1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Transforms/DialectConversion.h" 10 #include "mlir/IR/Block.h" 11 #include "mlir/IR/BlockAndValueMapping.h" 12 #include "mlir/IR/Builders.h" 13 #include "mlir/IR/BuiltinOps.h" 14 #include "mlir/IR/FunctionSupport.h" 15 #include "mlir/Rewrite/PatternApplicator.h" 16 #include "mlir/Transforms/Utils.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/FormatVariadic.h" 22 #include "llvm/Support/SaveAndRestore.h" 23 #include "llvm/Support/ScopedPrinter.h" 24 25 using namespace mlir; 26 using namespace mlir::detail; 27 28 #define DEBUG_TYPE "dialect-conversion" 29 30 /// Recursively collect all of the operations to convert from within 'region'. 31 /// If 'target' is nonnull, operations that are recursively legal have their 32 /// regions pre-filtered to avoid considering them for legalization. 33 static LogicalResult 34 computeConversionSet(iterator_range<Region::iterator> region, 35 Location regionLoc, 36 SmallVectorImpl<Operation *> &toConvert, 37 ConversionTarget *target = nullptr) { 38 if (llvm::empty(region)) 39 return success(); 40 41 // Traverse starting from the entry block. 42 SmallVector<Block *, 16> worklist(1, &*region.begin()); 43 DenseSet<Block *> visitedBlocks; 44 visitedBlocks.insert(worklist.front()); 45 while (!worklist.empty()) { 46 Block *block = worklist.pop_back_val(); 47 48 // Compute the conversion set of each of the nested operations. 49 for (Operation &op : *block) { 50 toConvert.emplace_back(&op); 51 52 // Don't check this operation's children for conversion if the operation 53 // is recursively legal. 54 auto legalityInfo = target ? target->isLegal(&op) 55 : Optional<ConversionTarget::LegalOpDetails>(); 56 if (legalityInfo && legalityInfo->isRecursivelyLegal) 57 continue; 58 for (auto ®ion : op.getRegions()) { 59 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 60 toConvert, target))) 61 return failure(); 62 } 63 } 64 65 // Recurse to children that haven't been visited. 66 for (Block *succ : block->getSuccessors()) 67 if (visitedBlocks.insert(succ).second) 68 worklist.push_back(succ); 69 } 70 71 // Check that all blocks in the region were visited. 72 if (llvm::any_of(llvm::drop_begin(region, 1), 73 [&](Block &block) { return !visitedBlocks.count(&block); })) 74 return emitError(regionLoc, "unreachable blocks were not converted"); 75 return success(); 76 } 77 78 /// A utility function to log a successful result for the given reason. 79 template <typename... Args> 80 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { 81 LLVM_DEBUG({ 82 os.unindent(); 83 os.startLine() << "} -> SUCCESS"; 84 if (!fmt.empty()) 85 os.getOStream() << " : " 86 << llvm::formatv(fmt.data(), std::forward<Args>(args)...); 87 os.getOStream() << "\n"; 88 }); 89 } 90 91 /// A utility function to log a failure result for the given reason. 92 template <typename... Args> 93 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { 94 LLVM_DEBUG({ 95 os.unindent(); 96 os.startLine() << "} -> FAILURE : " 97 << llvm::formatv(fmt.data(), std::forward<Args>(args)...) 98 << "\n"; 99 }); 100 } 101 102 //===----------------------------------------------------------------------===// 103 // ConversionValueMapping 104 //===----------------------------------------------------------------------===// 105 106 namespace { 107 /// This class wraps a BlockAndValueMapping to provide recursive lookup 108 /// functionality, i.e. we will traverse if the mapped value also has a mapping. 109 struct ConversionValueMapping { 110 /// Lookup a mapped value within the map. If a mapping for the provided value 111 /// does not exist then return the provided value. If `desiredType` is 112 /// non-null, returns the most recently mapped value with that type. If an 113 /// operand of that type does not exist, defaults to normal behavior. 114 Value lookupOrDefault(Value from, Type desiredType = nullptr) const; 115 116 /// Lookup a mapped value within the map, or return null if a mapping does not 117 /// exist. If a mapping exists, this follows the same behavior of 118 /// `lookupOrDefault`. 119 Value lookupOrNull(Value from, Type desiredType = nullptr) const; 120 121 /// Map a value to the one provided. 122 void map(Value oldVal, Value newVal) { 123 LLVM_DEBUG({ 124 for (Value it = newVal; it; it = mapping.lookupOrNull(it)) 125 assert(it != oldVal && "inserting cyclic mapping"); 126 }); 127 mapping.map(oldVal, newVal); 128 } 129 130 /// Try to map a value to the one provided. Returns false if a transitive 131 /// mapping from the new value to the old value already exists, true if the 132 /// map was updated. 133 bool tryMap(Value oldVal, Value newVal); 134 135 /// Drop the last mapping for the given value. 136 void erase(Value value) { mapping.erase(value); } 137 138 /// Returns the inverse raw value mapping (without recursive query support). 139 DenseMap<Value, SmallVector<Value>> getInverse() const { 140 DenseMap<Value, SmallVector<Value>> inverse; 141 for (auto &it : mapping.getValueMap()) 142 inverse[it.second].push_back(it.first); 143 return inverse; 144 } 145 146 private: 147 /// Current value mappings. 148 BlockAndValueMapping mapping; 149 }; 150 } // namespace 151 152 Value ConversionValueMapping::lookupOrDefault(Value from, 153 Type desiredType) const { 154 // If there was no desired type, simply find the leaf value. 155 if (!desiredType) { 156 // If this value had a valid mapping, unmap that value as well in the case 157 // that it was also replaced. 158 while (auto mappedValue = mapping.lookupOrNull(from)) 159 from = mappedValue; 160 return from; 161 } 162 163 // Otherwise, try to find the deepest value that has the desired type. 164 Value desiredValue; 165 do { 166 if (from.getType() == desiredType) 167 desiredValue = from; 168 169 Value mappedValue = mapping.lookupOrNull(from); 170 if (!mappedValue) 171 break; 172 from = mappedValue; 173 } while (true); 174 175 // If the desired value was found use it, otherwise default to the leaf value. 176 return desiredValue ? desiredValue : from; 177 } 178 179 Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const { 180 Value result = lookupOrDefault(from, desiredType); 181 if (result == from || (desiredType && result.getType() != desiredType)) 182 return nullptr; 183 return result; 184 } 185 186 bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) { 187 for (Value it = newVal; it; it = mapping.lookupOrNull(it)) 188 if (it == oldVal) 189 return false; 190 map(oldVal, newVal); 191 return true; 192 } 193 194 //===----------------------------------------------------------------------===// 195 // Rewriter and Translation State 196 //===----------------------------------------------------------------------===// 197 namespace { 198 /// This class contains a snapshot of the current conversion rewriter state. 199 /// This is useful when saving and undoing a set of rewrites. 200 struct RewriterState { 201 RewriterState(unsigned numCreatedOps, unsigned numUnresolvedMaterializations, 202 unsigned numReplacements, unsigned numArgReplacements, 203 unsigned numBlockActions, unsigned numIgnoredOperations, 204 unsigned numRootUpdates) 205 : numCreatedOps(numCreatedOps), 206 numUnresolvedMaterializations(numUnresolvedMaterializations), 207 numReplacements(numReplacements), 208 numArgReplacements(numArgReplacements), 209 numBlockActions(numBlockActions), 210 numIgnoredOperations(numIgnoredOperations), 211 numRootUpdates(numRootUpdates) {} 212 213 /// The current number of created operations. 214 unsigned numCreatedOps; 215 216 /// The current number of unresolved materializations. 217 unsigned numUnresolvedMaterializations; 218 219 /// The current number of replacements queued. 220 unsigned numReplacements; 221 222 /// The current number of argument replacements queued. 223 unsigned numArgReplacements; 224 225 /// The current number of block actions performed. 226 unsigned numBlockActions; 227 228 /// The current number of ignored operations. 229 unsigned numIgnoredOperations; 230 231 /// The current number of operations that were updated in place. 232 unsigned numRootUpdates; 233 }; 234 235 //===----------------------------------------------------------------------===// 236 // OperationTransactionState 237 238 /// The state of an operation that was updated by a pattern in-place. This 239 /// contains all of the necessary information to reconstruct an operation that 240 /// was updated in place. 241 class OperationTransactionState { 242 public: 243 OperationTransactionState() = default; 244 OperationTransactionState(Operation *op) 245 : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()), 246 operands(op->operand_begin(), op->operand_end()), 247 successors(op->successor_begin(), op->successor_end()) {} 248 249 /// Discard the transaction state and reset the state of the original 250 /// operation. 251 void resetOperation() const { 252 op->setLoc(loc); 253 op->setAttrs(attrs); 254 op->setOperands(operands); 255 for (auto it : llvm::enumerate(successors)) 256 op->setSuccessor(it.value(), it.index()); 257 } 258 259 /// Return the original operation of this state. 260 Operation *getOperation() const { return op; } 261 262 private: 263 Operation *op; 264 LocationAttr loc; 265 DictionaryAttr attrs; 266 SmallVector<Value, 8> operands; 267 SmallVector<Block *, 2> successors; 268 }; 269 270 //===----------------------------------------------------------------------===// 271 // OpReplacement 272 273 /// This class represents one requested operation replacement via 'replaceOp' or 274 /// 'eraseOp`. 275 struct OpReplacement { 276 OpReplacement(TypeConverter *converter = nullptr) : converter(converter) {} 277 278 /// An optional type converter that can be used to materialize conversions 279 /// between the new and old values if necessary. 280 TypeConverter *converter; 281 }; 282 283 //===----------------------------------------------------------------------===// 284 // BlockAction 285 286 /// The kind of the block action performed during the rewrite. Actions can be 287 /// undone if the conversion fails. 288 enum class BlockActionKind { 289 Create, 290 Erase, 291 Merge, 292 Move, 293 Split, 294 TypeConversion 295 }; 296 297 /// Original position of the given block in its parent region. During undo 298 /// actions, the block needs to be placed after `insertAfterBlock`. 299 struct BlockPosition { 300 Region *region; 301 Block *insertAfterBlock; 302 }; 303 304 /// Information needed to undo the merge actions. 305 /// - the source block, and 306 /// - the Operation that was the last operation in the dest block before the 307 /// merge (could be null if the dest block was empty). 308 struct MergeInfo { 309 Block *sourceBlock; 310 Operation *destBlockLastInst; 311 }; 312 313 /// The storage class for an undoable block action (one of BlockActionKind), 314 /// contains the information necessary to undo this action. 315 struct BlockAction { 316 static BlockAction getCreate(Block *block) { 317 return {BlockActionKind::Create, block, {}}; 318 } 319 static BlockAction getErase(Block *block, BlockPosition originalPosition) { 320 return {BlockActionKind::Erase, block, {originalPosition}}; 321 } 322 static BlockAction getMerge(Block *block, Block *sourceBlock) { 323 BlockAction action{BlockActionKind::Merge, block, {}}; 324 action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()}; 325 return action; 326 } 327 static BlockAction getMove(Block *block, BlockPosition originalPosition) { 328 return {BlockActionKind::Move, block, {originalPosition}}; 329 } 330 static BlockAction getSplit(Block *block, Block *originalBlock) { 331 BlockAction action{BlockActionKind::Split, block, {}}; 332 action.originalBlock = originalBlock; 333 return action; 334 } 335 static BlockAction getTypeConversion(Block *block) { 336 return BlockAction{BlockActionKind::TypeConversion, block, {}}; 337 } 338 339 // The action kind. 340 BlockActionKind kind; 341 342 // A pointer to the block that was created by the action. 343 Block *block; 344 345 union { 346 // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and 347 // contains a pointer to the region that originally contained the block as 348 // well as the position of the block in that region. 349 BlockPosition originalPosition; 350 // In use if kind == BlockActionKind::Split and contains a pointer to the 351 // block that was split into two parts. 352 Block *originalBlock; 353 // In use if kind == BlockActionKind::Merge, and contains the information 354 // needed to undo the merge. 355 MergeInfo mergeInfo; 356 }; 357 }; 358 359 //===----------------------------------------------------------------------===// 360 // UnresolvedMaterialization 361 362 /// This class represents an unresolved materialization, i.e. a materialization 363 /// that was inserted during conversion that needs to be legalized at the end of 364 /// the conversion process. 365 class UnresolvedMaterialization { 366 public: 367 /// The type of materialization. 368 enum Kind { 369 /// This materialization materializes a conversion for an illegal block 370 /// argument type, to a legal one. 371 Argument, 372 373 /// This materialization materializes a conversion from an illegal type to a 374 /// legal one. 375 Target 376 }; 377 378 UnresolvedMaterialization(UnrealizedConversionCastOp op = nullptr, 379 TypeConverter *converter = nullptr, 380 Kind kind = Target, Type origOutputType = nullptr) 381 : op(op), converterAndKind(converter, kind), 382 origOutputType(origOutputType) {} 383 384 /// Return the temporary conversion operation inserted for this 385 /// materialization. 386 UnrealizedConversionCastOp getOp() const { return op; } 387 388 /// Return the type converter of this materialization (which may be null). 389 TypeConverter *getConverter() const { return converterAndKind.getPointer(); } 390 391 /// Return the kind of this materialization. 392 Kind getKind() const { return converterAndKind.getInt(); } 393 394 /// Set the kind of this materialization. 395 void setKind(Kind kind) { converterAndKind.setInt(kind); } 396 397 /// Return the original illegal output type of the input values. 398 Type getOrigOutputType() const { return origOutputType; } 399 400 private: 401 /// The unresolved materialization operation created during conversion. 402 UnrealizedConversionCastOp op; 403 404 /// The corresponding type converter to use when resolving this 405 /// materialization, and the kind of this materialization. 406 llvm::PointerIntPair<TypeConverter *, 1, Kind> converterAndKind; 407 408 /// The original output type. This is only used for argument conversions. 409 Type origOutputType; 410 }; 411 } // namespace 412 413 /// Build an unresolved materialization operation given an output type and set 414 /// of input operands. 415 static Value buildUnresolvedMaterialization( 416 UnresolvedMaterialization::Kind kind, Block *insertBlock, 417 Block::iterator insertPt, Location loc, ValueRange inputs, Type outputType, 418 Type origOutputType, TypeConverter *converter, 419 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) { 420 // Avoid materializing an unnecessary cast. 421 if (inputs.size() == 1 && inputs.front().getType() == outputType) 422 return inputs.front(); 423 424 // Create an unresolved materialization. We use a new OpBuilder to avoid 425 // tracking the materialization like we do for other operations. 426 OpBuilder builder(insertBlock, insertPt); 427 auto convertOp = 428 builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs); 429 unresolvedMaterializations.emplace_back(convertOp, converter, kind, 430 origOutputType); 431 return convertOp.getResult(0); 432 } 433 static Value buildUnresolvedArgumentMaterialization( 434 PatternRewriter &rewriter, Location loc, ValueRange inputs, 435 Type origOutputType, Type outputType, TypeConverter *converter, 436 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) { 437 return buildUnresolvedMaterialization( 438 UnresolvedMaterialization::Argument, rewriter.getInsertionBlock(), 439 rewriter.getInsertionPoint(), loc, inputs, outputType, origOutputType, 440 converter, unresolvedMaterializations); 441 } 442 static Value buildUnresolvedTargetMaterialization( 443 Location loc, Value input, Type outputType, TypeConverter *converter, 444 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) { 445 Block *insertBlock = input.getParentBlock(); 446 Block::iterator insertPt = insertBlock->begin(); 447 if (OpResult inputRes = input.dyn_cast<OpResult>()) 448 insertPt = ++inputRes.getOwner()->getIterator(); 449 450 return buildUnresolvedMaterialization( 451 UnresolvedMaterialization::Target, insertBlock, insertPt, loc, input, 452 outputType, outputType, converter, unresolvedMaterializations); 453 } 454 455 //===----------------------------------------------------------------------===// 456 // ArgConverter 457 //===----------------------------------------------------------------------===// 458 namespace { 459 /// This class provides a simple interface for converting the types of block 460 /// arguments. This is done by creating a new block that contains the new legal 461 /// types and extracting the block that contains the old illegal types to allow 462 /// for undoing pending rewrites in the case of failure. 463 struct ArgConverter { 464 ArgConverter( 465 PatternRewriter &rewriter, 466 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) 467 : rewriter(rewriter), 468 unresolvedMaterializations(unresolvedMaterializations) {} 469 470 /// This structure contains the information pertaining to an argument that has 471 /// been converted. 472 struct ConvertedArgInfo { 473 ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize, 474 Value castValue = nullptr) 475 : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {} 476 477 /// The start index of in the new argument list that contains arguments that 478 /// replace the original. 479 unsigned newArgIdx; 480 481 /// The number of arguments that replaced the original argument. 482 unsigned newArgSize; 483 484 /// The cast value that was created to cast from the new arguments to the 485 /// old. This only used if 'newArgSize' > 1. 486 Value castValue; 487 }; 488 489 /// This structure contains information pertaining to a block that has had its 490 /// signature converted. 491 struct ConvertedBlockInfo { 492 ConvertedBlockInfo(Block *origBlock, TypeConverter *converter) 493 : origBlock(origBlock), converter(converter) {} 494 495 /// The original block that was requested to have its signature converted. 496 Block *origBlock; 497 498 /// The conversion information for each of the arguments. The information is 499 /// None if the argument was dropped during conversion. 500 SmallVector<Optional<ConvertedArgInfo>, 1> argInfo; 501 502 /// The type converter used to convert the arguments. 503 TypeConverter *converter; 504 }; 505 506 /// Return if the signature of the given block has already been converted. 507 bool hasBeenConverted(Block *block) const { 508 return conversionInfo.count(block) || convertedBlocks.count(block); 509 } 510 511 /// Set the type converter to use for the given region. 512 void setConverter(Region *region, TypeConverter *typeConverter) { 513 assert(typeConverter && "expected valid type converter"); 514 regionToConverter[region] = typeConverter; 515 } 516 517 /// Return the type converter to use for the given region, or null if there 518 /// isn't one. 519 TypeConverter *getConverter(Region *region) { 520 return regionToConverter.lookup(region); 521 } 522 523 //===--------------------------------------------------------------------===// 524 // Rewrite Application 525 //===--------------------------------------------------------------------===// 526 527 /// Erase any rewrites registered for the blocks within the given operation 528 /// which is about to be removed. This merely drops the rewrites without 529 /// undoing them. 530 void notifyOpRemoved(Operation *op); 531 532 /// Cleanup and undo any generated conversions for the arguments of block. 533 /// This method replaces the new block with the original, reverting the IR to 534 /// its original state. 535 void discardRewrites(Block *block); 536 537 /// Fully replace uses of the old arguments with the new. 538 void applyRewrites(ConversionValueMapping &mapping); 539 540 /// Materialize any necessary conversions for converted arguments that have 541 /// live users, using the provided `findLiveUser` to search for a user that 542 /// survives the conversion process. 543 LogicalResult 544 materializeLiveConversions(ConversionValueMapping &mapping, 545 OpBuilder &builder, 546 function_ref<Operation *(Value)> findLiveUser); 547 548 //===--------------------------------------------------------------------===// 549 // Conversion 550 //===--------------------------------------------------------------------===// 551 552 /// Attempt to convert the signature of the given block, if successful a new 553 /// block is returned containing the new arguments. Returns `block` if it did 554 /// not require conversion. 555 FailureOr<Block *> 556 convertSignature(Block *block, TypeConverter *converter, 557 ConversionValueMapping &mapping, 558 SmallVectorImpl<BlockArgument> &argReplacements); 559 560 /// Apply the given signature conversion on the given block. The new block 561 /// containing the updated signature is returned. If no conversions were 562 /// necessary, e.g. if the block has no arguments, `block` is returned. 563 /// `converter` is used to generate any necessary cast operations that 564 /// translate between the origin argument types and those specified in the 565 /// signature conversion. 566 Block *applySignatureConversion( 567 Block *block, TypeConverter *converter, 568 TypeConverter::SignatureConversion &signatureConversion, 569 ConversionValueMapping &mapping, 570 SmallVectorImpl<BlockArgument> &argReplacements); 571 572 /// Insert a new conversion into the cache. 573 void insertConversion(Block *newBlock, ConvertedBlockInfo &&info); 574 575 /// A collection of blocks that have had their arguments converted. This is a 576 /// map from the new replacement block, back to the original block. 577 llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo; 578 579 /// The set of original blocks that were converted. 580 DenseSet<Block *> convertedBlocks; 581 582 /// A mapping from valid regions, to those containing the original blocks of a 583 /// conversion. 584 DenseMap<Region *, std::unique_ptr<Region>> regionMapping; 585 586 /// A mapping of regions to type converters that should be used when 587 /// converting the arguments of blocks within that region. 588 DenseMap<Region *, TypeConverter *> regionToConverter; 589 590 /// The pattern rewriter to use when materializing conversions. 591 PatternRewriter &rewriter; 592 593 /// An ordered set of unresolved materializations during conversion. 594 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations; 595 }; 596 } // namespace 597 598 //===----------------------------------------------------------------------===// 599 // Rewrite Application 600 601 void ArgConverter::notifyOpRemoved(Operation *op) { 602 if (conversionInfo.empty()) 603 return; 604 605 for (Region ®ion : op->getRegions()) { 606 for (Block &block : region) { 607 // Drop any rewrites from within. 608 for (Operation &nestedOp : block) 609 if (nestedOp.getNumRegions()) 610 notifyOpRemoved(&nestedOp); 611 612 // Check if this block was converted. 613 auto it = conversionInfo.find(&block); 614 if (it == conversionInfo.end()) 615 continue; 616 617 // Drop all uses of the original arguments and delete the original block. 618 Block *origBlock = it->second.origBlock; 619 for (BlockArgument arg : origBlock->getArguments()) 620 arg.dropAllUses(); 621 conversionInfo.erase(it); 622 } 623 } 624 } 625 626 void ArgConverter::discardRewrites(Block *block) { 627 auto it = conversionInfo.find(block); 628 if (it == conversionInfo.end()) 629 return; 630 Block *origBlock = it->second.origBlock; 631 632 // Drop all uses of the new block arguments and replace uses of the new block. 633 for (int i = block->getNumArguments() - 1; i >= 0; --i) 634 block->getArgument(i).dropAllUses(); 635 block->replaceAllUsesWith(origBlock); 636 637 // Move the operations back the original block and the delete the new block. 638 origBlock->getOperations().splice(origBlock->end(), block->getOperations()); 639 origBlock->moveBefore(block); 640 block->erase(); 641 642 convertedBlocks.erase(origBlock); 643 conversionInfo.erase(it); 644 } 645 646 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) { 647 for (auto &info : conversionInfo) { 648 ConvertedBlockInfo &blockInfo = info.second; 649 Block *origBlock = blockInfo.origBlock; 650 651 // Process the remapping for each of the original arguments. 652 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 653 Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i]; 654 BlockArgument origArg = origBlock->getArgument(i); 655 656 // Handle the case of a 1->0 value mapping. 657 if (!argInfo) { 658 if (Value newArg = mapping.lookupOrNull(origArg, origArg.getType())) 659 origArg.replaceAllUsesWith(newArg); 660 continue; 661 } 662 663 // Otherwise this is a 1->1+ value mapping. 664 Value castValue = argInfo->castValue; 665 assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping"); 666 667 // If the argument is still used, replace it with the generated cast. 668 if (!origArg.use_empty()) { 669 origArg.replaceAllUsesWith( 670 mapping.lookupOrDefault(castValue, origArg.getType())); 671 } 672 } 673 } 674 } 675 676 LogicalResult ArgConverter::materializeLiveConversions( 677 ConversionValueMapping &mapping, OpBuilder &builder, 678 function_ref<Operation *(Value)> findLiveUser) { 679 for (auto &info : conversionInfo) { 680 Block *newBlock = info.first; 681 ConvertedBlockInfo &blockInfo = info.second; 682 Block *origBlock = blockInfo.origBlock; 683 684 // Process the remapping for each of the original arguments. 685 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 686 // If the type of this argument changed and the argument is still live, we 687 // need to materialize a conversion. 688 BlockArgument origArg = origBlock->getArgument(i); 689 if (mapping.lookupOrNull(origArg, origArg.getType())) 690 continue; 691 Operation *liveUser = findLiveUser(origArg); 692 if (!liveUser) 693 continue; 694 695 Value replacementValue = mapping.lookupOrDefault(origArg); 696 bool isDroppedArg = replacementValue == origArg; 697 if (isDroppedArg) 698 rewriter.setInsertionPointToStart(newBlock); 699 else 700 rewriter.setInsertionPointAfterValue(replacementValue); 701 Value newArg; 702 if (blockInfo.converter) { 703 newArg = blockInfo.converter->materializeSourceConversion( 704 rewriter, origArg.getLoc(), origArg.getType(), 705 isDroppedArg ? ValueRange() : ValueRange(replacementValue)); 706 assert((!newArg || newArg.getType() == origArg.getType()) && 707 "materialization hook did not provide a value of the expected " 708 "type"); 709 } 710 if (!newArg) { 711 InFlightDiagnostic diag = 712 emitError(origArg.getLoc()) 713 << "failed to materialize conversion for block argument #" << i 714 << " that remained live after conversion, type was " 715 << origArg.getType(); 716 if (!isDroppedArg) 717 diag << ", with target type " << replacementValue.getType(); 718 diag.attachNote(liveUser->getLoc()) 719 << "see existing live user here: " << *liveUser; 720 return failure(); 721 } 722 mapping.map(origArg, newArg); 723 } 724 } 725 return success(); 726 } 727 728 //===----------------------------------------------------------------------===// 729 // Conversion 730 731 FailureOr<Block *> ArgConverter::convertSignature( 732 Block *block, TypeConverter *converter, ConversionValueMapping &mapping, 733 SmallVectorImpl<BlockArgument> &argReplacements) { 734 // Check if the block was already converted. If the block is detached, 735 // conservatively assume it is going to be deleted. 736 if (hasBeenConverted(block) || !block->getParent()) 737 return block; 738 // If a converter wasn't provided, and the block wasn't already converted, 739 // there is nothing we can do. 740 if (!converter) 741 return failure(); 742 743 // Try to convert the signature for the block with the provided converter. 744 if (auto conversion = converter->convertBlockSignature(block)) 745 return applySignatureConversion(block, converter, *conversion, mapping, 746 argReplacements); 747 return failure(); 748 } 749 750 Block *ArgConverter::applySignatureConversion( 751 Block *block, TypeConverter *converter, 752 TypeConverter::SignatureConversion &signatureConversion, 753 ConversionValueMapping &mapping, 754 SmallVectorImpl<BlockArgument> &argReplacements) { 755 // If no arguments are being changed or added, there is nothing to do. 756 unsigned origArgCount = block->getNumArguments(); 757 auto convertedTypes = signatureConversion.getConvertedTypes(); 758 if (origArgCount == 0 && convertedTypes.empty()) 759 return block; 760 761 // Split the block at the beginning to get a new block to use for the updated 762 // signature. 763 Block *newBlock = block->splitBlock(block->begin()); 764 block->replaceAllUsesWith(newBlock); 765 766 SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes)); 767 ArrayRef<Value> newArgs(newArgRange); 768 769 // Remap each of the original arguments as determined by the signature 770 // conversion. 771 ConvertedBlockInfo info(block, converter); 772 info.argInfo.resize(origArgCount); 773 774 OpBuilder::InsertionGuard guard(rewriter); 775 rewriter.setInsertionPointToStart(newBlock); 776 for (unsigned i = 0; i != origArgCount; ++i) { 777 auto inputMap = signatureConversion.getInputMapping(i); 778 if (!inputMap) 779 continue; 780 BlockArgument origArg = block->getArgument(i); 781 782 // If inputMap->replacementValue is not nullptr, then the argument is 783 // dropped and a replacement value is provided to be the remappedValue. 784 if (inputMap->replacementValue) { 785 assert(inputMap->size == 0 && 786 "invalid to provide a replacement value when the argument isn't " 787 "dropped"); 788 mapping.map(origArg, inputMap->replacementValue); 789 argReplacements.push_back(origArg); 790 continue; 791 } 792 793 // Otherwise, this is a 1->1+ mapping. 794 auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size); 795 Value newArg; 796 797 // If this is a 1->1 mapping and the types of new and replacement arguments 798 // match (i.e. it's an identity map), then the argument is mapped to its 799 // original type. 800 // FIXME: We simply pass through the replacement argument if there wasn't a 801 // converter, which isn't great as it allows implicit type conversions to 802 // appear. We should properly restructure this code to handle cases where a 803 // converter isn't provided and also to properly handle the case where an 804 // argument materialization is actually a temporary source materialization 805 // (e.g. in the case of 1->N). 806 if (replArgs.size() == 1 && 807 (!converter || replArgs[0].getType() == origArg.getType())) { 808 newArg = replArgs.front(); 809 } else { 810 Type origOutputType = origArg.getType(); 811 812 // Legalize the argument output type. 813 Type outputType = origOutputType; 814 if (Type legalOutputType = converter->convertType(outputType)) 815 outputType = legalOutputType; 816 817 newArg = buildUnresolvedArgumentMaterialization( 818 rewriter, origArg.getLoc(), replArgs, origOutputType, outputType, 819 converter, unresolvedMaterializations); 820 } 821 822 mapping.map(origArg, newArg); 823 argReplacements.push_back(origArg); 824 info.argInfo[i] = 825 ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg); 826 } 827 828 // Remove the original block from the region and return the new one. 829 insertConversion(newBlock, std::move(info)); 830 return newBlock; 831 } 832 833 void ArgConverter::insertConversion(Block *newBlock, 834 ConvertedBlockInfo &&info) { 835 // Get a region to insert the old block. 836 Region *region = newBlock->getParent(); 837 std::unique_ptr<Region> &mappedRegion = regionMapping[region]; 838 if (!mappedRegion) 839 mappedRegion = std::make_unique<Region>(region->getParentOp()); 840 841 // Move the original block to the mapped region and emplace the conversion. 842 mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(), 843 info.origBlock->getIterator()); 844 convertedBlocks.insert(info.origBlock); 845 conversionInfo.insert({newBlock, std::move(info)}); 846 } 847 848 //===----------------------------------------------------------------------===// 849 // ConversionPatternRewriterImpl 850 //===----------------------------------------------------------------------===// 851 namespace mlir { 852 namespace detail { 853 struct ConversionPatternRewriterImpl { 854 explicit ConversionPatternRewriterImpl(PatternRewriter &rewriter) 855 : argConverter(rewriter, unresolvedMaterializations), 856 notifyCallback(nullptr) {} 857 858 /// Cleanup and destroy any generated rewrite operations. This method is 859 /// invoked when the conversion process fails. 860 void discardRewrites(); 861 862 /// Apply all requested operation rewrites. This method is invoked when the 863 /// conversion process succeeds. 864 void applyRewrites(); 865 866 //===--------------------------------------------------------------------===// 867 // State Management 868 //===--------------------------------------------------------------------===// 869 870 /// Return the current state of the rewriter. 871 RewriterState getCurrentState(); 872 873 /// Reset the state of the rewriter to a previously saved point. 874 void resetState(RewriterState state); 875 876 /// Erase any blocks that were unlinked from their regions and stored in block 877 /// actions. 878 void eraseDanglingBlocks(); 879 880 /// Undo the block actions (motions, splits) one by one in reverse order until 881 /// "numActionsToKeep" actions remains. 882 void undoBlockActions(unsigned numActionsToKeep = 0); 883 884 /// Remap the given values to those with potentially different types. Returns 885 /// success if the values could be remapped, failure otherwise. `valueDiagTag` 886 /// is the tag used when describing a value within a diagnostic, e.g. 887 /// "operand". 888 LogicalResult remapValues(StringRef valueDiagTag, Optional<Location> inputLoc, 889 PatternRewriter &rewriter, ValueRange values, 890 SmallVectorImpl<Value> &remapped); 891 892 /// Returns true if the given operation is ignored, and does not need to be 893 /// converted. 894 bool isOpIgnored(Operation *op) const; 895 896 /// Recursively marks the nested operations under 'op' as ignored. This 897 /// removes them from being considered for legalization. 898 void markNestedOpsIgnored(Operation *op); 899 900 //===--------------------------------------------------------------------===// 901 // Type Conversion 902 //===--------------------------------------------------------------------===// 903 904 /// Convert the signature of the given block. 905 FailureOr<Block *> convertBlockSignature( 906 Block *block, TypeConverter *converter, 907 TypeConverter::SignatureConversion *conversion = nullptr); 908 909 /// Apply a signature conversion on the given region, using `converter` for 910 /// materializations if not null. 911 Block * 912 applySignatureConversion(Region *region, 913 TypeConverter::SignatureConversion &conversion, 914 TypeConverter *converter); 915 916 /// Convert the types of block arguments within the given region. 917 FailureOr<Block *> 918 convertRegionTypes(Region *region, TypeConverter &converter, 919 TypeConverter::SignatureConversion *entryConversion); 920 921 /// Convert the types of non-entry block arguments within the given region. 922 LogicalResult convertNonEntryRegionTypes( 923 Region *region, TypeConverter &converter, 924 ArrayRef<TypeConverter::SignatureConversion> blockConversions = {}); 925 926 //===--------------------------------------------------------------------===// 927 // Rewriter Notification Hooks 928 //===--------------------------------------------------------------------===// 929 930 /// PatternRewriter hook for replacing the results of an operation. 931 void notifyOpReplaced(Operation *op, ValueRange newValues); 932 933 /// Notifies that a block is about to be erased. 934 void notifyBlockIsBeingErased(Block *block); 935 936 /// Notifies that a block was created. 937 void notifyCreatedBlock(Block *block); 938 939 /// Notifies that a block was split. 940 void notifySplitBlock(Block *block, Block *continuation); 941 942 /// Notifies that `block` is being merged with `srcBlock`. 943 void notifyBlocksBeingMerged(Block *block, Block *srcBlock); 944 945 /// Notifies that the blocks of a region are about to be moved. 946 void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent, 947 Region::iterator before); 948 949 /// Notifies that the blocks of a region were cloned into another. 950 void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks, 951 Location origRegionLoc); 952 953 /// Notifies that a pattern match failed for the given reason. 954 LogicalResult 955 notifyMatchFailure(Location loc, 956 function_ref<void(Diagnostic &)> reasonCallback); 957 958 //===--------------------------------------------------------------------===// 959 // State 960 //===--------------------------------------------------------------------===// 961 962 // Mapping between replaced values that differ in type. This happens when 963 // replacing a value with one of a different type. 964 ConversionValueMapping mapping; 965 966 /// Utility used to convert block arguments. 967 ArgConverter argConverter; 968 969 /// Ordered vector of all of the newly created operations during conversion. 970 SmallVector<Operation *> createdOps; 971 972 /// Ordered vector of all unresolved type conversion materializations during 973 /// conversion. 974 SmallVector<UnresolvedMaterialization> unresolvedMaterializations; 975 976 /// Ordered map of requested operation replacements. 977 llvm::MapVector<Operation *, OpReplacement> replacements; 978 979 /// Ordered vector of any requested block argument replacements. 980 SmallVector<BlockArgument, 4> argReplacements; 981 982 /// Ordered list of block operations (creations, splits, motions). 983 SmallVector<BlockAction, 4> blockActions; 984 985 /// A set of operations that should no longer be considered for legalization, 986 /// but were not directly replace/erased/etc. by a pattern. These are 987 /// generally child operations of other operations who were 988 /// replaced/erased/etc. This is not meant to be an exhaustive list of all 989 /// operations, but the minimal set that can be used to detect if a given 990 /// operation should be `ignored`. For example, we may add the operations that 991 /// define non-empty regions to the set, but not any of the others. This 992 /// simplifies the amount of memory needed as we can query if the parent 993 /// operation was ignored. 994 SetVector<Operation *> ignoredOps; 995 996 /// A transaction state for each of operations that were updated in-place. 997 SmallVector<OperationTransactionState, 4> rootUpdates; 998 999 /// A vector of indices into `replacements` of operations that were replaced 1000 /// with values with different result types than the original operation, e.g. 1001 /// 1->N conversion of some kind. 1002 SmallVector<unsigned, 4> operationsWithChangedResults; 1003 1004 /// The current type converter, or nullptr if no type converter is currently 1005 /// active. 1006 TypeConverter *currentTypeConverter = nullptr; 1007 1008 /// This allows the user to collect the match failure message. 1009 function_ref<void(Diagnostic &)> notifyCallback; 1010 1011 #ifndef NDEBUG 1012 /// A set of operations that have pending updates. This tracking isn't 1013 /// strictly necessary, and is thus only active during debug builds for extra 1014 /// verification. 1015 SmallPtrSet<Operation *, 1> pendingRootUpdates; 1016 1017 /// A logger used to emit diagnostics during the conversion process. 1018 llvm::ScopedPrinter logger{llvm::dbgs()}; 1019 #endif 1020 }; 1021 } // namespace detail 1022 } // namespace mlir 1023 1024 /// Detach any operations nested in the given operation from their parent 1025 /// blocks, and erase the given operation. This can be used when the nested 1026 /// operations are scheduled for erasure themselves, so deleting the regions of 1027 /// the given operation together with their content would result in double-free. 1028 /// This happens, for example, when rolling back op creation in the reverse 1029 /// order and if the nested ops were created before the parent op. This function 1030 /// does not need to collect nested ops recursively because it is expected to 1031 /// also be called for each nested op when it is about to be deleted. 1032 static void detachNestedAndErase(Operation *op) { 1033 for (Region ®ion : op->getRegions()) { 1034 for (Block &block : region.getBlocks()) { 1035 while (!block.getOperations().empty()) 1036 block.getOperations().remove(block.getOperations().begin()); 1037 block.dropAllDefinedValueUses(); 1038 } 1039 } 1040 op->dropAllUses(); 1041 op->erase(); 1042 } 1043 1044 void ConversionPatternRewriterImpl::discardRewrites() { 1045 // Reset any operations that were updated in place. 1046 for (auto &state : rootUpdates) 1047 state.resetOperation(); 1048 1049 undoBlockActions(); 1050 1051 // Remove any newly created ops. 1052 for (UnresolvedMaterialization &materialization : unresolvedMaterializations) 1053 detachNestedAndErase(materialization.getOp()); 1054 for (auto *op : llvm::reverse(createdOps)) 1055 detachNestedAndErase(op); 1056 } 1057 1058 void ConversionPatternRewriterImpl::applyRewrites() { 1059 // Apply all of the rewrites replacements requested during conversion. 1060 for (auto &repl : replacements) { 1061 for (OpResult result : repl.first->getResults()) 1062 if (Value newValue = mapping.lookupOrNull(result, result.getType())) 1063 result.replaceAllUsesWith(newValue); 1064 1065 // If this operation defines any regions, drop any pending argument 1066 // rewrites. 1067 if (repl.first->getNumRegions()) 1068 argConverter.notifyOpRemoved(repl.first); 1069 } 1070 1071 // Apply all of the requested argument replacements. 1072 for (BlockArgument arg : argReplacements) { 1073 Value repl = mapping.lookupOrNull(arg, arg.getType()); 1074 if (!repl) 1075 continue; 1076 1077 if (repl.isa<BlockArgument>()) { 1078 arg.replaceAllUsesWith(repl); 1079 continue; 1080 } 1081 1082 // If the replacement value is an operation, we check to make sure that we 1083 // don't replace uses that are within the parent operation of the 1084 // replacement value. 1085 Operation *replOp = repl.cast<OpResult>().getOwner(); 1086 Block *replBlock = replOp->getBlock(); 1087 arg.replaceUsesWithIf(repl, [&](OpOperand &operand) { 1088 Operation *user = operand.getOwner(); 1089 return user->getBlock() != replBlock || replOp->isBeforeInBlock(user); 1090 }); 1091 } 1092 1093 // Drop all of the unresolved materialization operations created during 1094 // conversion. 1095 for (auto &mat : unresolvedMaterializations) { 1096 mat.getOp()->dropAllUses(); 1097 mat.getOp()->erase(); 1098 } 1099 1100 // In a second pass, erase all of the replaced operations in reverse. This 1101 // allows processing nested operations before their parent region is 1102 // destroyed. Because we process in reverse order, producers may be deleted 1103 // before their users (a pattern deleting a producer and then the consumer) 1104 // so we first drop all uses explicitly. 1105 for (auto &repl : llvm::reverse(replacements)) { 1106 repl.first->dropAllUses(); 1107 repl.first->erase(); 1108 } 1109 1110 argConverter.applyRewrites(mapping); 1111 1112 // Now that the ops have been erased, also erase dangling blocks. 1113 eraseDanglingBlocks(); 1114 } 1115 1116 //===----------------------------------------------------------------------===// 1117 // State Management 1118 1119 RewriterState ConversionPatternRewriterImpl::getCurrentState() { 1120 return RewriterState(createdOps.size(), unresolvedMaterializations.size(), 1121 replacements.size(), argReplacements.size(), 1122 blockActions.size(), ignoredOps.size(), 1123 rootUpdates.size()); 1124 } 1125 1126 void ConversionPatternRewriterImpl::resetState(RewriterState state) { 1127 // Reset any operations that were updated in place. 1128 for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i) 1129 rootUpdates[i].resetOperation(); 1130 rootUpdates.resize(state.numRootUpdates); 1131 1132 // Reset any replaced arguments. 1133 for (BlockArgument replacedArg : 1134 llvm::drop_begin(argReplacements, state.numArgReplacements)) 1135 mapping.erase(replacedArg); 1136 argReplacements.resize(state.numArgReplacements); 1137 1138 // Undo any block actions. 1139 undoBlockActions(state.numBlockActions); 1140 1141 // Reset any replaced operations and undo any saved mappings. 1142 for (auto &repl : llvm::drop_begin(replacements, state.numReplacements)) 1143 for (auto result : repl.first->getResults()) 1144 mapping.erase(result); 1145 while (replacements.size() != state.numReplacements) 1146 replacements.pop_back(); 1147 1148 // Pop all of the newly inserted materializations. 1149 while (unresolvedMaterializations.size() != 1150 state.numUnresolvedMaterializations) { 1151 UnresolvedMaterialization mat = unresolvedMaterializations.pop_back_val(); 1152 UnrealizedConversionCastOp op = mat.getOp(); 1153 1154 // If this was a target materialization, drop the mapping that was inserted. 1155 if (mat.getKind() == UnresolvedMaterialization::Target) { 1156 for (Value input : op->getOperands()) 1157 mapping.erase(input); 1158 } 1159 detachNestedAndErase(op); 1160 } 1161 1162 // Pop all of the newly created operations. 1163 while (createdOps.size() != state.numCreatedOps) { 1164 detachNestedAndErase(createdOps.back()); 1165 createdOps.pop_back(); 1166 } 1167 1168 // Pop all of the recorded ignored operations that are no longer valid. 1169 while (ignoredOps.size() != state.numIgnoredOperations) 1170 ignoredOps.pop_back(); 1171 1172 // Reset operations with changed results. 1173 while (!operationsWithChangedResults.empty() && 1174 operationsWithChangedResults.back() >= state.numReplacements) 1175 operationsWithChangedResults.pop_back(); 1176 } 1177 1178 void ConversionPatternRewriterImpl::eraseDanglingBlocks() { 1179 for (auto &action : blockActions) 1180 if (action.kind == BlockActionKind::Erase) 1181 delete action.block; 1182 } 1183 1184 void ConversionPatternRewriterImpl::undoBlockActions( 1185 unsigned numActionsToKeep) { 1186 for (auto &action : 1187 llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) { 1188 switch (action.kind) { 1189 // Delete the created block. 1190 case BlockActionKind::Create: { 1191 // Unlink all of the operations within this block, they will be deleted 1192 // separately. 1193 auto &blockOps = action.block->getOperations(); 1194 while (!blockOps.empty()) 1195 blockOps.remove(blockOps.begin()); 1196 action.block->dropAllDefinedValueUses(); 1197 action.block->erase(); 1198 break; 1199 } 1200 // Put the block (owned by action) back into its original position. 1201 case BlockActionKind::Erase: { 1202 auto &blockList = action.originalPosition.region->getBlocks(); 1203 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 1204 blockList.insert((insertAfterBlock 1205 ? std::next(Region::iterator(insertAfterBlock)) 1206 : blockList.begin()), 1207 action.block); 1208 break; 1209 } 1210 // Split the block at the position which was originally the end of the 1211 // destination block (owned by action), and put the instructions back into 1212 // the block used before the merge. 1213 case BlockActionKind::Merge: { 1214 Block *sourceBlock = action.mergeInfo.sourceBlock; 1215 Block::iterator splitPoint = 1216 (action.mergeInfo.destBlockLastInst 1217 ? ++Block::iterator(action.mergeInfo.destBlockLastInst) 1218 : action.block->begin()); 1219 sourceBlock->getOperations().splice(sourceBlock->begin(), 1220 action.block->getOperations(), 1221 splitPoint, action.block->end()); 1222 break; 1223 } 1224 // Move the block back to its original position. 1225 case BlockActionKind::Move: { 1226 Region *originalRegion = action.originalPosition.region; 1227 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 1228 originalRegion->getBlocks().splice( 1229 (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock)) 1230 : originalRegion->end()), 1231 action.block->getParent()->getBlocks(), action.block); 1232 break; 1233 } 1234 // Merge back the block that was split out. 1235 case BlockActionKind::Split: { 1236 action.originalBlock->getOperations().splice( 1237 action.originalBlock->end(), action.block->getOperations()); 1238 action.block->dropAllDefinedValueUses(); 1239 action.block->erase(); 1240 break; 1241 } 1242 // Undo the type conversion. 1243 case BlockActionKind::TypeConversion: { 1244 argConverter.discardRewrites(action.block); 1245 break; 1246 } 1247 } 1248 } 1249 blockActions.resize(numActionsToKeep); 1250 } 1251 1252 LogicalResult ConversionPatternRewriterImpl::remapValues( 1253 StringRef valueDiagTag, Optional<Location> inputLoc, 1254 PatternRewriter &rewriter, ValueRange values, 1255 SmallVectorImpl<Value> &remapped) { 1256 remapped.reserve(llvm::size(values)); 1257 1258 SmallVector<Type, 1> legalTypes; 1259 for (auto it : llvm::enumerate(values)) { 1260 Value operand = it.value(); 1261 Type origType = operand.getType(); 1262 1263 // If a converter was provided, get the desired legal types for this 1264 // operand. 1265 Type desiredType; 1266 if (currentTypeConverter) { 1267 // If there is no legal conversion, fail to match this pattern. 1268 legalTypes.clear(); 1269 if (failed(currentTypeConverter->convertType(origType, legalTypes))) { 1270 Location operandLoc = inputLoc ? *inputLoc : operand.getLoc(); 1271 return notifyMatchFailure(operandLoc, [=](Diagnostic &diag) { 1272 diag << "unable to convert type for " << valueDiagTag << " #" 1273 << it.index() << ", type was " << origType; 1274 }); 1275 } 1276 // TODO: There currently isn't any mechanism to do 1->N type conversion 1277 // via the PatternRewriter replacement API, so for now we just ignore it. 1278 if (legalTypes.size() == 1) 1279 desiredType = legalTypes.front(); 1280 } else { 1281 // TODO: What we should do here is just set `desiredType` to `origType` 1282 // and then handle the necessary type conversions after the conversion 1283 // process has finished. Unfortunately a lot of patterns currently rely on 1284 // receiving the new operands even if the types change, so we keep the 1285 // original behavior here for now until all of the patterns relying on 1286 // this get updated. 1287 } 1288 Value newOperand = mapping.lookupOrDefault(operand, desiredType); 1289 1290 // Handle the case where the conversion was 1->1 and the new operand type 1291 // isn't legal. 1292 Type newOperandType = newOperand.getType(); 1293 if (currentTypeConverter && desiredType && newOperandType != desiredType) { 1294 Location operandLoc = inputLoc ? *inputLoc : operand.getLoc(); 1295 Value castValue = buildUnresolvedTargetMaterialization( 1296 operandLoc, newOperand, desiredType, currentTypeConverter, 1297 unresolvedMaterializations); 1298 mapping.map(mapping.lookupOrDefault(newOperand), castValue); 1299 newOperand = castValue; 1300 } 1301 remapped.push_back(newOperand); 1302 } 1303 return success(); 1304 } 1305 1306 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const { 1307 // Check to see if this operation was replaced or its parent ignored. 1308 return replacements.count(op) || ignoredOps.count(op->getParentOp()); 1309 } 1310 1311 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) { 1312 // Walk this operation and collect nested operations that define non-empty 1313 // regions. We mark such operations as 'ignored' so that we know we don't have 1314 // to convert them, or their nested ops. 1315 if (op->getNumRegions() == 0) 1316 return; 1317 op->walk([&](Operation *op) { 1318 if (llvm::any_of(op->getRegions(), 1319 [](Region ®ion) { return !region.empty(); })) 1320 ignoredOps.insert(op); 1321 }); 1322 } 1323 1324 //===----------------------------------------------------------------------===// 1325 // Type Conversion 1326 1327 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature( 1328 Block *block, TypeConverter *converter, 1329 TypeConverter::SignatureConversion *conversion) { 1330 FailureOr<Block *> result = 1331 conversion ? argConverter.applySignatureConversion( 1332 block, converter, *conversion, mapping, argReplacements) 1333 : argConverter.convertSignature(block, converter, mapping, 1334 argReplacements); 1335 if (failed(result)) 1336 return failure(); 1337 if (Block *newBlock = result.getValue()) { 1338 if (newBlock != block) 1339 blockActions.push_back(BlockAction::getTypeConversion(newBlock)); 1340 } 1341 return result; 1342 } 1343 1344 Block *ConversionPatternRewriterImpl::applySignatureConversion( 1345 Region *region, TypeConverter::SignatureConversion &conversion, 1346 TypeConverter *converter) { 1347 if (!region->empty()) 1348 return *convertBlockSignature(®ion->front(), converter, &conversion); 1349 return nullptr; 1350 } 1351 1352 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes( 1353 Region *region, TypeConverter &converter, 1354 TypeConverter::SignatureConversion *entryConversion) { 1355 argConverter.setConverter(region, &converter); 1356 if (region->empty()) 1357 return nullptr; 1358 1359 if (failed(convertNonEntryRegionTypes(region, converter))) 1360 return failure(); 1361 1362 FailureOr<Block *> newEntry = 1363 convertBlockSignature(®ion->front(), &converter, entryConversion); 1364 return newEntry; 1365 } 1366 1367 LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes( 1368 Region *region, TypeConverter &converter, 1369 ArrayRef<TypeConverter::SignatureConversion> blockConversions) { 1370 argConverter.setConverter(region, &converter); 1371 if (region->empty()) 1372 return success(); 1373 1374 // Convert the arguments of each block within the region. 1375 int blockIdx = 0; 1376 assert((blockConversions.empty() || 1377 blockConversions.size() == region->getBlocks().size() - 1) && 1378 "expected either to provide no SignatureConversions at all or to " 1379 "provide a SignatureConversion for each non-entry block"); 1380 1381 for (Block &block : 1382 llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) { 1383 TypeConverter::SignatureConversion *blockConversion = 1384 blockConversions.empty() 1385 ? nullptr 1386 : const_cast<TypeConverter::SignatureConversion *>( 1387 &blockConversions[blockIdx++]); 1388 1389 if (failed(convertBlockSignature(&block, &converter, blockConversion))) 1390 return failure(); 1391 } 1392 return success(); 1393 } 1394 1395 //===----------------------------------------------------------------------===// 1396 // Rewriter Notification Hooks 1397 1398 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op, 1399 ValueRange newValues) { 1400 assert(newValues.size() == op->getNumResults()); 1401 assert(!replacements.count(op) && "operation was already replaced"); 1402 1403 // Track if any of the results changed, e.g. erased and replaced with null. 1404 bool resultChanged = false; 1405 1406 // Create mappings for each of the new result values. 1407 Value newValue, result; 1408 for (auto it : llvm::zip(newValues, op->getResults())) { 1409 std::tie(newValue, result) = it; 1410 if (!newValue) { 1411 resultChanged = true; 1412 continue; 1413 } 1414 // Remap, and check for any result type changes. 1415 mapping.map(result, newValue); 1416 resultChanged |= (newValue.getType() != result.getType()); 1417 } 1418 if (resultChanged) 1419 operationsWithChangedResults.push_back(replacements.size()); 1420 1421 // Record the requested operation replacement. 1422 replacements.insert(std::make_pair(op, OpReplacement(currentTypeConverter))); 1423 1424 // Mark this operation as recursively ignored so that we don't need to 1425 // convert any nested operations. 1426 markNestedOpsIgnored(op); 1427 } 1428 1429 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) { 1430 Region *region = block->getParent(); 1431 Block *origPrevBlock = block->getPrevNode(); 1432 blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock})); 1433 } 1434 1435 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) { 1436 blockActions.push_back(BlockAction::getCreate(block)); 1437 } 1438 1439 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block, 1440 Block *continuation) { 1441 blockActions.push_back(BlockAction::getSplit(continuation, block)); 1442 } 1443 1444 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block, 1445 Block *srcBlock) { 1446 blockActions.push_back(BlockAction::getMerge(block, srcBlock)); 1447 } 1448 1449 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore( 1450 Region ®ion, Region &parent, Region::iterator before) { 1451 if (region.empty()) 1452 return; 1453 Block *laterBlock = ®ion.back(); 1454 for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) { 1455 blockActions.push_back( 1456 BlockAction::getMove(laterBlock, {®ion, &earlierBlock})); 1457 laterBlock = &earlierBlock; 1458 } 1459 blockActions.push_back(BlockAction::getMove(laterBlock, {®ion, nullptr})); 1460 } 1461 1462 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore( 1463 iterator_range<Region::iterator> &blocks, Location origRegionLoc) { 1464 for (Block &block : blocks) 1465 blockActions.push_back(BlockAction::getCreate(&block)); 1466 1467 // Compute the conversion set for the inlined region. 1468 auto result = computeConversionSet(blocks, origRegionLoc, createdOps); 1469 1470 // This original region has already had its conversion set computed, so there 1471 // shouldn't be any new failures. 1472 (void)result; 1473 assert(succeeded(result) && "expected region to have no unreachable blocks"); 1474 } 1475 1476 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure( 1477 Location loc, function_ref<void(Diagnostic &)> reasonCallback) { 1478 LLVM_DEBUG({ 1479 Diagnostic diag(loc, DiagnosticSeverity::Remark); 1480 reasonCallback(diag); 1481 logger.startLine() << "** Failure : " << diag.str() << "\n"; 1482 if (notifyCallback) 1483 notifyCallback(diag); 1484 }); 1485 return failure(); 1486 } 1487 1488 //===----------------------------------------------------------------------===// 1489 // ConversionPatternRewriter 1490 //===----------------------------------------------------------------------===// 1491 1492 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx) 1493 : PatternRewriter(ctx), 1494 impl(new detail::ConversionPatternRewriterImpl(*this)) {} 1495 ConversionPatternRewriter::~ConversionPatternRewriter() = default; 1496 1497 void ConversionPatternRewriter::replaceOpWithIf( 1498 Operation *op, ValueRange newValues, bool *allUsesReplaced, 1499 llvm::unique_function<bool(OpOperand &) const> functor) { 1500 // TODO: To support this we will need to rework a bit of how replacements are 1501 // tracked, given that this isn't guranteed to replace all of the uses of an 1502 // operation. The main change is that now an operation can be replaced 1503 // multiple times, in parts. The current "set" based tracking is mainly useful 1504 // for tracking if a replaced operation should be ignored, i.e. if all of the 1505 // uses will be replaced. 1506 llvm_unreachable( 1507 "replaceOpWithIf is currently not supported by DialectConversion"); 1508 } 1509 1510 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) { 1511 LLVM_DEBUG({ 1512 impl->logger.startLine() 1513 << "** Replace : '" << op->getName() << "'(" << op << ")\n"; 1514 }); 1515 impl->notifyOpReplaced(op, newValues); 1516 } 1517 1518 void ConversionPatternRewriter::eraseOp(Operation *op) { 1519 LLVM_DEBUG({ 1520 impl->logger.startLine() 1521 << "** Erase : '" << op->getName() << "'(" << op << ")\n"; 1522 }); 1523 SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr); 1524 impl->notifyOpReplaced(op, nullRepls); 1525 } 1526 1527 void ConversionPatternRewriter::eraseBlock(Block *block) { 1528 impl->notifyBlockIsBeingErased(block); 1529 1530 // Mark all ops for erasure. 1531 for (Operation &op : *block) 1532 eraseOp(&op); 1533 1534 // Unlink the block from its parent region. The block is kept in the block 1535 // action and will be actually destroyed when rewrites are applied. This 1536 // allows us to keep the operations in the block live and undo the removal by 1537 // re-inserting the block. 1538 block->getParent()->getBlocks().remove(block); 1539 } 1540 1541 Block *ConversionPatternRewriter::applySignatureConversion( 1542 Region *region, TypeConverter::SignatureConversion &conversion, 1543 TypeConverter *converter) { 1544 return impl->applySignatureConversion(region, conversion, converter); 1545 } 1546 1547 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes( 1548 Region *region, TypeConverter &converter, 1549 TypeConverter::SignatureConversion *entryConversion) { 1550 return impl->convertRegionTypes(region, converter, entryConversion); 1551 } 1552 1553 LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes( 1554 Region *region, TypeConverter &converter, 1555 ArrayRef<TypeConverter::SignatureConversion> blockConversions) { 1556 return impl->convertNonEntryRegionTypes(region, converter, blockConversions); 1557 } 1558 1559 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from, 1560 Value to) { 1561 LLVM_DEBUG({ 1562 Operation *parentOp = from.getOwner()->getParentOp(); 1563 impl->logger.startLine() << "** Replace Argument : '" << from 1564 << "'(in region of '" << parentOp->getName() 1565 << "'(" << from.getOwner()->getParentOp() << ")\n"; 1566 }); 1567 impl->argReplacements.push_back(from); 1568 impl->mapping.map(impl->mapping.lookupOrDefault(from), to); 1569 } 1570 1571 Value ConversionPatternRewriter::getRemappedValue(Value key) { 1572 SmallVector<Value> remappedValues; 1573 if (failed(impl->remapValues("value", /*inputLoc=*/llvm::None, *this, key, 1574 remappedValues))) 1575 return nullptr; 1576 return remappedValues.front(); 1577 } 1578 1579 LogicalResult 1580 ConversionPatternRewriter::getRemappedValues(ValueRange keys, 1581 SmallVectorImpl<Value> &results) { 1582 if (keys.empty()) 1583 return success(); 1584 return impl->remapValues("value", /*inputLoc=*/llvm::None, *this, keys, 1585 results); 1586 } 1587 1588 void ConversionPatternRewriter::notifyBlockCreated(Block *block) { 1589 impl->notifyCreatedBlock(block); 1590 } 1591 1592 Block *ConversionPatternRewriter::splitBlock(Block *block, 1593 Block::iterator before) { 1594 auto *continuation = PatternRewriter::splitBlock(block, before); 1595 impl->notifySplitBlock(block, continuation); 1596 return continuation; 1597 } 1598 1599 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest, 1600 ValueRange argValues) { 1601 impl->notifyBlocksBeingMerged(dest, source); 1602 assert(llvm::all_of(source->getPredecessors(), 1603 [dest](Block *succ) { return succ == dest; }) && 1604 "expected 'source' to have no predecessors or only 'dest'"); 1605 assert(argValues.size() == source->getNumArguments() && 1606 "incorrect # of argument replacement values"); 1607 for (auto it : llvm::zip(source->getArguments(), argValues)) 1608 replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it)); 1609 dest->getOperations().splice(dest->end(), source->getOperations()); 1610 eraseBlock(source); 1611 } 1612 1613 void ConversionPatternRewriter::inlineRegionBefore(Region ®ion, 1614 Region &parent, 1615 Region::iterator before) { 1616 impl->notifyRegionIsBeingInlinedBefore(region, parent, before); 1617 PatternRewriter::inlineRegionBefore(region, parent, before); 1618 } 1619 1620 void ConversionPatternRewriter::cloneRegionBefore( 1621 Region ®ion, Region &parent, Region::iterator before, 1622 BlockAndValueMapping &mapping) { 1623 if (region.empty()) 1624 return; 1625 PatternRewriter::cloneRegionBefore(region, parent, before, mapping); 1626 1627 // Collect the range of the cloned blocks. 1628 auto clonedBeginIt = mapping.lookup(®ion.front())->getIterator(); 1629 auto clonedBlocks = llvm::make_range(clonedBeginIt, before); 1630 impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc()); 1631 } 1632 1633 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) { 1634 LLVM_DEBUG({ 1635 impl->logger.startLine() 1636 << "** Insert : '" << op->getName() << "'(" << op << ")\n"; 1637 }); 1638 impl->createdOps.push_back(op); 1639 } 1640 1641 void ConversionPatternRewriter::startRootUpdate(Operation *op) { 1642 #ifndef NDEBUG 1643 impl->pendingRootUpdates.insert(op); 1644 #endif 1645 impl->rootUpdates.emplace_back(op); 1646 } 1647 1648 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) { 1649 // There is nothing to do here, we only need to track the operation at the 1650 // start of the update. 1651 #ifndef NDEBUG 1652 assert(impl->pendingRootUpdates.erase(op) && 1653 "operation did not have a pending in-place update"); 1654 #endif 1655 } 1656 1657 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) { 1658 #ifndef NDEBUG 1659 assert(impl->pendingRootUpdates.erase(op) && 1660 "operation did not have a pending in-place update"); 1661 #endif 1662 // Erase the last update for this operation. 1663 auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; }; 1664 auto &rootUpdates = impl->rootUpdates; 1665 auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp); 1666 assert(it != rootUpdates.rend() && "no root update started on op"); 1667 (*it).resetOperation(); 1668 int updateIdx = std::prev(rootUpdates.rend()) - it; 1669 rootUpdates.erase(rootUpdates.begin() + updateIdx); 1670 } 1671 1672 LogicalResult ConversionPatternRewriter::notifyMatchFailure( 1673 Operation *op, function_ref<void(Diagnostic &)> reasonCallback) { 1674 return impl->notifyMatchFailure(op->getLoc(), reasonCallback); 1675 } 1676 1677 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() { 1678 return *impl; 1679 } 1680 1681 //===----------------------------------------------------------------------===// 1682 // ConversionPattern 1683 //===----------------------------------------------------------------------===// 1684 1685 LogicalResult 1686 ConversionPattern::matchAndRewrite(Operation *op, 1687 PatternRewriter &rewriter) const { 1688 auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter); 1689 auto &rewriterImpl = dialectRewriter.getImpl(); 1690 1691 // Track the current conversion pattern type converter in the rewriter. 1692 llvm::SaveAndRestore<TypeConverter *> currentConverterGuard( 1693 rewriterImpl.currentTypeConverter, getTypeConverter()); 1694 1695 // Remap the operands of the operation. 1696 SmallVector<Value, 4> operands; 1697 if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter, 1698 op->getOperands(), operands))) { 1699 return failure(); 1700 } 1701 return matchAndRewrite(op, operands, dialectRewriter); 1702 } 1703 1704 //===----------------------------------------------------------------------===// 1705 // OperationLegalizer 1706 //===----------------------------------------------------------------------===// 1707 1708 namespace { 1709 /// A set of rewrite patterns that can be used to legalize a given operation. 1710 using LegalizationPatterns = SmallVector<const Pattern *, 1>; 1711 1712 /// This class defines a recursive operation legalizer. 1713 class OperationLegalizer { 1714 public: 1715 using LegalizationAction = ConversionTarget::LegalizationAction; 1716 1717 OperationLegalizer(ConversionTarget &targetInfo, 1718 const FrozenRewritePatternSet &patterns); 1719 1720 /// Returns true if the given operation is known to be illegal on the target. 1721 bool isIllegal(Operation *op) const; 1722 1723 /// Attempt to legalize the given operation. Returns success if the operation 1724 /// was legalized, failure otherwise. 1725 LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter); 1726 1727 /// Returns the conversion target in use by the legalizer. 1728 ConversionTarget &getTarget() { return target; } 1729 1730 private: 1731 /// Attempt to legalize the given operation by folding it. 1732 LogicalResult legalizeWithFold(Operation *op, 1733 ConversionPatternRewriter &rewriter); 1734 1735 /// Attempt to legalize the given operation by applying a pattern. Returns 1736 /// success if the operation was legalized, failure otherwise. 1737 LogicalResult legalizeWithPattern(Operation *op, 1738 ConversionPatternRewriter &rewriter); 1739 1740 /// Return true if the given pattern may be applied to the given operation, 1741 /// false otherwise. 1742 bool canApplyPattern(Operation *op, const Pattern &pattern, 1743 ConversionPatternRewriter &rewriter); 1744 1745 /// Legalize the resultant IR after successfully applying the given pattern. 1746 LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern, 1747 ConversionPatternRewriter &rewriter, 1748 RewriterState &curState); 1749 1750 /// Legalizes the actions registered during the execution of a pattern. 1751 LogicalResult legalizePatternBlockActions(Operation *op, 1752 ConversionPatternRewriter &rewriter, 1753 ConversionPatternRewriterImpl &impl, 1754 RewriterState &state, 1755 RewriterState &newState); 1756 LogicalResult legalizePatternCreatedOperations( 1757 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1758 RewriterState &state, RewriterState &newState); 1759 LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter, 1760 ConversionPatternRewriterImpl &impl, 1761 RewriterState &state, 1762 RewriterState &newState); 1763 1764 //===--------------------------------------------------------------------===// 1765 // Cost Model 1766 //===--------------------------------------------------------------------===// 1767 1768 /// Build an optimistic legalization graph given the provided patterns. This 1769 /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with 1770 /// patterns for operations that are not directly legal, but may be 1771 /// transitively legal for the current target given the provided patterns. 1772 void buildLegalizationGraph( 1773 LegalizationPatterns &anyOpLegalizerPatterns, 1774 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1775 1776 /// Compute the benefit of each node within the computed legalization graph. 1777 /// This orders the patterns within 'legalizerPatterns' based upon two 1778 /// criteria: 1779 /// 1) Prefer patterns that have the lowest legalization depth, i.e. 1780 /// represent the more direct mapping to the target. 1781 /// 2) When comparing patterns with the same legalization depth, prefer the 1782 /// pattern with the highest PatternBenefit. This allows for users to 1783 /// prefer specific legalizations over others. 1784 void computeLegalizationGraphBenefit( 1785 LegalizationPatterns &anyOpLegalizerPatterns, 1786 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1787 1788 /// Compute the legalization depth when legalizing an operation of the given 1789 /// type. 1790 unsigned computeOpLegalizationDepth( 1791 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 1792 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1793 1794 /// Apply the conversion cost model to the given set of patterns, and return 1795 /// the smallest legalization depth of any of the patterns. See 1796 /// `computeLegalizationGraphBenefit` for the breakdown of the cost model. 1797 unsigned applyCostModelToPatterns( 1798 LegalizationPatterns &patterns, 1799 DenseMap<OperationName, unsigned> &minOpPatternDepth, 1800 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1801 1802 /// The current set of patterns that have been applied. 1803 SmallPtrSet<const Pattern *, 8> appliedPatterns; 1804 1805 /// The legalization information provided by the target. 1806 ConversionTarget ⌖ 1807 1808 /// The pattern applicator to use for conversions. 1809 PatternApplicator applicator; 1810 }; 1811 } // namespace 1812 1813 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo, 1814 const FrozenRewritePatternSet &patterns) 1815 : target(targetInfo), applicator(patterns) { 1816 // The set of patterns that can be applied to illegal operations to transform 1817 // them into legal ones. 1818 DenseMap<OperationName, LegalizationPatterns> legalizerPatterns; 1819 LegalizationPatterns anyOpLegalizerPatterns; 1820 1821 buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns); 1822 computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns); 1823 } 1824 1825 bool OperationLegalizer::isIllegal(Operation *op) const { 1826 return target.isIllegal(op); 1827 } 1828 1829 LogicalResult 1830 OperationLegalizer::legalize(Operation *op, 1831 ConversionPatternRewriter &rewriter) { 1832 #ifndef NDEBUG 1833 const char *logLineComment = 1834 "//===-------------------------------------------===//\n"; 1835 1836 auto &logger = rewriter.getImpl().logger; 1837 #endif 1838 LLVM_DEBUG({ 1839 logger.getOStream() << "\n"; 1840 logger.startLine() << logLineComment; 1841 logger.startLine() << "Legalizing operation : '" << op->getName() << "'(" 1842 << op << ") {\n"; 1843 logger.indent(); 1844 1845 // If the operation has no regions, just print it here. 1846 if (op->getNumRegions() == 0) { 1847 op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm()); 1848 logger.getOStream() << "\n\n"; 1849 } 1850 }); 1851 1852 // Check if this operation is legal on the target. 1853 if (auto legalityInfo = target.isLegal(op)) { 1854 LLVM_DEBUG({ 1855 logSuccess( 1856 logger, "operation marked legal by the target{0}", 1857 legalityInfo->isRecursivelyLegal 1858 ? "; NOTE: operation is recursively legal; skipping internals" 1859 : ""); 1860 logger.startLine() << logLineComment; 1861 }); 1862 1863 // If this operation is recursively legal, mark its children as ignored so 1864 // that we don't consider them for legalization. 1865 if (legalityInfo->isRecursivelyLegal) 1866 rewriter.getImpl().markNestedOpsIgnored(op); 1867 return success(); 1868 } 1869 1870 // Check to see if the operation is ignored and doesn't need to be converted. 1871 if (rewriter.getImpl().isOpIgnored(op)) { 1872 LLVM_DEBUG({ 1873 logSuccess(logger, "operation marked 'ignored' during conversion"); 1874 logger.startLine() << logLineComment; 1875 }); 1876 return success(); 1877 } 1878 1879 // If the operation isn't legal, try to fold it in-place. 1880 // TODO: Should we always try to do this, even if the op is 1881 // already legal? 1882 if (succeeded(legalizeWithFold(op, rewriter))) { 1883 LLVM_DEBUG({ 1884 logSuccess(logger, "operation was folded"); 1885 logger.startLine() << logLineComment; 1886 }); 1887 return success(); 1888 } 1889 1890 // Otherwise, we need to apply a legalization pattern to this operation. 1891 if (succeeded(legalizeWithPattern(op, rewriter))) { 1892 LLVM_DEBUG({ 1893 logSuccess(logger, ""); 1894 logger.startLine() << logLineComment; 1895 }); 1896 return success(); 1897 } 1898 1899 LLVM_DEBUG({ 1900 logFailure(logger, "no matched legalization pattern"); 1901 logger.startLine() << logLineComment; 1902 }); 1903 return failure(); 1904 } 1905 1906 LogicalResult 1907 OperationLegalizer::legalizeWithFold(Operation *op, 1908 ConversionPatternRewriter &rewriter) { 1909 auto &rewriterImpl = rewriter.getImpl(); 1910 RewriterState curState = rewriterImpl.getCurrentState(); 1911 1912 LLVM_DEBUG({ 1913 rewriterImpl.logger.startLine() << "* Fold {\n"; 1914 rewriterImpl.logger.indent(); 1915 }); 1916 1917 // Try to fold the operation. 1918 SmallVector<Value, 2> replacementValues; 1919 rewriter.setInsertionPoint(op); 1920 if (failed(rewriter.tryFold(op, replacementValues))) { 1921 LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold")); 1922 return failure(); 1923 } 1924 1925 // Insert a replacement for 'op' with the folded replacement values. 1926 rewriter.replaceOp(op, replacementValues); 1927 1928 // Recursively legalize any new constant operations. 1929 for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size(); 1930 i != e; ++i) { 1931 Operation *cstOp = rewriterImpl.createdOps[i]; 1932 if (failed(legalize(cstOp, rewriter))) { 1933 LLVM_DEBUG(logFailure(rewriterImpl.logger, 1934 "generated constant '{0}' was illegal", 1935 cstOp->getName())); 1936 rewriterImpl.resetState(curState); 1937 return failure(); 1938 } 1939 } 1940 1941 LLVM_DEBUG(logSuccess(rewriterImpl.logger, "")); 1942 return success(); 1943 } 1944 1945 LogicalResult 1946 OperationLegalizer::legalizeWithPattern(Operation *op, 1947 ConversionPatternRewriter &rewriter) { 1948 auto &rewriterImpl = rewriter.getImpl(); 1949 1950 // Functor that returns if the given pattern may be applied. 1951 auto canApply = [&](const Pattern &pattern) { 1952 return canApplyPattern(op, pattern, rewriter); 1953 }; 1954 1955 // Functor that cleans up the rewriter state after a pattern failed to match. 1956 RewriterState curState = rewriterImpl.getCurrentState(); 1957 auto onFailure = [&](const Pattern &pattern) { 1958 LLVM_DEBUG({ 1959 logFailure(rewriterImpl.logger, "pattern failed to match"); 1960 if (rewriterImpl.notifyCallback) { 1961 Diagnostic diag(op->getLoc(), DiagnosticSeverity::Remark); 1962 diag << "Failed to apply pattern \"" << pattern.getDebugName() 1963 << "\" on op:\n" 1964 << *op; 1965 rewriterImpl.notifyCallback(diag); 1966 } 1967 }); 1968 rewriterImpl.resetState(curState); 1969 appliedPatterns.erase(&pattern); 1970 }; 1971 1972 // Functor that performs additional legalization when a pattern is 1973 // successfully applied. 1974 auto onSuccess = [&](const Pattern &pattern) { 1975 auto result = legalizePatternResult(op, pattern, rewriter, curState); 1976 appliedPatterns.erase(&pattern); 1977 if (failed(result)) 1978 rewriterImpl.resetState(curState); 1979 return result; 1980 }; 1981 1982 // Try to match and rewrite a pattern on this operation. 1983 return applicator.matchAndRewrite(op, rewriter, canApply, onFailure, 1984 onSuccess); 1985 } 1986 1987 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern, 1988 ConversionPatternRewriter &rewriter) { 1989 LLVM_DEBUG({ 1990 auto &os = rewriter.getImpl().logger; 1991 os.getOStream() << "\n"; 1992 os.startLine() << "* Pattern : '" << op->getName() << " -> ("; 1993 llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream()); 1994 os.getOStream() << ")' {\n"; 1995 os.indent(); 1996 }); 1997 1998 // Ensure that we don't cycle by not allowing the same pattern to be 1999 // applied twice in the same recursion stack if it is not known to be safe. 2000 if (!pattern.hasBoundedRewriteRecursion() && 2001 !appliedPatterns.insert(&pattern).second) { 2002 LLVM_DEBUG( 2003 logFailure(rewriter.getImpl().logger, "pattern was already applied")); 2004 return false; 2005 } 2006 return true; 2007 } 2008 2009 LogicalResult 2010 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern, 2011 ConversionPatternRewriter &rewriter, 2012 RewriterState &curState) { 2013 auto &impl = rewriter.getImpl(); 2014 2015 #ifndef NDEBUG 2016 assert(impl.pendingRootUpdates.empty() && "dangling root updates"); 2017 #endif 2018 2019 // Check that the root was either replaced or updated in place. 2020 auto replacedRoot = [&] { 2021 return llvm::any_of( 2022 llvm::drop_begin(impl.replacements, curState.numReplacements), 2023 [op](auto &it) { return it.first == op; }); 2024 }; 2025 auto updatedRootInPlace = [&] { 2026 return llvm::any_of( 2027 llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates), 2028 [op](auto &state) { return state.getOperation() == op; }); 2029 }; 2030 (void)replacedRoot; 2031 (void)updatedRootInPlace; 2032 assert((replacedRoot() || updatedRootInPlace()) && 2033 "expected pattern to replace the root operation"); 2034 2035 // Legalize each of the actions registered during application. 2036 RewriterState newState = impl.getCurrentState(); 2037 if (failed(legalizePatternBlockActions(op, rewriter, impl, curState, 2038 newState)) || 2039 failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) || 2040 failed(legalizePatternCreatedOperations(rewriter, impl, curState, 2041 newState))) { 2042 return failure(); 2043 } 2044 2045 LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully")); 2046 return success(); 2047 } 2048 2049 LogicalResult OperationLegalizer::legalizePatternBlockActions( 2050 Operation *op, ConversionPatternRewriter &rewriter, 2051 ConversionPatternRewriterImpl &impl, RewriterState &state, 2052 RewriterState &newState) { 2053 SmallPtrSet<Operation *, 16> operationsToIgnore; 2054 2055 // If the pattern moved or created any blocks, make sure the types of block 2056 // arguments get legalized. 2057 for (int i = state.numBlockActions, e = newState.numBlockActions; i != e; 2058 ++i) { 2059 auto &action = impl.blockActions[i]; 2060 if (action.kind == BlockActionKind::TypeConversion || 2061 action.kind == BlockActionKind::Erase) 2062 continue; 2063 // Only check blocks outside of the current operation. 2064 Operation *parentOp = action.block->getParentOp(); 2065 if (!parentOp || parentOp == op || action.block->getNumArguments() == 0) 2066 continue; 2067 2068 // If the region of the block has a type converter, try to convert the block 2069 // directly. 2070 if (auto *converter = 2071 impl.argConverter.getConverter(action.block->getParent())) { 2072 if (failed(impl.convertBlockSignature(action.block, converter))) { 2073 LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved " 2074 "block")); 2075 return failure(); 2076 } 2077 continue; 2078 } 2079 2080 // Otherwise, check that this operation isn't one generated by this pattern. 2081 // This is because we will attempt to legalize the parent operation, and 2082 // blocks in regions created by this pattern will already be legalized later 2083 // on. If we haven't built the set yet, build it now. 2084 if (operationsToIgnore.empty()) { 2085 auto createdOps = ArrayRef<Operation *>(impl.createdOps) 2086 .drop_front(state.numCreatedOps); 2087 operationsToIgnore.insert(createdOps.begin(), createdOps.end()); 2088 } 2089 2090 // If this operation should be considered for re-legalization, try it. 2091 if (operationsToIgnore.insert(parentOp).second && 2092 failed(legalize(parentOp, rewriter))) { 2093 LLVM_DEBUG(logFailure( 2094 impl.logger, "operation '{0}'({1}) became illegal after block action", 2095 parentOp->getName(), parentOp)); 2096 return failure(); 2097 } 2098 } 2099 return success(); 2100 } 2101 2102 LogicalResult OperationLegalizer::legalizePatternCreatedOperations( 2103 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 2104 RewriterState &state, RewriterState &newState) { 2105 for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) { 2106 Operation *op = impl.createdOps[i]; 2107 if (failed(legalize(op, rewriter))) { 2108 LLVM_DEBUG(logFailure(impl.logger, 2109 "generated operation '{0}'({1}) was illegal", 2110 op->getName(), op)); 2111 return failure(); 2112 } 2113 } 2114 return success(); 2115 } 2116 2117 LogicalResult OperationLegalizer::legalizePatternRootUpdates( 2118 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 2119 RewriterState &state, RewriterState &newState) { 2120 for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) { 2121 Operation *op = impl.rootUpdates[i].getOperation(); 2122 if (failed(legalize(op, rewriter))) { 2123 LLVM_DEBUG(logFailure(impl.logger, 2124 "operation updated in-place '{0}' was illegal", 2125 op->getName())); 2126 return failure(); 2127 } 2128 } 2129 return success(); 2130 } 2131 2132 //===----------------------------------------------------------------------===// 2133 // Cost Model 2134 2135 void OperationLegalizer::buildLegalizationGraph( 2136 LegalizationPatterns &anyOpLegalizerPatterns, 2137 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2138 // A mapping between an operation and a set of operations that can be used to 2139 // generate it. 2140 DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps; 2141 // A mapping between an operation and any currently invalid patterns it has. 2142 DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns; 2143 // A worklist of patterns to consider for legality. 2144 SetVector<const Pattern *> patternWorklist; 2145 2146 // Build the mapping from operations to the parent ops that may generate them. 2147 applicator.walkAllPatterns([&](const Pattern &pattern) { 2148 Optional<OperationName> root = pattern.getRootKind(); 2149 2150 // If the pattern has no specific root, we can't analyze the relationship 2151 // between the root op and generated operations. Given that, add all such 2152 // patterns to the legalization set. 2153 if (!root) { 2154 anyOpLegalizerPatterns.push_back(&pattern); 2155 return; 2156 } 2157 2158 // Skip operations that are always known to be legal. 2159 if (target.getOpAction(*root) == LegalizationAction::Legal) 2160 return; 2161 2162 // Add this pattern to the invalid set for the root op and record this root 2163 // as a parent for any generated operations. 2164 invalidPatterns[*root].insert(&pattern); 2165 for (auto op : pattern.getGeneratedOps()) 2166 parentOps[op].insert(*root); 2167 2168 // Add this pattern to the worklist. 2169 patternWorklist.insert(&pattern); 2170 }); 2171 2172 // If there are any patterns that don't have a specific root kind, we can't 2173 // make direct assumptions about what operations will never be legalized. 2174 // Note: Technically we could, but it would require an analysis that may 2175 // recurse into itself. It would be better to perform this kind of filtering 2176 // at a higher level than here anyways. 2177 if (!anyOpLegalizerPatterns.empty()) { 2178 for (const Pattern *pattern : patternWorklist) 2179 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 2180 return; 2181 } 2182 2183 while (!patternWorklist.empty()) { 2184 auto *pattern = patternWorklist.pop_back_val(); 2185 2186 // Check to see if any of the generated operations are invalid. 2187 if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) { 2188 Optional<LegalizationAction> action = target.getOpAction(op); 2189 return !legalizerPatterns.count(op) && 2190 (!action || action == LegalizationAction::Illegal); 2191 })) 2192 continue; 2193 2194 // Otherwise, if all of the generated operation are valid, this op is now 2195 // legal so add all of the child patterns to the worklist. 2196 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 2197 invalidPatterns[*pattern->getRootKind()].erase(pattern); 2198 2199 // Add any invalid patterns of the parent operations to see if they have now 2200 // become legal. 2201 for (auto op : parentOps[*pattern->getRootKind()]) 2202 patternWorklist.set_union(invalidPatterns[op]); 2203 } 2204 } 2205 2206 void OperationLegalizer::computeLegalizationGraphBenefit( 2207 LegalizationPatterns &anyOpLegalizerPatterns, 2208 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2209 // The smallest pattern depth, when legalizing an operation. 2210 DenseMap<OperationName, unsigned> minOpPatternDepth; 2211 2212 // For each operation that is transitively legal, compute a cost for it. 2213 for (auto &opIt : legalizerPatterns) 2214 if (!minOpPatternDepth.count(opIt.first)) 2215 computeOpLegalizationDepth(opIt.first, minOpPatternDepth, 2216 legalizerPatterns); 2217 2218 // Apply the cost model to the patterns that can match any operation. Those 2219 // with a specific operation type are already resolved when computing the op 2220 // legalization depth. 2221 if (!anyOpLegalizerPatterns.empty()) 2222 applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth, 2223 legalizerPatterns); 2224 2225 // Apply a cost model to the pattern applicator. We order patterns first by 2226 // depth then benefit. `legalizerPatterns` contains per-op patterns by 2227 // decreasing benefit. 2228 applicator.applyCostModel([&](const Pattern &pattern) { 2229 ArrayRef<const Pattern *> orderedPatternList; 2230 if (Optional<OperationName> rootName = pattern.getRootKind()) 2231 orderedPatternList = legalizerPatterns[*rootName]; 2232 else 2233 orderedPatternList = anyOpLegalizerPatterns; 2234 2235 // If the pattern is not found, then it was removed and cannot be matched. 2236 auto *it = llvm::find(orderedPatternList, &pattern); 2237 if (it == orderedPatternList.end()) 2238 return PatternBenefit::impossibleToMatch(); 2239 2240 // Patterns found earlier in the list have higher benefit. 2241 return PatternBenefit(std::distance(it, orderedPatternList.end())); 2242 }); 2243 } 2244 2245 unsigned OperationLegalizer::computeOpLegalizationDepth( 2246 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 2247 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2248 // Check for existing depth. 2249 auto depthIt = minOpPatternDepth.find(op); 2250 if (depthIt != minOpPatternDepth.end()) 2251 return depthIt->second; 2252 2253 // If a mapping for this operation does not exist, then this operation 2254 // is always legal. Return 0 as the depth for a directly legal operation. 2255 auto opPatternsIt = legalizerPatterns.find(op); 2256 if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty()) 2257 return 0u; 2258 2259 // Record this initial depth in case we encounter this op again when 2260 // recursively computing the depth. 2261 minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max()); 2262 2263 // Apply the cost model to the operation patterns, and update the minimum 2264 // depth. 2265 unsigned minDepth = applyCostModelToPatterns( 2266 opPatternsIt->second, minOpPatternDepth, legalizerPatterns); 2267 minOpPatternDepth[op] = minDepth; 2268 return minDepth; 2269 } 2270 2271 unsigned OperationLegalizer::applyCostModelToPatterns( 2272 LegalizationPatterns &patterns, 2273 DenseMap<OperationName, unsigned> &minOpPatternDepth, 2274 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2275 unsigned minDepth = std::numeric_limits<unsigned>::max(); 2276 2277 // Compute the depth for each pattern within the set. 2278 SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth; 2279 patternsByDepth.reserve(patterns.size()); 2280 for (const Pattern *pattern : patterns) { 2281 unsigned depth = 1; 2282 for (auto generatedOp : pattern->getGeneratedOps()) { 2283 unsigned generatedOpDepth = computeOpLegalizationDepth( 2284 generatedOp, minOpPatternDepth, legalizerPatterns); 2285 depth = std::max(depth, generatedOpDepth + 1); 2286 } 2287 patternsByDepth.emplace_back(pattern, depth); 2288 2289 // Update the minimum depth of the pattern list. 2290 minDepth = std::min(minDepth, depth); 2291 } 2292 2293 // If the operation only has one legalization pattern, there is no need to 2294 // sort them. 2295 if (patternsByDepth.size() == 1) 2296 return minDepth; 2297 2298 // Sort the patterns by those likely to be the most beneficial. 2299 llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(), 2300 [](const std::pair<const Pattern *, unsigned> *lhs, 2301 const std::pair<const Pattern *, unsigned> *rhs) { 2302 // First sort by the smaller pattern legalization 2303 // depth. 2304 if (lhs->second != rhs->second) 2305 return llvm::array_pod_sort_comparator<unsigned>( 2306 &lhs->second, &rhs->second); 2307 2308 // Then sort by the larger pattern benefit. 2309 auto lhsBenefit = lhs->first->getBenefit(); 2310 auto rhsBenefit = rhs->first->getBenefit(); 2311 return llvm::array_pod_sort_comparator<PatternBenefit>( 2312 &rhsBenefit, &lhsBenefit); 2313 }); 2314 2315 // Update the legalization pattern to use the new sorted list. 2316 patterns.clear(); 2317 for (auto &patternIt : patternsByDepth) 2318 patterns.push_back(patternIt.first); 2319 return minDepth; 2320 } 2321 2322 //===----------------------------------------------------------------------===// 2323 // OperationConverter 2324 //===----------------------------------------------------------------------===// 2325 namespace { 2326 enum OpConversionMode { 2327 /// In this mode, the conversion will ignore failed conversions to allow 2328 /// illegal operations to co-exist in the IR. 2329 Partial, 2330 2331 /// In this mode, all operations must be legal for the given target for the 2332 /// conversion to succeed. 2333 Full, 2334 2335 /// In this mode, operations are analyzed for legality. No actual rewrites are 2336 /// applied to the operations on success. 2337 Analysis, 2338 }; 2339 2340 // This class converts operations to a given conversion target via a set of 2341 // rewrite patterns. The conversion behaves differently depending on the 2342 // conversion mode. 2343 struct OperationConverter { 2344 explicit OperationConverter(ConversionTarget &target, 2345 const FrozenRewritePatternSet &patterns, 2346 OpConversionMode mode, 2347 DenseSet<Operation *> *trackedOps = nullptr) 2348 : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {} 2349 2350 /// Converts the given operations to the conversion target. 2351 LogicalResult 2352 convertOperations(ArrayRef<Operation *> ops, 2353 function_ref<void(Diagnostic &)> notifyCallback = nullptr); 2354 2355 private: 2356 /// Converts an operation with the given rewriter. 2357 LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op); 2358 2359 /// This method is called after the conversion process to legalize any 2360 /// remaining artifacts and complete the conversion. 2361 LogicalResult finalize(ConversionPatternRewriter &rewriter); 2362 2363 /// Legalize the types of converted block arguments. 2364 LogicalResult 2365 legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter, 2366 ConversionPatternRewriterImpl &rewriterImpl); 2367 2368 /// Legalize any unresolved type materializations. 2369 LogicalResult legalizeUnresolvedMaterializations( 2370 ConversionPatternRewriter &rewriter, 2371 ConversionPatternRewriterImpl &rewriterImpl, 2372 Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping); 2373 2374 /// Legalize an operation result that was marked as "erased". 2375 LogicalResult 2376 legalizeErasedResult(Operation *op, OpResult result, 2377 ConversionPatternRewriterImpl &rewriterImpl); 2378 2379 /// Legalize an operation result that was replaced with a value of a different 2380 /// type. 2381 LogicalResult legalizeChangedResultType( 2382 Operation *op, OpResult result, Value newValue, 2383 TypeConverter *replConverter, ConversionPatternRewriter &rewriter, 2384 ConversionPatternRewriterImpl &rewriterImpl, 2385 const DenseMap<Value, SmallVector<Value>> &inverseMapping); 2386 2387 /// The legalizer to use when converting operations. 2388 OperationLegalizer opLegalizer; 2389 2390 /// The conversion mode to use when legalizing operations. 2391 OpConversionMode mode; 2392 2393 /// A set of pre-existing operations. When mode == OpConversionMode::Analysis, 2394 /// this is populated with ops found to be legalizable to the target. 2395 /// When mode == OpConversionMode::Partial, this is populated with ops found 2396 /// *not* to be legalizable to the target. 2397 DenseSet<Operation *> *trackedOps; 2398 }; 2399 } // namespace 2400 2401 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter, 2402 Operation *op) { 2403 // Legalize the given operation. 2404 if (failed(opLegalizer.legalize(op, rewriter))) { 2405 // Handle the case of a failed conversion for each of the different modes. 2406 // Full conversions expect all operations to be converted. 2407 if (mode == OpConversionMode::Full) 2408 return op->emitError() 2409 << "failed to legalize operation '" << op->getName() << "'"; 2410 // Partial conversions allow conversions to fail iff the operation was not 2411 // explicitly marked as illegal. If the user provided a nonlegalizableOps 2412 // set, non-legalizable ops are included. 2413 if (mode == OpConversionMode::Partial) { 2414 if (opLegalizer.isIllegal(op)) 2415 return op->emitError() 2416 << "failed to legalize operation '" << op->getName() 2417 << "' that was explicitly marked illegal"; 2418 if (trackedOps) 2419 trackedOps->insert(op); 2420 } 2421 } else if (mode == OpConversionMode::Analysis) { 2422 // Analysis conversions don't fail if any operations fail to legalize, 2423 // they are only interested in the operations that were successfully 2424 // legalized. 2425 trackedOps->insert(op); 2426 } 2427 return success(); 2428 } 2429 2430 LogicalResult OperationConverter::convertOperations( 2431 ArrayRef<Operation *> ops, 2432 function_ref<void(Diagnostic &)> notifyCallback) { 2433 if (ops.empty()) 2434 return success(); 2435 ConversionTarget &target = opLegalizer.getTarget(); 2436 2437 // Compute the set of operations and blocks to convert. 2438 SmallVector<Operation *> toConvert; 2439 for (auto *op : ops) { 2440 toConvert.emplace_back(op); 2441 for (auto ®ion : op->getRegions()) 2442 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 2443 toConvert, &target))) 2444 return failure(); 2445 } 2446 2447 // Convert each operation and discard rewrites on failure. 2448 ConversionPatternRewriter rewriter(ops.front()->getContext()); 2449 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2450 rewriterImpl.notifyCallback = notifyCallback; 2451 2452 for (auto *op : toConvert) 2453 if (failed(convert(rewriter, op))) 2454 return rewriterImpl.discardRewrites(), failure(); 2455 2456 // Now that all of the operations have been converted, finalize the conversion 2457 // process to ensure any lingering conversion artifacts are cleaned up and 2458 // legalized. 2459 if (failed(finalize(rewriter))) 2460 return rewriterImpl.discardRewrites(), failure(); 2461 2462 // After a successful conversion, apply rewrites if this is not an analysis 2463 // conversion. 2464 if (mode == OpConversionMode::Analysis) { 2465 rewriterImpl.discardRewrites(); 2466 } else { 2467 rewriterImpl.applyRewrites(); 2468 2469 // It is possible for a later pattern to erase an op that was originally 2470 // identified as illegal and added to the trackedOps, remove it now after 2471 // replacements have been computed. 2472 if (trackedOps) 2473 for (auto &repl : rewriterImpl.replacements) 2474 trackedOps->erase(repl.first); 2475 } 2476 return success(); 2477 } 2478 2479 LogicalResult 2480 OperationConverter::finalize(ConversionPatternRewriter &rewriter) { 2481 Optional<DenseMap<Value, SmallVector<Value>>> inverseMapping; 2482 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2483 if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl, 2484 inverseMapping)) || 2485 failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl))) 2486 return failure(); 2487 2488 if (rewriterImpl.operationsWithChangedResults.empty()) 2489 return success(); 2490 2491 // Process requested operation replacements. 2492 for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size(); 2493 i != e; ++i) { 2494 unsigned replIdx = rewriterImpl.operationsWithChangedResults[i]; 2495 auto &repl = *(rewriterImpl.replacements.begin() + replIdx); 2496 for (OpResult result : repl.first->getResults()) { 2497 Value newValue = rewriterImpl.mapping.lookupOrNull(result); 2498 2499 // If the operation result was replaced with null, all of the uses of this 2500 // value should be replaced. 2501 if (!newValue) { 2502 if (failed(legalizeErasedResult(repl.first, result, rewriterImpl))) 2503 return failure(); 2504 continue; 2505 } 2506 2507 // Otherwise, check to see if the type of the result changed. 2508 if (result.getType() == newValue.getType()) 2509 continue; 2510 2511 // Compute the inverse mapping only if it is really needed. 2512 if (!inverseMapping) 2513 inverseMapping = rewriterImpl.mapping.getInverse(); 2514 2515 // Legalize this result. 2516 rewriter.setInsertionPoint(repl.first); 2517 if (failed(legalizeChangedResultType(repl.first, result, newValue, 2518 repl.second.converter, rewriter, 2519 rewriterImpl, *inverseMapping))) 2520 return failure(); 2521 2522 // Update the end iterator for this loop in the case it was updated 2523 // when legalizing generated conversion operations. 2524 e = rewriterImpl.operationsWithChangedResults.size(); 2525 } 2526 } 2527 return success(); 2528 } 2529 2530 LogicalResult OperationConverter::legalizeConvertedArgumentTypes( 2531 ConversionPatternRewriter &rewriter, 2532 ConversionPatternRewriterImpl &rewriterImpl) { 2533 // Functor used to check if all users of a value will be dead after 2534 // conversion. 2535 auto findLiveUser = [&](Value val) { 2536 auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) { 2537 return rewriterImpl.isOpIgnored(user); 2538 }); 2539 return liveUserIt == val.user_end() ? nullptr : *liveUserIt; 2540 }; 2541 return rewriterImpl.argConverter.materializeLiveConversions( 2542 rewriterImpl.mapping, rewriter, findLiveUser); 2543 } 2544 2545 /// Replace the results of a materialization operation with the given values. 2546 static void 2547 replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl, 2548 ResultRange matResults, ValueRange values, 2549 DenseMap<Value, SmallVector<Value>> &inverseMapping) { 2550 matResults.replaceAllUsesWith(values); 2551 2552 // For each of the materialization results, update the inverse mappings to 2553 // point to the replacement values. 2554 for (auto it : llvm::zip(matResults, values)) { 2555 Value matResult, newValue; 2556 std::tie(matResult, newValue) = it; 2557 auto inverseMapIt = inverseMapping.find(matResult); 2558 if (inverseMapIt == inverseMapping.end()) 2559 continue; 2560 2561 // Update the reverse mapping, or remove the mapping if we couldn't update 2562 // it. Not being able to update signals that the mapping would have become 2563 // circular (i.e. %foo -> newValue -> %foo), which may occur as values are 2564 // propagated through temporary materializations. We simply drop the 2565 // mapping, and let the post-conversion replacement logic handle updating 2566 // uses. 2567 for (Value inverseMapVal : inverseMapIt->second) 2568 if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue)) 2569 rewriterImpl.mapping.erase(inverseMapVal); 2570 } 2571 } 2572 2573 /// Compute all of the unresolved materializations that will persist beyond the 2574 /// conversion process, and require inserting a proper user materialization for. 2575 static void computeNecessaryMaterializations( 2576 DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps, 2577 ConversionPatternRewriter &rewriter, 2578 ConversionPatternRewriterImpl &rewriterImpl, 2579 DenseMap<Value, SmallVector<Value>> &inverseMapping, 2580 SetVector<UnresolvedMaterialization *> &necessaryMaterializations) { 2581 auto isLive = [&](Value value) { 2582 auto findFn = [&](Operation *user) { 2583 auto matIt = materializationOps.find(user); 2584 if (matIt != materializationOps.end()) 2585 return !necessaryMaterializations.count(matIt->second); 2586 return rewriterImpl.isOpIgnored(user); 2587 }; 2588 return llvm::find_if_not(value.getUsers(), findFn) != value.user_end(); 2589 }; 2590 2591 llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue = 2592 [&](Value invalidRoot, Value value, Type type) { 2593 // Check to see if the input operation was remapped to a variant of the 2594 // output. 2595 Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type); 2596 if (remappedValue.getType() == type && remappedValue != invalidRoot) 2597 return remappedValue; 2598 2599 // Check to see if the input is a materialization operation that 2600 // provides an inverse conversion. We just check blindly for 2601 // UnrealizedConversionCastOp here, but it has no effect on correctness. 2602 auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>(); 2603 if (inputCastOp && inputCastOp->getNumOperands() == 1) 2604 return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0), 2605 type); 2606 2607 return Value(); 2608 }; 2609 2610 SetVector<UnresolvedMaterialization *> worklist; 2611 for (auto &mat : rewriterImpl.unresolvedMaterializations) { 2612 materializationOps.try_emplace(mat.getOp(), &mat); 2613 worklist.insert(&mat); 2614 } 2615 while (!worklist.empty()) { 2616 UnresolvedMaterialization *mat = worklist.pop_back_val(); 2617 UnrealizedConversionCastOp op = mat->getOp(); 2618 2619 // We currently only handle target materializations here. 2620 assert(op->getNumResults() == 1 && "unexpected materialization type"); 2621 OpResult opResult = op->getOpResult(0); 2622 Type outputType = opResult.getType(); 2623 Operation::operand_range inputOperands = op.getOperands(); 2624 2625 // Try to forward propagate operands for user conversion casts that result 2626 // in the input types of the current cast. 2627 for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) { 2628 auto castOp = dyn_cast<UnrealizedConversionCastOp>(user); 2629 if (!castOp) 2630 continue; 2631 if (castOp->getResultTypes() == inputOperands.getTypes()) { 2632 replaceMaterialization(rewriterImpl, opResult, inputOperands, 2633 inverseMapping); 2634 necessaryMaterializations.remove(materializationOps.lookup(user)); 2635 } 2636 } 2637 2638 // Try to avoid materializing a resolved materialization if possible. 2639 // Handle the case of a 1-1 materialization. 2640 if (inputOperands.size() == 1) { 2641 // Check to see if the input operation was remapped to a variant of the 2642 // output. 2643 Value remappedValue = 2644 lookupRemappedValue(opResult, inputOperands[0], outputType); 2645 if (remappedValue && remappedValue != opResult) { 2646 replaceMaterialization(rewriterImpl, opResult, remappedValue, 2647 inverseMapping); 2648 necessaryMaterializations.remove(mat); 2649 continue; 2650 } 2651 } else { 2652 // TODO: Avoid materializing other types of conversions here. 2653 } 2654 2655 // Check to see if this is an argument materialization. 2656 auto isBlockArg = [](Value v) { return v.isa<BlockArgument>(); }; 2657 if (llvm::any_of(op->getOperands(), isBlockArg) || 2658 llvm::any_of(inverseMapping[op->getResult(0)], isBlockArg)) { 2659 mat->setKind(UnresolvedMaterialization::Argument); 2660 } 2661 2662 // If the materialization does not have any live users, we don't need to 2663 // generate a user materialization for it. 2664 // FIXME: For argument materializations, we currently need to check if any 2665 // of the inverse mapped values are used because some patterns expect blind 2666 // value replacement even if the types differ in some cases. When those 2667 // patterns are fixed, we can drop the argument special case here. 2668 bool isMaterializationLive = isLive(opResult); 2669 if (mat->getKind() == UnresolvedMaterialization::Argument) 2670 isMaterializationLive |= llvm::any_of(inverseMapping[opResult], isLive); 2671 if (!isMaterializationLive) 2672 continue; 2673 if (!necessaryMaterializations.insert(mat)) 2674 continue; 2675 2676 // Reprocess input materializations to see if they have an updated status. 2677 for (Value input : inputOperands) { 2678 if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) { 2679 if (auto *mat = materializationOps.lookup(parentOp)) 2680 worklist.insert(mat); 2681 } 2682 } 2683 } 2684 } 2685 2686 /// Legalize the given unresolved materialization. Returns success if the 2687 /// materialization was legalized, failure otherise. 2688 static LogicalResult legalizeUnresolvedMaterialization( 2689 UnresolvedMaterialization &mat, 2690 DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps, 2691 ConversionPatternRewriter &rewriter, 2692 ConversionPatternRewriterImpl &rewriterImpl, 2693 DenseMap<Value, SmallVector<Value>> &inverseMapping) { 2694 auto findLiveUser = [&](auto &&users) { 2695 auto liveUserIt = llvm::find_if_not( 2696 users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); }); 2697 return liveUserIt == users.end() ? nullptr : *liveUserIt; 2698 }; 2699 2700 llvm::unique_function<Value(Value, Type)> lookupRemappedValue = 2701 [&](Value value, Type type) { 2702 // Check to see if the input operation was remapped to a variant of the 2703 // output. 2704 Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type); 2705 if (remappedValue.getType() == type) 2706 return remappedValue; 2707 return Value(); 2708 }; 2709 2710 UnrealizedConversionCastOp op = mat.getOp(); 2711 if (!rewriterImpl.ignoredOps.insert(op)) 2712 return success(); 2713 2714 // We currently only handle target materializations here. 2715 OpResult opResult = op->getOpResult(0); 2716 Operation::operand_range inputOperands = op.getOperands(); 2717 Type outputType = opResult.getType(); 2718 2719 // If any input to this materialization is another materialization, resolve 2720 // the input first. 2721 for (Value value : op->getOperands()) { 2722 auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>(); 2723 if (!valueCast) 2724 continue; 2725 2726 auto matIt = materializationOps.find(valueCast); 2727 if (matIt != materializationOps.end()) 2728 if (failed(legalizeUnresolvedMaterialization( 2729 *matIt->second, materializationOps, rewriter, rewriterImpl, 2730 inverseMapping))) 2731 return failure(); 2732 } 2733 2734 // Perform a last ditch attempt to avoid materializing a resolved 2735 // materialization if possible. 2736 // Handle the case of a 1-1 materialization. 2737 if (inputOperands.size() == 1) { 2738 // Check to see if the input operation was remapped to a variant of the 2739 // output. 2740 Value remappedValue = lookupRemappedValue(inputOperands[0], outputType); 2741 if (remappedValue && remappedValue != opResult) { 2742 replaceMaterialization(rewriterImpl, opResult, remappedValue, 2743 inverseMapping); 2744 return success(); 2745 } 2746 } else { 2747 // TODO: Avoid materializing other types of conversions here. 2748 } 2749 2750 // Try to materialize the conversion. 2751 if (TypeConverter *converter = mat.getConverter()) { 2752 // FIXME: Determine a suitable insertion location when there are multiple 2753 // inputs. 2754 if (inputOperands.size() == 1) 2755 rewriter.setInsertionPointAfterValue(inputOperands.front()); 2756 else 2757 rewriter.setInsertionPoint(op); 2758 2759 Value newMaterialization; 2760 switch (mat.getKind()) { 2761 case UnresolvedMaterialization::Argument: 2762 // Try to materialize an argument conversion. 2763 // FIXME: The current argument materialization hook expects the original 2764 // output type, even though it doesn't use that as the actual output type 2765 // of the generated IR. The output type is just used as an indicator of 2766 // the type of materialization to do. This behavior is really awkward in 2767 // that it diverges from the behavior of the other hooks, and can be 2768 // easily misunderstood. We should clean up the argument hooks to better 2769 // represent the desired invariants we actually care about. 2770 newMaterialization = converter->materializeArgumentConversion( 2771 rewriter, op->getLoc(), mat.getOrigOutputType(), inputOperands); 2772 if (newMaterialization) 2773 break; 2774 2775 // If an argument materialization failed, fallback to trying a target 2776 // materialization. 2777 LLVM_FALLTHROUGH; 2778 case UnresolvedMaterialization::Target: 2779 newMaterialization = converter->materializeTargetConversion( 2780 rewriter, op->getLoc(), outputType, inputOperands); 2781 break; 2782 } 2783 if (newMaterialization) { 2784 replaceMaterialization(rewriterImpl, opResult, newMaterialization, 2785 inverseMapping); 2786 return success(); 2787 } 2788 } 2789 2790 InFlightDiagnostic diag = op->emitError() 2791 << "failed to legalize unresolved materialization " 2792 "from " 2793 << inputOperands.getTypes() << " to " << outputType 2794 << " that remained live after conversion"; 2795 if (Operation *liveUser = findLiveUser(op->getUsers())) { 2796 diag.attachNote(liveUser->getLoc()) 2797 << "see existing live user here: " << *liveUser; 2798 } 2799 return failure(); 2800 } 2801 2802 LogicalResult OperationConverter::legalizeUnresolvedMaterializations( 2803 ConversionPatternRewriter &rewriter, 2804 ConversionPatternRewriterImpl &rewriterImpl, 2805 Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) { 2806 if (rewriterImpl.unresolvedMaterializations.empty()) 2807 return success(); 2808 inverseMapping = rewriterImpl.mapping.getInverse(); 2809 2810 // As an initial step, compute all of the inserted materializations that we 2811 // expect to persist beyond the conversion process. 2812 DenseMap<Operation *, UnresolvedMaterialization *> materializationOps; 2813 SetVector<UnresolvedMaterialization *> necessaryMaterializations; 2814 computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl, 2815 *inverseMapping, necessaryMaterializations); 2816 2817 // Once computed, legalize any necessary materializations. 2818 for (auto *mat : necessaryMaterializations) { 2819 if (failed(legalizeUnresolvedMaterialization( 2820 *mat, materializationOps, rewriter, rewriterImpl, *inverseMapping))) 2821 return failure(); 2822 } 2823 return success(); 2824 } 2825 2826 LogicalResult OperationConverter::legalizeErasedResult( 2827 Operation *op, OpResult result, 2828 ConversionPatternRewriterImpl &rewriterImpl) { 2829 // If the operation result was replaced with null, all of the uses of this 2830 // value should be replaced. 2831 auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) { 2832 return rewriterImpl.isOpIgnored(user); 2833 }); 2834 if (liveUserIt != result.user_end()) { 2835 InFlightDiagnostic diag = op->emitError("failed to legalize operation '") 2836 << op->getName() << "' marked as erased"; 2837 diag.attachNote(liveUserIt->getLoc()) 2838 << "found live user of result #" << result.getResultNumber() << ": " 2839 << *liveUserIt; 2840 return failure(); 2841 } 2842 return success(); 2843 } 2844 2845 /// Finds a user of the given value, or of any other value that the given value 2846 /// replaced, that was not replaced in the conversion process. 2847 static Operation *findLiveUserOfReplaced( 2848 Value initialValue, ConversionPatternRewriterImpl &rewriterImpl, 2849 const DenseMap<Value, SmallVector<Value>> &inverseMapping) { 2850 SmallVector<Value> worklist(1, initialValue); 2851 while (!worklist.empty()) { 2852 Value value = worklist.pop_back_val(); 2853 2854 // Walk the users of this value to see if there are any live users that 2855 // weren't replaced during conversion. 2856 auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) { 2857 return rewriterImpl.isOpIgnored(user); 2858 }); 2859 if (liveUserIt != value.user_end()) 2860 return *liveUserIt; 2861 auto mapIt = inverseMapping.find(value); 2862 if (mapIt != inverseMapping.end()) 2863 worklist.append(mapIt->second); 2864 } 2865 return nullptr; 2866 } 2867 2868 LogicalResult OperationConverter::legalizeChangedResultType( 2869 Operation *op, OpResult result, Value newValue, 2870 TypeConverter *replConverter, ConversionPatternRewriter &rewriter, 2871 ConversionPatternRewriterImpl &rewriterImpl, 2872 const DenseMap<Value, SmallVector<Value>> &inverseMapping) { 2873 Operation *liveUser = 2874 findLiveUserOfReplaced(result, rewriterImpl, inverseMapping); 2875 if (!liveUser) 2876 return success(); 2877 2878 // Functor used to emit a conversion error for a failed materialization. 2879 auto emitConversionError = [&] { 2880 InFlightDiagnostic diag = op->emitError() 2881 << "failed to materialize conversion for result #" 2882 << result.getResultNumber() << " of operation '" 2883 << op->getName() 2884 << "' that remained live after conversion"; 2885 diag.attachNote(liveUser->getLoc()) 2886 << "see existing live user here: " << *liveUser; 2887 return failure(); 2888 }; 2889 2890 // If the replacement has a type converter, attempt to materialize a 2891 // conversion back to the original type. 2892 if (!replConverter) 2893 return emitConversionError(); 2894 2895 // Materialize a conversion for this live result value. 2896 Type resultType = result.getType(); 2897 Value convertedValue = replConverter->materializeSourceConversion( 2898 rewriter, op->getLoc(), resultType, newValue); 2899 if (!convertedValue) 2900 return emitConversionError(); 2901 2902 rewriterImpl.mapping.map(result, convertedValue); 2903 return success(); 2904 } 2905 2906 //===----------------------------------------------------------------------===// 2907 // Type Conversion 2908 //===----------------------------------------------------------------------===// 2909 2910 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo, 2911 ArrayRef<Type> types) { 2912 assert(!types.empty() && "expected valid types"); 2913 remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size()); 2914 addInputs(types); 2915 } 2916 2917 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) { 2918 assert(!types.empty() && 2919 "1->0 type remappings don't need to be added explicitly"); 2920 argTypes.append(types.begin(), types.end()); 2921 } 2922 2923 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2924 unsigned newInputNo, 2925 unsigned newInputCount) { 2926 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2927 assert(newInputCount != 0 && "expected valid input count"); 2928 remappedInputs[origInputNo] = 2929 InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr}; 2930 } 2931 2932 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2933 Value replacementValue) { 2934 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2935 remappedInputs[origInputNo] = 2936 InputMapping{origInputNo, /*size=*/0, replacementValue}; 2937 } 2938 2939 LogicalResult TypeConverter::convertType(Type t, 2940 SmallVectorImpl<Type> &results) { 2941 auto existingIt = cachedDirectConversions.find(t); 2942 if (existingIt != cachedDirectConversions.end()) { 2943 if (existingIt->second) 2944 results.push_back(existingIt->second); 2945 return success(existingIt->second != nullptr); 2946 } 2947 auto multiIt = cachedMultiConversions.find(t); 2948 if (multiIt != cachedMultiConversions.end()) { 2949 results.append(multiIt->second.begin(), multiIt->second.end()); 2950 return success(); 2951 } 2952 2953 // Walk the added converters in reverse order to apply the most recently 2954 // registered first. 2955 size_t currentCount = results.size(); 2956 conversionCallStack.push_back(t); 2957 auto popConversionCallStack = 2958 llvm::make_scope_exit([this]() { conversionCallStack.pop_back(); }); 2959 for (ConversionCallbackFn &converter : llvm::reverse(conversions)) { 2960 if (Optional<LogicalResult> result = 2961 converter(t, results, conversionCallStack)) { 2962 if (!succeeded(*result)) { 2963 cachedDirectConversions.try_emplace(t, nullptr); 2964 return failure(); 2965 } 2966 auto newTypes = ArrayRef<Type>(results).drop_front(currentCount); 2967 if (newTypes.size() == 1) 2968 cachedDirectConversions.try_emplace(t, newTypes.front()); 2969 else 2970 cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes)); 2971 return success(); 2972 } 2973 } 2974 return failure(); 2975 } 2976 2977 Type TypeConverter::convertType(Type t) { 2978 // Use the multi-type result version to convert the type. 2979 SmallVector<Type, 1> results; 2980 if (failed(convertType(t, results))) 2981 return nullptr; 2982 2983 // Check to ensure that only one type was produced. 2984 return results.size() == 1 ? results.front() : nullptr; 2985 } 2986 2987 LogicalResult TypeConverter::convertTypes(TypeRange types, 2988 SmallVectorImpl<Type> &results) { 2989 for (Type type : types) 2990 if (failed(convertType(type, results))) 2991 return failure(); 2992 return success(); 2993 } 2994 2995 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; } 2996 bool TypeConverter::isLegal(Operation *op) { 2997 return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes()); 2998 } 2999 3000 bool TypeConverter::isLegal(Region *region) { 3001 return llvm::all_of(*region, [this](Block &block) { 3002 return isLegal(block.getArgumentTypes()); 3003 }); 3004 } 3005 3006 bool TypeConverter::isSignatureLegal(FunctionType ty) { 3007 return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults())); 3008 } 3009 3010 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type, 3011 SignatureConversion &result) { 3012 // Try to convert the given input type. 3013 SmallVector<Type, 1> convertedTypes; 3014 if (failed(convertType(type, convertedTypes))) 3015 return failure(); 3016 3017 // If this argument is being dropped, there is nothing left to do. 3018 if (convertedTypes.empty()) 3019 return success(); 3020 3021 // Otherwise, add the new inputs. 3022 result.addInputs(inputNo, convertedTypes); 3023 return success(); 3024 } 3025 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types, 3026 SignatureConversion &result, 3027 unsigned origInputOffset) { 3028 for (unsigned i = 0, e = types.size(); i != e; ++i) 3029 if (failed(convertSignatureArg(origInputOffset + i, types[i], result))) 3030 return failure(); 3031 return success(); 3032 } 3033 3034 Value TypeConverter::materializeConversion( 3035 MutableArrayRef<MaterializationCallbackFn> materializations, 3036 OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) { 3037 for (MaterializationCallbackFn &fn : llvm::reverse(materializations)) 3038 if (Optional<Value> result = fn(builder, resultType, inputs, loc)) 3039 return result.getValue(); 3040 return nullptr; 3041 } 3042 3043 auto TypeConverter::convertBlockSignature(Block *block) 3044 -> Optional<SignatureConversion> { 3045 SignatureConversion conversion(block->getNumArguments()); 3046 if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion))) 3047 return llvm::None; 3048 return conversion; 3049 } 3050 3051 //===----------------------------------------------------------------------===// 3052 // FunctionLikeSignatureConversion 3053 //===----------------------------------------------------------------------===// 3054 3055 /// Create a default conversion pattern that rewrites the type signature of a 3056 /// FunctionLike op. This only supports FunctionLike ops which use FunctionType 3057 /// to represent their type. 3058 namespace { 3059 struct FunctionLikeSignatureConversion : public ConversionPattern { 3060 FunctionLikeSignatureConversion(StringRef functionLikeOpName, 3061 MLIRContext *ctx, TypeConverter &converter) 3062 : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {} 3063 3064 /// Hook to implement combined matching and rewriting for FunctionLike ops. 3065 LogicalResult 3066 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 3067 ConversionPatternRewriter &rewriter) const override { 3068 FunctionType type = function_like_impl::getFunctionType(op); 3069 3070 // Convert the original function types. 3071 TypeConverter::SignatureConversion result(type.getNumInputs()); 3072 SmallVector<Type, 1> newResults; 3073 if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) || 3074 failed(typeConverter->convertTypes(type.getResults(), newResults)) || 3075 failed(rewriter.convertRegionTypes( 3076 &function_like_impl::getFunctionBody(op), *typeConverter, &result))) 3077 return failure(); 3078 3079 // Update the function signature in-place. 3080 auto newType = FunctionType::get(rewriter.getContext(), 3081 result.getConvertedTypes(), newResults); 3082 3083 rewriter.updateRootInPlace( 3084 op, [&] { function_like_impl::setFunctionType(op, newType); }); 3085 3086 return success(); 3087 } 3088 }; 3089 } // namespace 3090 3091 void mlir::populateFunctionLikeTypeConversionPattern( 3092 StringRef functionLikeOpName, RewritePatternSet &patterns, 3093 TypeConverter &converter) { 3094 patterns.add<FunctionLikeSignatureConversion>( 3095 functionLikeOpName, patterns.getContext(), converter); 3096 } 3097 3098 void mlir::populateFuncOpTypeConversionPattern(RewritePatternSet &patterns, 3099 TypeConverter &converter) { 3100 populateFunctionLikeTypeConversionPattern<FuncOp>(patterns, converter); 3101 } 3102 3103 //===----------------------------------------------------------------------===// 3104 // ConversionTarget 3105 //===----------------------------------------------------------------------===// 3106 3107 void ConversionTarget::setOpAction(OperationName op, 3108 LegalizationAction action) { 3109 legalOperations[op].action = action; 3110 } 3111 3112 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames, 3113 LegalizationAction action) { 3114 for (StringRef dialect : dialectNames) 3115 legalDialects[dialect] = action; 3116 } 3117 3118 auto ConversionTarget::getOpAction(OperationName op) const 3119 -> Optional<LegalizationAction> { 3120 Optional<LegalizationInfo> info = getOpInfo(op); 3121 return info ? info->action : Optional<LegalizationAction>(); 3122 } 3123 3124 auto ConversionTarget::isLegal(Operation *op) const 3125 -> Optional<LegalOpDetails> { 3126 Optional<LegalizationInfo> info = getOpInfo(op->getName()); 3127 if (!info) 3128 return llvm::None; 3129 3130 // Returns true if this operation instance is known to be legal. 3131 auto isOpLegal = [&] { 3132 // Handle dynamic legality either with the provided legality function. 3133 if (info->action == LegalizationAction::Dynamic) { 3134 Optional<bool> result = info->legalityFn(op); 3135 if (result) 3136 return *result; 3137 } 3138 3139 // Otherwise, the operation is only legal if it was marked 'Legal'. 3140 return info->action == LegalizationAction::Legal; 3141 }; 3142 if (!isOpLegal()) 3143 return llvm::None; 3144 3145 // This operation is legal, compute any additional legality information. 3146 LegalOpDetails legalityDetails; 3147 if (info->isRecursivelyLegal) { 3148 auto legalityFnIt = opRecursiveLegalityFns.find(op->getName()); 3149 if (legalityFnIt != opRecursiveLegalityFns.end()) { 3150 legalityDetails.isRecursivelyLegal = 3151 legalityFnIt->second(op).getValueOr(true); 3152 } else { 3153 legalityDetails.isRecursivelyLegal = true; 3154 } 3155 } 3156 return legalityDetails; 3157 } 3158 3159 bool ConversionTarget::isIllegal(Operation *op) const { 3160 Optional<LegalizationInfo> info = getOpInfo(op->getName()); 3161 if (!info) 3162 return false; 3163 3164 if (info->action == LegalizationAction::Dynamic) { 3165 Optional<bool> result = info->legalityFn(op); 3166 if (!result) 3167 return false; 3168 3169 return !(*result); 3170 } 3171 3172 return info->action == LegalizationAction::Illegal; 3173 } 3174 3175 static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks( 3176 ConversionTarget::DynamicLegalityCallbackFn oldCallback, 3177 ConversionTarget::DynamicLegalityCallbackFn newCallback) { 3178 if (!oldCallback) 3179 return newCallback; 3180 3181 auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)]( 3182 Operation *op) -> Optional<bool> { 3183 if (Optional<bool> result = newCl(op)) 3184 return *result; 3185 3186 return oldCl(op); 3187 }; 3188 return chain; 3189 } 3190 3191 void ConversionTarget::setLegalityCallback( 3192 OperationName name, const DynamicLegalityCallbackFn &callback) { 3193 assert(callback && "expected valid legality callback"); 3194 auto infoIt = legalOperations.find(name); 3195 assert(infoIt != legalOperations.end() && 3196 infoIt->second.action == LegalizationAction::Dynamic && 3197 "expected operation to already be marked as dynamically legal"); 3198 infoIt->second.legalityFn = 3199 composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback); 3200 } 3201 3202 void ConversionTarget::markOpRecursivelyLegal( 3203 OperationName name, const DynamicLegalityCallbackFn &callback) { 3204 auto infoIt = legalOperations.find(name); 3205 assert(infoIt != legalOperations.end() && 3206 infoIt->second.action != LegalizationAction::Illegal && 3207 "expected operation to already be marked as legal"); 3208 infoIt->second.isRecursivelyLegal = true; 3209 if (callback) 3210 opRecursiveLegalityFns[name] = composeLegalityCallbacks( 3211 std::move(opRecursiveLegalityFns[name]), callback); 3212 else 3213 opRecursiveLegalityFns.erase(name); 3214 } 3215 3216 void ConversionTarget::setLegalityCallback( 3217 ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) { 3218 assert(callback && "expected valid legality callback"); 3219 for (StringRef dialect : dialects) 3220 dialectLegalityFns[dialect] = composeLegalityCallbacks( 3221 std::move(dialectLegalityFns[dialect]), callback); 3222 } 3223 3224 void ConversionTarget::setLegalityCallback( 3225 const DynamicLegalityCallbackFn &callback) { 3226 assert(callback && "expected valid legality callback"); 3227 unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback); 3228 } 3229 3230 auto ConversionTarget::getOpInfo(OperationName op) const 3231 -> Optional<LegalizationInfo> { 3232 // Check for info for this specific operation. 3233 auto it = legalOperations.find(op); 3234 if (it != legalOperations.end()) 3235 return it->second; 3236 // Check for info for the parent dialect. 3237 auto dialectIt = legalDialects.find(op.getDialectNamespace()); 3238 if (dialectIt != legalDialects.end()) { 3239 DynamicLegalityCallbackFn callback; 3240 auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace()); 3241 if (dialectFn != dialectLegalityFns.end()) 3242 callback = dialectFn->second; 3243 return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false, 3244 callback}; 3245 } 3246 // Otherwise, check if we mark unknown operations as dynamic. 3247 if (unknownLegalityFn) 3248 return LegalizationInfo{LegalizationAction::Dynamic, 3249 /*isRecursivelyLegal=*/false, unknownLegalityFn}; 3250 return llvm::None; 3251 } 3252 3253 //===----------------------------------------------------------------------===// 3254 // Op Conversion Entry Points 3255 //===----------------------------------------------------------------------===// 3256 3257 //===----------------------------------------------------------------------===// 3258 // Partial Conversion 3259 3260 LogicalResult 3261 mlir::applyPartialConversion(ArrayRef<Operation *> ops, 3262 ConversionTarget &target, 3263 const FrozenRewritePatternSet &patterns, 3264 DenseSet<Operation *> *unconvertedOps) { 3265 OperationConverter opConverter(target, patterns, OpConversionMode::Partial, 3266 unconvertedOps); 3267 return opConverter.convertOperations(ops); 3268 } 3269 LogicalResult 3270 mlir::applyPartialConversion(Operation *op, ConversionTarget &target, 3271 const FrozenRewritePatternSet &patterns, 3272 DenseSet<Operation *> *unconvertedOps) { 3273 return applyPartialConversion(llvm::makeArrayRef(op), target, patterns, 3274 unconvertedOps); 3275 } 3276 3277 //===----------------------------------------------------------------------===// 3278 // Full Conversion 3279 3280 LogicalResult 3281 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target, 3282 const FrozenRewritePatternSet &patterns) { 3283 OperationConverter opConverter(target, patterns, OpConversionMode::Full); 3284 return opConverter.convertOperations(ops); 3285 } 3286 LogicalResult 3287 mlir::applyFullConversion(Operation *op, ConversionTarget &target, 3288 const FrozenRewritePatternSet &patterns) { 3289 return applyFullConversion(llvm::makeArrayRef(op), target, patterns); 3290 } 3291 3292 //===----------------------------------------------------------------------===// 3293 // Analysis Conversion 3294 3295 LogicalResult 3296 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops, 3297 ConversionTarget &target, 3298 const FrozenRewritePatternSet &patterns, 3299 DenseSet<Operation *> &convertedOps, 3300 function_ref<void(Diagnostic &)> notifyCallback) { 3301 OperationConverter opConverter(target, patterns, OpConversionMode::Analysis, 3302 &convertedOps); 3303 return opConverter.convertOperations(ops, notifyCallback); 3304 } 3305 LogicalResult 3306 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target, 3307 const FrozenRewritePatternSet &patterns, 3308 DenseSet<Operation *> &convertedOps, 3309 function_ref<void(Diagnostic &)> notifyCallback) { 3310 return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns, 3311 convertedOps, notifyCallback); 3312 } 3313