet &patterns) {
2826   return applyFullConversion(llvm::makeArrayRef(op), target, patterns);
2827 }
2828 
2829 /// Apply an analysis conversion on the given operations, and all nested
2830 /// operations. This method analyzes which operations would be successfully
2831 /// converted to the target if a conversion was applied. All operations that
2832 /// were found to be legalizable to the given 'target' are placed within the
2833 /// provided 'convertedOps' set; note that no actual rewrites are applied to the
2834 /// operations on success and only pre-existing operations are added to the set.
2835 LogicalResult
2836 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
2837                               ConversionTarget &target,
2838                               const FrozenRewritePatternSet &patterns,
2839                               DenseSet<Operation *> &convertedOps) {
2840   OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
2841                                  &convertedOps);
2842   return opConverter.convertOperations(ops);
2843 }
2844 LogicalResult
2845 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
2846                               const FrozenRewritePatternSet &patterns,
2847                               DenseSet<Operation *> &convertedOps) {
2848   return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
2849                                  convertedOps);
2850 }
2851