1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Transforms/DialectConversion.h" 10 #include "mlir/IR/Block.h" 11 #include "mlir/IR/BlockAndValueMapping.h" 12 #include "mlir/IR/Builders.h" 13 #include "mlir/IR/BuiltinOps.h" 14 #include "mlir/IR/FunctionSupport.h" 15 #include "mlir/Rewrite/PatternApplicator.h" 16 #include "mlir/Transforms/Utils.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/FormatVariadic.h" 21 #include "llvm/Support/SaveAndRestore.h" 22 #include "llvm/Support/ScopedPrinter.h" 23 24 using namespace mlir; 25 using namespace mlir::detail; 26 27 #define DEBUG_TYPE "dialect-conversion" 28 29 /// Recursively collect all of the operations to convert from within 'region'. 30 /// If 'target' is nonnull, operations that are recursively legal have their 31 /// regions pre-filtered to avoid considering them for legalization. 32 static LogicalResult 33 computeConversionSet(iterator_range<Region::iterator> region, 34 Location regionLoc, std::vector<Operation *> &toConvert, 35 ConversionTarget *target = nullptr) { 36 if (llvm::empty(region)) 37 return success(); 38 39 // Traverse starting from the entry block. 40 SmallVector<Block *, 16> worklist(1, &*region.begin()); 41 DenseSet<Block *> visitedBlocks; 42 visitedBlocks.insert(worklist.front()); 43 while (!worklist.empty()) { 44 Block *block = worklist.pop_back_val(); 45 46 // Compute the conversion set of each of the nested operations. 47 for (Operation &op : *block) { 48 toConvert.emplace_back(&op); 49 50 // Don't check this operation's children for conversion if the operation 51 // is recursively legal. 52 auto legalityInfo = target ? target->isLegal(&op) 53 : Optional<ConversionTarget::LegalOpDetails>(); 54 if (legalityInfo && legalityInfo->isRecursivelyLegal) 55 continue; 56 for (auto ®ion : op.getRegions()) { 57 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 58 toConvert, target))) 59 return failure(); 60 } 61 } 62 63 // Recurse to children that haven't been visited. 64 for (Block *succ : block->getSuccessors()) 65 if (visitedBlocks.insert(succ).second) 66 worklist.push_back(succ); 67 } 68 69 // Check that all blocks in the region were visited. 70 if (llvm::any_of(llvm::drop_begin(region, 1), 71 [&](Block &block) { return !visitedBlocks.count(&block); })) 72 return emitError(regionLoc, "unreachable blocks were not converted"); 73 return success(); 74 } 75 76 /// A utility function to log a successful result for the given reason. 77 template <typename... Args> 78 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, 79 Args &&... args) { 80 LLVM_DEBUG({ 81 os.unindent(); 82 os.startLine() << "} -> SUCCESS"; 83 if (!fmt.empty()) 84 os.getOStream() << " : " 85 << llvm::formatv(fmt.data(), std::forward<Args>(args)...); 86 os.getOStream() << "\n"; 87 }); 88 } 89 90 /// A utility function to log a failure result for the given reason. 91 template <typename... Args> 92 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, 93 Args &&... args) { 94 LLVM_DEBUG({ 95 os.unindent(); 96 os.startLine() << "} -> FAILURE : " 97 << llvm::formatv(fmt.data(), std::forward<Args>(args)...) 98 << "\n"; 99 }); 100 } 101 102 //===----------------------------------------------------------------------===// 103 // ConversionValueMapping 104 //===----------------------------------------------------------------------===// 105 106 namespace { 107 /// This class wraps a BlockAndValueMapping to provide recursive lookup 108 /// functionality, i.e. we will traverse if the mapped value also has a mapping. 109 struct ConversionValueMapping { 110 /// Lookup a mapped value within the map. If a mapping for the provided value 111 /// does not exist then return the provided value. If `desiredType` is 112 /// non-null, returns the most recently mapped value with that type. If an 113 /// operand of that type does not exist, defaults to normal behavior. 114 Value lookupOrDefault(Value from, Type desiredType = nullptr) const; 115 116 /// Lookup a mapped value within the map, or return null if a mapping does not 117 /// exist. If a mapping exists, this follows the same behavior of 118 /// `lookupOrDefault`. 119 Value lookupOrNull(Value from) const; 120 121 /// Map a value to the one provided. 122 void map(Value oldVal, Value newVal) { mapping.map(oldVal, newVal); } 123 124 /// Drop the last mapping for the given value. 125 void erase(Value value) { mapping.erase(value); } 126 127 /// Returns the inverse raw value mapping (without recursive query support). 128 BlockAndValueMapping getInverse() const { return mapping.getInverse(); } 129 130 private: 131 /// Current value mappings. 132 BlockAndValueMapping mapping; 133 }; 134 } // end anonymous namespace 135 136 Value ConversionValueMapping::lookupOrDefault(Value from, 137 Type desiredType) const { 138 // If there was no desired type, simply find the leaf value. 139 if (!desiredType) { 140 // If this value had a valid mapping, unmap that value as well in the case 141 // that it was also replaced. 142 while (auto mappedValue = mapping.lookupOrNull(from)) 143 from = mappedValue; 144 return from; 145 } 146 147 // Otherwise, try to find the deepest value that has the desired type. 148 Value desiredValue; 149 do { 150 if (from.getType() == desiredType) 151 desiredValue = from; 152 153 Value mappedValue = mapping.lookupOrNull(from); 154 if (!mappedValue) 155 break; 156 from = mappedValue; 157 } while (true); 158 159 // If the desired value was found use it, otherwise default to the leaf value. 160 return desiredValue ? desiredValue : from; 161 } 162 163 Value ConversionValueMapping::lookupOrNull(Value from) const { 164 Value result = lookupOrDefault(from); 165 return result == from ? nullptr : result; 166 } 167 168 //===----------------------------------------------------------------------===// 169 // ArgConverter 170 //===----------------------------------------------------------------------===// 171 namespace { 172 /// This class provides a simple interface for converting the types of block 173 /// arguments. This is done by creating a new block that contains the new legal 174 /// types and extracting the block that contains the old illegal types to allow 175 /// for undoing pending rewrites in the case of failure. 176 struct ArgConverter { 177 ArgConverter(PatternRewriter &rewriter) : rewriter(rewriter) {} 178 179 /// This structure contains the information pertaining to an argument that has 180 /// been converted. 181 struct ConvertedArgInfo { 182 ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize, 183 Value castValue = nullptr) 184 : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {} 185 186 /// The start index of in the new argument list that contains arguments that 187 /// replace the original. 188 unsigned newArgIdx; 189 190 /// The number of arguments that replaced the original argument. 191 unsigned newArgSize; 192 193 /// The cast value that was created to cast from the new arguments to the 194 /// old. This only used if 'newArgSize' > 1. 195 Value castValue; 196 }; 197 198 /// This structure contains information pertaining to a block that has had its 199 /// signature converted. 200 struct ConvertedBlockInfo { 201 ConvertedBlockInfo(Block *origBlock, TypeConverter &converter) 202 : origBlock(origBlock), converter(&converter) {} 203 204 /// The original block that was requested to have its signature converted. 205 Block *origBlock; 206 207 /// The conversion information for each of the arguments. The information is 208 /// None if the argument was dropped during conversion. 209 SmallVector<Optional<ConvertedArgInfo>, 1> argInfo; 210 211 /// The type converter used to convert the arguments. 212 TypeConverter *converter; 213 }; 214 215 /// Return if the signature of the given block has already been converted. 216 bool hasBeenConverted(Block *block) const { 217 return conversionInfo.count(block) || convertedBlocks.count(block); 218 } 219 220 /// Set the type converter to use for the given region. 221 void setConverter(Region *region, TypeConverter *typeConverter) { 222 assert(typeConverter && "expected valid type converter"); 223 regionToConverter[region] = typeConverter; 224 } 225 226 /// Return the type converter to use for the given region, or null if there 227 /// isn't one. 228 TypeConverter *getConverter(Region *region) { 229 return regionToConverter.lookup(region); 230 } 231 232 //===--------------------------------------------------------------------===// 233 // Rewrite Application 234 //===--------------------------------------------------------------------===// 235 236 /// Erase any rewrites registered for the blocks within the given operation 237 /// which is about to be removed. This merely drops the rewrites without 238 /// undoing them. 239 void notifyOpRemoved(Operation *op); 240 241 /// Cleanup and undo any generated conversions for the arguments of block. 242 /// This method replaces the new block with the original, reverting the IR to 243 /// its original state. 244 void discardRewrites(Block *block); 245 246 /// Fully replace uses of the old arguments with the new. 247 void applyRewrites(ConversionValueMapping &mapping); 248 249 /// Materialize any necessary conversions for converted arguments that have 250 /// live users, using the provided `findLiveUser` to search for a user that 251 /// survives the conversion process. 252 LogicalResult 253 materializeLiveConversions(ConversionValueMapping &mapping, 254 OpBuilder &builder, 255 function_ref<Operation *(Value)> findLiveUser); 256 257 //===--------------------------------------------------------------------===// 258 // Conversion 259 //===--------------------------------------------------------------------===// 260 261 /// Attempt to convert the signature of the given block, if successful a new 262 /// block is returned containing the new arguments. Returns `block` if it did 263 /// not require conversion. 264 FailureOr<Block *> 265 convertSignature(Block *block, TypeConverter &converter, 266 ConversionValueMapping &mapping, 267 SmallVectorImpl<BlockArgument> &argReplacements); 268 269 /// Apply the given signature conversion on the given block. The new block 270 /// containing the updated signature is returned. If no conversions were 271 /// necessary, e.g. if the block has no arguments, `block` is returned. 272 /// `converter` is used to generate any necessary cast operations that 273 /// translate between the origin argument types and those specified in the 274 /// signature conversion. 275 Block *applySignatureConversion( 276 Block *block, TypeConverter &converter, 277 TypeConverter::SignatureConversion &signatureConversion, 278 ConversionValueMapping &mapping, 279 SmallVectorImpl<BlockArgument> &argReplacements); 280 281 /// Insert a new conversion into the cache. 282 void insertConversion(Block *newBlock, ConvertedBlockInfo &&info); 283 284 /// A collection of blocks that have had their arguments converted. This is a 285 /// map from the new replacement block, back to the original block. 286 llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo; 287 288 /// The set of original blocks that were converted. 289 DenseSet<Block *> convertedBlocks; 290 291 /// A mapping from valid regions, to those containing the original blocks of a 292 /// conversion. 293 DenseMap<Region *, std::unique_ptr<Region>> regionMapping; 294 295 /// A mapping of regions to type converters that should be used when 296 /// converting the arguments of blocks within that region. 297 DenseMap<Region *, TypeConverter *> regionToConverter; 298 299 /// The pattern rewriter to use when materializing conversions. 300 PatternRewriter &rewriter; 301 }; 302 } // end anonymous namespace 303 304 //===----------------------------------------------------------------------===// 305 // Rewrite Application 306 307 void ArgConverter::notifyOpRemoved(Operation *op) { 308 if (conversionInfo.empty()) 309 return; 310 311 for (Region ®ion : op->getRegions()) { 312 for (Block &block : region) { 313 // Drop any rewrites from within. 314 for (Operation &nestedOp : block) 315 if (nestedOp.getNumRegions()) 316 notifyOpRemoved(&nestedOp); 317 318 // Check if this block was converted. 319 auto it = conversionInfo.find(&block); 320 if (it == conversionInfo.end()) 321 continue; 322 323 // Drop all uses of the original arguments and delete the original block. 324 Block *origBlock = it->second.origBlock; 325 for (BlockArgument arg : origBlock->getArguments()) 326 arg.dropAllUses(); 327 conversionInfo.erase(it); 328 } 329 } 330 } 331 332 void ArgConverter::discardRewrites(Block *block) { 333 auto it = conversionInfo.find(block); 334 if (it == conversionInfo.end()) 335 return; 336 Block *origBlock = it->second.origBlock; 337 338 // Drop all uses of the new block arguments and replace uses of the new block. 339 for (int i = block->getNumArguments() - 1; i >= 0; --i) 340 block->getArgument(i).dropAllUses(); 341 block->replaceAllUsesWith(origBlock); 342 343 // Move the operations back the original block and the delete the new block. 344 origBlock->getOperations().splice(origBlock->end(), block->getOperations()); 345 origBlock->moveBefore(block); 346 block->erase(); 347 348 convertedBlocks.erase(origBlock); 349 conversionInfo.erase(it); 350 } 351 352 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) { 353 for (auto &info : conversionInfo) { 354 ConvertedBlockInfo &blockInfo = info.second; 355 Block *origBlock = blockInfo.origBlock; 356 357 // Process the remapping for each of the original arguments. 358 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 359 Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i]; 360 BlockArgument origArg = origBlock->getArgument(i); 361 362 // Handle the case of a 1->0 value mapping. 363 if (!argInfo) { 364 if (Value newArg = mapping.lookupOrNull(origArg)) 365 origArg.replaceAllUsesWith(newArg); 366 continue; 367 } 368 369 // Otherwise this is a 1->1+ value mapping. 370 Value castValue = argInfo->castValue; 371 assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping"); 372 373 // If the argument is still used, replace it with the generated cast. 374 if (!origArg.use_empty()) 375 origArg.replaceAllUsesWith(mapping.lookupOrDefault(castValue)); 376 } 377 } 378 } 379 380 LogicalResult ArgConverter::materializeLiveConversions( 381 ConversionValueMapping &mapping, OpBuilder &builder, 382 function_ref<Operation *(Value)> findLiveUser) { 383 for (auto &info : conversionInfo) { 384 Block *newBlock = info.first; 385 ConvertedBlockInfo &blockInfo = info.second; 386 Block *origBlock = blockInfo.origBlock; 387 388 // Process the remapping for each of the original arguments. 389 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 390 // FIXME: We should run the below checks even if the type conversion was 391 // 1->N, but a lot of existing lowering rely on the block argument being 392 // blindly replaced. Those usages should be updated, and this if should be 393 // removed. 394 if (blockInfo.argInfo[i]) 395 continue; 396 397 // If the type of this argument changed and the argument is still live, we 398 // need to materialize a conversion. 399 BlockArgument origArg = origBlock->getArgument(i); 400 auto argReplacementValue = mapping.lookupOrDefault(origArg); 401 bool isDroppedArg = argReplacementValue == origArg; 402 if (argReplacementValue.getType() == origArg.getType() && !isDroppedArg) 403 continue; 404 Operation *liveUser = findLiveUser(origArg); 405 if (!liveUser) 406 continue; 407 408 if (OpResult result = argReplacementValue.dyn_cast<OpResult>()) 409 rewriter.setInsertionPointAfter(result.getOwner()); 410 else 411 rewriter.setInsertionPointToStart(newBlock); 412 Value newArg = blockInfo.converter->materializeSourceConversion( 413 rewriter, origArg.getLoc(), origArg.getType(), 414 isDroppedArg ? ValueRange() : ValueRange(argReplacementValue)); 415 if (!newArg) { 416 InFlightDiagnostic diag = 417 emitError(origArg.getLoc()) 418 << "failed to materialize conversion for block argument #" << i 419 << " that remained live after conversion, type was " 420 << origArg.getType(); 421 if (!isDroppedArg) 422 diag << ", with target type " << argReplacementValue.getType(); 423 diag.attachNote(liveUser->getLoc()) 424 << "see existing live user here: " << *liveUser; 425 return failure(); 426 } 427 mapping.map(origArg, newArg); 428 } 429 } 430 return success(); 431 } 432 433 //===----------------------------------------------------------------------===// 434 // Conversion 435 436 FailureOr<Block *> ArgConverter::convertSignature( 437 Block *block, TypeConverter &converter, ConversionValueMapping &mapping, 438 SmallVectorImpl<BlockArgument> &argReplacements) { 439 // Check if the block was already converted. If the block is detached, 440 // conservatively assume it is going to be deleted. 441 if (hasBeenConverted(block) || !block->getParent()) 442 return block; 443 444 // Try to convert the signature for the block with the provided converter. 445 if (auto conversion = converter.convertBlockSignature(block)) 446 return applySignatureConversion(block, converter, *conversion, mapping, 447 argReplacements); 448 return failure(); 449 } 450 451 Block *ArgConverter::applySignatureConversion( 452 Block *block, TypeConverter &converter, 453 TypeConverter::SignatureConversion &signatureConversion, 454 ConversionValueMapping &mapping, 455 SmallVectorImpl<BlockArgument> &argReplacements) { 456 // If no arguments are being changed or added, there is nothing to do. 457 unsigned origArgCount = block->getNumArguments(); 458 auto convertedTypes = signatureConversion.getConvertedTypes(); 459 if (origArgCount == 0 && convertedTypes.empty()) 460 return block; 461 462 // Split the block at the beginning to get a new block to use for the updated 463 // signature. 464 Block *newBlock = block->splitBlock(block->begin()); 465 block->replaceAllUsesWith(newBlock); 466 467 SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes)); 468 ArrayRef<Value> newArgs(newArgRange); 469 470 // Remap each of the original arguments as determined by the signature 471 // conversion. 472 ConvertedBlockInfo info(block, converter); 473 info.argInfo.resize(origArgCount); 474 475 OpBuilder::InsertionGuard guard(rewriter); 476 rewriter.setInsertionPointToStart(newBlock); 477 for (unsigned i = 0; i != origArgCount; ++i) { 478 auto inputMap = signatureConversion.getInputMapping(i); 479 if (!inputMap) 480 continue; 481 BlockArgument origArg = block->getArgument(i); 482 483 // If inputMap->replacementValue is not nullptr, then the argument is 484 // dropped and a replacement value is provided to be the remappedValue. 485 if (inputMap->replacementValue) { 486 assert(inputMap->size == 0 && 487 "invalid to provide a replacement value when the argument isn't " 488 "dropped"); 489 mapping.map(origArg, inputMap->replacementValue); 490 argReplacements.push_back(origArg); 491 continue; 492 } 493 494 // Otherwise, this is a 1->1+ mapping. Call into the provided type converter 495 // to pack the new values. For 1->1 mappings, if there is no materialization 496 // provided, use the argument directly instead. 497 auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size); 498 Value newArg = converter.materializeArgumentConversion( 499 rewriter, origArg.getLoc(), origArg.getType(), replArgs); 500 if (!newArg) { 501 assert(replArgs.size() == 1 && 502 "couldn't materialize the result of 1->N conversion"); 503 newArg = replArgs.front(); 504 } 505 mapping.map(origArg, newArg); 506 argReplacements.push_back(origArg); 507 info.argInfo[i] = 508 ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg); 509 } 510 511 // Remove the original block from the region and return the new one. 512 insertConversion(newBlock, std::move(info)); 513 return newBlock; 514 } 515 516 void ArgConverter::insertConversion(Block *newBlock, 517 ConvertedBlockInfo &&info) { 518 // Get a region to insert the old block. 519 Region *region = newBlock->getParent(); 520 std::unique_ptr<Region> &mappedRegion = regionMapping[region]; 521 if (!mappedRegion) 522 mappedRegion = std::make_unique<Region>(region->getParentOp()); 523 524 // Move the original block to the mapped region and emplace the conversion. 525 mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(), 526 info.origBlock->getIterator()); 527 convertedBlocks.insert(info.origBlock); 528 conversionInfo.insert({newBlock, std::move(info)}); 529 } 530 531 //===----------------------------------------------------------------------===// 532 // Rewriter and Translation State 533 //===----------------------------------------------------------------------===// 534 namespace { 535 /// This class contains a snapshot of the current conversion rewriter state. 536 /// This is useful when saving and undoing a set of rewrites. 537 struct RewriterState { 538 RewriterState(unsigned numCreatedOps, unsigned numReplacements, 539 unsigned numArgReplacements, unsigned numBlockActions, 540 unsigned numIgnoredOperations, unsigned numRootUpdates) 541 : numCreatedOps(numCreatedOps), numReplacements(numReplacements), 542 numArgReplacements(numArgReplacements), 543 numBlockActions(numBlockActions), 544 numIgnoredOperations(numIgnoredOperations), 545 numRootUpdates(numRootUpdates) {} 546 547 /// The current number of created operations. 548 unsigned numCreatedOps; 549 550 /// The current number of replacements queued. 551 unsigned numReplacements; 552 553 /// The current number of argument replacements queued. 554 unsigned numArgReplacements; 555 556 /// The current number of block actions performed. 557 unsigned numBlockActions; 558 559 /// The current number of ignored operations. 560 unsigned numIgnoredOperations; 561 562 /// The current number of operations that were updated in place. 563 unsigned numRootUpdates; 564 }; 565 566 /// The state of an operation that was updated by a pattern in-place. This 567 /// contains all of the necessary information to reconstruct an operation that 568 /// was updated in place. 569 class OperationTransactionState { 570 public: 571 OperationTransactionState() = default; 572 OperationTransactionState(Operation *op) 573 : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()), 574 operands(op->operand_begin(), op->operand_end()), 575 successors(op->successor_begin(), op->successor_end()) {} 576 577 /// Discard the transaction state and reset the state of the original 578 /// operation. 579 void resetOperation() const { 580 op->setLoc(loc); 581 op->setAttrs(attrs); 582 op->setOperands(operands); 583 for (auto it : llvm::enumerate(successors)) 584 op->setSuccessor(it.value(), it.index()); 585 } 586 587 /// Return the original operation of this state. 588 Operation *getOperation() const { return op; } 589 590 private: 591 Operation *op; 592 LocationAttr loc; 593 DictionaryAttr attrs; 594 SmallVector<Value, 8> operands; 595 SmallVector<Block *, 2> successors; 596 }; 597 598 /// This class represents one requested operation replacement via 'replaceOp' or 599 /// 'eraseOp`. 600 struct OpReplacement { 601 OpReplacement() = default; 602 OpReplacement(TypeConverter *converter) : converter(converter) {} 603 604 /// An optional type converter that can be used to materialize conversions 605 /// between the new and old values if necessary. 606 TypeConverter *converter = nullptr; 607 }; 608 609 /// The kind of the block action performed during the rewrite. Actions can be 610 /// undone if the conversion fails. 611 enum class BlockActionKind { 612 Create, 613 Erase, 614 Merge, 615 Move, 616 Split, 617 TypeConversion 618 }; 619 620 /// Original position of the given block in its parent region. During undo 621 /// actions, the block needs to be placed after `insertAfterBlock`. 622 struct BlockPosition { 623 Region *region; 624 Block *insertAfterBlock; 625 }; 626 627 /// Information needed to undo the merge actions. 628 /// - the source block, and 629 /// - the Operation that was the last operation in the dest block before the 630 /// merge (could be null if the dest block was empty). 631 struct MergeInfo { 632 Block *sourceBlock; 633 Operation *destBlockLastInst; 634 }; 635 636 /// The storage class for an undoable block action (one of BlockActionKind), 637 /// contains the information necessary to undo this action. 638 struct BlockAction { 639 static BlockAction getCreate(Block *block) { 640 return {BlockActionKind::Create, block, {}}; 641 } 642 static BlockAction getErase(Block *block, BlockPosition originalPosition) { 643 return {BlockActionKind::Erase, block, {originalPosition}}; 644 } 645 static BlockAction getMerge(Block *block, Block *sourceBlock) { 646 BlockAction action{BlockActionKind::Merge, block, {}}; 647 action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()}; 648 return action; 649 } 650 static BlockAction getMove(Block *block, BlockPosition originalPosition) { 651 return {BlockActionKind::Move, block, {originalPosition}}; 652 } 653 static BlockAction getSplit(Block *block, Block *originalBlock) { 654 BlockAction action{BlockActionKind::Split, block, {}}; 655 action.originalBlock = originalBlock; 656 return action; 657 } 658 static BlockAction getTypeConversion(Block *block) { 659 return BlockAction{BlockActionKind::TypeConversion, block, {}}; 660 } 661 662 // The action kind. 663 BlockActionKind kind; 664 665 // A pointer to the block that was created by the action. 666 Block *block; 667 668 union { 669 // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and 670 // contains a pointer to the region that originally contained the block as 671 // well as the position of the block in that region. 672 BlockPosition originalPosition; 673 // In use if kind == BlockActionKind::Split and contains a pointer to the 674 // block that was split into two parts. 675 Block *originalBlock; 676 // In use if kind == BlockActionKind::Merge, and contains the information 677 // needed to undo the merge. 678 MergeInfo mergeInfo; 679 }; 680 }; 681 } // end anonymous namespace 682 683 //===----------------------------------------------------------------------===// 684 // ConversionPatternRewriterImpl 685 //===----------------------------------------------------------------------===// 686 namespace mlir { 687 namespace detail { 688 struct ConversionPatternRewriterImpl { 689 ConversionPatternRewriterImpl(PatternRewriter &rewriter) 690 : argConverter(rewriter) {} 691 692 /// Cleanup and destroy any generated rewrite operations. This method is 693 /// invoked when the conversion process fails. 694 void discardRewrites(); 695 696 /// Apply all requested operation rewrites. This method is invoked when the 697 /// conversion process succeeds. 698 void applyRewrites(); 699 700 //===--------------------------------------------------------------------===// 701 // State Management 702 //===--------------------------------------------------------------------===// 703 704 /// Return the current state of the rewriter. 705 RewriterState getCurrentState(); 706 707 /// Reset the state of the rewriter to a previously saved point. 708 void resetState(RewriterState state); 709 710 /// Erase any blocks that were unlinked from their regions and stored in block 711 /// actions. 712 void eraseDanglingBlocks(); 713 714 /// Undo the block actions (motions, splits) one by one in reverse order until 715 /// "numActionsToKeep" actions remains. 716 void undoBlockActions(unsigned numActionsToKeep = 0); 717 718 /// Remap the given operands to those with potentially different types. The 719 /// provided type converter is used to ensure that the remapped types are 720 /// legal. Returns success if the operands could be remapped, failure 721 /// otherwise. 722 LogicalResult remapValues(Location loc, PatternRewriter &rewriter, 723 TypeConverter *converter, 724 Operation::operand_range operands, 725 SmallVectorImpl<Value> &remapped); 726 727 /// Returns true if the given operation is ignored, and does not need to be 728 /// converted. 729 bool isOpIgnored(Operation *op) const; 730 731 /// Recursively marks the nested operations under 'op' as ignored. This 732 /// removes them from being considered for legalization. 733 void markNestedOpsIgnored(Operation *op); 734 735 //===--------------------------------------------------------------------===// 736 // Type Conversion 737 //===--------------------------------------------------------------------===// 738 739 /// Convert the signature of the given block. 740 FailureOr<Block *> convertBlockSignature( 741 Block *block, TypeConverter &converter, 742 TypeConverter::SignatureConversion *conversion = nullptr); 743 744 /// Apply a signature conversion on the given region. 745 Block * 746 applySignatureConversion(Region *region, 747 TypeConverter::SignatureConversion &conversion); 748 749 /// Convert the types of block arguments within the given region. 750 FailureOr<Block *> 751 convertRegionTypes(Region *region, TypeConverter &converter, 752 TypeConverter::SignatureConversion *entryConversion); 753 754 /// Convert the types of non-entry block arguments within the given region. 755 LogicalResult convertNonEntryRegionTypes(Region *region, 756 TypeConverter &converter); 757 758 //===--------------------------------------------------------------------===// 759 // Rewriter Notification Hooks 760 //===--------------------------------------------------------------------===// 761 762 /// PatternRewriter hook for replacing the results of an operation. 763 void notifyOpReplaced(Operation *op, ValueRange newValues); 764 765 /// Notifies that a block is about to be erased. 766 void notifyBlockIsBeingErased(Block *block); 767 768 /// Notifies that a block was created. 769 void notifyCreatedBlock(Block *block); 770 771 /// Notifies that a block was split. 772 void notifySplitBlock(Block *block, Block *continuation); 773 774 /// Notifies that `block` is being merged with `srcBlock`. 775 void notifyBlocksBeingMerged(Block *block, Block *srcBlock); 776 777 /// Notifies that the blocks of a region are about to be moved. 778 void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent, 779 Region::iterator before); 780 781 /// Notifies that the blocks of a region were cloned into another. 782 void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks, 783 Location origRegionLoc); 784 785 /// Notifies that a pattern match failed for the given reason. 786 LogicalResult 787 notifyMatchFailure(Location loc, 788 function_ref<void(Diagnostic &)> reasonCallback); 789 790 //===--------------------------------------------------------------------===// 791 // State 792 //===--------------------------------------------------------------------===// 793 794 // Mapping between replaced values that differ in type. This happens when 795 // replacing a value with one of a different type. 796 ConversionValueMapping mapping; 797 798 /// Utility used to convert block arguments. 799 ArgConverter argConverter; 800 801 /// Ordered vector of all of the newly created operations during conversion. 802 std::vector<Operation *> createdOps; 803 804 /// Ordered map of requested operation replacements. 805 llvm::MapVector<Operation *, OpReplacement> replacements; 806 807 /// Ordered vector of any requested block argument replacements. 808 SmallVector<BlockArgument, 4> argReplacements; 809 810 /// Ordered list of block operations (creations, splits, motions). 811 SmallVector<BlockAction, 4> blockActions; 812 813 /// A set of operations that should no longer be considered for legalization, 814 /// but were not directly replace/erased/etc. by a pattern. These are 815 /// generally child operations of other operations who were 816 /// replaced/erased/etc. This is not meant to be an exhaustive list of all 817 /// operations, but the minimal set that can be used to detect if a given 818 /// operation should be `ignored`. For example, we may add the operations that 819 /// define non-empty regions to the set, but not any of the others. This 820 /// simplifies the amount of memory needed as we can query if the parent 821 /// operation was ignored. 822 llvm::SetVector<Operation *> ignoredOps; 823 824 /// A transaction state for each of operations that were updated in-place. 825 SmallVector<OperationTransactionState, 4> rootUpdates; 826 827 /// A vector of indices into `replacements` of operations that were replaced 828 /// with values with different result types than the original operation, e.g. 829 /// 1->N conversion of some kind. 830 SmallVector<unsigned, 4> operationsWithChangedResults; 831 832 /// A default type converter, used when block conversions do not have one 833 /// explicitly provided. 834 TypeConverter defaultTypeConverter; 835 836 /// The current conversion pattern that is being rewritten, or nullptr if 837 /// called from outside of a conversion pattern rewrite. 838 const ConversionPattern *currentConversionPattern = nullptr; 839 840 #ifndef NDEBUG 841 /// A set of operations that have pending updates. This tracking isn't 842 /// strictly necessary, and is thus only active during debug builds for extra 843 /// verification. 844 SmallPtrSet<Operation *, 1> pendingRootUpdates; 845 846 /// A logger used to emit diagnostics during the conversion process. 847 llvm::ScopedPrinter logger{llvm::dbgs()}; 848 #endif 849 }; 850 } // end namespace detail 851 } // end namespace mlir 852 853 /// Detach any operations nested in the given operation from their parent 854 /// blocks, and erase the given operation. This can be used when the nested 855 /// operations are scheduled for erasure themselves, so deleting the regions of 856 /// the given operation together with their content would result in double-free. 857 /// This happens, for example, when rolling back op creation in the reverse 858 /// order and if the nested ops were created before the parent op. This function 859 /// does not need to collect nested ops recursively because it is expected to 860 /// also be called for each nested op when it is about to be deleted. 861 static void detachNestedAndErase(Operation *op) { 862 for (Region ®ion : op->getRegions()) { 863 for (Block &block : region.getBlocks()) { 864 while (!block.getOperations().empty()) 865 block.getOperations().remove(block.getOperations().begin()); 866 block.dropAllDefinedValueUses(); 867 } 868 } 869 op->dropAllUses(); 870 op->erase(); 871 } 872 873 void ConversionPatternRewriterImpl::discardRewrites() { 874 // Reset any operations that were updated in place. 875 for (auto &state : rootUpdates) 876 state.resetOperation(); 877 878 undoBlockActions(); 879 880 // Remove any newly created ops. 881 for (auto *op : llvm::reverse(createdOps)) 882 detachNestedAndErase(op); 883 } 884 885 void ConversionPatternRewriterImpl::applyRewrites() { 886 // Apply all of the rewrites replacements requested during conversion. 887 for (auto &repl : replacements) { 888 for (OpResult result : repl.first->getResults()) 889 if (Value newValue = mapping.lookupOrNull(result)) 890 result.replaceAllUsesWith(newValue); 891 892 // If this operation defines any regions, drop any pending argument 893 // rewrites. 894 if (repl.first->getNumRegions()) 895 argConverter.notifyOpRemoved(repl.first); 896 } 897 898 // Apply all of the requested argument replacements. 899 for (BlockArgument arg : argReplacements) { 900 Value repl = mapping.lookupOrDefault(arg); 901 if (repl.isa<BlockArgument>()) { 902 arg.replaceAllUsesWith(repl); 903 continue; 904 } 905 906 // If the replacement value is an operation, we check to make sure that we 907 // don't replace uses that are within the parent operation of the 908 // replacement value. 909 Operation *replOp = repl.cast<OpResult>().getOwner(); 910 Block *replBlock = replOp->getBlock(); 911 arg.replaceUsesWithIf(repl, [&](OpOperand &operand) { 912 Operation *user = operand.getOwner(); 913 return user->getBlock() != replBlock || replOp->isBeforeInBlock(user); 914 }); 915 } 916 917 // In a second pass, erase all of the replaced operations in reverse. This 918 // allows processing nested operations before their parent region is 919 // destroyed. 920 for (auto &repl : llvm::reverse(replacements)) 921 repl.first->erase(); 922 923 argConverter.applyRewrites(mapping); 924 925 // Now that the ops have been erased, also erase dangling blocks. 926 eraseDanglingBlocks(); 927 } 928 929 //===----------------------------------------------------------------------===// 930 // State Management 931 932 RewriterState ConversionPatternRewriterImpl::getCurrentState() { 933 return RewriterState(createdOps.size(), replacements.size(), 934 argReplacements.size(), blockActions.size(), 935 ignoredOps.size(), rootUpdates.size()); 936 } 937 938 void ConversionPatternRewriterImpl::resetState(RewriterState state) { 939 // Reset any operations that were updated in place. 940 for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i) 941 rootUpdates[i].resetOperation(); 942 rootUpdates.resize(state.numRootUpdates); 943 944 // Reset any replaced arguments. 945 for (BlockArgument replacedArg : 946 llvm::drop_begin(argReplacements, state.numArgReplacements)) 947 mapping.erase(replacedArg); 948 argReplacements.resize(state.numArgReplacements); 949 950 // Undo any block actions. 951 undoBlockActions(state.numBlockActions); 952 953 // Reset any replaced operations and undo any saved mappings. 954 for (auto &repl : llvm::drop_begin(replacements, state.numReplacements)) 955 for (auto result : repl.first->getResults()) 956 mapping.erase(result); 957 while (replacements.size() != state.numReplacements) 958 replacements.pop_back(); 959 960 // Pop all of the newly created operations. 961 while (createdOps.size() != state.numCreatedOps) { 962 detachNestedAndErase(createdOps.back()); 963 createdOps.pop_back(); 964 } 965 966 // Pop all of the recorded ignored operations that are no longer valid. 967 while (ignoredOps.size() != state.numIgnoredOperations) 968 ignoredOps.pop_back(); 969 970 // Reset operations with changed results. 971 while (!operationsWithChangedResults.empty() && 972 operationsWithChangedResults.back() >= state.numReplacements) 973 operationsWithChangedResults.pop_back(); 974 } 975 976 void ConversionPatternRewriterImpl::eraseDanglingBlocks() { 977 for (auto &action : blockActions) 978 if (action.kind == BlockActionKind::Erase) 979 delete action.block; 980 } 981 982 void ConversionPatternRewriterImpl::undoBlockActions( 983 unsigned numActionsToKeep) { 984 for (auto &action : 985 llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) { 986 switch (action.kind) { 987 // Delete the created block. 988 case BlockActionKind::Create: { 989 // Unlink all of the operations within this block, they will be deleted 990 // separately. 991 auto &blockOps = action.block->getOperations(); 992 while (!blockOps.empty()) 993 blockOps.remove(blockOps.begin()); 994 action.block->dropAllDefinedValueUses(); 995 action.block->erase(); 996 break; 997 } 998 // Put the block (owned by action) back into its original position. 999 case BlockActionKind::Erase: { 1000 auto &blockList = action.originalPosition.region->getBlocks(); 1001 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 1002 blockList.insert((insertAfterBlock 1003 ? std::next(Region::iterator(insertAfterBlock)) 1004 : blockList.begin()), 1005 action.block); 1006 break; 1007 } 1008 // Split the block at the position which was originally the end of the 1009 // destination block (owned by action), and put the instructions back into 1010 // the block used before the merge. 1011 case BlockActionKind::Merge: { 1012 Block *sourceBlock = action.mergeInfo.sourceBlock; 1013 Block::iterator splitPoint = 1014 (action.mergeInfo.destBlockLastInst 1015 ? ++Block::iterator(action.mergeInfo.destBlockLastInst) 1016 : action.block->begin()); 1017 sourceBlock->getOperations().splice(sourceBlock->begin(), 1018 action.block->getOperations(), 1019 splitPoint, action.block->end()); 1020 break; 1021 } 1022 // Move the block back to its original position. 1023 case BlockActionKind::Move: { 1024 Region *originalRegion = action.originalPosition.region; 1025 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 1026 originalRegion->getBlocks().splice( 1027 (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock)) 1028 : originalRegion->end()), 1029 action.block->getParent()->getBlocks(), action.block); 1030 break; 1031 } 1032 // Merge back the block that was split out. 1033 case BlockActionKind::Split: { 1034 action.originalBlock->getOperations().splice( 1035 action.originalBlock->end(), action.block->getOperations()); 1036 action.block->dropAllDefinedValueUses(); 1037 action.block->erase(); 1038 break; 1039 } 1040 // Undo the type conversion. 1041 case BlockActionKind::TypeConversion: { 1042 argConverter.discardRewrites(action.block); 1043 break; 1044 } 1045 } 1046 } 1047 blockActions.resize(numActionsToKeep); 1048 } 1049 1050 LogicalResult ConversionPatternRewriterImpl::remapValues( 1051 Location loc, PatternRewriter &rewriter, TypeConverter *converter, 1052 Operation::operand_range operands, SmallVectorImpl<Value> &remapped) { 1053 remapped.reserve(llvm::size(operands)); 1054 1055 SmallVector<Type, 1> legalTypes; 1056 for (auto it : llvm::enumerate(operands)) { 1057 Value operand = it.value(); 1058 Type origType = operand.getType(); 1059 1060 // If a converter was provided, get the desired legal types for this 1061 // operand. 1062 Type desiredType; 1063 if (converter) { 1064 // If there is no legal conversion, fail to match this pattern. 1065 legalTypes.clear(); 1066 if (failed(converter->convertType(origType, legalTypes))) { 1067 return notifyMatchFailure(loc, [=](Diagnostic &diag) { 1068 diag << "unable to convert type for operand #" << it.index() 1069 << ", type was " << origType; 1070 }); 1071 } 1072 // TODO: There currently isn't any mechanism to do 1->N type conversion 1073 // via the PatternRewriter replacement API, so for now we just ignore it. 1074 if (legalTypes.size() == 1) 1075 desiredType = legalTypes.front(); 1076 } else { 1077 // TODO: What we should do here is just set `desiredType` to `origType` 1078 // and then handle the necessary type conversions after the conversion 1079 // process has finished. Unfortunately a lot of patterns currently rely on 1080 // receiving the new operands even if the types change, so we keep the 1081 // original behavior here for now until all of the patterns relying on 1082 // this get updated. 1083 } 1084 Value newOperand = mapping.lookupOrDefault(operand, desiredType); 1085 1086 // Handle the case where the conversion was 1->1 and the new operand type 1087 // isn't legal. 1088 Type newOperandType = newOperand.getType(); 1089 if (converter && desiredType && newOperandType != desiredType) { 1090 // Attempt to materialize a conversion for this new value. 1091 newOperand = converter->materializeTargetConversion( 1092 rewriter, loc, desiredType, newOperand); 1093 if (!newOperand) { 1094 return notifyMatchFailure(loc, [=](Diagnostic &diag) { 1095 diag << "unable to materialize a conversion for " 1096 "operand #" 1097 << it.index() << ", from " << newOperandType << " to " 1098 << desiredType; 1099 }); 1100 } 1101 } 1102 remapped.push_back(newOperand); 1103 } 1104 return success(); 1105 } 1106 1107 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const { 1108 // Check to see if this operation was replaced or its parent ignored. 1109 return replacements.count(op) || ignoredOps.count(op->getParentOp()); 1110 } 1111 1112 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) { 1113 // Walk this operation and collect nested operations that define non-empty 1114 // regions. We mark such operations as 'ignored' so that we know we don't have 1115 // to convert them, or their nested ops. 1116 if (op->getNumRegions() == 0) 1117 return; 1118 op->walk([&](Operation *op) { 1119 if (llvm::any_of(op->getRegions(), 1120 [](Region ®ion) { return !region.empty(); })) 1121 ignoredOps.insert(op); 1122 }); 1123 } 1124 1125 //===----------------------------------------------------------------------===// 1126 // Type Conversion 1127 1128 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature( 1129 Block *block, TypeConverter &converter, 1130 TypeConverter::SignatureConversion *conversion) { 1131 FailureOr<Block *> result = 1132 conversion ? argConverter.applySignatureConversion( 1133 block, converter, *conversion, mapping, argReplacements) 1134 : argConverter.convertSignature(block, converter, mapping, 1135 argReplacements); 1136 if (Block *newBlock = result.getValue()) { 1137 if (newBlock != block) 1138 blockActions.push_back(BlockAction::getTypeConversion(newBlock)); 1139 } 1140 return result; 1141 } 1142 1143 Block *ConversionPatternRewriterImpl::applySignatureConversion( 1144 Region *region, TypeConverter::SignatureConversion &conversion) { 1145 if (!region->empty()) { 1146 return *convertBlockSignature(®ion->front(), defaultTypeConverter, 1147 &conversion); 1148 } 1149 return nullptr; 1150 } 1151 1152 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes( 1153 Region *region, TypeConverter &converter, 1154 TypeConverter::SignatureConversion *entryConversion) { 1155 argConverter.setConverter(region, &converter); 1156 if (region->empty()) 1157 return nullptr; 1158 1159 if (failed(convertNonEntryRegionTypes(region, converter))) 1160 return failure(); 1161 1162 FailureOr<Block *> newEntry = 1163 convertBlockSignature(®ion->front(), converter, entryConversion); 1164 return newEntry; 1165 } 1166 1167 LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes( 1168 Region *region, TypeConverter &converter) { 1169 argConverter.setConverter(region, &converter); 1170 if (region->empty()) 1171 return success(); 1172 1173 // Convert the arguments of each block within the region. 1174 for (Block &block : llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) 1175 if (failed(convertBlockSignature(&block, converter))) 1176 return failure(); 1177 return success(); 1178 } 1179 1180 //===----------------------------------------------------------------------===// 1181 // Rewriter Notification Hooks 1182 1183 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op, 1184 ValueRange newValues) { 1185 assert(newValues.size() == op->getNumResults()); 1186 assert(!replacements.count(op) && "operation was already replaced"); 1187 1188 // Track if any of the results changed, e.g. erased and replaced with null. 1189 bool resultChanged = false; 1190 1191 // Create mappings for each of the new result values. 1192 Value newValue, result; 1193 for (auto it : llvm::zip(newValues, op->getResults())) { 1194 std::tie(newValue, result) = it; 1195 if (!newValue) { 1196 resultChanged = true; 1197 continue; 1198 } 1199 // Remap, and check for any result type changes. 1200 mapping.map(result, newValue); 1201 resultChanged |= (newValue.getType() != result.getType()); 1202 } 1203 if (resultChanged) 1204 operationsWithChangedResults.push_back(replacements.size()); 1205 1206 // Record the requested operation replacement. 1207 TypeConverter *converter = nullptr; 1208 if (currentConversionPattern) 1209 converter = currentConversionPattern->getTypeConverter(); 1210 replacements.insert(std::make_pair(op, OpReplacement(converter))); 1211 1212 // Mark this operation as recursively ignored so that we don't need to 1213 // convert any nested operations. 1214 markNestedOpsIgnored(op); 1215 } 1216 1217 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) { 1218 Region *region = block->getParent(); 1219 Block *origPrevBlock = block->getPrevNode(); 1220 blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock})); 1221 } 1222 1223 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) { 1224 blockActions.push_back(BlockAction::getCreate(block)); 1225 } 1226 1227 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block, 1228 Block *continuation) { 1229 blockActions.push_back(BlockAction::getSplit(continuation, block)); 1230 } 1231 1232 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block, 1233 Block *srcBlock) { 1234 blockActions.push_back(BlockAction::getMerge(block, srcBlock)); 1235 } 1236 1237 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore( 1238 Region ®ion, Region &parent, Region::iterator before) { 1239 if (region.empty()) 1240 return; 1241 Block *laterBlock = ®ion.back(); 1242 for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) { 1243 blockActions.push_back( 1244 BlockAction::getMove(laterBlock, {®ion, &earlierBlock})); 1245 laterBlock = &earlierBlock; 1246 } 1247 blockActions.push_back(BlockAction::getMove(laterBlock, {®ion, nullptr})); 1248 } 1249 1250 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore( 1251 iterator_range<Region::iterator> &blocks, Location origRegionLoc) { 1252 for (Block &block : blocks) 1253 blockActions.push_back(BlockAction::getCreate(&block)); 1254 1255 // Compute the conversion set for the inlined region. 1256 auto result = computeConversionSet(blocks, origRegionLoc, createdOps); 1257 1258 // This original region has already had its conversion set computed, so there 1259 // shouldn't be any new failures. 1260 (void)result; 1261 assert(succeeded(result) && "expected region to have no unreachable blocks"); 1262 } 1263 1264 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure( 1265 Location loc, function_ref<void(Diagnostic &)> reasonCallback) { 1266 LLVM_DEBUG({ 1267 Diagnostic diag(loc, DiagnosticSeverity::Remark); 1268 reasonCallback(diag); 1269 logger.startLine() << "** Failure : " << diag.str() << "\n"; 1270 }); 1271 return failure(); 1272 } 1273 1274 //===----------------------------------------------------------------------===// 1275 // ConversionPatternRewriter 1276 //===----------------------------------------------------------------------===// 1277 1278 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx) 1279 : PatternRewriter(ctx), 1280 impl(new detail::ConversionPatternRewriterImpl(*this)) {} 1281 ConversionPatternRewriter::~ConversionPatternRewriter() {} 1282 1283 /// PatternRewriter hook for replacing the results of an operation when the 1284 /// given functor returns true. 1285 void ConversionPatternRewriter::replaceOpWithIf( 1286 Operation *op, ValueRange newValues, bool *allUsesReplaced, 1287 llvm::unique_function<bool(OpOperand &) const> functor) { 1288 // TODO: To support this we will need to rework a bit of how replacements are 1289 // tracked, given that this isn't guranteed to replace all of the uses of an 1290 // operation. The main change is that now an operation can be replaced 1291 // multiple times, in parts. The current "set" based tracking is mainly useful 1292 // for tracking if a replaced operation should be ignored, i.e. if all of the 1293 // uses will be replaced. 1294 llvm_unreachable( 1295 "replaceOpWithIf is currently not supported by DialectConversion"); 1296 } 1297 1298 /// PatternRewriter hook for replacing the results of an operation. 1299 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) { 1300 LLVM_DEBUG({ 1301 impl->logger.startLine() 1302 << "** Replace : '" << op->getName() << "'(" << op << ")\n"; 1303 }); 1304 impl->notifyOpReplaced(op, newValues); 1305 } 1306 1307 /// PatternRewriter hook for erasing a dead operation. The uses of this 1308 /// operation *must* be made dead by the end of the conversion process, 1309 /// otherwise an assert will be issued. 1310 void ConversionPatternRewriter::eraseOp(Operation *op) { 1311 LLVM_DEBUG({ 1312 impl->logger.startLine() 1313 << "** Erase : '" << op->getName() << "'(" << op << ")\n"; 1314 }); 1315 SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr); 1316 impl->notifyOpReplaced(op, nullRepls); 1317 } 1318 1319 void ConversionPatternRewriter::eraseBlock(Block *block) { 1320 impl->notifyBlockIsBeingErased(block); 1321 1322 // Mark all ops for erasure. 1323 for (Operation &op : *block) 1324 eraseOp(&op); 1325 1326 // Unlink the block from its parent region. The block is kept in the block 1327 // action and will be actually destroyed when rewrites are applied. This 1328 // allows us to keep the operations in the block live and undo the removal by 1329 // re-inserting the block. 1330 block->getParent()->getBlocks().remove(block); 1331 } 1332 1333 Block *ConversionPatternRewriter::applySignatureConversion( 1334 Region *region, TypeConverter::SignatureConversion &conversion) { 1335 return impl->applySignatureConversion(region, conversion); 1336 } 1337 1338 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes( 1339 Region *region, TypeConverter &converter, 1340 TypeConverter::SignatureConversion *entryConversion) { 1341 return impl->convertRegionTypes(region, converter, entryConversion); 1342 } 1343 1344 LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes( 1345 Region *region, TypeConverter &converter) { 1346 return impl->convertNonEntryRegionTypes(region, converter); 1347 } 1348 1349 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from, 1350 Value to) { 1351 LLVM_DEBUG({ 1352 Operation *parentOp = from.getOwner()->getParentOp(); 1353 impl->logger.startLine() << "** Replace Argument : '" << from 1354 << "'(in region of '" << parentOp->getName() 1355 << "'(" << from.getOwner()->getParentOp() << ")\n"; 1356 }); 1357 impl->argReplacements.push_back(from); 1358 impl->mapping.map(impl->mapping.lookupOrDefault(from), to); 1359 } 1360 1361 /// Return the converted value that replaces 'key'. Return 'key' if there is 1362 /// no such a converted value. 1363 Value ConversionPatternRewriter::getRemappedValue(Value key) { 1364 return impl->mapping.lookupOrDefault(key); 1365 } 1366 1367 /// PatternRewriter hook for creating a new block with the given arguments. 1368 void ConversionPatternRewriter::notifyBlockCreated(Block *block) { 1369 impl->notifyCreatedBlock(block); 1370 } 1371 1372 /// PatternRewriter hook for splitting a block into two parts. 1373 Block *ConversionPatternRewriter::splitBlock(Block *block, 1374 Block::iterator before) { 1375 auto *continuation = PatternRewriter::splitBlock(block, before); 1376 impl->notifySplitBlock(block, continuation); 1377 return continuation; 1378 } 1379 1380 /// PatternRewriter hook for merging a block into another. 1381 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest, 1382 ValueRange argValues) { 1383 impl->notifyBlocksBeingMerged(dest, source); 1384 assert(llvm::all_of(source->getPredecessors(), 1385 [dest](Block *succ) { return succ == dest; }) && 1386 "expected 'source' to have no predecessors or only 'dest'"); 1387 assert(argValues.size() == source->getNumArguments() && 1388 "incorrect # of argument replacement values"); 1389 for (auto it : llvm::zip(source->getArguments(), argValues)) 1390 replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it)); 1391 dest->getOperations().splice(dest->end(), source->getOperations()); 1392 eraseBlock(source); 1393 } 1394 1395 /// PatternRewriter hook for moving blocks out of a region. 1396 void ConversionPatternRewriter::inlineRegionBefore(Region ®ion, 1397 Region &parent, 1398 Region::iterator before) { 1399 impl->notifyRegionIsBeingInlinedBefore(region, parent, before); 1400 PatternRewriter::inlineRegionBefore(region, parent, before); 1401 } 1402 1403 /// PatternRewriter hook for cloning blocks of one region into another. 1404 void ConversionPatternRewriter::cloneRegionBefore( 1405 Region ®ion, Region &parent, Region::iterator before, 1406 BlockAndValueMapping &mapping) { 1407 if (region.empty()) 1408 return; 1409 PatternRewriter::cloneRegionBefore(region, parent, before, mapping); 1410 1411 // Collect the range of the cloned blocks. 1412 auto clonedBeginIt = mapping.lookup(®ion.front())->getIterator(); 1413 auto clonedBlocks = llvm::make_range(clonedBeginIt, before); 1414 impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc()); 1415 } 1416 1417 /// PatternRewriter hook for creating a new operation. 1418 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) { 1419 LLVM_DEBUG({ 1420 impl->logger.startLine() 1421 << "** Insert : '" << op->getName() << "'(" << op << ")\n"; 1422 }); 1423 impl->createdOps.push_back(op); 1424 } 1425 1426 /// PatternRewriter hook for updating the root operation in-place. 1427 void ConversionPatternRewriter::startRootUpdate(Operation *op) { 1428 #ifndef NDEBUG 1429 impl->pendingRootUpdates.insert(op); 1430 #endif 1431 impl->rootUpdates.emplace_back(op); 1432 } 1433 1434 /// PatternRewriter hook for updating the root operation in-place. 1435 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) { 1436 // There is nothing to do here, we only need to track the operation at the 1437 // start of the update. 1438 #ifndef NDEBUG 1439 assert(impl->pendingRootUpdates.erase(op) && 1440 "operation did not have a pending in-place update"); 1441 #endif 1442 } 1443 1444 /// PatternRewriter hook for updating the root operation in-place. 1445 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) { 1446 #ifndef NDEBUG 1447 assert(impl->pendingRootUpdates.erase(op) && 1448 "operation did not have a pending in-place update"); 1449 #endif 1450 // Erase the last update for this operation. 1451 auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; }; 1452 auto &rootUpdates = impl->rootUpdates; 1453 auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp); 1454 rootUpdates.erase(rootUpdates.begin() + (rootUpdates.rend() - it)); 1455 } 1456 1457 /// PatternRewriter hook for notifying match failure reasons. 1458 LogicalResult ConversionPatternRewriter::notifyMatchFailure( 1459 Operation *op, function_ref<void(Diagnostic &)> reasonCallback) { 1460 return impl->notifyMatchFailure(op->getLoc(), reasonCallback); 1461 } 1462 1463 /// Return a reference to the internal implementation. 1464 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() { 1465 return *impl; 1466 } 1467 1468 //===----------------------------------------------------------------------===// 1469 // ConversionPattern 1470 //===----------------------------------------------------------------------===// 1471 1472 /// Attempt to match and rewrite the IR root at the specified operation. 1473 LogicalResult 1474 ConversionPattern::matchAndRewrite(Operation *op, 1475 PatternRewriter &rewriter) const { 1476 auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter); 1477 auto &rewriterImpl = dialectRewriter.getImpl(); 1478 1479 // Track the current conversion pattern in the rewriter. 1480 assert(!rewriterImpl.currentConversionPattern && 1481 "already inside of a pattern rewrite"); 1482 llvm::SaveAndRestore<const ConversionPattern *> currentPatternGuard( 1483 rewriterImpl.currentConversionPattern, this); 1484 1485 // Remap the operands of the operation. 1486 SmallVector<Value, 4> operands; 1487 if (failed(rewriterImpl.remapValues(op->getLoc(), rewriter, 1488 getTypeConverter(), op->getOperands(), 1489 operands))) { 1490 return failure(); 1491 } 1492 return matchAndRewrite(op, operands, dialectRewriter); 1493 } 1494 1495 //===----------------------------------------------------------------------===// 1496 // OperationLegalizer 1497 //===----------------------------------------------------------------------===// 1498 1499 namespace { 1500 /// A set of rewrite patterns that can be used to legalize a given operation. 1501 using LegalizationPatterns = SmallVector<const Pattern *, 1>; 1502 1503 /// This class defines a recursive operation legalizer. 1504 class OperationLegalizer { 1505 public: 1506 using LegalizationAction = ConversionTarget::LegalizationAction; 1507 1508 OperationLegalizer(ConversionTarget &targetInfo, 1509 const FrozenRewritePatternList &patterns); 1510 1511 /// Returns true if the given operation is known to be illegal on the target. 1512 bool isIllegal(Operation *op) const; 1513 1514 /// Attempt to legalize the given operation. Returns success if the operation 1515 /// was legalized, failure otherwise. 1516 LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter); 1517 1518 /// Returns the conversion target in use by the legalizer. 1519 ConversionTarget &getTarget() { return target; } 1520 1521 private: 1522 /// Attempt to legalize the given operation by folding it. 1523 LogicalResult legalizeWithFold(Operation *op, 1524 ConversionPatternRewriter &rewriter); 1525 1526 /// Attempt to legalize the given operation by applying a pattern. Returns 1527 /// success if the operation was legalized, failure otherwise. 1528 LogicalResult legalizeWithPattern(Operation *op, 1529 ConversionPatternRewriter &rewriter); 1530 1531 /// Return true if the given pattern may be applied to the given operation, 1532 /// false otherwise. 1533 bool canApplyPattern(Operation *op, const Pattern &pattern, 1534 ConversionPatternRewriter &rewriter); 1535 1536 /// Legalize the resultant IR after successfully applying the given pattern. 1537 LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern, 1538 ConversionPatternRewriter &rewriter, 1539 RewriterState &curState); 1540 1541 /// Legalizes the actions registered during the execution of a pattern. 1542 LogicalResult legalizePatternBlockActions(Operation *op, 1543 ConversionPatternRewriter &rewriter, 1544 ConversionPatternRewriterImpl &impl, 1545 RewriterState &state, 1546 RewriterState &newState); 1547 LogicalResult legalizePatternCreatedOperations( 1548 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1549 RewriterState &state, RewriterState &newState); 1550 LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter, 1551 ConversionPatternRewriterImpl &impl, 1552 RewriterState &state, 1553 RewriterState &newState); 1554 1555 //===--------------------------------------------------------------------===// 1556 // Cost Model 1557 //===--------------------------------------------------------------------===// 1558 1559 /// Build an optimistic legalization graph given the provided patterns. This 1560 /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with 1561 /// patterns for operations that are not directly legal, but may be 1562 /// transitively legal for the current target given the provided patterns. 1563 void buildLegalizationGraph( 1564 LegalizationPatterns &anyOpLegalizerPatterns, 1565 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1566 1567 /// Compute the benefit of each node within the computed legalization graph. 1568 /// This orders the patterns within 'legalizerPatterns' based upon two 1569 /// criteria: 1570 /// 1) Prefer patterns that have the lowest legalization depth, i.e. 1571 /// represent the more direct mapping to the target. 1572 /// 2) When comparing patterns with the same legalization depth, prefer the 1573 /// pattern with the highest PatternBenefit. This allows for users to 1574 /// prefer specific legalizations over others. 1575 void computeLegalizationGraphBenefit( 1576 LegalizationPatterns &anyOpLegalizerPatterns, 1577 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1578 1579 /// Compute the legalization depth when legalizing an operation of the given 1580 /// type. 1581 unsigned computeOpLegalizationDepth( 1582 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 1583 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1584 1585 /// Apply the conversion cost model to the given set of patterns, and return 1586 /// the smallest legalization depth of any of the patterns. See 1587 /// `computeLegalizationGraphBenefit` for the breakdown of the cost model. 1588 unsigned applyCostModelToPatterns( 1589 LegalizationPatterns &patterns, 1590 DenseMap<OperationName, unsigned> &minOpPatternDepth, 1591 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1592 1593 /// The current set of patterns that have been applied. 1594 SmallPtrSet<const Pattern *, 8> appliedPatterns; 1595 1596 /// The legalization information provided by the target. 1597 ConversionTarget ⌖ 1598 1599 /// The pattern applicator to use for conversions. 1600 PatternApplicator applicator; 1601 }; 1602 } // namespace 1603 1604 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo, 1605 const FrozenRewritePatternList &patterns) 1606 : target(targetInfo), applicator(patterns) { 1607 // The set of patterns that can be applied to illegal operations to transform 1608 // them into legal ones. 1609 DenseMap<OperationName, LegalizationPatterns> legalizerPatterns; 1610 LegalizationPatterns anyOpLegalizerPatterns; 1611 1612 buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns); 1613 computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns); 1614 } 1615 1616 bool OperationLegalizer::isIllegal(Operation *op) const { 1617 // Check if the target explicitly marked this operation as illegal. 1618 return target.getOpAction(op->getName()) == LegalizationAction::Illegal; 1619 } 1620 1621 LogicalResult 1622 OperationLegalizer::legalize(Operation *op, 1623 ConversionPatternRewriter &rewriter) { 1624 #ifndef NDEBUG 1625 const char *logLineComment = 1626 "//===-------------------------------------------===//\n"; 1627 1628 auto &rewriterImpl = rewriter.getImpl(); 1629 #endif 1630 LLVM_DEBUG({ 1631 auto &os = rewriterImpl.logger; 1632 os.getOStream() << "\n"; 1633 os.startLine() << logLineComment; 1634 os.startLine() << "Legalizing operation : '" << op->getName() << "'(" << op 1635 << ") {\n"; 1636 os.indent(); 1637 1638 // If the operation has no regions, just print it here. 1639 if (op->getNumRegions() == 0) { 1640 op->print(os.startLine(), OpPrintingFlags().printGenericOpForm()); 1641 os.getOStream() << "\n\n"; 1642 } 1643 }); 1644 1645 // Check if this operation is legal on the target. 1646 if (auto legalityInfo = target.isLegal(op)) { 1647 LLVM_DEBUG({ 1648 logSuccess( 1649 rewriterImpl.logger, "operation marked legal by the target{0}", 1650 legalityInfo->isRecursivelyLegal 1651 ? "; NOTE: operation is recursively legal; skipping internals" 1652 : ""); 1653 rewriterImpl.logger.startLine() << logLineComment; 1654 }); 1655 1656 // If this operation is recursively legal, mark its children as ignored so 1657 // that we don't consider them for legalization. 1658 if (legalityInfo->isRecursivelyLegal) 1659 rewriter.getImpl().markNestedOpsIgnored(op); 1660 return success(); 1661 } 1662 1663 // Check to see if the operation is ignored and doesn't need to be converted. 1664 if (rewriter.getImpl().isOpIgnored(op)) { 1665 LLVM_DEBUG({ 1666 logSuccess(rewriterImpl.logger, 1667 "operation marked 'ignored' during conversion"); 1668 rewriterImpl.logger.startLine() << logLineComment; 1669 }); 1670 return success(); 1671 } 1672 1673 // If the operation isn't legal, try to fold it in-place. 1674 // TODO: Should we always try to do this, even if the op is 1675 // already legal? 1676 if (succeeded(legalizeWithFold(op, rewriter))) { 1677 LLVM_DEBUG({ 1678 logSuccess(rewriterImpl.logger, "operation was folded"); 1679 rewriterImpl.logger.startLine() << logLineComment; 1680 }); 1681 return success(); 1682 } 1683 1684 // Otherwise, we need to apply a legalization pattern to this operation. 1685 if (succeeded(legalizeWithPattern(op, rewriter))) { 1686 LLVM_DEBUG({ 1687 logSuccess(rewriterImpl.logger, ""); 1688 rewriterImpl.logger.startLine() << logLineComment; 1689 }); 1690 return success(); 1691 } 1692 1693 LLVM_DEBUG({ 1694 logFailure(rewriterImpl.logger, "no matched legalization pattern"); 1695 rewriterImpl.logger.startLine() << logLineComment; 1696 }); 1697 return failure(); 1698 } 1699 1700 LogicalResult 1701 OperationLegalizer::legalizeWithFold(Operation *op, 1702 ConversionPatternRewriter &rewriter) { 1703 auto &rewriterImpl = rewriter.getImpl(); 1704 RewriterState curState = rewriterImpl.getCurrentState(); 1705 1706 LLVM_DEBUG({ 1707 rewriterImpl.logger.startLine() << "* Fold {\n"; 1708 rewriterImpl.logger.indent(); 1709 }); 1710 1711 // Try to fold the operation. 1712 SmallVector<Value, 2> replacementValues; 1713 rewriter.setInsertionPoint(op); 1714 if (failed(rewriter.tryFold(op, replacementValues))) { 1715 LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold")); 1716 return failure(); 1717 } 1718 1719 // Insert a replacement for 'op' with the folded replacement values. 1720 rewriter.replaceOp(op, replacementValues); 1721 1722 // Recursively legalize any new constant operations. 1723 for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size(); 1724 i != e; ++i) { 1725 Operation *cstOp = rewriterImpl.createdOps[i]; 1726 if (failed(legalize(cstOp, rewriter))) { 1727 LLVM_DEBUG(logFailure(rewriterImpl.logger, 1728 "generated constant '{0}' was illegal", 1729 cstOp->getName())); 1730 rewriterImpl.resetState(curState); 1731 return failure(); 1732 } 1733 } 1734 1735 LLVM_DEBUG(logSuccess(rewriterImpl.logger, "")); 1736 return success(); 1737 } 1738 1739 LogicalResult 1740 OperationLegalizer::legalizeWithPattern(Operation *op, 1741 ConversionPatternRewriter &rewriter) { 1742 auto &rewriterImpl = rewriter.getImpl(); 1743 1744 // Functor that returns if the given pattern may be applied. 1745 auto canApply = [&](const Pattern &pattern) { 1746 return canApplyPattern(op, pattern, rewriter); 1747 }; 1748 1749 // Functor that cleans up the rewriter state after a pattern failed to match. 1750 RewriterState curState = rewriterImpl.getCurrentState(); 1751 auto onFailure = [&](const Pattern &pattern) { 1752 LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match")); 1753 rewriterImpl.resetState(curState); 1754 appliedPatterns.erase(&pattern); 1755 }; 1756 1757 // Functor that performs additional legalization when a pattern is 1758 // successfully applied. 1759 auto onSuccess = [&](const Pattern &pattern) { 1760 auto result = legalizePatternResult(op, pattern, rewriter, curState); 1761 appliedPatterns.erase(&pattern); 1762 if (failed(result)) 1763 rewriterImpl.resetState(curState); 1764 return result; 1765 }; 1766 1767 // Try to match and rewrite a pattern on this operation. 1768 return applicator.matchAndRewrite(op, rewriter, canApply, onFailure, 1769 onSuccess); 1770 } 1771 1772 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern, 1773 ConversionPatternRewriter &rewriter) { 1774 LLVM_DEBUG({ 1775 auto &os = rewriter.getImpl().logger; 1776 os.getOStream() << "\n"; 1777 os.startLine() << "* Pattern : '" << op->getName() << " -> ("; 1778 llvm::interleaveComma(pattern.getGeneratedOps(), llvm::dbgs()); 1779 os.getOStream() << ")' {\n"; 1780 os.indent(); 1781 }); 1782 1783 // Ensure that we don't cycle by not allowing the same pattern to be 1784 // applied twice in the same recursion stack if it is not known to be safe. 1785 if (!pattern.hasBoundedRewriteRecursion() && 1786 !appliedPatterns.insert(&pattern).second) { 1787 LLVM_DEBUG( 1788 logFailure(rewriter.getImpl().logger, "pattern was already applied")); 1789 return false; 1790 } 1791 return true; 1792 } 1793 1794 LogicalResult 1795 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern, 1796 ConversionPatternRewriter &rewriter, 1797 RewriterState &curState) { 1798 auto &impl = rewriter.getImpl(); 1799 1800 #ifndef NDEBUG 1801 assert(impl.pendingRootUpdates.empty() && "dangling root updates"); 1802 #endif 1803 1804 // Check that the root was either replaced or updated in place. 1805 auto replacedRoot = [&] { 1806 return llvm::any_of( 1807 llvm::drop_begin(impl.replacements, curState.numReplacements), 1808 [op](auto &it) { return it.first == op; }); 1809 }; 1810 auto updatedRootInPlace = [&] { 1811 return llvm::any_of( 1812 llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates), 1813 [op](auto &state) { return state.getOperation() == op; }); 1814 }; 1815 (void)replacedRoot; 1816 (void)updatedRootInPlace; 1817 assert((replacedRoot() || updatedRootInPlace()) && 1818 "expected pattern to replace the root operation"); 1819 1820 // Legalize each of the actions registered during application. 1821 RewriterState newState = impl.getCurrentState(); 1822 if (failed(legalizePatternBlockActions(op, rewriter, impl, curState, 1823 newState)) || 1824 failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) || 1825 failed(legalizePatternCreatedOperations(rewriter, impl, curState, 1826 newState))) { 1827 return failure(); 1828 } 1829 1830 LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully")); 1831 return success(); 1832 } 1833 1834 LogicalResult OperationLegalizer::legalizePatternBlockActions( 1835 Operation *op, ConversionPatternRewriter &rewriter, 1836 ConversionPatternRewriterImpl &impl, RewriterState &state, 1837 RewriterState &newState) { 1838 SmallPtrSet<Operation *, 16> operationsToIgnore; 1839 1840 // If the pattern moved or created any blocks, make sure the types of block 1841 // arguments get legalized. 1842 for (int i = state.numBlockActions, e = newState.numBlockActions; i != e; 1843 ++i) { 1844 auto &action = impl.blockActions[i]; 1845 if (action.kind == BlockActionKind::TypeConversion || 1846 action.kind == BlockActionKind::Erase) 1847 continue; 1848 // Only check blocks outside of the current operation. 1849 Operation *parentOp = action.block->getParentOp(); 1850 if (!parentOp || parentOp == op || action.block->getNumArguments() == 0) 1851 continue; 1852 1853 // If the region of the block has a type converter, try to convert the block 1854 // directly. 1855 if (auto *converter = 1856 impl.argConverter.getConverter(action.block->getParent())) { 1857 if (failed(impl.convertBlockSignature(action.block, *converter))) { 1858 LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved " 1859 "block")); 1860 return failure(); 1861 } 1862 continue; 1863 } 1864 1865 // Otherwise, check that this operation isn't one generated by this pattern. 1866 // This is because we will attempt to legalize the parent operation, and 1867 // blocks in regions created by this pattern will already be legalized later 1868 // on. If we haven't built the set yet, build it now. 1869 if (operationsToIgnore.empty()) { 1870 auto createdOps = ArrayRef<Operation *>(impl.createdOps) 1871 .drop_front(state.numCreatedOps); 1872 operationsToIgnore.insert(createdOps.begin(), createdOps.end()); 1873 } 1874 1875 // If this operation should be considered for re-legalization, try it. 1876 if (operationsToIgnore.insert(parentOp).second && 1877 failed(legalize(parentOp, rewriter))) { 1878 LLVM_DEBUG(logFailure( 1879 impl.logger, "operation '{0}'({1}) became illegal after block action", 1880 parentOp->getName(), parentOp)); 1881 return failure(); 1882 } 1883 } 1884 return success(); 1885 } 1886 LogicalResult OperationLegalizer::legalizePatternCreatedOperations( 1887 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1888 RewriterState &state, RewriterState &newState) { 1889 for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) { 1890 Operation *op = impl.createdOps[i]; 1891 if (failed(legalize(op, rewriter))) { 1892 LLVM_DEBUG(logFailure(impl.logger, 1893 "generated operation '{0}'({1}) was illegal", 1894 op->getName(), op)); 1895 return failure(); 1896 } 1897 } 1898 return success(); 1899 } 1900 LogicalResult OperationLegalizer::legalizePatternRootUpdates( 1901 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1902 RewriterState &state, RewriterState &newState) { 1903 for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) { 1904 Operation *op = impl.rootUpdates[i].getOperation(); 1905 if (failed(legalize(op, rewriter))) { 1906 LLVM_DEBUG(logFailure(impl.logger, 1907 "operation updated in-place '{0}' was illegal", 1908 op->getName())); 1909 return failure(); 1910 } 1911 } 1912 return success(); 1913 } 1914 1915 //===----------------------------------------------------------------------===// 1916 // Cost Model 1917 1918 void OperationLegalizer::buildLegalizationGraph( 1919 LegalizationPatterns &anyOpLegalizerPatterns, 1920 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 1921 // A mapping between an operation and a set of operations that can be used to 1922 // generate it. 1923 DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps; 1924 // A mapping between an operation and any currently invalid patterns it has. 1925 DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns; 1926 // A worklist of patterns to consider for legality. 1927 llvm::SetVector<const Pattern *> patternWorklist; 1928 1929 // Build the mapping from operations to the parent ops that may generate them. 1930 applicator.walkAllPatterns([&](const Pattern &pattern) { 1931 Optional<OperationName> root = pattern.getRootKind(); 1932 1933 // If the pattern has no specific root, we can't analyze the relationship 1934 // between the root op and generated operations. Given that, add all such 1935 // patterns to the legalization set. 1936 if (!root) { 1937 anyOpLegalizerPatterns.push_back(&pattern); 1938 return; 1939 } 1940 1941 // Skip operations that are always known to be legal. 1942 if (target.getOpAction(*root) == LegalizationAction::Legal) 1943 return; 1944 1945 // Add this pattern to the invalid set for the root op and record this root 1946 // as a parent for any generated operations. 1947 invalidPatterns[*root].insert(&pattern); 1948 for (auto op : pattern.getGeneratedOps()) 1949 parentOps[op].insert(*root); 1950 1951 // Add this pattern to the worklist. 1952 patternWorklist.insert(&pattern); 1953 }); 1954 1955 // If there are any patterns that don't have a specific root kind, we can't 1956 // make direct assumptions about what operations will never be legalized. 1957 // Note: Technically we could, but it would require an analysis that may 1958 // recurse into itself. It would be better to perform this kind of filtering 1959 // at a higher level than here anyways. 1960 if (!anyOpLegalizerPatterns.empty()) { 1961 for (const Pattern *pattern : patternWorklist) 1962 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 1963 return; 1964 } 1965 1966 while (!patternWorklist.empty()) { 1967 auto *pattern = patternWorklist.pop_back_val(); 1968 1969 // Check to see if any of the generated operations are invalid. 1970 if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) { 1971 Optional<LegalizationAction> action = target.getOpAction(op); 1972 return !legalizerPatterns.count(op) && 1973 (!action || action == LegalizationAction::Illegal); 1974 })) 1975 continue; 1976 1977 // Otherwise, if all of the generated operation are valid, this op is now 1978 // legal so add all of the child patterns to the worklist. 1979 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 1980 invalidPatterns[*pattern->getRootKind()].erase(pattern); 1981 1982 // Add any invalid patterns of the parent operations to see if they have now 1983 // become legal. 1984 for (auto op : parentOps[*pattern->getRootKind()]) 1985 patternWorklist.set_union(invalidPatterns[op]); 1986 } 1987 } 1988 1989 void OperationLegalizer::computeLegalizationGraphBenefit( 1990 LegalizationPatterns &anyOpLegalizerPatterns, 1991 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 1992 // The smallest pattern depth, when legalizing an operation. 1993 DenseMap<OperationName, unsigned> minOpPatternDepth; 1994 1995 // For each operation that is transitively legal, compute a cost for it. 1996 for (auto &opIt : legalizerPatterns) 1997 if (!minOpPatternDepth.count(opIt.first)) 1998 computeOpLegalizationDepth(opIt.first, minOpPatternDepth, 1999 legalizerPatterns); 2000 2001 // Apply the cost model to the patterns that can match any operation. Those 2002 // with a specific operation type are already resolved when computing the op 2003 // legalization depth. 2004 if (!anyOpLegalizerPatterns.empty()) 2005 applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth, 2006 legalizerPatterns); 2007 2008 // Apply a cost model to the pattern applicator. We order patterns first by 2009 // depth then benefit. `legalizerPatterns` contains per-op patterns by 2010 // decreasing benefit. 2011 applicator.applyCostModel([&](const Pattern &pattern) { 2012 ArrayRef<const Pattern *> orderedPatternList; 2013 if (Optional<OperationName> rootName = pattern.getRootKind()) 2014 orderedPatternList = legalizerPatterns[*rootName]; 2015 else 2016 orderedPatternList = anyOpLegalizerPatterns; 2017 2018 // If the pattern is not found, then it was removed and cannot be matched. 2019 auto it = llvm::find(orderedPatternList, &pattern); 2020 if (it == orderedPatternList.end()) 2021 return PatternBenefit::impossibleToMatch(); 2022 2023 // Patterns found earlier in the list have higher benefit. 2024 return PatternBenefit(std::distance(it, orderedPatternList.end())); 2025 }); 2026 } 2027 2028 unsigned OperationLegalizer::computeOpLegalizationDepth( 2029 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 2030 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2031 // Check for existing depth. 2032 auto depthIt = minOpPatternDepth.find(op); 2033 if (depthIt != minOpPatternDepth.end()) 2034 return depthIt->second; 2035 2036 // If a mapping for this operation does not exist, then this operation 2037 // is always legal. Return 0 as the depth for a directly legal operation. 2038 auto opPatternsIt = legalizerPatterns.find(op); 2039 if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty()) 2040 return 0u; 2041 2042 // Record this initial depth in case we encounter this op again when 2043 // recursively computing the depth. 2044 minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max()); 2045 2046 // Apply the cost model to the operation patterns, and update the minimum 2047 // depth. 2048 unsigned minDepth = applyCostModelToPatterns( 2049 opPatternsIt->second, minOpPatternDepth, legalizerPatterns); 2050 minOpPatternDepth[op] = minDepth; 2051 return minDepth; 2052 } 2053 2054 unsigned OperationLegalizer::applyCostModelToPatterns( 2055 LegalizationPatterns &patterns, 2056 DenseMap<OperationName, unsigned> &minOpPatternDepth, 2057 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2058 unsigned minDepth = std::numeric_limits<unsigned>::max(); 2059 2060 // Compute the depth for each pattern within the set. 2061 SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth; 2062 patternsByDepth.reserve(patterns.size()); 2063 for (const Pattern *pattern : patterns) { 2064 unsigned depth = 0; 2065 for (auto generatedOp : pattern->getGeneratedOps()) { 2066 unsigned generatedOpDepth = computeOpLegalizationDepth( 2067 generatedOp, minOpPatternDepth, legalizerPatterns); 2068 depth = std::max(depth, generatedOpDepth + 1); 2069 } 2070 patternsByDepth.emplace_back(pattern, depth); 2071 2072 // Update the minimum depth of the pattern list. 2073 minDepth = std::min(minDepth, depth); 2074 } 2075 2076 // If the operation only has one legalization pattern, there is no need to 2077 // sort them. 2078 if (patternsByDepth.size() == 1) 2079 return minDepth; 2080 2081 // Sort the patterns by those likely to be the most beneficial. 2082 llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(), 2083 [](const std::pair<const Pattern *, unsigned> *lhs, 2084 const std::pair<const Pattern *, unsigned> *rhs) { 2085 // First sort by the smaller pattern legalization 2086 // depth. 2087 if (lhs->second != rhs->second) 2088 return llvm::array_pod_sort_comparator<unsigned>( 2089 &lhs->second, &rhs->second); 2090 2091 // Then sort by the larger pattern benefit. 2092 auto lhsBenefit = lhs->first->getBenefit(); 2093 auto rhsBenefit = rhs->first->getBenefit(); 2094 return llvm::array_pod_sort_comparator<PatternBenefit>( 2095 &rhsBenefit, &lhsBenefit); 2096 }); 2097 2098 // Update the legalization pattern to use the new sorted list. 2099 patterns.clear(); 2100 for (auto &patternIt : patternsByDepth) 2101 patterns.push_back(patternIt.first); 2102 return minDepth; 2103 } 2104 2105 //===----------------------------------------------------------------------===// 2106 // OperationConverter 2107 //===----------------------------------------------------------------------===// 2108 namespace { 2109 enum OpConversionMode { 2110 // In this mode, the conversion will ignore failed conversions to allow 2111 // illegal operations to co-exist in the IR. 2112 Partial, 2113 2114 // In this mode, all operations must be legal for the given target for the 2115 // conversion to succeed. 2116 Full, 2117 2118 // In this mode, operations are analyzed for legality. No actual rewrites are 2119 // applied to the operations on success. 2120 Analysis, 2121 }; 2122 2123 // This class converts operations to a given conversion target via a set of 2124 // rewrite patterns. The conversion behaves differently depending on the 2125 // conversion mode. 2126 struct OperationConverter { 2127 explicit OperationConverter(ConversionTarget &target, 2128 const FrozenRewritePatternList &patterns, 2129 OpConversionMode mode, 2130 DenseSet<Operation *> *trackedOps = nullptr) 2131 : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {} 2132 2133 /// Converts the given operations to the conversion target. 2134 LogicalResult convertOperations(ArrayRef<Operation *> ops); 2135 2136 private: 2137 /// Converts an operation with the given rewriter. 2138 LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op); 2139 2140 /// This method is called after the conversion process to legalize any 2141 /// remaining artifacts and complete the conversion. 2142 LogicalResult finalize(ConversionPatternRewriter &rewriter); 2143 2144 /// Legalize the types of converted block arguments. 2145 LogicalResult 2146 legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter, 2147 ConversionPatternRewriterImpl &rewriterImpl); 2148 2149 /// Legalize an operation result that was marked as "erased". 2150 LogicalResult 2151 legalizeErasedResult(Operation *op, OpResult result, 2152 ConversionPatternRewriterImpl &rewriterImpl); 2153 2154 /// Legalize an operation result that was replaced with a value of a different 2155 /// type. 2156 LogicalResult 2157 legalizeChangedResultType(Operation *op, OpResult result, Value newValue, 2158 TypeConverter *replConverter, 2159 ConversionPatternRewriter &rewriter, 2160 ConversionPatternRewriterImpl &rewriterImpl, 2161 const BlockAndValueMapping &inverseMapping); 2162 2163 /// The legalizer to use when converting operations. 2164 OperationLegalizer opLegalizer; 2165 2166 /// The conversion mode to use when legalizing operations. 2167 OpConversionMode mode; 2168 2169 /// A set of pre-existing operations. When mode == OpConversionMode::Analysis, 2170 /// this is populated with ops found to be legalizable to the target. 2171 /// When mode == OpConversionMode::Partial, this is populated with ops found 2172 /// *not* to be legalizable to the target. 2173 DenseSet<Operation *> *trackedOps; 2174 }; 2175 } // end anonymous namespace 2176 2177 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter, 2178 Operation *op) { 2179 // Legalize the given operation. 2180 if (failed(opLegalizer.legalize(op, rewriter))) { 2181 // Handle the case of a failed conversion for each of the different modes. 2182 // Full conversions expect all operations to be converted. 2183 if (mode == OpConversionMode::Full) 2184 return op->emitError() 2185 << "failed to legalize operation '" << op->getName() << "'"; 2186 // Partial conversions allow conversions to fail iff the operation was not 2187 // explicitly marked as illegal. If the user provided a nonlegalizableOps 2188 // set, non-legalizable ops are included. 2189 if (mode == OpConversionMode::Partial) { 2190 if (opLegalizer.isIllegal(op)) 2191 return op->emitError() 2192 << "failed to legalize operation '" << op->getName() 2193 << "' that was explicitly marked illegal"; 2194 if (trackedOps) 2195 trackedOps->insert(op); 2196 } 2197 } else if (mode == OpConversionMode::Analysis) { 2198 // Analysis conversions don't fail if any operations fail to legalize, 2199 // they are only interested in the operations that were successfully 2200 // legalized. 2201 trackedOps->insert(op); 2202 } 2203 return success(); 2204 } 2205 2206 LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) { 2207 if (ops.empty()) 2208 return success(); 2209 ConversionTarget &target = opLegalizer.getTarget(); 2210 2211 // Compute the set of operations and blocks to convert. 2212 std::vector<Operation *> toConvert; 2213 for (auto *op : ops) { 2214 toConvert.emplace_back(op); 2215 for (auto ®ion : op->getRegions()) 2216 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 2217 toConvert, &target))) 2218 return failure(); 2219 } 2220 2221 // Convert each operation and discard rewrites on failure. 2222 ConversionPatternRewriter rewriter(ops.front()->getContext()); 2223 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2224 for (auto *op : toConvert) 2225 if (failed(convert(rewriter, op))) 2226 return rewriterImpl.discardRewrites(), failure(); 2227 2228 // Now that all of the operations have been converted, finalize the conversion 2229 // process to ensure any lingering conversion artifacts are cleaned up and 2230 // legalized. 2231 if (failed(finalize(rewriter))) 2232 return rewriterImpl.discardRewrites(), failure(); 2233 2234 // After a successful conversion, apply rewrites if this is not an analysis 2235 // conversion. 2236 if (mode == OpConversionMode::Analysis) 2237 rewriterImpl.discardRewrites(); 2238 else 2239 rewriterImpl.applyRewrites(); 2240 return success(); 2241 } 2242 2243 LogicalResult 2244 OperationConverter::finalize(ConversionPatternRewriter &rewriter) { 2245 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2246 2247 // Legalize converted block arguments. 2248 if (failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl))) 2249 return failure(); 2250 2251 if (rewriterImpl.operationsWithChangedResults.empty()) 2252 return success(); 2253 2254 Optional<BlockAndValueMapping> inverseMapping; 2255 2256 // Process requested operation replacements. 2257 for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size(); 2258 i != e; ++i) { 2259 unsigned replIdx = rewriterImpl.operationsWithChangedResults[i]; 2260 auto &repl = *(rewriterImpl.replacements.begin() + replIdx); 2261 for (OpResult result : repl.first->getResults()) { 2262 Value newValue = rewriterImpl.mapping.lookupOrNull(result); 2263 2264 // If the operation result was replaced with null, all of the uses of this 2265 // value should be replaced. 2266 if (!newValue) { 2267 if (failed(legalizeErasedResult(repl.first, result, rewriterImpl))) 2268 return failure(); 2269 continue; 2270 } 2271 2272 // Otherwise, check to see if the type of the result changed. 2273 if (result.getType() == newValue.getType()) 2274 continue; 2275 2276 // Compute the inverse mapping only if it is really needed. 2277 if (!inverseMapping) 2278 inverseMapping = rewriterImpl.mapping.getInverse(); 2279 2280 // Legalize this result. 2281 rewriter.setInsertionPoint(repl.first); 2282 if (failed(legalizeChangedResultType(repl.first, result, newValue, 2283 repl.second.converter, rewriter, 2284 rewriterImpl, *inverseMapping))) 2285 return failure(); 2286 2287 // Update the end iterator for this loop in the case it was updated 2288 // when legalizing generated conversion operations. 2289 e = rewriterImpl.operationsWithChangedResults.size(); 2290 } 2291 } 2292 return success(); 2293 } 2294 2295 LogicalResult OperationConverter::legalizeConvertedArgumentTypes( 2296 ConversionPatternRewriter &rewriter, 2297 ConversionPatternRewriterImpl &rewriterImpl) { 2298 // Functor used to check if all users of a value will be dead after 2299 // conversion. 2300 auto findLiveUser = [&](Value val) { 2301 auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) { 2302 return rewriterImpl.isOpIgnored(user); 2303 }); 2304 return liveUserIt == val.user_end() ? nullptr : *liveUserIt; 2305 }; 2306 2307 // Materialize any necessary conversions for converted block arguments that 2308 // are still live. 2309 size_t numCreatedOps = rewriterImpl.createdOps.size(); 2310 if (failed(rewriterImpl.argConverter.materializeLiveConversions( 2311 rewriterImpl.mapping, rewriter, findLiveUser))) 2312 return failure(); 2313 2314 // Legalize any newly created operations during argument materialization. 2315 for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) { 2316 if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) { 2317 return rewriterImpl.createdOps[i]->emitError() 2318 << "failed to legalize conversion operation generated for block " 2319 "argument that remained live after conversion"; 2320 } 2321 } 2322 return success(); 2323 } 2324 2325 LogicalResult OperationConverter::legalizeErasedResult( 2326 Operation *op, OpResult result, 2327 ConversionPatternRewriterImpl &rewriterImpl) { 2328 // If the operation result was replaced with null, all of the uses of this 2329 // value should be replaced. 2330 auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) { 2331 return rewriterImpl.isOpIgnored(user); 2332 }); 2333 if (liveUserIt != result.user_end()) { 2334 InFlightDiagnostic diag = op->emitError("failed to legalize operation '") 2335 << op->getName() << "' marked as erased"; 2336 diag.attachNote(liveUserIt->getLoc()) 2337 << "found live user of result #" << result.getResultNumber() << ": " 2338 << *liveUserIt; 2339 return failure(); 2340 } 2341 return success(); 2342 } 2343 2344 /// Finds a user of the given value, or of any other value that the given value 2345 /// replaced, that was not replaced in the conversion process. 2346 static Operation * 2347 findLiveUserOfReplaced(Value value, ConversionPatternRewriterImpl &rewriterImpl, 2348 const BlockAndValueMapping &inverseMapping) { 2349 do { 2350 // Walk the users of this value to see if there are any live users that 2351 // weren't replaced during conversion. 2352 auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) { 2353 return rewriterImpl.isOpIgnored(user); 2354 }); 2355 if (liveUserIt != value.user_end()) 2356 return *liveUserIt; 2357 value = inverseMapping.lookupOrNull(value); 2358 } while (value != nullptr); 2359 return nullptr; 2360 } 2361 2362 LogicalResult OperationConverter::legalizeChangedResultType( 2363 Operation *op, OpResult result, Value newValue, 2364 TypeConverter *replConverter, ConversionPatternRewriter &rewriter, 2365 ConversionPatternRewriterImpl &rewriterImpl, 2366 const BlockAndValueMapping &inverseMapping) { 2367 Operation *liveUser = 2368 findLiveUserOfReplaced(result, rewriterImpl, inverseMapping); 2369 if (!liveUser) 2370 return success(); 2371 2372 // If the replacement has a type converter, attempt to materialize a 2373 // conversion back to the original type. 2374 if (!replConverter) { 2375 // TODO: We should emit an error here, similarly to the case where the 2376 // result is replaced with null. Unfortunately a lot of existing 2377 // patterns rely on this behavior, so until those patterns are updated 2378 // we keep the legacy behavior here of just forwarding the new value. 2379 return success(); 2380 } 2381 2382 // Track the number of created operations so that new ones can be legalized. 2383 size_t numCreatedOps = rewriterImpl.createdOps.size(); 2384 2385 // Materialize a conversion for this live result value. 2386 Type resultType = result.getType(); 2387 Value convertedValue = replConverter->materializeSourceConversion( 2388 rewriter, op->getLoc(), resultType, newValue); 2389 if (!convertedValue) { 2390 InFlightDiagnostic diag = op->emitError() 2391 << "failed to materialize conversion for result #" 2392 << result.getResultNumber() << " of operation '" 2393 << op->getName() 2394 << "' that remained live after conversion"; 2395 diag.attachNote(liveUser->getLoc()) 2396 << "see existing live user here: " << *liveUser; 2397 return failure(); 2398 } 2399 2400 // Legalize all of the newly created conversion operations. 2401 for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) { 2402 if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) { 2403 return op->emitError("failed to legalize conversion operation generated ") 2404 << "for result #" << result.getResultNumber() << " of operation '" 2405 << op->getName() << "' that remained live after conversion"; 2406 } 2407 } 2408 2409 rewriterImpl.mapping.map(result, convertedValue); 2410 return success(); 2411 } 2412 2413 //===----------------------------------------------------------------------===// 2414 // Type Conversion 2415 //===----------------------------------------------------------------------===// 2416 2417 /// Remap an input of the original signature with a new set of types. The 2418 /// new types are appended to the new signature conversion. 2419 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo, 2420 ArrayRef<Type> types) { 2421 assert(!types.empty() && "expected valid types"); 2422 remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size()); 2423 addInputs(types); 2424 } 2425 2426 /// Append new input types to the signature conversion, this should only be 2427 /// used if the new types are not intended to remap an existing input. 2428 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) { 2429 assert(!types.empty() && 2430 "1->0 type remappings don't need to be added explicitly"); 2431 argTypes.append(types.begin(), types.end()); 2432 } 2433 2434 /// Remap an input of the original signature with a range of types in the 2435 /// new signature. 2436 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2437 unsigned newInputNo, 2438 unsigned newInputCount) { 2439 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2440 assert(newInputCount != 0 && "expected valid input count"); 2441 remappedInputs[origInputNo] = 2442 InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr}; 2443 } 2444 2445 /// Remap an input of the original signature to another `replacementValue` 2446 /// value. This would make the signature converter drop this argument. 2447 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2448 Value replacementValue) { 2449 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2450 remappedInputs[origInputNo] = 2451 InputMapping{origInputNo, /*size=*/0, replacementValue}; 2452 } 2453 2454 /// This hooks allows for converting a type. 2455 LogicalResult TypeConverter::convertType(Type t, 2456 SmallVectorImpl<Type> &results) { 2457 auto existingIt = cachedDirectConversions.find(t); 2458 if (existingIt != cachedDirectConversions.end()) { 2459 if (existingIt->second) 2460 results.push_back(existingIt->second); 2461 return success(existingIt->second != nullptr); 2462 } 2463 auto multiIt = cachedMultiConversions.find(t); 2464 if (multiIt != cachedMultiConversions.end()) { 2465 results.append(multiIt->second.begin(), multiIt->second.end()); 2466 return success(); 2467 } 2468 2469 // Walk the added converters in reverse order to apply the most recently 2470 // registered first. 2471 size_t currentCount = results.size(); 2472 for (ConversionCallbackFn &converter : llvm::reverse(conversions)) { 2473 if (Optional<LogicalResult> result = converter(t, results)) { 2474 if (!succeeded(*result)) { 2475 cachedDirectConversions.try_emplace(t, nullptr); 2476 return failure(); 2477 } 2478 auto newTypes = ArrayRef<Type>(results).drop_front(currentCount); 2479 if (newTypes.size() == 1) 2480 cachedDirectConversions.try_emplace(t, newTypes.front()); 2481 else 2482 cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes)); 2483 return success(); 2484 } 2485 } 2486 return failure(); 2487 } 2488 2489 /// This hook simplifies defining 1-1 type conversions. This function returns 2490 /// the type to convert to on success, and a null type on failure. 2491 Type TypeConverter::convertType(Type t) { 2492 // Use the multi-type result version to convert the type. 2493 SmallVector<Type, 1> results; 2494 if (failed(convertType(t, results))) 2495 return nullptr; 2496 2497 // Check to ensure that only one type was produced. 2498 return results.size() == 1 ? results.front() : nullptr; 2499 } 2500 2501 /// Convert the given set of types, filling 'results' as necessary. This 2502 /// returns failure if the conversion of any of the types fails, success 2503 /// otherwise. 2504 LogicalResult TypeConverter::convertTypes(TypeRange types, 2505 SmallVectorImpl<Type> &results) { 2506 for (Type type : types) 2507 if (failed(convertType(type, results))) 2508 return failure(); 2509 return success(); 2510 } 2511 2512 /// Return true if the given type is legal for this type converter, i.e. the 2513 /// type converts to itself. 2514 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; } 2515 /// Return true if the given operation has legal operand and result types. 2516 bool TypeConverter::isLegal(Operation *op) { 2517 return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes()); 2518 } 2519 2520 /// Return true if the types of block arguments within the region are legal. 2521 bool TypeConverter::isLegal(Region *region) { 2522 return llvm::all_of(*region, [this](Block &block) { 2523 return isLegal(block.getArgumentTypes()); 2524 }); 2525 } 2526 2527 /// Return true if the inputs and outputs of the given function type are 2528 /// legal. 2529 bool TypeConverter::isSignatureLegal(FunctionType ty) { 2530 return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults())); 2531 } 2532 2533 /// This hook allows for converting a specific argument of a signature. 2534 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type, 2535 SignatureConversion &result) { 2536 // Try to convert the given input type. 2537 SmallVector<Type, 1> convertedTypes; 2538 if (failed(convertType(type, convertedTypes))) 2539 return failure(); 2540 2541 // If this argument is being dropped, there is nothing left to do. 2542 if (convertedTypes.empty()) 2543 return success(); 2544 2545 // Otherwise, add the new inputs. 2546 result.addInputs(inputNo, convertedTypes); 2547 return success(); 2548 } 2549 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types, 2550 SignatureConversion &result, 2551 unsigned origInputOffset) { 2552 for (unsigned i = 0, e = types.size(); i != e; ++i) 2553 if (failed(convertSignatureArg(origInputOffset + i, types[i], result))) 2554 return failure(); 2555 return success(); 2556 } 2557 2558 Value TypeConverter::materializeConversion( 2559 MutableArrayRef<MaterializationCallbackFn> materializations, 2560 OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) { 2561 for (MaterializationCallbackFn &fn : llvm::reverse(materializations)) 2562 if (Optional<Value> result = fn(builder, resultType, inputs, loc)) 2563 return result.getValue(); 2564 return nullptr; 2565 } 2566 2567 /// This function converts the type signature of the given block, by invoking 2568 /// 'convertSignatureArg' for each argument. This function should return a valid 2569 /// conversion for the signature on success, None otherwise. 2570 auto TypeConverter::convertBlockSignature(Block *block) 2571 -> Optional<SignatureConversion> { 2572 SignatureConversion conversion(block->getNumArguments()); 2573 if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion))) 2574 return llvm::None; 2575 return conversion; 2576 } 2577 2578 /// Create a default conversion pattern that rewrites the type signature of a 2579 /// FunctionLike op. This only supports FunctionLike ops which use FunctionType 2580 /// to represent their type. 2581 namespace { 2582 struct FunctionLikeSignatureConversion : public ConversionPattern { 2583 FunctionLikeSignatureConversion(StringRef functionLikeOpName, 2584 MLIRContext *ctx, TypeConverter &converter) 2585 : ConversionPattern(functionLikeOpName, /*benefit=*/1, converter, ctx) {} 2586 2587 /// Hook to implement combined matching and rewriting for FunctionLike ops. 2588 LogicalResult 2589 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 2590 ConversionPatternRewriter &rewriter) const override { 2591 FunctionType type = mlir::impl::getFunctionType(op); 2592 2593 // Convert the original function types. 2594 TypeConverter::SignatureConversion result(type.getNumInputs()); 2595 SmallVector<Type, 1> newResults; 2596 if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) || 2597 failed(typeConverter->convertTypes(type.getResults(), newResults)) || 2598 failed(rewriter.convertRegionTypes(&mlir::impl::getFunctionBody(op), 2599 *typeConverter, &result))) 2600 return failure(); 2601 2602 // Update the function signature in-place. 2603 auto newType = FunctionType::get(rewriter.getContext(), 2604 result.getConvertedTypes(), newResults); 2605 2606 rewriter.updateRootInPlace( 2607 op, [&] { mlir::impl::setFunctionType(op, newType); }); 2608 2609 return success(); 2610 } 2611 }; 2612 } // end anonymous namespace 2613 2614 void mlir::populateFunctionLikeTypeConversionPattern( 2615 StringRef functionLikeOpName, OwningRewritePatternList &patterns, 2616 TypeConverter &converter) { 2617 patterns.insert<FunctionLikeSignatureConversion>( 2618 functionLikeOpName, patterns.getContext(), converter); 2619 } 2620 2621 void mlir::populateFuncOpTypeConversionPattern( 2622 OwningRewritePatternList &patterns, TypeConverter &converter) { 2623 populateFunctionLikeTypeConversionPattern<FuncOp>(patterns, converter); 2624 } 2625 2626 //===----------------------------------------------------------------------===// 2627 // ConversionTarget 2628 //===----------------------------------------------------------------------===// 2629 2630 /// Register a legality action for the given operation. 2631 void ConversionTarget::setOpAction(OperationName op, 2632 LegalizationAction action) { 2633 legalOperations[op] = {action, /*isRecursivelyLegal=*/false, llvm::None}; 2634 } 2635 2636 /// Register a legality action for the given dialects. 2637 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames, 2638 LegalizationAction action) { 2639 for (StringRef dialect : dialectNames) 2640 legalDialects[dialect] = action; 2641 } 2642 2643 /// Get the legality action for the given operation. 2644 auto ConversionTarget::getOpAction(OperationName op) const 2645 -> Optional<LegalizationAction> { 2646 Optional<LegalizationInfo> info = getOpInfo(op); 2647 return info ? info->action : Optional<LegalizationAction>(); 2648 } 2649 2650 /// If the given operation instance is legal on this target, a structure 2651 /// containing legality information is returned. If the operation is not legal, 2652 /// None is returned. 2653 auto ConversionTarget::isLegal(Operation *op) const 2654 -> Optional<LegalOpDetails> { 2655 Optional<LegalizationInfo> info = getOpInfo(op->getName()); 2656 if (!info) 2657 return llvm::None; 2658 2659 // Returns true if this operation instance is known to be legal. 2660 auto isOpLegal = [&] { 2661 // Handle dynamic legality either with the provided legality function, or 2662 // the default hook on the derived instance. 2663 if (info->action == LegalizationAction::Dynamic) 2664 return info->legalityFn ? (*info->legalityFn)(op) 2665 : isDynamicallyLegal(op); 2666 2667 // Otherwise, the operation is only legal if it was marked 'Legal'. 2668 return info->action == LegalizationAction::Legal; 2669 }; 2670 if (!isOpLegal()) 2671 return llvm::None; 2672 2673 // This operation is legal, compute any additional legality information. 2674 LegalOpDetails legalityDetails; 2675 if (info->isRecursivelyLegal) { 2676 auto legalityFnIt = opRecursiveLegalityFns.find(op->getName()); 2677 if (legalityFnIt != opRecursiveLegalityFns.end()) 2678 legalityDetails.isRecursivelyLegal = legalityFnIt->second(op); 2679 else 2680 legalityDetails.isRecursivelyLegal = true; 2681 } 2682 return legalityDetails; 2683 } 2684 2685 /// Set the dynamic legality callback for the given operation. 2686 void ConversionTarget::setLegalityCallback( 2687 OperationName name, const DynamicLegalityCallbackFn &callback) { 2688 assert(callback && "expected valid legality callback"); 2689 auto infoIt = legalOperations.find(name); 2690 assert(infoIt != legalOperations.end() && 2691 infoIt->second.action == LegalizationAction::Dynamic && 2692 "expected operation to already be marked as dynamically legal"); 2693 infoIt->second.legalityFn = callback; 2694 } 2695 2696 /// Set the recursive legality callback for the given operation and mark the 2697 /// operation as recursively legal. 2698 void ConversionTarget::markOpRecursivelyLegal( 2699 OperationName name, const DynamicLegalityCallbackFn &callback) { 2700 auto infoIt = legalOperations.find(name); 2701 assert(infoIt != legalOperations.end() && 2702 infoIt->second.action != LegalizationAction::Illegal && 2703 "expected operation to already be marked as legal"); 2704 infoIt->second.isRecursivelyLegal = true; 2705 if (callback) 2706 opRecursiveLegalityFns[name] = callback; 2707 else 2708 opRecursiveLegalityFns.erase(name); 2709 } 2710 2711 /// Set the dynamic legality callback for the given dialects. 2712 void ConversionTarget::setLegalityCallback( 2713 ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) { 2714 assert(callback && "expected valid legality callback"); 2715 for (StringRef dialect : dialects) 2716 dialectLegalityFns[dialect] = callback; 2717 } 2718 2719 /// Get the legalization information for the given operation. 2720 auto ConversionTarget::getOpInfo(OperationName op) const 2721 -> Optional<LegalizationInfo> { 2722 // Check for info for this specific operation. 2723 auto it = legalOperations.find(op); 2724 if (it != legalOperations.end()) 2725 return it->second; 2726 // Check for info for the parent dialect. 2727 auto dialectIt = legalDialects.find(op.getDialectNamespace()); 2728 if (dialectIt != legalDialects.end()) { 2729 Optional<DynamicLegalityCallbackFn> callback; 2730 auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace()); 2731 if (dialectFn != dialectLegalityFns.end()) 2732 callback = dialectFn->second; 2733 return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false, 2734 callback}; 2735 } 2736 // Otherwise, check if we mark unknown operations as dynamic. 2737 if (unknownOpsDynamicallyLegal) 2738 return LegalizationInfo{LegalizationAction::Dynamic, 2739 /*isRecursivelyLegal=*/false, unknownLegalityFn}; 2740 return llvm::None; 2741 } 2742 2743 //===----------------------------------------------------------------------===// 2744 // Op Conversion Entry Points 2745 //===----------------------------------------------------------------------===// 2746 2747 /// Apply a partial conversion on the given operations and all nested 2748 /// operations. This method converts as many operations to the target as 2749 /// possible, ignoring operations that failed to legalize. This method only 2750 /// returns failure if there ops explicitly marked as illegal. 2751 /// If an `unconvertedOps` set is provided, all operations that are found not 2752 /// to be legalizable to the given `target` are placed within that set. (Note 2753 /// that if there is an op explicitly marked as illegal, the conversion 2754 /// terminates and the `unconvertedOps` set will not necessarily be complete.) 2755 LogicalResult 2756 mlir::applyPartialConversion(ArrayRef<Operation *> ops, 2757 ConversionTarget &target, 2758 const FrozenRewritePatternList &patterns, 2759 DenseSet<Operation *> *unconvertedOps) { 2760 OperationConverter opConverter(target, patterns, OpConversionMode::Partial, 2761 unconvertedOps); 2762 return opConverter.convertOperations(ops); 2763 } 2764 LogicalResult 2765 mlir::applyPartialConversion(Operation *op, ConversionTarget &target, 2766 const FrozenRewritePatternList &patterns, 2767 DenseSet<Operation *> *unconvertedOps) { 2768 return applyPartialConversion(llvm::makeArrayRef(op), target, patterns, 2769 unconvertedOps); 2770 } 2771 2772 /// Apply a complete conversion on the given operations, and all nested 2773 /// operations. This method will return failure if the conversion of any 2774 /// operation fails. 2775 LogicalResult 2776 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target, 2777 const FrozenRewritePatternList &patterns) { 2778 OperationConverter opConverter(target, patterns, OpConversionMode::Full); 2779 return opConverter.convertOperations(ops); 2780 } 2781 LogicalResult 2782 mlir::applyFullConversion(Operation *op, ConversionTarget &target, 2783 const FrozenRewritePatternList &patterns) { 2784 return applyFullConversion(llvm::makeArrayRef(op), target, patterns); 2785 } 2786 2787 /// Apply an analysis conversion on the given operations, and all nested 2788 /// operations. This method analyzes which operations would be successfully 2789 /// converted to the target if a conversion was applied. All operations that 2790 /// were found to be legalizable to the given 'target' are placed within the 2791 /// provided 'convertedOps' set; note that no actual rewrites are applied to the 2792 /// operations on success and only pre-existing operations are added to the set. 2793 LogicalResult 2794 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops, 2795 ConversionTarget &target, 2796 const FrozenRewritePatternList &patterns, 2797 DenseSet<Operation *> &convertedOps) { 2798 OperationConverter opConverter(target, patterns, OpConversionMode::Analysis, 2799 &convertedOps); 2800 return opConverter.convertOperations(ops); 2801 } 2802 LogicalResult 2803 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target, 2804 const FrozenRewritePatternList &patterns, 2805 DenseSet<Operation *> &convertedOps) { 2806 return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns, 2807 convertedOps); 2808 } 2809