1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Transforms/DialectConversion.h" 10 #include "mlir/IR/Block.h" 11 #include "mlir/IR/BlockAndValueMapping.h" 12 #include "mlir/IR/Builders.h" 13 #include "mlir/IR/BuiltinOps.h" 14 #include "mlir/IR/FunctionSupport.h" 15 #include "mlir/Rewrite/PatternApplicator.h" 16 #include "mlir/Transforms/Utils.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/FormatVariadic.h" 21 #include "llvm/Support/SaveAndRestore.h" 22 #include "llvm/Support/ScopedPrinter.h" 23 24 using namespace mlir; 25 using namespace mlir::detail; 26 27 #define DEBUG_TYPE "dialect-conversion" 28 29 /// Recursively collect all of the operations to convert from within 'region'. 30 /// If 'target' is nonnull, operations that are recursively legal have their 31 /// regions pre-filtered to avoid considering them for legalization. 32 static LogicalResult 33 computeConversionSet(iterator_range<Region::iterator> region, 34 Location regionLoc, std::vector<Operation *> &toConvert, 35 ConversionTarget *target = nullptr) { 36 if (llvm::empty(region)) 37 return success(); 38 39 // Traverse starting from the entry block. 40 SmallVector<Block *, 16> worklist(1, &*region.begin()); 41 DenseSet<Block *> visitedBlocks; 42 visitedBlocks.insert(worklist.front()); 43 while (!worklist.empty()) { 44 Block *block = worklist.pop_back_val(); 45 46 // Compute the conversion set of each of the nested operations. 47 for (Operation &op : *block) { 48 toConvert.emplace_back(&op); 49 50 // Don't check this operation's children for conversion if the operation 51 // is recursively legal. 52 auto legalityInfo = target ? target->isLegal(&op) 53 : Optional<ConversionTarget::LegalOpDetails>(); 54 if (legalityInfo && legalityInfo->isRecursivelyLegal) 55 continue; 56 for (auto ®ion : op.getRegions()) { 57 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 58 toConvert, target))) 59 return failure(); 60 } 61 } 62 63 // Recurse to children that haven't been visited. 64 for (Block *succ : block->getSuccessors()) 65 if (visitedBlocks.insert(succ).second) 66 worklist.push_back(succ); 67 } 68 69 // Check that all blocks in the region were visited. 70 if (llvm::any_of(llvm::drop_begin(region, 1), 71 [&](Block &block) { return !visitedBlocks.count(&block); })) 72 return emitError(regionLoc, "unreachable blocks were not converted"); 73 return success(); 74 } 75 76 /// A utility function to log a successful result for the given reason. 77 template <typename... Args> 78 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { 79 LLVM_DEBUG({ 80 os.unindent(); 81 os.startLine() << "} -> SUCCESS"; 82 if (!fmt.empty()) 83 os.getOStream() << " : " 84 << llvm::formatv(fmt.data(), std::forward<Args>(args)...); 85 os.getOStream() << "\n"; 86 }); 87 } 88 89 /// A utility function to log a failure result for the given reason. 90 template <typename... Args> 91 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { 92 LLVM_DEBUG({ 93 os.unindent(); 94 os.startLine() << "} -> FAILURE : " 95 << llvm::formatv(fmt.data(), std::forward<Args>(args)...) 96 << "\n"; 97 }); 98 } 99 100 //===----------------------------------------------------------------------===// 101 // ConversionValueMapping 102 //===----------------------------------------------------------------------===// 103 104 namespace { 105 /// This class wraps a BlockAndValueMapping to provide recursive lookup 106 /// functionality, i.e. we will traverse if the mapped value also has a mapping. 107 struct ConversionValueMapping { 108 /// Lookup a mapped value within the map. If a mapping for the provided value 109 /// does not exist then return the provided value. If `desiredType` is 110 /// non-null, returns the most recently mapped value with that type. If an 111 /// operand of that type does not exist, defaults to normal behavior. 112 Value lookupOrDefault(Value from, Type desiredType = nullptr) const; 113 114 /// Lookup a mapped value within the map, or return null if a mapping does not 115 /// exist. If a mapping exists, this follows the same behavior of 116 /// `lookupOrDefault`. 117 Value lookupOrNull(Value from) const; 118 119 /// Map a value to the one provided. 120 void map(Value oldVal, Value newVal) { mapping.map(oldVal, newVal); } 121 122 /// Drop the last mapping for the given value. 123 void erase(Value value) { mapping.erase(value); } 124 125 /// Returns the inverse raw value mapping (without recursive query support). 126 BlockAndValueMapping getInverse() const { return mapping.getInverse(); } 127 128 private: 129 /// Current value mappings. 130 BlockAndValueMapping mapping; 131 }; 132 } // end anonymous namespace 133 134 Value ConversionValueMapping::lookupOrDefault(Value from, 135 Type desiredType) const { 136 // If there was no desired type, simply find the leaf value. 137 if (!desiredType) { 138 // If this value had a valid mapping, unmap that value as well in the case 139 // that it was also replaced. 140 while (auto mappedValue = mapping.lookupOrNull(from)) 141 from = mappedValue; 142 return from; 143 } 144 145 // Otherwise, try to find the deepest value that has the desired type. 146 Value desiredValue; 147 do { 148 if (from.getType() == desiredType) 149 desiredValue = from; 150 151 Value mappedValue = mapping.lookupOrNull(from); 152 if (!mappedValue) 153 break; 154 from = mappedValue; 155 } while (true); 156 157 // If the desired value was found use it, otherwise default to the leaf value. 158 return desiredValue ? desiredValue : from; 159 } 160 161 Value ConversionValueMapping::lookupOrNull(Value from) const { 162 Value result = lookupOrDefault(from); 163 return result == from ? nullptr : result; 164 } 165 166 //===----------------------------------------------------------------------===// 167 // ArgConverter 168 //===----------------------------------------------------------------------===// 169 namespace { 170 /// This class provides a simple interface for converting the types of block 171 /// arguments. This is done by creating a new block that contains the new legal 172 /// types and extracting the block that contains the old illegal types to allow 173 /// for undoing pending rewrites in the case of failure. 174 struct ArgConverter { 175 ArgConverter(PatternRewriter &rewriter) : rewriter(rewriter) {} 176 177 /// This structure contains the information pertaining to an argument that has 178 /// been converted. 179 struct ConvertedArgInfo { 180 ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize, 181 Value castValue = nullptr) 182 : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {} 183 184 /// The start index of in the new argument list that contains arguments that 185 /// replace the original. 186 unsigned newArgIdx; 187 188 /// The number of arguments that replaced the original argument. 189 unsigned newArgSize; 190 191 /// The cast value that was created to cast from the new arguments to the 192 /// old. This only used if 'newArgSize' > 1. 193 Value castValue; 194 }; 195 196 /// This structure contains information pertaining to a block that has had its 197 /// signature converted. 198 struct ConvertedBlockInfo { 199 ConvertedBlockInfo(Block *origBlock, TypeConverter &converter) 200 : origBlock(origBlock), converter(&converter) {} 201 202 /// The original block that was requested to have its signature converted. 203 Block *origBlock; 204 205 /// The conversion information for each of the arguments. The information is 206 /// None if the argument was dropped during conversion. 207 SmallVector<Optional<ConvertedArgInfo>, 1> argInfo; 208 209 /// The type converter used to convert the arguments. 210 TypeConverter *converter; 211 }; 212 213 /// Return if the signature of the given block has already been converted. 214 bool hasBeenConverted(Block *block) const { 215 return conversionInfo.count(block) || convertedBlocks.count(block); 216 } 217 218 /// Set the type converter to use for the given region. 219 void setConverter(Region *region, TypeConverter *typeConverter) { 220 assert(typeConverter && "expected valid type converter"); 221 regionToConverter[region] = typeConverter; 222 } 223 224 /// Return the type converter to use for the given region, or null if there 225 /// isn't one. 226 TypeConverter *getConverter(Region *region) { 227 return regionToConverter.lookup(region); 228 } 229 230 //===--------------------------------------------------------------------===// 231 // Rewrite Application 232 //===--------------------------------------------------------------------===// 233 234 /// Erase any rewrites registered for the blocks within the given operation 235 /// which is about to be removed. This merely drops the rewrites without 236 /// undoing them. 237 void notifyOpRemoved(Operation *op); 238 239 /// Cleanup and undo any generated conversions for the arguments of block. 240 /// This method replaces the new block with the original, reverting the IR to 241 /// its original state. 242 void discardRewrites(Block *block); 243 244 /// Fully replace uses of the old arguments with the new. 245 void applyRewrites(ConversionValueMapping &mapping); 246 247 /// Materialize any necessary conversions for converted arguments that have 248 /// live users, using the provided `findLiveUser` to search for a user that 249 /// survives the conversion process. 250 LogicalResult 251 materializeLiveConversions(ConversionValueMapping &mapping, 252 OpBuilder &builder, 253 function_ref<Operation *(Value)> findLiveUser); 254 255 //===--------------------------------------------------------------------===// 256 // Conversion 257 //===--------------------------------------------------------------------===// 258 259 /// Attempt to convert the signature of the given block, if successful a new 260 /// block is returned containing the new arguments. Returns `block` if it did 261 /// not require conversion. 262 FailureOr<Block *> 263 convertSignature(Block *block, TypeConverter &converter, 264 ConversionValueMapping &mapping, 265 SmallVectorImpl<BlockArgument> &argReplacements); 266 267 /// Apply the given signature conversion on the given block. The new block 268 /// containing the updated signature is returned. If no conversions were 269 /// necessary, e.g. if the block has no arguments, `block` is returned. 270 /// `converter` is used to generate any necessary cast operations that 271 /// translate between the origin argument types and those specified in the 272 /// signature conversion. 273 Block *applySignatureConversion( 274 Block *block, TypeConverter &converter, 275 TypeConverter::SignatureConversion &signatureConversion, 276 ConversionValueMapping &mapping, 277 SmallVectorImpl<BlockArgument> &argReplacements); 278 279 /// Insert a new conversion into the cache. 280 void insertConversion(Block *newBlock, ConvertedBlockInfo &&info); 281 282 /// A collection of blocks that have had their arguments converted. This is a 283 /// map from the new replacement block, back to the original block. 284 llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo; 285 286 /// The set of original blocks that were converted. 287 DenseSet<Block *> convertedBlocks; 288 289 /// A mapping from valid regions, to those containing the original blocks of a 290 /// conversion. 291 DenseMap<Region *, std::unique_ptr<Region>> regionMapping; 292 293 /// A mapping of regions to type converters that should be used when 294 /// converting the arguments of blocks within that region. 295 DenseMap<Region *, TypeConverter *> regionToConverter; 296 297 /// The pattern rewriter to use when materializing conversions. 298 PatternRewriter &rewriter; 299 }; 300 } // end anonymous namespace 301 302 //===----------------------------------------------------------------------===// 303 // Rewrite Application 304 305 void ArgConverter::notifyOpRemoved(Operation *op) { 306 if (conversionInfo.empty()) 307 return; 308 309 for (Region ®ion : op->getRegions()) { 310 for (Block &block : region) { 311 // Drop any rewrites from within. 312 for (Operation &nestedOp : block) 313 if (nestedOp.getNumRegions()) 314 notifyOpRemoved(&nestedOp); 315 316 // Check if this block was converted. 317 auto it = conversionInfo.find(&block); 318 if (it == conversionInfo.end()) 319 continue; 320 321 // Drop all uses of the original arguments and delete the original block. 322 Block *origBlock = it->second.origBlock; 323 for (BlockArgument arg : origBlock->getArguments()) 324 arg.dropAllUses(); 325 conversionInfo.erase(it); 326 } 327 } 328 } 329 330 void ArgConverter::discardRewrites(Block *block) { 331 auto it = conversionInfo.find(block); 332 if (it == conversionInfo.end()) 333 return; 334 Block *origBlock = it->second.origBlock; 335 336 // Drop all uses of the new block arguments and replace uses of the new block. 337 for (int i = block->getNumArguments() - 1; i >= 0; --i) 338 block->getArgument(i).dropAllUses(); 339 block->replaceAllUsesWith(origBlock); 340 341 // Move the operations back the original block and the delete the new block. 342 origBlock->getOperations().splice(origBlock->end(), block->getOperations()); 343 origBlock->moveBefore(block); 344 block->erase(); 345 346 convertedBlocks.erase(origBlock); 347 conversionInfo.erase(it); 348 } 349 350 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) { 351 for (auto &info : conversionInfo) { 352 ConvertedBlockInfo &blockInfo = info.second; 353 Block *origBlock = blockInfo.origBlock; 354 355 // Process the remapping for each of the original arguments. 356 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 357 Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i]; 358 BlockArgument origArg = origBlock->getArgument(i); 359 360 // Handle the case of a 1->0 value mapping. 361 if (!argInfo) { 362 if (Value newArg = mapping.lookupOrNull(origArg)) 363 origArg.replaceAllUsesWith(newArg); 364 continue; 365 } 366 367 // Otherwise this is a 1->1+ value mapping. 368 Value castValue = argInfo->castValue; 369 assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping"); 370 371 // If the argument is still used, replace it with the generated cast. 372 if (!origArg.use_empty()) 373 origArg.replaceAllUsesWith(mapping.lookupOrDefault(castValue)); 374 } 375 } 376 } 377 378 LogicalResult ArgConverter::materializeLiveConversions( 379 ConversionValueMapping &mapping, OpBuilder &builder, 380 function_ref<Operation *(Value)> findLiveUser) { 381 for (auto &info : conversionInfo) { 382 Block *newBlock = info.first; 383 ConvertedBlockInfo &blockInfo = info.second; 384 Block *origBlock = blockInfo.origBlock; 385 386 // Process the remapping for each of the original arguments. 387 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 388 // FIXME: We should run the below checks even if the type conversion was 389 // 1->N, but a lot of existing lowering rely on the block argument being 390 // blindly replaced. Those usages should be updated, and this if should be 391 // removed. 392 if (blockInfo.argInfo[i]) 393 continue; 394 395 // If the type of this argument changed and the argument is still live, we 396 // need to materialize a conversion. 397 BlockArgument origArg = origBlock->getArgument(i); 398 auto argReplacementValue = mapping.lookupOrDefault(origArg); 399 bool isDroppedArg = argReplacementValue == origArg; 400 if (argReplacementValue.getType() == origArg.getType() && !isDroppedArg) 401 continue; 402 Operation *liveUser = findLiveUser(origArg); 403 if (!liveUser) 404 continue; 405 406 if (OpResult result = argReplacementValue.dyn_cast<OpResult>()) 407 rewriter.setInsertionPointAfter(result.getOwner()); 408 else 409 rewriter.setInsertionPointToStart(newBlock); 410 Value newArg = blockInfo.converter->materializeSourceConversion( 411 rewriter, origArg.getLoc(), origArg.getType(), 412 isDroppedArg ? ValueRange() : ValueRange(argReplacementValue)); 413 if (!newArg) { 414 InFlightDiagnostic diag = 415 emitError(origArg.getLoc()) 416 << "failed to materialize conversion for block argument #" << i 417 << " that remained live after conversion, type was " 418 << origArg.getType(); 419 if (!isDroppedArg) 420 diag << ", with target type " << argReplacementValue.getType(); 421 diag.attachNote(liveUser->getLoc()) 422 << "see existing live user here: " << *liveUser; 423 return failure(); 424 } 425 mapping.map(origArg, newArg); 426 } 427 } 428 return success(); 429 } 430 431 //===----------------------------------------------------------------------===// 432 // Conversion 433 434 FailureOr<Block *> ArgConverter::convertSignature( 435 Block *block, TypeConverter &converter, ConversionValueMapping &mapping, 436 SmallVectorImpl<BlockArgument> &argReplacements) { 437 // Check if the block was already converted. If the block is detached, 438 // conservatively assume it is going to be deleted. 439 if (hasBeenConverted(block) || !block->getParent()) 440 return block; 441 442 // Try to convert the signature for the block with the provided converter. 443 if (auto conversion = converter.convertBlockSignature(block)) 444 return applySignatureConversion(block, converter, *conversion, mapping, 445 argReplacements); 446 return failure(); 447 } 448 449 Block *ArgConverter::applySignatureConversion( 450 Block *block, TypeConverter &converter, 451 TypeConverter::SignatureConversion &signatureConversion, 452 ConversionValueMapping &mapping, 453 SmallVectorImpl<BlockArgument> &argReplacements) { 454 // If no arguments are being changed or added, there is nothing to do. 455 unsigned origArgCount = block->getNumArguments(); 456 auto convertedTypes = signatureConversion.getConvertedTypes(); 457 if (origArgCount == 0 && convertedTypes.empty()) 458 return block; 459 460 // Split the block at the beginning to get a new block to use for the updated 461 // signature. 462 Block *newBlock = block->splitBlock(block->begin()); 463 block->replaceAllUsesWith(newBlock); 464 465 SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes)); 466 ArrayRef<Value> newArgs(newArgRange); 467 468 // Remap each of the original arguments as determined by the signature 469 // conversion. 470 ConvertedBlockInfo info(block, converter); 471 info.argInfo.resize(origArgCount); 472 473 OpBuilder::InsertionGuard guard(rewriter); 474 rewriter.setInsertionPointToStart(newBlock); 475 for (unsigned i = 0; i != origArgCount; ++i) { 476 auto inputMap = signatureConversion.getInputMapping(i); 477 if (!inputMap) 478 continue; 479 BlockArgument origArg = block->getArgument(i); 480 481 // If inputMap->replacementValue is not nullptr, then the argument is 482 // dropped and a replacement value is provided to be the remappedValue. 483 if (inputMap->replacementValue) { 484 assert(inputMap->size == 0 && 485 "invalid to provide a replacement value when the argument isn't " 486 "dropped"); 487 mapping.map(origArg, inputMap->replacementValue); 488 argReplacements.push_back(origArg); 489 continue; 490 } 491 492 // Otherwise, this is a 1->1+ mapping. Call into the provided type converter 493 // to pack the new values. For 1->1 mappings, if there is no materialization 494 // provided, use the argument directly instead. 495 auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size); 496 Value newArg = converter.materializeArgumentConversion( 497 rewriter, origArg.getLoc(), origArg.getType(), replArgs); 498 if (!newArg) { 499 assert(replArgs.size() == 1 && 500 "couldn't materialize the result of 1->N conversion"); 501 newArg = replArgs.front(); 502 } 503 mapping.map(origArg, newArg); 504 argReplacements.push_back(origArg); 505 info.argInfo[i] = 506 ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg); 507 } 508 509 // Remove the original block from the region and return the new one. 510 insertConversion(newBlock, std::move(info)); 511 return newBlock; 512 } 513 514 void ArgConverter::insertConversion(Block *newBlock, 515 ConvertedBlockInfo &&info) { 516 // Get a region to insert the old block. 517 Region *region = newBlock->getParent(); 518 std::unique_ptr<Region> &mappedRegion = regionMapping[region]; 519 if (!mappedRegion) 520 mappedRegion = std::make_unique<Region>(region->getParentOp()); 521 522 // Move the original block to the mapped region and emplace the conversion. 523 mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(), 524 info.origBlock->getIterator()); 525 convertedBlocks.insert(info.origBlock); 526 conversionInfo.insert({newBlock, std::move(info)}); 527 } 528 529 //===----------------------------------------------------------------------===// 530 // Rewriter and Translation State 531 //===----------------------------------------------------------------------===// 532 namespace { 533 /// This class contains a snapshot of the current conversion rewriter state. 534 /// This is useful when saving and undoing a set of rewrites. 535 struct RewriterState { 536 RewriterState(unsigned numCreatedOps, unsigned numReplacements, 537 unsigned numArgReplacements, unsigned numBlockActions, 538 unsigned numIgnoredOperations, unsigned numRootUpdates) 539 : numCreatedOps(numCreatedOps), numReplacements(numReplacements), 540 numArgReplacements(numArgReplacements), 541 numBlockActions(numBlockActions), 542 numIgnoredOperations(numIgnoredOperations), 543 numRootUpdates(numRootUpdates) {} 544 545 /// The current number of created operations. 546 unsigned numCreatedOps; 547 548 /// The current number of replacements queued. 549 unsigned numReplacements; 550 551 /// The current number of argument replacements queued. 552 unsigned numArgReplacements; 553 554 /// The current number of block actions performed. 555 unsigned numBlockActions; 556 557 /// The current number of ignored operations. 558 unsigned numIgnoredOperations; 559 560 /// The current number of operations that were updated in place. 561 unsigned numRootUpdates; 562 }; 563 564 /// The state of an operation that was updated by a pattern in-place. This 565 /// contains all of the necessary information to reconstruct an operation that 566 /// was updated in place. 567 class OperationTransactionState { 568 public: 569 OperationTransactionState() = default; 570 OperationTransactionState(Operation *op) 571 : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()), 572 operands(op->operand_begin(), op->operand_end()), 573 successors(op->successor_begin(), op->successor_end()) {} 574 575 /// Discard the transaction state and reset the state of the original 576 /// operation. 577 void resetOperation() const { 578 op->setLoc(loc); 579 op->setAttrs(attrs); 580 op->setOperands(operands); 581 for (auto it : llvm::enumerate(successors)) 582 op->setSuccessor(it.value(), it.index()); 583 } 584 585 /// Return the original operation of this state. 586 Operation *getOperation() const { return op; } 587 588 private: 589 Operation *op; 590 LocationAttr loc; 591 DictionaryAttr attrs; 592 SmallVector<Value, 8> operands; 593 SmallVector<Block *, 2> successors; 594 }; 595 596 /// This class represents one requested operation replacement via 'replaceOp' or 597 /// 'eraseOp`. 598 struct OpReplacement { 599 OpReplacement() = default; 600 OpReplacement(TypeConverter *converter) : converter(converter) {} 601 602 /// An optional type converter that can be used to materialize conversions 603 /// between the new and old values if necessary. 604 TypeConverter *converter = nullptr; 605 }; 606 607 /// The kind of the block action performed during the rewrite. Actions can be 608 /// undone if the conversion fails. 609 enum class BlockActionKind { 610 Create, 611 Erase, 612 Merge, 613 Move, 614 Split, 615 TypeConversion 616 }; 617 618 /// Original position of the given block in its parent region. During undo 619 /// actions, the block needs to be placed after `insertAfterBlock`. 620 struct BlockPosition { 621 Region *region; 622 Block *insertAfterBlock; 623 }; 624 625 /// Information needed to undo the merge actions. 626 /// - the source block, and 627 /// - the Operation that was the last operation in the dest block before the 628 /// merge (could be null if the dest block was empty). 629 struct MergeInfo { 630 Block *sourceBlock; 631 Operation *destBlockLastInst; 632 }; 633 634 /// The storage class for an undoable block action (one of BlockActionKind), 635 /// contains the information necessary to undo this action. 636 struct BlockAction { 637 static BlockAction getCreate(Block *block) { 638 return {BlockActionKind::Create, block, {}}; 639 } 640 static BlockAction getErase(Block *block, BlockPosition originalPosition) { 641 return {BlockActionKind::Erase, block, {originalPosition}}; 642 } 643 static BlockAction getMerge(Block *block, Block *sourceBlock) { 644 BlockAction action{BlockActionKind::Merge, block, {}}; 645 action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()}; 646 return action; 647 } 648 static BlockAction getMove(Block *block, BlockPosition originalPosition) { 649 return {BlockActionKind::Move, block, {originalPosition}}; 650 } 651 static BlockAction getSplit(Block *block, Block *originalBlock) { 652 BlockAction action{BlockActionKind::Split, block, {}}; 653 action.originalBlock = originalBlock; 654 return action; 655 } 656 static BlockAction getTypeConversion(Block *block) { 657 return BlockAction{BlockActionKind::TypeConversion, block, {}}; 658 } 659 660 // The action kind. 661 BlockActionKind kind; 662 663 // A pointer to the block that was created by the action. 664 Block *block; 665 666 union { 667 // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and 668 // contains a pointer to the region that originally contained the block as 669 // well as the position of the block in that region. 670 BlockPosition originalPosition; 671 // In use if kind == BlockActionKind::Split and contains a pointer to the 672 // block that was split into two parts. 673 Block *originalBlock; 674 // In use if kind == BlockActionKind::Merge, and contains the information 675 // needed to undo the merge. 676 MergeInfo mergeInfo; 677 }; 678 }; 679 } // end anonymous namespace 680 681 //===----------------------------------------------------------------------===// 682 // ConversionPatternRewriterImpl 683 //===----------------------------------------------------------------------===// 684 namespace mlir { 685 namespace detail { 686 struct ConversionPatternRewriterImpl { 687 ConversionPatternRewriterImpl(PatternRewriter &rewriter) 688 : argConverter(rewriter) {} 689 690 /// Cleanup and destroy any generated rewrite operations. This method is 691 /// invoked when the conversion process fails. 692 void discardRewrites(); 693 694 /// Apply all requested operation rewrites. This method is invoked when the 695 /// conversion process succeeds. 696 void applyRewrites(); 697 698 //===--------------------------------------------------------------------===// 699 // State Management 700 //===--------------------------------------------------------------------===// 701 702 /// Return the current state of the rewriter. 703 RewriterState getCurrentState(); 704 705 /// Reset the state of the rewriter to a previously saved point. 706 void resetState(RewriterState state); 707 708 /// Erase any blocks that were unlinked from their regions and stored in block 709 /// actions. 710 void eraseDanglingBlocks(); 711 712 /// Undo the block actions (motions, splits) one by one in reverse order until 713 /// "numActionsToKeep" actions remains. 714 void undoBlockActions(unsigned numActionsToKeep = 0); 715 716 /// Remap the given operands to those with potentially different types. The 717 /// provided type converter is used to ensure that the remapped types are 718 /// legal. Returns success if the operands could be remapped, failure 719 /// otherwise. 720 LogicalResult remapValues(Location loc, PatternRewriter &rewriter, 721 TypeConverter *converter, 722 Operation::operand_range operands, 723 SmallVectorImpl<Value> &remapped); 724 725 /// Returns true if the given operation is ignored, and does not need to be 726 /// converted. 727 bool isOpIgnored(Operation *op) const; 728 729 /// Recursively marks the nested operations under 'op' as ignored. This 730 /// removes them from being considered for legalization. 731 void markNestedOpsIgnored(Operation *op); 732 733 //===--------------------------------------------------------------------===// 734 // Type Conversion 735 //===--------------------------------------------------------------------===// 736 737 /// Convert the signature of the given block. 738 FailureOr<Block *> convertBlockSignature( 739 Block *block, TypeConverter &converter, 740 TypeConverter::SignatureConversion *conversion = nullptr); 741 742 /// Apply a signature conversion on the given region. 743 Block * 744 applySignatureConversion(Region *region, 745 TypeConverter::SignatureConversion &conversion); 746 747 /// Convert the types of block arguments within the given region. 748 FailureOr<Block *> 749 convertRegionTypes(Region *region, TypeConverter &converter, 750 TypeConverter::SignatureConversion *entryConversion); 751 752 /// Convert the types of non-entry block arguments within the given region. 753 LogicalResult convertNonEntryRegionTypes(Region *region, 754 TypeConverter &converter); 755 756 //===--------------------------------------------------------------------===// 757 // Rewriter Notification Hooks 758 //===--------------------------------------------------------------------===// 759 760 /// PatternRewriter hook for replacing the results of an operation. 761 void notifyOpReplaced(Operation *op, ValueRange newValues); 762 763 /// Notifies that a block is about to be erased. 764 void notifyBlockIsBeingErased(Block *block); 765 766 /// Notifies that a block was created. 767 void notifyCreatedBlock(Block *block); 768 769 /// Notifies that a block was split. 770 void notifySplitBlock(Block *block, Block *continuation); 771 772 /// Notifies that `block` is being merged with `srcBlock`. 773 void notifyBlocksBeingMerged(Block *block, Block *srcBlock); 774 775 /// Notifies that the blocks of a region are about to be moved. 776 void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent, 777 Region::iterator before); 778 779 /// Notifies that the blocks of a region were cloned into another. 780 void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks, 781 Location origRegionLoc); 782 783 /// Notifies that a pattern match failed for the given reason. 784 LogicalResult 785 notifyMatchFailure(Location loc, 786 function_ref<void(Diagnostic &)> reasonCallback); 787 788 //===--------------------------------------------------------------------===// 789 // State 790 //===--------------------------------------------------------------------===// 791 792 // Mapping between replaced values that differ in type. This happens when 793 // replacing a value with one of a different type. 794 ConversionValueMapping mapping; 795 796 /// Utility used to convert block arguments. 797 ArgConverter argConverter; 798 799 /// Ordered vector of all of the newly created operations during conversion. 800 std::vector<Operation *> createdOps; 801 802 /// Ordered map of requested operation replacements. 803 llvm::MapVector<Operation *, OpReplacement> replacements; 804 805 /// Ordered vector of any requested block argument replacements. 806 SmallVector<BlockArgument, 4> argReplacements; 807 808 /// Ordered list of block operations (creations, splits, motions). 809 SmallVector<BlockAction, 4> blockActions; 810 811 /// A set of operations that should no longer be considered for legalization, 812 /// but were not directly replace/erased/etc. by a pattern. These are 813 /// generally child operations of other operations who were 814 /// replaced/erased/etc. This is not meant to be an exhaustive list of all 815 /// operations, but the minimal set that can be used to detect if a given 816 /// operation should be `ignored`. For example, we may add the operations that 817 /// define non-empty regions to the set, but not any of the others. This 818 /// simplifies the amount of memory needed as we can query if the parent 819 /// operation was ignored. 820 llvm::SetVector<Operation *> ignoredOps; 821 822 /// A transaction state for each of operations that were updated in-place. 823 SmallVector<OperationTransactionState, 4> rootUpdates; 824 825 /// A vector of indices into `replacements` of operations that were replaced 826 /// with values with different result types than the original operation, e.g. 827 /// 1->N conversion of some kind. 828 SmallVector<unsigned, 4> operationsWithChangedResults; 829 830 /// A default type converter, used when block conversions do not have one 831 /// explicitly provided. 832 TypeConverter defaultTypeConverter; 833 834 /// The current conversion pattern that is being rewritten, or nullptr if 835 /// called from outside of a conversion pattern rewrite. 836 const ConversionPattern *currentConversionPattern = nullptr; 837 838 #ifndef NDEBUG 839 /// A set of operations that have pending updates. This tracking isn't 840 /// strictly necessary, and is thus only active during debug builds for extra 841 /// verification. 842 SmallPtrSet<Operation *, 1> pendingRootUpdates; 843 844 /// A logger used to emit diagnostics during the conversion process. 845 llvm::ScopedPrinter logger{llvm::dbgs()}; 846 #endif 847 }; 848 } // end namespace detail 849 } // end namespace mlir 850 851 /// Detach any operations nested in the given operation from their parent 852 /// blocks, and erase the given operation. This can be used when the nested 853 /// operations are scheduled for erasure themselves, so deleting the regions of 854 /// the given operation together with their content would result in double-free. 855 /// This happens, for example, when rolling back op creation in the reverse 856 /// order and if the nested ops were created before the parent op. This function 857 /// does not need to collect nested ops recursively because it is expected to 858 /// also be called for each nested op when it is about to be deleted. 859 static void detachNestedAndErase(Operation *op) { 860 for (Region ®ion : op->getRegions()) { 861 for (Block &block : region.getBlocks()) { 862 while (!block.getOperations().empty()) 863 block.getOperations().remove(block.getOperations().begin()); 864 block.dropAllDefinedValueUses(); 865 } 866 } 867 op->dropAllUses(); 868 op->erase(); 869 } 870 871 void ConversionPatternRewriterImpl::discardRewrites() { 872 // Reset any operations that were updated in place. 873 for (auto &state : rootUpdates) 874 state.resetOperation(); 875 876 undoBlockActions(); 877 878 // Remove any newly created ops. 879 for (auto *op : llvm::reverse(createdOps)) 880 detachNestedAndErase(op); 881 } 882 883 void ConversionPatternRewriterImpl::applyRewrites() { 884 // Apply all of the rewrites replacements requested during conversion. 885 for (auto &repl : replacements) { 886 for (OpResult result : repl.first->getResults()) 887 if (Value newValue = mapping.lookupOrNull(result)) 888 result.replaceAllUsesWith(newValue); 889 890 // If this operation defines any regions, drop any pending argument 891 // rewrites. 892 if (repl.first->getNumRegions()) 893 argConverter.notifyOpRemoved(repl.first); 894 } 895 896 // Apply all of the requested argument replacements. 897 for (BlockArgument arg : argReplacements) { 898 Value repl = mapping.lookupOrDefault(arg); 899 if (repl.isa<BlockArgument>()) { 900 arg.replaceAllUsesWith(repl); 901 continue; 902 } 903 904 // If the replacement value is an operation, we check to make sure that we 905 // don't replace uses that are within the parent operation of the 906 // replacement value. 907 Operation *replOp = repl.cast<OpResult>().getOwner(); 908 Block *replBlock = replOp->getBlock(); 909 arg.replaceUsesWithIf(repl, [&](OpOperand &operand) { 910 Operation *user = operand.getOwner(); 911 return user->getBlock() != replBlock || replOp->isBeforeInBlock(user); 912 }); 913 } 914 915 // In a second pass, erase all of the replaced operations in reverse. This 916 // allows processing nested operations before their parent region is 917 // destroyed. 918 for (auto &repl : llvm::reverse(replacements)) 919 repl.first->erase(); 920 921 argConverter.applyRewrites(mapping); 922 923 // Now that the ops have been erased, also erase dangling blocks. 924 eraseDanglingBlocks(); 925 } 926 927 //===----------------------------------------------------------------------===// 928 // State Management 929 930 RewriterState ConversionPatternRewriterImpl::getCurrentState() { 931 return RewriterState(createdOps.size(), replacements.size(), 932 argReplacements.size(), blockActions.size(), 933 ignoredOps.size(), rootUpdates.size()); 934 } 935 936 void ConversionPatternRewriterImpl::resetState(RewriterState state) { 937 // Reset any operations that were updated in place. 938 for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i) 939 rootUpdates[i].resetOperation(); 940 rootUpdates.resize(state.numRootUpdates); 941 942 // Reset any replaced arguments. 943 for (BlockArgument replacedArg : 944 llvm::drop_begin(argReplacements, state.numArgReplacements)) 945 mapping.erase(replacedArg); 946 argReplacements.resize(state.numArgReplacements); 947 948 // Undo any block actions. 949 undoBlockActions(state.numBlockActions); 950 951 // Reset any replaced operations and undo any saved mappings. 952 for (auto &repl : llvm::drop_begin(replacements, state.numReplacements)) 953 for (auto result : repl.first->getResults()) 954 mapping.erase(result); 955 while (replacements.size() != state.numReplacements) 956 replacements.pop_back(); 957 958 // Pop all of the newly created operations. 959 while (createdOps.size() != state.numCreatedOps) { 960 detachNestedAndErase(createdOps.back()); 961 createdOps.pop_back(); 962 } 963 964 // Pop all of the recorded ignored operations that are no longer valid. 965 while (ignoredOps.size() != state.numIgnoredOperations) 966 ignoredOps.pop_back(); 967 968 // Reset operations with changed results. 969 while (!operationsWithChangedResults.empty() && 970 operationsWithChangedResults.back() >= state.numReplacements) 971 operationsWithChangedResults.pop_back(); 972 } 973 974 void ConversionPatternRewriterImpl::eraseDanglingBlocks() { 975 for (auto &action : blockActions) 976 if (action.kind == BlockActionKind::Erase) 977 delete action.block; 978 } 979 980 void ConversionPatternRewriterImpl::undoBlockActions( 981 unsigned numActionsToKeep) { 982 for (auto &action : 983 llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) { 984 switch (action.kind) { 985 // Delete the created block. 986 case BlockActionKind::Create: { 987 // Unlink all of the operations within this block, they will be deleted 988 // separately. 989 auto &blockOps = action.block->getOperations(); 990 while (!blockOps.empty()) 991 blockOps.remove(blockOps.begin()); 992 action.block->dropAllDefinedValueUses(); 993 action.block->erase(); 994 break; 995 } 996 // Put the block (owned by action) back into its original position. 997 case BlockActionKind::Erase: { 998 auto &blockList = action.originalPosition.region->getBlocks(); 999 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 1000 blockList.insert((insertAfterBlock 1001 ? std::next(Region::iterator(insertAfterBlock)) 1002 : blockList.begin()), 1003 action.block); 1004 break; 1005 } 1006 // Split the block at the position which was originally the end of the 1007 // destination block (owned by action), and put the instructions back into 1008 // the block used before the merge. 1009 case BlockActionKind::Merge: { 1010 Block *sourceBlock = action.mergeInfo.sourceBlock; 1011 Block::iterator splitPoint = 1012 (action.mergeInfo.destBlockLastInst 1013 ? ++Block::iterator(action.mergeInfo.destBlockLastInst) 1014 : action.block->begin()); 1015 sourceBlock->getOperations().splice(sourceBlock->begin(), 1016 action.block->getOperations(), 1017 splitPoint, action.block->end()); 1018 break; 1019 } 1020 // Move the block back to its original position. 1021 case BlockActionKind::Move: { 1022 Region *originalRegion = action.originalPosition.region; 1023 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 1024 originalRegion->getBlocks().splice( 1025 (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock)) 1026 : originalRegion->end()), 1027 action.block->getParent()->getBlocks(), action.block); 1028 break; 1029 } 1030 // Merge back the block that was split out. 1031 case BlockActionKind::Split: { 1032 action.originalBlock->getOperations().splice( 1033 action.originalBlock->end(), action.block->getOperations()); 1034 action.block->dropAllDefinedValueUses(); 1035 action.block->erase(); 1036 break; 1037 } 1038 // Undo the type conversion. 1039 case BlockActionKind::TypeConversion: { 1040 argConverter.discardRewrites(action.block); 1041 break; 1042 } 1043 } 1044 } 1045 blockActions.resize(numActionsToKeep); 1046 } 1047 1048 LogicalResult ConversionPatternRewriterImpl::remapValues( 1049 Location loc, PatternRewriter &rewriter, TypeConverter *converter, 1050 Operation::operand_range operands, SmallVectorImpl<Value> &remapped) { 1051 remapped.reserve(llvm::size(operands)); 1052 1053 SmallVector<Type, 1> legalTypes; 1054 for (auto it : llvm::enumerate(operands)) { 1055 Value operand = it.value(); 1056 Type origType = operand.getType(); 1057 1058 // If a converter was provided, get the desired legal types for this 1059 // operand. 1060 Type desiredType; 1061 if (converter) { 1062 // If there is no legal conversion, fail to match this pattern. 1063 legalTypes.clear(); 1064 if (failed(converter->convertType(origType, legalTypes))) { 1065 return notifyMatchFailure(loc, [=](Diagnostic &diag) { 1066 diag << "unable to convert type for operand #" << it.index() 1067 << ", type was " << origType; 1068 }); 1069 } 1070 // TODO: There currently isn't any mechanism to do 1->N type conversion 1071 // via the PatternRewriter replacement API, so for now we just ignore it. 1072 if (legalTypes.size() == 1) 1073 desiredType = legalTypes.front(); 1074 } else { 1075 // TODO: What we should do here is just set `desiredType` to `origType` 1076 // and then handle the necessary type conversions after the conversion 1077 // process has finished. Unfortunately a lot of patterns currently rely on 1078 // receiving the new operands even if the types change, so we keep the 1079 // original behavior here for now until all of the patterns relying on 1080 // this get updated. 1081 } 1082 Value newOperand = mapping.lookupOrDefault(operand, desiredType); 1083 1084 // Handle the case where the conversion was 1->1 and the new operand type 1085 // isn't legal. 1086 Type newOperandType = newOperand.getType(); 1087 if (converter && desiredType && newOperandType != desiredType) { 1088 // Attempt to materialize a conversion for this new value. 1089 newOperand = converter->materializeTargetConversion( 1090 rewriter, loc, desiredType, newOperand); 1091 if (!newOperand) { 1092 return notifyMatchFailure(loc, [=](Diagnostic &diag) { 1093 diag << "unable to materialize a conversion for " 1094 "operand #" 1095 << it.index() << ", from " << newOperandType << " to " 1096 << desiredType; 1097 }); 1098 } 1099 } 1100 remapped.push_back(newOperand); 1101 } 1102 return success(); 1103 } 1104 1105 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const { 1106 // Check to see if this operation was replaced or its parent ignored. 1107 return replacements.count(op) || ignoredOps.count(op->getParentOp()); 1108 } 1109 1110 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) { 1111 // Walk this operation and collect nested operations that define non-empty 1112 // regions. We mark such operations as 'ignored' so that we know we don't have 1113 // to convert them, or their nested ops. 1114 if (op->getNumRegions() == 0) 1115 return; 1116 op->walk([&](Operation *op) { 1117 if (llvm::any_of(op->getRegions(), 1118 [](Region ®ion) { return !region.empty(); })) 1119 ignoredOps.insert(op); 1120 }); 1121 } 1122 1123 //===----------------------------------------------------------------------===// 1124 // Type Conversion 1125 1126 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature( 1127 Block *block, TypeConverter &converter, 1128 TypeConverter::SignatureConversion *conversion) { 1129 FailureOr<Block *> result = 1130 conversion ? argConverter.applySignatureConversion( 1131 block, converter, *conversion, mapping, argReplacements) 1132 : argConverter.convertSignature(block, converter, mapping, 1133 argReplacements); 1134 if (Block *newBlock = result.getValue()) { 1135 if (newBlock != block) 1136 blockActions.push_back(BlockAction::getTypeConversion(newBlock)); 1137 } 1138 return result; 1139 } 1140 1141 Block *ConversionPatternRewriterImpl::applySignatureConversion( 1142 Region *region, TypeConverter::SignatureConversion &conversion) { 1143 if (!region->empty()) { 1144 return *convertBlockSignature(®ion->front(), defaultTypeConverter, 1145 &conversion); 1146 } 1147 return nullptr; 1148 } 1149 1150 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes( 1151 Region *region, TypeConverter &converter, 1152 TypeConverter::SignatureConversion *entryConversion) { 1153 argConverter.setConverter(region, &converter); 1154 if (region->empty()) 1155 return nullptr; 1156 1157 if (failed(convertNonEntryRegionTypes(region, converter))) 1158 return failure(); 1159 1160 FailureOr<Block *> newEntry = 1161 convertBlockSignature(®ion->front(), converter, entryConversion); 1162 return newEntry; 1163 } 1164 1165 LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes( 1166 Region *region, TypeConverter &converter) { 1167 argConverter.setConverter(region, &converter); 1168 if (region->empty()) 1169 return success(); 1170 1171 // Convert the arguments of each block within the region. 1172 for (Block &block : llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) 1173 if (failed(convertBlockSignature(&block, converter))) 1174 return failure(); 1175 return success(); 1176 } 1177 1178 //===----------------------------------------------------------------------===// 1179 // Rewriter Notification Hooks 1180 1181 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op, 1182 ValueRange newValues) { 1183 assert(newValues.size() == op->getNumResults()); 1184 assert(!replacements.count(op) && "operation was already replaced"); 1185 1186 // Track if any of the results changed, e.g. erased and replaced with null. 1187 bool resultChanged = false; 1188 1189 // Create mappings for each of the new result values. 1190 Value newValue, result; 1191 for (auto it : llvm::zip(newValues, op->getResults())) { 1192 std::tie(newValue, result) = it; 1193 if (!newValue) { 1194 resultChanged = true; 1195 continue; 1196 } 1197 // Remap, and check for any result type changes. 1198 mapping.map(result, newValue); 1199 resultChanged |= (newValue.getType() != result.getType()); 1200 } 1201 if (resultChanged) 1202 operationsWithChangedResults.push_back(replacements.size()); 1203 1204 // Record the requested operation replacement. 1205 TypeConverter *converter = nullptr; 1206 if (currentConversionPattern) 1207 converter = currentConversionPattern->getTypeConverter(); 1208 replacements.insert(std::make_pair(op, OpReplacement(converter))); 1209 1210 // Mark this operation as recursively ignored so that we don't need to 1211 // convert any nested operations. 1212 markNestedOpsIgnored(op); 1213 } 1214 1215 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) { 1216 Region *region = block->getParent(); 1217 Block *origPrevBlock = block->getPrevNode(); 1218 blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock})); 1219 } 1220 1221 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) { 1222 blockActions.push_back(BlockAction::getCreate(block)); 1223 } 1224 1225 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block, 1226 Block *continuation) { 1227 blockActions.push_back(BlockAction::getSplit(continuation, block)); 1228 } 1229 1230 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block, 1231 Block *srcBlock) { 1232 blockActions.push_back(BlockAction::getMerge(block, srcBlock)); 1233 } 1234 1235 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore( 1236 Region ®ion, Region &parent, Region::iterator before) { 1237 if (region.empty()) 1238 return; 1239 Block *laterBlock = ®ion.back(); 1240 for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) { 1241 blockActions.push_back( 1242 BlockAction::getMove(laterBlock, {®ion, &earlierBlock})); 1243 laterBlock = &earlierBlock; 1244 } 1245 blockActions.push_back(BlockAction::getMove(laterBlock, {®ion, nullptr})); 1246 } 1247 1248 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore( 1249 iterator_range<Region::iterator> &blocks, Location origRegionLoc) { 1250 for (Block &block : blocks) 1251 blockActions.push_back(BlockAction::getCreate(&block)); 1252 1253 // Compute the conversion set for the inlined region. 1254 auto result = computeConversionSet(blocks, origRegionLoc, createdOps); 1255 1256 // This original region has already had its conversion set computed, so there 1257 // shouldn't be any new failures. 1258 (void)result; 1259 assert(succeeded(result) && "expected region to have no unreachable blocks"); 1260 } 1261 1262 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure( 1263 Location loc, function_ref<void(Diagnostic &)> reasonCallback) { 1264 LLVM_DEBUG({ 1265 Diagnostic diag(loc, DiagnosticSeverity::Remark); 1266 reasonCallback(diag); 1267 logger.startLine() << "** Failure : " << diag.str() << "\n"; 1268 }); 1269 return failure(); 1270 } 1271 1272 //===----------------------------------------------------------------------===// 1273 // ConversionPatternRewriter 1274 //===----------------------------------------------------------------------===// 1275 1276 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx) 1277 : PatternRewriter(ctx), 1278 impl(new detail::ConversionPatternRewriterImpl(*this)) {} 1279 ConversionPatternRewriter::~ConversionPatternRewriter() {} 1280 1281 /// PatternRewriter hook for replacing the results of an operation when the 1282 /// given functor returns true. 1283 void ConversionPatternRewriter::replaceOpWithIf( 1284 Operation *op, ValueRange newValues, bool *allUsesReplaced, 1285 llvm::unique_function<bool(OpOperand &) const> functor) { 1286 // TODO: To support this we will need to rework a bit of how replacements are 1287 // tracked, given that this isn't guranteed to replace all of the uses of an 1288 // operation. The main change is that now an operation can be replaced 1289 // multiple times, in parts. The current "set" based tracking is mainly useful 1290 // for tracking if a replaced operation should be ignored, i.e. if all of the 1291 // uses will be replaced. 1292 llvm_unreachable( 1293 "replaceOpWithIf is currently not supported by DialectConversion"); 1294 } 1295 1296 /// PatternRewriter hook for replacing the results of an operation. 1297 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) { 1298 LLVM_DEBUG({ 1299 impl->logger.startLine() 1300 << "** Replace : '" << op->getName() << "'(" << op << ")\n"; 1301 }); 1302 impl->notifyOpReplaced(op, newValues); 1303 } 1304 1305 /// PatternRewriter hook for erasing a dead operation. The uses of this 1306 /// operation *must* be made dead by the end of the conversion process, 1307 /// otherwise an assert will be issued. 1308 void ConversionPatternRewriter::eraseOp(Operation *op) { 1309 LLVM_DEBUG({ 1310 impl->logger.startLine() 1311 << "** Erase : '" << op->getName() << "'(" << op << ")\n"; 1312 }); 1313 SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr); 1314 impl->notifyOpReplaced(op, nullRepls); 1315 } 1316 1317 void ConversionPatternRewriter::eraseBlock(Block *block) { 1318 impl->notifyBlockIsBeingErased(block); 1319 1320 // Mark all ops for erasure. 1321 for (Operation &op : *block) 1322 eraseOp(&op); 1323 1324 // Unlink the block from its parent region. The block is kept in the block 1325 // action and will be actually destroyed when rewrites are applied. This 1326 // allows us to keep the operations in the block live and undo the removal by 1327 // re-inserting the block. 1328 block->getParent()->getBlocks().remove(block); 1329 } 1330 1331 Block *ConversionPatternRewriter::applySignatureConversion( 1332 Region *region, TypeConverter::SignatureConversion &conversion) { 1333 return impl->applySignatureConversion(region, conversion); 1334 } 1335 1336 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes( 1337 Region *region, TypeConverter &converter, 1338 TypeConverter::SignatureConversion *entryConversion) { 1339 return impl->convertRegionTypes(region, converter, entryConversion); 1340 } 1341 1342 LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes( 1343 Region *region, TypeConverter &converter) { 1344 return impl->convertNonEntryRegionTypes(region, converter); 1345 } 1346 1347 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from, 1348 Value to) { 1349 LLVM_DEBUG({ 1350 Operation *parentOp = from.getOwner()->getParentOp(); 1351 impl->logger.startLine() << "** Replace Argument : '" << from 1352 << "'(in region of '" << parentOp->getName() 1353 << "'(" << from.getOwner()->getParentOp() << ")\n"; 1354 }); 1355 impl->argReplacements.push_back(from); 1356 impl->mapping.map(impl->mapping.lookupOrDefault(from), to); 1357 } 1358 1359 /// Return the converted value that replaces 'key'. Return 'key' if there is 1360 /// no such a converted value. 1361 Value ConversionPatternRewriter::getRemappedValue(Value key) { 1362 return impl->mapping.lookupOrDefault(key); 1363 } 1364 1365 /// PatternRewriter hook for creating a new block with the given arguments. 1366 void ConversionPatternRewriter::notifyBlockCreated(Block *block) { 1367 impl->notifyCreatedBlock(block); 1368 } 1369 1370 /// PatternRewriter hook for splitting a block into two parts. 1371 Block *ConversionPatternRewriter::splitBlock(Block *block, 1372 Block::iterator before) { 1373 auto *continuation = PatternRewriter::splitBlock(block, before); 1374 impl->notifySplitBlock(block, continuation); 1375 return continuation; 1376 } 1377 1378 /// PatternRewriter hook for merging a block into another. 1379 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest, 1380 ValueRange argValues) { 1381 impl->notifyBlocksBeingMerged(dest, source); 1382 assert(llvm::all_of(source->getPredecessors(), 1383 [dest](Block *succ) { return succ == dest; }) && 1384 "expected 'source' to have no predecessors or only 'dest'"); 1385 assert(argValues.size() == source->getNumArguments() && 1386 "incorrect # of argument replacement values"); 1387 for (auto it : llvm::zip(source->getArguments(), argValues)) 1388 replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it)); 1389 dest->getOperations().splice(dest->end(), source->getOperations()); 1390 eraseBlock(source); 1391 } 1392 1393 /// PatternRewriter hook for moving blocks out of a region. 1394 void ConversionPatternRewriter::inlineRegionBefore(Region ®ion, 1395 Region &parent, 1396 Region::iterator before) { 1397 impl->notifyRegionIsBeingInlinedBefore(region, parent, before); 1398 PatternRewriter::inlineRegionBefore(region, parent, before); 1399 } 1400 1401 /// PatternRewriter hook for cloning blocks of one region into another. 1402 void ConversionPatternRewriter::cloneRegionBefore( 1403 Region ®ion, Region &parent, Region::iterator before, 1404 BlockAndValueMapping &mapping) { 1405 if (region.empty()) 1406 return; 1407 PatternRewriter::cloneRegionBefore(region, parent, before, mapping); 1408 1409 // Collect the range of the cloned blocks. 1410 auto clonedBeginIt = mapping.lookup(®ion.front())->getIterator(); 1411 auto clonedBlocks = llvm::make_range(clonedBeginIt, before); 1412 impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc()); 1413 } 1414 1415 /// PatternRewriter hook for creating a new operation. 1416 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) { 1417 LLVM_DEBUG({ 1418 impl->logger.startLine() 1419 << "** Insert : '" << op->getName() << "'(" << op << ")\n"; 1420 }); 1421 impl->createdOps.push_back(op); 1422 } 1423 1424 /// PatternRewriter hook for updating the root operation in-place. 1425 void ConversionPatternRewriter::startRootUpdate(Operation *op) { 1426 #ifndef NDEBUG 1427 impl->pendingRootUpdates.insert(op); 1428 #endif 1429 impl->rootUpdates.emplace_back(op); 1430 } 1431 1432 /// PatternRewriter hook for updating the root operation in-place. 1433 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) { 1434 // There is nothing to do here, we only need to track the operation at the 1435 // start of the update. 1436 #ifndef NDEBUG 1437 assert(impl->pendingRootUpdates.erase(op) && 1438 "operation did not have a pending in-place update"); 1439 #endif 1440 } 1441 1442 /// PatternRewriter hook for updating the root operation in-place. 1443 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) { 1444 #ifndef NDEBUG 1445 assert(impl->pendingRootUpdates.erase(op) && 1446 "operation did not have a pending in-place update"); 1447 #endif 1448 // Erase the last update for this operation. 1449 auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; }; 1450 auto &rootUpdates = impl->rootUpdates; 1451 auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp); 1452 rootUpdates.erase(rootUpdates.begin() + (rootUpdates.rend() - it)); 1453 } 1454 1455 /// PatternRewriter hook for notifying match failure reasons. 1456 LogicalResult ConversionPatternRewriter::notifyMatchFailure( 1457 Operation *op, function_ref<void(Diagnostic &)> reasonCallback) { 1458 return impl->notifyMatchFailure(op->getLoc(), reasonCallback); 1459 } 1460 1461 /// Return a reference to the internal implementation. 1462 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() { 1463 return *impl; 1464 } 1465 1466 //===----------------------------------------------------------------------===// 1467 // ConversionPattern 1468 //===----------------------------------------------------------------------===// 1469 1470 /// Attempt to match and rewrite the IR root at the specified operation. 1471 LogicalResult 1472 ConversionPattern::matchAndRewrite(Operation *op, 1473 PatternRewriter &rewriter) const { 1474 auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter); 1475 auto &rewriterImpl = dialectRewriter.getImpl(); 1476 1477 // Track the current conversion pattern in the rewriter. 1478 assert(!rewriterImpl.currentConversionPattern && 1479 "already inside of a pattern rewrite"); 1480 llvm::SaveAndRestore<const ConversionPattern *> currentPatternGuard( 1481 rewriterImpl.currentConversionPattern, this); 1482 1483 // Remap the operands of the operation. 1484 SmallVector<Value, 4> operands; 1485 if (failed(rewriterImpl.remapValues(op->getLoc(), rewriter, 1486 getTypeConverter(), op->getOperands(), 1487 operands))) { 1488 return failure(); 1489 } 1490 return matchAndRewrite(op, operands, dialectRewriter); 1491 } 1492 1493 //===----------------------------------------------------------------------===// 1494 // OperationLegalizer 1495 //===----------------------------------------------------------------------===// 1496 1497 namespace { 1498 /// A set of rewrite patterns that can be used to legalize a given operation. 1499 using LegalizationPatterns = SmallVector<const Pattern *, 1>; 1500 1501 /// This class defines a recursive operation legalizer. 1502 class OperationLegalizer { 1503 public: 1504 using LegalizationAction = ConversionTarget::LegalizationAction; 1505 1506 OperationLegalizer(ConversionTarget &targetInfo, 1507 const FrozenRewritePatternList &patterns); 1508 1509 /// Returns true if the given operation is known to be illegal on the target. 1510 bool isIllegal(Operation *op) const; 1511 1512 /// Attempt to legalize the given operation. Returns success if the operation 1513 /// was legalized, failure otherwise. 1514 LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter); 1515 1516 /// Returns the conversion target in use by the legalizer. 1517 ConversionTarget &getTarget() { return target; } 1518 1519 private: 1520 /// Attempt to legalize the given operation by folding it. 1521 LogicalResult legalizeWithFold(Operation *op, 1522 ConversionPatternRewriter &rewriter); 1523 1524 /// Attempt to legalize the given operation by applying a pattern. Returns 1525 /// success if the operation was legalized, failure otherwise. 1526 LogicalResult legalizeWithPattern(Operation *op, 1527 ConversionPatternRewriter &rewriter); 1528 1529 /// Return true if the given pattern may be applied to the given operation, 1530 /// false otherwise. 1531 bool canApplyPattern(Operation *op, const Pattern &pattern, 1532 ConversionPatternRewriter &rewriter); 1533 1534 /// Legalize the resultant IR after successfully applying the given pattern. 1535 LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern, 1536 ConversionPatternRewriter &rewriter, 1537 RewriterState &curState); 1538 1539 /// Legalizes the actions registered during the execution of a pattern. 1540 LogicalResult legalizePatternBlockActions(Operation *op, 1541 ConversionPatternRewriter &rewriter, 1542 ConversionPatternRewriterImpl &impl, 1543 RewriterState &state, 1544 RewriterState &newState); 1545 LogicalResult legalizePatternCreatedOperations( 1546 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1547 RewriterState &state, RewriterState &newState); 1548 LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter, 1549 ConversionPatternRewriterImpl &impl, 1550 RewriterState &state, 1551 RewriterState &newState); 1552 1553 //===--------------------------------------------------------------------===// 1554 // Cost Model 1555 //===--------------------------------------------------------------------===// 1556 1557 /// Build an optimistic legalization graph given the provided patterns. This 1558 /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with 1559 /// patterns for operations that are not directly legal, but may be 1560 /// transitively legal for the current target given the provided patterns. 1561 void buildLegalizationGraph( 1562 LegalizationPatterns &anyOpLegalizerPatterns, 1563 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1564 1565 /// Compute the benefit of each node within the computed legalization graph. 1566 /// This orders the patterns within 'legalizerPatterns' based upon two 1567 /// criteria: 1568 /// 1) Prefer patterns that have the lowest legalization depth, i.e. 1569 /// represent the more direct mapping to the target. 1570 /// 2) When comparing patterns with the same legalization depth, prefer the 1571 /// pattern with the highest PatternBenefit. This allows for users to 1572 /// prefer specific legalizations over others. 1573 void computeLegalizationGraphBenefit( 1574 LegalizationPatterns &anyOpLegalizerPatterns, 1575 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1576 1577 /// Compute the legalization depth when legalizing an operation of the given 1578 /// type. 1579 unsigned computeOpLegalizationDepth( 1580 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 1581 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1582 1583 /// Apply the conversion cost model to the given set of patterns, and return 1584 /// the smallest legalization depth of any of the patterns. See 1585 /// `computeLegalizationGraphBenefit` for the breakdown of the cost model. 1586 unsigned applyCostModelToPatterns( 1587 LegalizationPatterns &patterns, 1588 DenseMap<OperationName, unsigned> &minOpPatternDepth, 1589 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1590 1591 /// The current set of patterns that have been applied. 1592 SmallPtrSet<const Pattern *, 8> appliedPatterns; 1593 1594 /// The legalization information provided by the target. 1595 ConversionTarget ⌖ 1596 1597 /// The pattern applicator to use for conversions. 1598 PatternApplicator applicator; 1599 }; 1600 } // namespace 1601 1602 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo, 1603 const FrozenRewritePatternList &patterns) 1604 : target(targetInfo), applicator(patterns) { 1605 // The set of patterns that can be applied to illegal operations to transform 1606 // them into legal ones. 1607 DenseMap<OperationName, LegalizationPatterns> legalizerPatterns; 1608 LegalizationPatterns anyOpLegalizerPatterns; 1609 1610 buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns); 1611 computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns); 1612 } 1613 1614 bool OperationLegalizer::isIllegal(Operation *op) const { 1615 // Check if the target explicitly marked this operation as illegal. 1616 return target.getOpAction(op->getName()) == LegalizationAction::Illegal; 1617 } 1618 1619 LogicalResult 1620 OperationLegalizer::legalize(Operation *op, 1621 ConversionPatternRewriter &rewriter) { 1622 #ifndef NDEBUG 1623 const char *logLineComment = 1624 "//===-------------------------------------------===//\n"; 1625 1626 auto &rewriterImpl = rewriter.getImpl(); 1627 #endif 1628 LLVM_DEBUG({ 1629 auto &os = rewriterImpl.logger; 1630 os.getOStream() << "\n"; 1631 os.startLine() << logLineComment; 1632 os.startLine() << "Legalizing operation : '" << op->getName() << "'(" << op 1633 << ") {\n"; 1634 os.indent(); 1635 1636 // If the operation has no regions, just print it here. 1637 if (op->getNumRegions() == 0) { 1638 op->print(os.startLine(), OpPrintingFlags().printGenericOpForm()); 1639 os.getOStream() << "\n\n"; 1640 } 1641 }); 1642 1643 // Check if this operation is legal on the target. 1644 if (auto legalityInfo = target.isLegal(op)) { 1645 LLVM_DEBUG({ 1646 logSuccess( 1647 rewriterImpl.logger, "operation marked legal by the target{0}", 1648 legalityInfo->isRecursivelyLegal 1649 ? "; NOTE: operation is recursively legal; skipping internals" 1650 : ""); 1651 rewriterImpl.logger.startLine() << logLineComment; 1652 }); 1653 1654 // If this operation is recursively legal, mark its children as ignored so 1655 // that we don't consider them for legalization. 1656 if (legalityInfo->isRecursivelyLegal) 1657 rewriter.getImpl().markNestedOpsIgnored(op); 1658 return success(); 1659 } 1660 1661 // Check to see if the operation is ignored and doesn't need to be converted. 1662 if (rewriter.getImpl().isOpIgnored(op)) { 1663 LLVM_DEBUG({ 1664 logSuccess(rewriterImpl.logger, 1665 "operation marked 'ignored' during conversion"); 1666 rewriterImpl.logger.startLine() << logLineComment; 1667 }); 1668 return success(); 1669 } 1670 1671 // If the operation isn't legal, try to fold it in-place. 1672 // TODO: Should we always try to do this, even if the op is 1673 // already legal? 1674 if (succeeded(legalizeWithFold(op, rewriter))) { 1675 LLVM_DEBUG({ 1676 logSuccess(rewriterImpl.logger, "operation was folded"); 1677 rewriterImpl.logger.startLine() << logLineComment; 1678 }); 1679 return success(); 1680 } 1681 1682 // Otherwise, we need to apply a legalization pattern to this operation. 1683 if (succeeded(legalizeWithPattern(op, rewriter))) { 1684 LLVM_DEBUG({ 1685 logSuccess(rewriterImpl.logger, ""); 1686 rewriterImpl.logger.startLine() << logLineComment; 1687 }); 1688 return success(); 1689 } 1690 1691 LLVM_DEBUG({ 1692 logFailure(rewriterImpl.logger, "no matched legalization pattern"); 1693 rewriterImpl.logger.startLine() << logLineComment; 1694 }); 1695 return failure(); 1696 } 1697 1698 LogicalResult 1699 OperationLegalizer::legalizeWithFold(Operation *op, 1700 ConversionPatternRewriter &rewriter) { 1701 auto &rewriterImpl = rewriter.getImpl(); 1702 RewriterState curState = rewriterImpl.getCurrentState(); 1703 1704 LLVM_DEBUG({ 1705 rewriterImpl.logger.startLine() << "* Fold {\n"; 1706 rewriterImpl.logger.indent(); 1707 }); 1708 1709 // Try to fold the operation. 1710 SmallVector<Value, 2> replacementValues; 1711 rewriter.setInsertionPoint(op); 1712 if (failed(rewriter.tryFold(op, replacementValues))) { 1713 LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold")); 1714 return failure(); 1715 } 1716 1717 // Insert a replacement for 'op' with the folded replacement values. 1718 rewriter.replaceOp(op, replacementValues); 1719 1720 // Recursively legalize any new constant operations. 1721 for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size(); 1722 i != e; ++i) { 1723 Operation *cstOp = rewriterImpl.createdOps[i]; 1724 if (failed(legalize(cstOp, rewriter))) { 1725 LLVM_DEBUG(logFailure(rewriterImpl.logger, 1726 "generated constant '{0}' was illegal", 1727 cstOp->getName())); 1728 rewriterImpl.resetState(curState); 1729 return failure(); 1730 } 1731 } 1732 1733 LLVM_DEBUG(logSuccess(rewriterImpl.logger, "")); 1734 return success(); 1735 } 1736 1737 LogicalResult 1738 OperationLegalizer::legalizeWithPattern(Operation *op, 1739 ConversionPatternRewriter &rewriter) { 1740 auto &rewriterImpl = rewriter.getImpl(); 1741 1742 // Functor that returns if the given pattern may be applied. 1743 auto canApply = [&](const Pattern &pattern) { 1744 return canApplyPattern(op, pattern, rewriter); 1745 }; 1746 1747 // Functor that cleans up the rewriter state after a pattern failed to match. 1748 RewriterState curState = rewriterImpl.getCurrentState(); 1749 auto onFailure = [&](const Pattern &pattern) { 1750 LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match")); 1751 rewriterImpl.resetState(curState); 1752 appliedPatterns.erase(&pattern); 1753 }; 1754 1755 // Functor that performs additional legalization when a pattern is 1756 // successfully applied. 1757 auto onSuccess = [&](const Pattern &pattern) { 1758 auto result = legalizePatternResult(op, pattern, rewriter, curState); 1759 appliedPatterns.erase(&pattern); 1760 if (failed(result)) 1761 rewriterImpl.resetState(curState); 1762 return result; 1763 }; 1764 1765 // Try to match and rewrite a pattern on this operation. 1766 return applicator.matchAndRewrite(op, rewriter, canApply, onFailure, 1767 onSuccess); 1768 } 1769 1770 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern, 1771 ConversionPatternRewriter &rewriter) { 1772 LLVM_DEBUG({ 1773 auto &os = rewriter.getImpl().logger; 1774 os.getOStream() << "\n"; 1775 os.startLine() << "* Pattern : '" << op->getName() << " -> ("; 1776 llvm::interleaveComma(pattern.getGeneratedOps(), llvm::dbgs()); 1777 os.getOStream() << ")' {\n"; 1778 os.indent(); 1779 }); 1780 1781 // Ensure that we don't cycle by not allowing the same pattern to be 1782 // applied twice in the same recursion stack if it is not known to be safe. 1783 if (!pattern.hasBoundedRewriteRecursion() && 1784 !appliedPatterns.insert(&pattern).second) { 1785 LLVM_DEBUG( 1786 logFailure(rewriter.getImpl().logger, "pattern was already applied")); 1787 return false; 1788 } 1789 return true; 1790 } 1791 1792 LogicalResult 1793 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern, 1794 ConversionPatternRewriter &rewriter, 1795 RewriterState &curState) { 1796 auto &impl = rewriter.getImpl(); 1797 1798 #ifndef NDEBUG 1799 assert(impl.pendingRootUpdates.empty() && "dangling root updates"); 1800 #endif 1801 1802 // Check that the root was either replaced or updated in place. 1803 auto replacedRoot = [&] { 1804 return llvm::any_of( 1805 llvm::drop_begin(impl.replacements, curState.numReplacements), 1806 [op](auto &it) { return it.first == op; }); 1807 }; 1808 auto updatedRootInPlace = [&] { 1809 return llvm::any_of( 1810 llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates), 1811 [op](auto &state) { return state.getOperation() == op; }); 1812 }; 1813 (void)replacedRoot; 1814 (void)updatedRootInPlace; 1815 assert((replacedRoot() || updatedRootInPlace()) && 1816 "expected pattern to replace the root operation"); 1817 1818 // Legalize each of the actions registered during application. 1819 RewriterState newState = impl.getCurrentState(); 1820 if (failed(legalizePatternBlockActions(op, rewriter, impl, curState, 1821 newState)) || 1822 failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) || 1823 failed(legalizePatternCreatedOperations(rewriter, impl, curState, 1824 newState))) { 1825 return failure(); 1826 } 1827 1828 LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully")); 1829 return success(); 1830 } 1831 1832 LogicalResult OperationLegalizer::legalizePatternBlockActions( 1833 Operation *op, ConversionPatternRewriter &rewriter, 1834 ConversionPatternRewriterImpl &impl, RewriterState &state, 1835 RewriterState &newState) { 1836 SmallPtrSet<Operation *, 16> operationsToIgnore; 1837 1838 // If the pattern moved or created any blocks, make sure the types of block 1839 // arguments get legalized. 1840 for (int i = state.numBlockActions, e = newState.numBlockActions; i != e; 1841 ++i) { 1842 auto &action = impl.blockActions[i]; 1843 if (action.kind == BlockActionKind::TypeConversion || 1844 action.kind == BlockActionKind::Erase) 1845 continue; 1846 // Only check blocks outside of the current operation. 1847 Operation *parentOp = action.block->getParentOp(); 1848 if (!parentOp || parentOp == op || action.block->getNumArguments() == 0) 1849 continue; 1850 1851 // If the region of the block has a type converter, try to convert the block 1852 // directly. 1853 if (auto *converter = 1854 impl.argConverter.getConverter(action.block->getParent())) { 1855 if (failed(impl.convertBlockSignature(action.block, *converter))) { 1856 LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved " 1857 "block")); 1858 return failure(); 1859 } 1860 continue; 1861 } 1862 1863 // Otherwise, check that this operation isn't one generated by this pattern. 1864 // This is because we will attempt to legalize the parent operation, and 1865 // blocks in regions created by this pattern will already be legalized later 1866 // on. If we haven't built the set yet, build it now. 1867 if (operationsToIgnore.empty()) { 1868 auto createdOps = ArrayRef<Operation *>(impl.createdOps) 1869 .drop_front(state.numCreatedOps); 1870 operationsToIgnore.insert(createdOps.begin(), createdOps.end()); 1871 } 1872 1873 // If this operation should be considered for re-legalization, try it. 1874 if (operationsToIgnore.insert(parentOp).second && 1875 failed(legalize(parentOp, rewriter))) { 1876 LLVM_DEBUG(logFailure( 1877 impl.logger, "operation '{0}'({1}) became illegal after block action", 1878 parentOp->getName(), parentOp)); 1879 return failure(); 1880 } 1881 } 1882 return success(); 1883 } 1884 LogicalResult OperationLegalizer::legalizePatternCreatedOperations( 1885 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1886 RewriterState &state, RewriterState &newState) { 1887 for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) { 1888 Operation *op = impl.createdOps[i]; 1889 if (failed(legalize(op, rewriter))) { 1890 LLVM_DEBUG(logFailure(impl.logger, 1891 "generated operation '{0}'({1}) was illegal", 1892 op->getName(), op)); 1893 return failure(); 1894 } 1895 } 1896 return success(); 1897 } 1898 LogicalResult OperationLegalizer::legalizePatternRootUpdates( 1899 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1900 RewriterState &state, RewriterState &newState) { 1901 for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) { 1902 Operation *op = impl.rootUpdates[i].getOperation(); 1903 if (failed(legalize(op, rewriter))) { 1904 LLVM_DEBUG(logFailure(impl.logger, 1905 "operation updated in-place '{0}' was illegal", 1906 op->getName())); 1907 return failure(); 1908 } 1909 } 1910 return success(); 1911 } 1912 1913 //===----------------------------------------------------------------------===// 1914 // Cost Model 1915 1916 void OperationLegalizer::buildLegalizationGraph( 1917 LegalizationPatterns &anyOpLegalizerPatterns, 1918 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 1919 // A mapping between an operation and a set of operations that can be used to 1920 // generate it. 1921 DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps; 1922 // A mapping between an operation and any currently invalid patterns it has. 1923 DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns; 1924 // A worklist of patterns to consider for legality. 1925 llvm::SetVector<const Pattern *> patternWorklist; 1926 1927 // Build the mapping from operations to the parent ops that may generate them. 1928 applicator.walkAllPatterns([&](const Pattern &pattern) { 1929 Optional<OperationName> root = pattern.getRootKind(); 1930 1931 // If the pattern has no specific root, we can't analyze the relationship 1932 // between the root op and generated operations. Given that, add all such 1933 // patterns to the legalization set. 1934 if (!root) { 1935 anyOpLegalizerPatterns.push_back(&pattern); 1936 return; 1937 } 1938 1939 // Skip operations that are always known to be legal. 1940 if (target.getOpAction(*root) == LegalizationAction::Legal) 1941 return; 1942 1943 // Add this pattern to the invalid set for the root op and record this root 1944 // as a parent for any generated operations. 1945 invalidPatterns[*root].insert(&pattern); 1946 for (auto op : pattern.getGeneratedOps()) 1947 parentOps[op].insert(*root); 1948 1949 // Add this pattern to the worklist. 1950 patternWorklist.insert(&pattern); 1951 }); 1952 1953 // If there are any patterns that don't have a specific root kind, we can't 1954 // make direct assumptions about what operations will never be legalized. 1955 // Note: Technically we could, but it would require an analysis that may 1956 // recurse into itself. It would be better to perform this kind of filtering 1957 // at a higher level than here anyways. 1958 if (!anyOpLegalizerPatterns.empty()) { 1959 for (const Pattern *pattern : patternWorklist) 1960 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 1961 return; 1962 } 1963 1964 while (!patternWorklist.empty()) { 1965 auto *pattern = patternWorklist.pop_back_val(); 1966 1967 // Check to see if any of the generated operations are invalid. 1968 if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) { 1969 Optional<LegalizationAction> action = target.getOpAction(op); 1970 return !legalizerPatterns.count(op) && 1971 (!action || action == LegalizationAction::Illegal); 1972 })) 1973 continue; 1974 1975 // Otherwise, if all of the generated operation are valid, this op is now 1976 // legal so add all of the child patterns to the worklist. 1977 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 1978 invalidPatterns[*pattern->getRootKind()].erase(pattern); 1979 1980 // Add any invalid patterns of the parent operations to see if they have now 1981 // become legal. 1982 for (auto op : parentOps[*pattern->getRootKind()]) 1983 patternWorklist.set_union(invalidPatterns[op]); 1984 } 1985 } 1986 1987 void OperationLegalizer::computeLegalizationGraphBenefit( 1988 LegalizationPatterns &anyOpLegalizerPatterns, 1989 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 1990 // The smallest pattern depth, when legalizing an operation. 1991 DenseMap<OperationName, unsigned> minOpPatternDepth; 1992 1993 // For each operation that is transitively legal, compute a cost for it. 1994 for (auto &opIt : legalizerPatterns) 1995 if (!minOpPatternDepth.count(opIt.first)) 1996 computeOpLegalizationDepth(opIt.first, minOpPatternDepth, 1997 legalizerPatterns); 1998 1999 // Apply the cost model to the patterns that can match any operation. Those 2000 // with a specific operation type are already resolved when computing the op 2001 // legalization depth. 2002 if (!anyOpLegalizerPatterns.empty()) 2003 applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth, 2004 legalizerPatterns); 2005 2006 // Apply a cost model to the pattern applicator. We order patterns first by 2007 // depth then benefit. `legalizerPatterns` contains per-op patterns by 2008 // decreasing benefit. 2009 applicator.applyCostModel([&](const Pattern &pattern) { 2010 ArrayRef<const Pattern *> orderedPatternList; 2011 if (Optional<OperationName> rootName = pattern.getRootKind()) 2012 orderedPatternList = legalizerPatterns[*rootName]; 2013 else 2014 orderedPatternList = anyOpLegalizerPatterns; 2015 2016 // If the pattern is not found, then it was removed and cannot be matched. 2017 auto it = llvm::find(orderedPatternList, &pattern); 2018 if (it == orderedPatternList.end()) 2019 return PatternBenefit::impossibleToMatch(); 2020 2021 // Patterns found earlier in the list have higher benefit. 2022 return PatternBenefit(std::distance(it, orderedPatternList.end())); 2023 }); 2024 } 2025 2026 unsigned OperationLegalizer::computeOpLegalizationDepth( 2027 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 2028 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2029 // Check for existing depth. 2030 auto depthIt = minOpPatternDepth.find(op); 2031 if (depthIt != minOpPatternDepth.end()) 2032 return depthIt->second; 2033 2034 // If a mapping for this operation does not exist, then this operation 2035 // is always legal. Return 0 as the depth for a directly legal operation. 2036 auto opPatternsIt = legalizerPatterns.find(op); 2037 if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty()) 2038 return 0u; 2039 2040 // Record this initial depth in case we encounter this op again when 2041 // recursively computing the depth. 2042 minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max()); 2043 2044 // Apply the cost model to the operation patterns, and update the minimum 2045 // depth. 2046 unsigned minDepth = applyCostModelToPatterns( 2047 opPatternsIt->second, minOpPatternDepth, legalizerPatterns); 2048 minOpPatternDepth[op] = minDepth; 2049 return minDepth; 2050 } 2051 2052 unsigned OperationLegalizer::applyCostModelToPatterns( 2053 LegalizationPatterns &patterns, 2054 DenseMap<OperationName, unsigned> &minOpPatternDepth, 2055 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2056 unsigned minDepth = std::numeric_limits<unsigned>::max(); 2057 2058 // Compute the depth for each pattern within the set. 2059 SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth; 2060 patternsByDepth.reserve(patterns.size()); 2061 for (const Pattern *pattern : patterns) { 2062 unsigned depth = 0; 2063 for (auto generatedOp : pattern->getGeneratedOps()) { 2064 unsigned generatedOpDepth = computeOpLegalizationDepth( 2065 generatedOp, minOpPatternDepth, legalizerPatterns); 2066 depth = std::max(depth, generatedOpDepth + 1); 2067 } 2068 patternsByDepth.emplace_back(pattern, depth); 2069 2070 // Update the minimum depth of the pattern list. 2071 minDepth = std::min(minDepth, depth); 2072 } 2073 2074 // If the operation only has one legalization pattern, there is no need to 2075 // sort them. 2076 if (patternsByDepth.size() == 1) 2077 return minDepth; 2078 2079 // Sort the patterns by those likely to be the most beneficial. 2080 llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(), 2081 [](const std::pair<const Pattern *, unsigned> *lhs, 2082 const std::pair<const Pattern *, unsigned> *rhs) { 2083 // First sort by the smaller pattern legalization 2084 // depth. 2085 if (lhs->second != rhs->second) 2086 return llvm::array_pod_sort_comparator<unsigned>( 2087 &lhs->second, &rhs->second); 2088 2089 // Then sort by the larger pattern benefit. 2090 auto lhsBenefit = lhs->first->getBenefit(); 2091 auto rhsBenefit = rhs->first->getBenefit(); 2092 return llvm::array_pod_sort_comparator<PatternBenefit>( 2093 &rhsBenefit, &lhsBenefit); 2094 }); 2095 2096 // Update the legalization pattern to use the new sorted list. 2097 patterns.clear(); 2098 for (auto &patternIt : patternsByDepth) 2099 patterns.push_back(patternIt.first); 2100 return minDepth; 2101 } 2102 2103 //===----------------------------------------------------------------------===// 2104 // OperationConverter 2105 //===----------------------------------------------------------------------===// 2106 namespace { 2107 enum OpConversionMode { 2108 // In this mode, the conversion will ignore failed conversions to allow 2109 // illegal operations to co-exist in the IR. 2110 Partial, 2111 2112 // In this mode, all operations must be legal for the given target for the 2113 // conversion to succeed. 2114 Full, 2115 2116 // In this mode, operations are analyzed for legality. No actual rewrites are 2117 // applied to the operations on success. 2118 Analysis, 2119 }; 2120 2121 // This class converts operations to a given conversion target via a set of 2122 // rewrite patterns. The conversion behaves differently depending on the 2123 // conversion mode. 2124 struct OperationConverter { 2125 explicit OperationConverter(ConversionTarget &target, 2126 const FrozenRewritePatternList &patterns, 2127 OpConversionMode mode, 2128 DenseSet<Operation *> *trackedOps = nullptr) 2129 : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {} 2130 2131 /// Converts the given operations to the conversion target. 2132 LogicalResult convertOperations(ArrayRef<Operation *> ops); 2133 2134 private: 2135 /// Converts an operation with the given rewriter. 2136 LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op); 2137 2138 /// This method is called after the conversion process to legalize any 2139 /// remaining artifacts and complete the conversion. 2140 LogicalResult finalize(ConversionPatternRewriter &rewriter); 2141 2142 /// Legalize the types of converted block arguments. 2143 LogicalResult 2144 legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter, 2145 ConversionPatternRewriterImpl &rewriterImpl); 2146 2147 /// Legalize an operation result that was marked as "erased". 2148 LogicalResult 2149 legalizeErasedResult(Operation *op, OpResult result, 2150 ConversionPatternRewriterImpl &rewriterImpl); 2151 2152 /// Legalize an operation result that was replaced with a value of a different 2153 /// type. 2154 LogicalResult 2155 legalizeChangedResultType(Operation *op, OpResult result, Value newValue, 2156 TypeConverter *replConverter, 2157 ConversionPatternRewriter &rewriter, 2158 ConversionPatternRewriterImpl &rewriterImpl, 2159 const BlockAndValueMapping &inverseMapping); 2160 2161 /// The legalizer to use when converting operations. 2162 OperationLegalizer opLegalizer; 2163 2164 /// The conversion mode to use when legalizing operations. 2165 OpConversionMode mode; 2166 2167 /// A set of pre-existing operations. When mode == OpConversionMode::Analysis, 2168 /// this is populated with ops found to be legalizable to the target. 2169 /// When mode == OpConversionMode::Partial, this is populated with ops found 2170 /// *not* to be legalizable to the target. 2171 DenseSet<Operation *> *trackedOps; 2172 }; 2173 } // end anonymous namespace 2174 2175 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter, 2176 Operation *op) { 2177 // Legalize the given operation. 2178 if (failed(opLegalizer.legalize(op, rewriter))) { 2179 // Handle the case of a failed conversion for each of the different modes. 2180 // Full conversions expect all operations to be converted. 2181 if (mode == OpConversionMode::Full) 2182 return op->emitError() 2183 << "failed to legalize operation '" << op->getName() << "'"; 2184 // Partial conversions allow conversions to fail iff the operation was not 2185 // explicitly marked as illegal. If the user provided a nonlegalizableOps 2186 // set, non-legalizable ops are included. 2187 if (mode == OpConversionMode::Partial) { 2188 if (opLegalizer.isIllegal(op)) 2189 return op->emitError() 2190 << "failed to legalize operation '" << op->getName() 2191 << "' that was explicitly marked illegal"; 2192 if (trackedOps) 2193 trackedOps->insert(op); 2194 } 2195 } else if (mode == OpConversionMode::Analysis) { 2196 // Analysis conversions don't fail if any operations fail to legalize, 2197 // they are only interested in the operations that were successfully 2198 // legalized. 2199 trackedOps->insert(op); 2200 } 2201 return success(); 2202 } 2203 2204 LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) { 2205 if (ops.empty()) 2206 return success(); 2207 ConversionTarget &target = opLegalizer.getTarget(); 2208 2209 // Compute the set of operations and blocks to convert. 2210 std::vector<Operation *> toConvert; 2211 for (auto *op : ops) { 2212 toConvert.emplace_back(op); 2213 for (auto ®ion : op->getRegions()) 2214 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 2215 toConvert, &target))) 2216 return failure(); 2217 } 2218 2219 // Convert each operation and discard rewrites on failure. 2220 ConversionPatternRewriter rewriter(ops.front()->getContext()); 2221 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2222 for (auto *op : toConvert) 2223 if (failed(convert(rewriter, op))) 2224 return rewriterImpl.discardRewrites(), failure(); 2225 2226 // Now that all of the operations have been converted, finalize the conversion 2227 // process to ensure any lingering conversion artifacts are cleaned up and 2228 // legalized. 2229 if (failed(finalize(rewriter))) 2230 return rewriterImpl.discardRewrites(), failure(); 2231 2232 // After a successful conversion, apply rewrites if this is not an analysis 2233 // conversion. 2234 if (mode == OpConversionMode::Analysis) 2235 rewriterImpl.discardRewrites(); 2236 else 2237 rewriterImpl.applyRewrites(); 2238 return success(); 2239 } 2240 2241 LogicalResult 2242 OperationConverter::finalize(ConversionPatternRewriter &rewriter) { 2243 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2244 2245 // Legalize converted block arguments. 2246 if (failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl))) 2247 return failure(); 2248 2249 if (rewriterImpl.operationsWithChangedResults.empty()) 2250 return success(); 2251 2252 Optional<BlockAndValueMapping> inverseMapping; 2253 2254 // Process requested operation replacements. 2255 for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size(); 2256 i != e; ++i) { 2257 unsigned replIdx = rewriterImpl.operationsWithChangedResults[i]; 2258 auto &repl = *(rewriterImpl.replacements.begin() + replIdx); 2259 for (OpResult result : repl.first->getResults()) { 2260 Value newValue = rewriterImpl.mapping.lookupOrNull(result); 2261 2262 // If the operation result was replaced with null, all of the uses of this 2263 // value should be replaced. 2264 if (!newValue) { 2265 if (failed(legalizeErasedResult(repl.first, result, rewriterImpl))) 2266 return failure(); 2267 continue; 2268 } 2269 2270 // Otherwise, check to see if the type of the result changed. 2271 if (result.getType() == newValue.getType()) 2272 continue; 2273 2274 // Compute the inverse mapping only if it is really needed. 2275 if (!inverseMapping) 2276 inverseMapping = rewriterImpl.mapping.getInverse(); 2277 2278 // Legalize this result. 2279 rewriter.setInsertionPoint(repl.first); 2280 if (failed(legalizeChangedResultType(repl.first, result, newValue, 2281 repl.second.converter, rewriter, 2282 rewriterImpl, *inverseMapping))) 2283 return failure(); 2284 2285 // Update the end iterator for this loop in the case it was updated 2286 // when legalizing generated conversion operations. 2287 e = rewriterImpl.operationsWithChangedResults.size(); 2288 } 2289 } 2290 return success(); 2291 } 2292 2293 LogicalResult OperationConverter::legalizeConvertedArgumentTypes( 2294 ConversionPatternRewriter &rewriter, 2295 ConversionPatternRewriterImpl &rewriterImpl) { 2296 // Functor used to check if all users of a value will be dead after 2297 // conversion. 2298 auto findLiveUser = [&](Value val) { 2299 auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) { 2300 return rewriterImpl.isOpIgnored(user); 2301 }); 2302 return liveUserIt == val.user_end() ? nullptr : *liveUserIt; 2303 }; 2304 2305 // Materialize any necessary conversions for converted block arguments that 2306 // are still live. 2307 size_t numCreatedOps = rewriterImpl.createdOps.size(); 2308 if (failed(rewriterImpl.argConverter.materializeLiveConversions( 2309 rewriterImpl.mapping, rewriter, findLiveUser))) 2310 return failure(); 2311 2312 // Legalize any newly created operations during argument materialization. 2313 for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) { 2314 if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) { 2315 return rewriterImpl.createdOps[i]->emitError() 2316 << "failed to legalize conversion operation generated for block " 2317 "argument that remained live after conversion"; 2318 } 2319 } 2320 return success(); 2321 } 2322 2323 LogicalResult OperationConverter::legalizeErasedResult( 2324 Operation *op, OpResult result, 2325 ConversionPatternRewriterImpl &rewriterImpl) { 2326 // If the operation result was replaced with null, all of the uses of this 2327 // value should be replaced. 2328 auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) { 2329 return rewriterImpl.isOpIgnored(user); 2330 }); 2331 if (liveUserIt != result.user_end()) { 2332 InFlightDiagnostic diag = op->emitError("failed to legalize operation '") 2333 << op->getName() << "' marked as erased"; 2334 diag.attachNote(liveUserIt->getLoc()) 2335 << "found live user of result #" << result.getResultNumber() << ": " 2336 << *liveUserIt; 2337 return failure(); 2338 } 2339 return success(); 2340 } 2341 2342 /// Finds a user of the given value, or of any other value that the given value 2343 /// replaced, that was not replaced in the conversion process. 2344 static Operation * 2345 findLiveUserOfReplaced(Value value, ConversionPatternRewriterImpl &rewriterImpl, 2346 const BlockAndValueMapping &inverseMapping) { 2347 do { 2348 // Walk the users of this value to see if there are any live users that 2349 // weren't replaced during conversion. 2350 auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) { 2351 return rewriterImpl.isOpIgnored(user); 2352 }); 2353 if (liveUserIt != value.user_end()) 2354 return *liveUserIt; 2355 value = inverseMapping.lookupOrNull(value); 2356 } while (value != nullptr); 2357 return nullptr; 2358 } 2359 2360 LogicalResult OperationConverter::legalizeChangedResultType( 2361 Operation *op, OpResult result, Value newValue, 2362 TypeConverter *replConverter, ConversionPatternRewriter &rewriter, 2363 ConversionPatternRewriterImpl &rewriterImpl, 2364 const BlockAndValueMapping &inverseMapping) { 2365 Operation *liveUser = 2366 findLiveUserOfReplaced(result, rewriterImpl, inverseMapping); 2367 if (!liveUser) 2368 return success(); 2369 2370 // If the replacement has a type converter, attempt to materialize a 2371 // conversion back to the original type. 2372 if (!replConverter) { 2373 // TODO: We should emit an error here, similarly to the case where the 2374 // result is replaced with null. Unfortunately a lot of existing 2375 // patterns rely on this behavior, so until those patterns are updated 2376 // we keep the legacy behavior here of just forwarding the new value. 2377 return success(); 2378 } 2379 2380 // Track the number of created operations so that new ones can be legalized. 2381 size_t numCreatedOps = rewriterImpl.createdOps.size(); 2382 2383 // Materialize a conversion for this live result value. 2384 Type resultType = result.getType(); 2385 Value convertedValue = replConverter->materializeSourceConversion( 2386 rewriter, op->getLoc(), resultType, newValue); 2387 if (!convertedValue) { 2388 InFlightDiagnostic diag = op->emitError() 2389 << "failed to materialize conversion for result #" 2390 << result.getResultNumber() << " of operation '" 2391 << op->getName() 2392 << "' that remained live after conversion"; 2393 diag.attachNote(liveUser->getLoc()) 2394 << "see existing live user here: " << *liveUser; 2395 return failure(); 2396 } 2397 2398 // Legalize all of the newly created conversion operations. 2399 for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) { 2400 if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) { 2401 return op->emitError("failed to legalize conversion operation generated ") 2402 << "for result #" << result.getResultNumber() << " of operation '" 2403 << op->getName() << "' that remained live after conversion"; 2404 } 2405 } 2406 2407 rewriterImpl.mapping.map(result, convertedValue); 2408 return success(); 2409 } 2410 2411 //===----------------------------------------------------------------------===// 2412 // Type Conversion 2413 //===----------------------------------------------------------------------===// 2414 2415 /// Remap an input of the original signature with a new set of types. The 2416 /// new types are appended to the new signature conversion. 2417 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo, 2418 ArrayRef<Type> types) { 2419 assert(!types.empty() && "expected valid types"); 2420 remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size()); 2421 addInputs(types); 2422 } 2423 2424 /// Append new input types to the signature conversion, this should only be 2425 /// used if the new types are not intended to remap an existing input. 2426 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) { 2427 assert(!types.empty() && 2428 "1->0 type remappings don't need to be added explicitly"); 2429 argTypes.append(types.begin(), types.end()); 2430 } 2431 2432 /// Remap an input of the original signature with a range of types in the 2433 /// new signature. 2434 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2435 unsigned newInputNo, 2436 unsigned newInputCount) { 2437 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2438 assert(newInputCount != 0 && "expected valid input count"); 2439 remappedInputs[origInputNo] = 2440 InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr}; 2441 } 2442 2443 /// Remap an input of the original signature to another `replacementValue` 2444 /// value. This would make the signature converter drop this argument. 2445 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2446 Value replacementValue) { 2447 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2448 remappedInputs[origInputNo] = 2449 InputMapping{origInputNo, /*size=*/0, replacementValue}; 2450 } 2451 2452 /// This hooks allows for converting a type. 2453 LogicalResult TypeConverter::convertType(Type t, 2454 SmallVectorImpl<Type> &results) { 2455 auto existingIt = cachedDirectConversions.find(t); 2456 if (existingIt != cachedDirectConversions.end()) { 2457 if (existingIt->second) 2458 results.push_back(existingIt->second); 2459 return success(existingIt->second != nullptr); 2460 } 2461 auto multiIt = cachedMultiConversions.find(t); 2462 if (multiIt != cachedMultiConversions.end()) { 2463 results.append(multiIt->second.begin(), multiIt->second.end()); 2464 return success(); 2465 } 2466 2467 // Walk the added converters in reverse order to apply the most recently 2468 // registered first. 2469 size_t currentCount = results.size(); 2470 for (ConversionCallbackFn &converter : llvm::reverse(conversions)) { 2471 if (Optional<LogicalResult> result = converter(t, results)) { 2472 if (!succeeded(*result)) { 2473 cachedDirectConversions.try_emplace(t, nullptr); 2474 return failure(); 2475 } 2476 auto newTypes = ArrayRef<Type>(results).drop_front(currentCount); 2477 if (newTypes.size() == 1) 2478 cachedDirectConversions.try_emplace(t, newTypes.front()); 2479 else 2480 cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes)); 2481 return success(); 2482 } 2483 } 2484 return failure(); 2485 } 2486 2487 /// This hook simplifies defining 1-1 type conversions. This function returns 2488 /// the type to convert to on success, and a null type on failure. 2489 Type TypeConverter::convertType(Type t) { 2490 // Use the multi-type result version to convert the type. 2491 SmallVector<Type, 1> results; 2492 if (failed(convertType(t, results))) 2493 return nullptr; 2494 2495 // Check to ensure that only one type was produced. 2496 return results.size() == 1 ? results.front() : nullptr; 2497 } 2498 2499 /// Convert the given set of types, filling 'results' as necessary. This 2500 /// returns failure if the conversion of any of the types fails, success 2501 /// otherwise. 2502 LogicalResult TypeConverter::convertTypes(ArrayRef<Type> types, 2503 SmallVectorImpl<Type> &results) { 2504 for (auto type : types) 2505 if (failed(convertType(type, results))) 2506 return failure(); 2507 return success(); 2508 } 2509 2510 /// Return true if the given type is legal for this type converter, i.e. the 2511 /// type converts to itself. 2512 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; } 2513 /// Return true if the given operation has legal operand and result types. 2514 bool TypeConverter::isLegal(Operation *op) { 2515 return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes()); 2516 } 2517 2518 /// Return true if the types of block arguments within the region are legal. 2519 bool TypeConverter::isLegal(Region *region) { 2520 return llvm::all_of(*region, [this](Block &block) { 2521 return isLegal(block.getArgumentTypes()); 2522 }); 2523 } 2524 2525 /// Return true if the inputs and outputs of the given function type are 2526 /// legal. 2527 bool TypeConverter::isSignatureLegal(FunctionType ty) { 2528 return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults())); 2529 } 2530 2531 /// This hook allows for converting a specific argument of a signature. 2532 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type, 2533 SignatureConversion &result) { 2534 // Try to convert the given input type. 2535 SmallVector<Type, 1> convertedTypes; 2536 if (failed(convertType(type, convertedTypes))) 2537 return failure(); 2538 2539 // If this argument is being dropped, there is nothing left to do. 2540 if (convertedTypes.empty()) 2541 return success(); 2542 2543 // Otherwise, add the new inputs. 2544 result.addInputs(inputNo, convertedTypes); 2545 return success(); 2546 } 2547 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types, 2548 SignatureConversion &result, 2549 unsigned origInputOffset) { 2550 for (unsigned i = 0, e = types.size(); i != e; ++i) 2551 if (failed(convertSignatureArg(origInputOffset + i, types[i], result))) 2552 return failure(); 2553 return success(); 2554 } 2555 2556 Value TypeConverter::materializeConversion( 2557 MutableArrayRef<MaterializationCallbackFn> materializations, 2558 OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) { 2559 for (MaterializationCallbackFn &fn : llvm::reverse(materializations)) 2560 if (Optional<Value> result = fn(builder, resultType, inputs, loc)) 2561 return result.getValue(); 2562 return nullptr; 2563 } 2564 2565 /// This function converts the type signature of the given block, by invoking 2566 /// 'convertSignatureArg' for each argument. This function should return a valid 2567 /// conversion for the signature on success, None otherwise. 2568 auto TypeConverter::convertBlockSignature(Block *block) 2569 -> Optional<SignatureConversion> { 2570 SignatureConversion conversion(block->getNumArguments()); 2571 if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion))) 2572 return llvm::None; 2573 return conversion; 2574 } 2575 2576 /// Create a default conversion pattern that rewrites the type signature of a 2577 /// FunctionLike op. This only supports FunctionLike ops which use FunctionType 2578 /// to represent their type. 2579 namespace { 2580 struct FunctionLikeSignatureConversion : public ConversionPattern { 2581 FunctionLikeSignatureConversion(StringRef functionLikeOpName, 2582 MLIRContext *ctx, TypeConverter &converter) 2583 : ConversionPattern(functionLikeOpName, /*benefit=*/1, converter, ctx) {} 2584 2585 /// Hook to implement combined matching and rewriting for FunctionLike ops. 2586 LogicalResult 2587 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 2588 ConversionPatternRewriter &rewriter) const override { 2589 FunctionType type = mlir::impl::getFunctionType(op); 2590 2591 // Convert the original function types. 2592 TypeConverter::SignatureConversion result(type.getNumInputs()); 2593 SmallVector<Type, 1> newResults; 2594 if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) || 2595 failed(typeConverter->convertTypes(type.getResults(), newResults)) || 2596 failed(rewriter.convertRegionTypes(&mlir::impl::getFunctionBody(op), 2597 *typeConverter, &result))) 2598 return failure(); 2599 2600 // Update the function signature in-place. 2601 auto newType = FunctionType::get(rewriter.getContext(), 2602 result.getConvertedTypes(), newResults); 2603 2604 rewriter.updateRootInPlace( 2605 op, [&] { mlir::impl::setFunctionType(op, newType); }); 2606 2607 return success(); 2608 } 2609 }; 2610 } // end anonymous namespace 2611 2612 void mlir::populateFunctionLikeTypeConversionPattern( 2613 StringRef functionLikeOpName, OwningRewritePatternList &patterns, 2614 MLIRContext *ctx, TypeConverter &converter) { 2615 patterns.insert<FunctionLikeSignatureConversion>(functionLikeOpName, ctx, 2616 converter); 2617 } 2618 2619 void mlir::populateFuncOpTypeConversionPattern( 2620 OwningRewritePatternList &patterns, MLIRContext *ctx, 2621 TypeConverter &converter) { 2622 populateFunctionLikeTypeConversionPattern<FuncOp>(patterns, ctx, converter); 2623 } 2624 2625 //===----------------------------------------------------------------------===// 2626 // ConversionTarget 2627 //===----------------------------------------------------------------------===// 2628 2629 /// Register a legality action for the given operation. 2630 void ConversionTarget::setOpAction(OperationName op, 2631 LegalizationAction action) { 2632 legalOperations[op] = {action, /*isRecursivelyLegal=*/false, llvm::None}; 2633 } 2634 2635 /// Register a legality action for the given dialects. 2636 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames, 2637 LegalizationAction action) { 2638 for (StringRef dialect : dialectNames) 2639 legalDialects[dialect] = action; 2640 } 2641 2642 /// Get the legality action for the given operation. 2643 auto ConversionTarget::getOpAction(OperationName op) const 2644 -> Optional<LegalizationAction> { 2645 Optional<LegalizationInfo> info = getOpInfo(op); 2646 return info ? info->action : Optional<LegalizationAction>(); 2647 } 2648 2649 /// If the given operation instance is legal on this target, a structure 2650 /// containing legality information is returned. If the operation is not legal, 2651 /// None is returned. 2652 auto ConversionTarget::isLegal(Operation *op) const 2653 -> Optional<LegalOpDetails> { 2654 Optional<LegalizationInfo> info = getOpInfo(op->getName()); 2655 if (!info) 2656 return llvm::None; 2657 2658 // Returns true if this operation instance is known to be legal. 2659 auto isOpLegal = [&] { 2660 // Handle dynamic legality either with the provided legality function, or 2661 // the default hook on the derived instance. 2662 if (info->action == LegalizationAction::Dynamic) 2663 return info->legalityFn ? (*info->legalityFn)(op) 2664 : isDynamicallyLegal(op); 2665 2666 // Otherwise, the operation is only legal if it was marked 'Legal'. 2667 return info->action == LegalizationAction::Legal; 2668 }; 2669 if (!isOpLegal()) 2670 return llvm::None; 2671 2672 // This operation is legal, compute any additional legality information. 2673 LegalOpDetails legalityDetails; 2674 if (info->isRecursivelyLegal) { 2675 auto legalityFnIt = opRecursiveLegalityFns.find(op->getName()); 2676 if (legalityFnIt != opRecursiveLegalityFns.end()) 2677 legalityDetails.isRecursivelyLegal = legalityFnIt->second(op); 2678 else 2679 legalityDetails.isRecursivelyLegal = true; 2680 } 2681 return legalityDetails; 2682 } 2683 2684 /// Set the dynamic legality callback for the given operation. 2685 void ConversionTarget::setLegalityCallback( 2686 OperationName name, const DynamicLegalityCallbackFn &callback) { 2687 assert(callback && "expected valid legality callback"); 2688 auto infoIt = legalOperations.find(name); 2689 assert(infoIt != legalOperations.end() && 2690 infoIt->second.action == LegalizationAction::Dynamic && 2691 "expected operation to already be marked as dynamically legal"); 2692 infoIt->second.legalityFn = callback; 2693 } 2694 2695 /// Set the recursive legality callback for the given operation and mark the 2696 /// operation as recursively legal. 2697 void ConversionTarget::markOpRecursivelyLegal( 2698 OperationName name, const DynamicLegalityCallbackFn &callback) { 2699 auto infoIt = legalOperations.find(name); 2700 assert(infoIt != legalOperations.end() && 2701 infoIt->second.action != LegalizationAction::Illegal && 2702 "expected operation to already be marked as legal"); 2703 infoIt->second.isRecursivelyLegal = true; 2704 if (callback) 2705 opRecursiveLegalityFns[name] = callback; 2706 else 2707 opRecursiveLegalityFns.erase(name); 2708 } 2709 2710 /// Set the dynamic legality callback for the given dialects. 2711 void ConversionTarget::setLegalityCallback( 2712 ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) { 2713 assert(callback && "expected valid legality callback"); 2714 for (StringRef dialect : dialects) 2715 dialectLegalityFns[dialect] = callback; 2716 } 2717 2718 /// Get the legalization information for the given operation. 2719 auto ConversionTarget::getOpInfo(OperationName op) const 2720 -> Optional<LegalizationInfo> { 2721 // Check for info for this specific operation. 2722 auto it = legalOperations.find(op); 2723 if (it != legalOperations.end()) 2724 return it->second; 2725 // Check for info for the parent dialect. 2726 auto dialectIt = legalDialects.find(op.getDialectNamespace()); 2727 if (dialectIt != legalDialects.end()) { 2728 Optional<DynamicLegalityCallbackFn> callback; 2729 auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace()); 2730 if (dialectFn != dialectLegalityFns.end()) 2731 callback = dialectFn->second; 2732 return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false, 2733 callback}; 2734 } 2735 // Otherwise, check if we mark unknown operations as dynamic. 2736 if (unknownOpsDynamicallyLegal) 2737 return LegalizationInfo{LegalizationAction::Dynamic, 2738 /*isRecursivelyLegal=*/false, unknownLegalityFn}; 2739 return llvm::None; 2740 } 2741 2742 //===----------------------------------------------------------------------===// 2743 // Op Conversion Entry Points 2744 //===----------------------------------------------------------------------===// 2745 2746 /// Apply a partial conversion on the given operations and all nested 2747 /// operations. This method converts as many operations to the target as 2748 /// possible, ignoring operations that failed to legalize. This method only 2749 /// returns failure if there ops explicitly marked as illegal. 2750 /// If an `unconvertedOps` set is provided, all operations that are found not 2751 /// to be legalizable to the given `target` are placed within that set. (Note 2752 /// that if there is an op explicitly marked as illegal, the conversion 2753 /// terminates and the `unconvertedOps` set will not necessarily be complete.) 2754 LogicalResult 2755 mlir::applyPartialConversion(ArrayRef<Operation *> ops, 2756 ConversionTarget &target, 2757 const FrozenRewritePatternList &patterns, 2758 DenseSet<Operation *> *unconvertedOps) { 2759 OperationConverter opConverter(target, patterns, OpConversionMode::Partial, 2760 unconvertedOps); 2761 return opConverter.convertOperations(ops); 2762 } 2763 LogicalResult 2764 mlir::applyPartialConversion(Operation *op, ConversionTarget &target, 2765 const FrozenRewritePatternList &patterns, 2766 DenseSet<Operation *> *unconvertedOps) { 2767 return applyPartialConversion(llvm::makeArrayRef(op), target, patterns, 2768 unconvertedOps); 2769 } 2770 2771 /// Apply a complete conversion on the given operations, and all nested 2772 /// operations. This method will return failure if the conversion of any 2773 /// operation fails. 2774 LogicalResult 2775 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target, 2776 const FrozenRewritePatternList &patterns) { 2777 OperationConverter opConverter(target, patterns, OpConversionMode::Full); 2778 return opConverter.convertOperations(ops); 2779 } 2780 LogicalResult 2781 mlir::applyFullConversion(Operation *op, ConversionTarget &target, 2782 const FrozenRewritePatternList &patterns) { 2783 return applyFullConversion(llvm::makeArrayRef(op), target, patterns); 2784 } 2785 2786 /// Apply an analysis conversion on the given operations, and all nested 2787 /// operations. This method analyzes which operations would be successfully 2788 /// converted to the target if a conversion was applied. All operations that 2789 /// were found to be legalizable to the given 'target' are placed within the 2790 /// provided 'convertedOps' set; note that no actual rewrites are applied to the 2791 /// operations on success and only pre-existing operations are added to the set. 2792 LogicalResult 2793 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops, 2794 ConversionTarget &target, 2795 const FrozenRewritePatternList &patterns, 2796 DenseSet<Operation *> &convertedOps) { 2797 OperationConverter opConverter(target, patterns, OpConversionMode::Analysis, 2798 &convertedOps); 2799 return opConverter.convertOperations(ops); 2800 } 2801 LogicalResult 2802 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target, 2803 const FrozenRewritePatternList &patterns, 2804 DenseSet<Operation *> &convertedOps) { 2805 return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns, 2806 convertedOps); 2807 } 2808