1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Transforms/DialectConversion.h"
10 #include "mlir/IR/Block.h"
11 #include "mlir/IR/BlockAndValueMapping.h"
12 #include "mlir/IR/Builders.h"
13 #include "mlir/IR/BuiltinOps.h"
14 #include "mlir/IR/FunctionSupport.h"
15 #include "mlir/Rewrite/PatternApplicator.h"
16 #include "mlir/Transforms/Utils.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/FormatVariadic.h"
21 #include "llvm/Support/SaveAndRestore.h"
22 #include "llvm/Support/ScopedPrinter.h"
23 
24 using namespace mlir;
25 using namespace mlir::detail;
26 
27 #define DEBUG_TYPE "dialect-conversion"
28 
29 /// Recursively collect all of the operations to convert from within 'region'.
30 /// If 'target' is nonnull, operations that are recursively legal have their
31 /// regions pre-filtered to avoid considering them for legalization.
32 static LogicalResult
33 computeConversionSet(iterator_range<Region::iterator> region,
34                      Location regionLoc,
35                      SmallVectorImpl<Operation *> &toConvert,
36                      ConversionTarget *target = nullptr) {
37   if (llvm::empty(region))
38     return success();
39 
40   // Traverse starting from the entry block.
41   SmallVector<Block *, 16> worklist(1, &*region.begin());
42   DenseSet<Block *> visitedBlocks;
43   visitedBlocks.insert(worklist.front());
44   while (!worklist.empty()) {
45     Block *block = worklist.pop_back_val();
46 
47     // Compute the conversion set of each of the nested operations.
48     for (Operation &op : *block) {
49       toConvert.emplace_back(&op);
50 
51       // Don't check this operation's children for conversion if the operation
52       // is recursively legal.
53       auto legalityInfo = target ? target->isLegal(&op)
54                                  : Optional<ConversionTarget::LegalOpDetails>();
55       if (legalityInfo && legalityInfo->isRecursivelyLegal)
56         continue;
57       for (auto &region : op.getRegions()) {
58         if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
59                                         toConvert, target)))
60           return failure();
61       }
62     }
63 
64     // Recurse to children that haven't been visited.
65     for (Block *succ : block->getSuccessors())
66       if (visitedBlocks.insert(succ).second)
67         worklist.push_back(succ);
68   }
69 
70   // Check that all blocks in the region were visited.
71   if (llvm::any_of(llvm::drop_begin(region, 1),
72                    [&](Block &block) { return !visitedBlocks.count(&block); }))
73     return emitError(regionLoc, "unreachable blocks were not converted");
74   return success();
75 }
76 
77 /// A utility function to log a successful result for the given reason.
78 template <typename... Args>
79 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
80   LLVM_DEBUG({
81     os.unindent();
82     os.startLine() << "} -> SUCCESS";
83     if (!fmt.empty())
84       os.getOStream() << " : "
85                       << llvm::formatv(fmt.data(), std::forward<Args>(args)...);
86     os.getOStream() << "\n";
87   });
88 }
89 
90 /// A utility function to log a failure result for the given reason.
91 template <typename... Args>
92 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
93   LLVM_DEBUG({
94     os.unindent();
95     os.startLine() << "} -> FAILURE : "
96                    << llvm::formatv(fmt.data(), std::forward<Args>(args)...)
97                    << "\n";
98   });
99 }
100 
101 //===----------------------------------------------------------------------===//
102 // ConversionValueMapping
103 //===----------------------------------------------------------------------===//
104 
105 namespace {
106 /// This class wraps a BlockAndValueMapping to provide recursive lookup
107 /// functionality, i.e. we will traverse if the mapped value also has a mapping.
108 struct ConversionValueMapping {
109   /// Lookup a mapped value within the map. If a mapping for the provided value
110   /// does not exist then return the provided value. If `desiredType` is
111   /// non-null, returns the most recently mapped value with that type. If an
112   /// operand of that type does not exist, defaults to normal behavior.
113   Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
114 
115   /// Lookup a mapped value within the map, or return null if a mapping does not
116   /// exist. If a mapping exists, this follows the same behavior of
117   /// `lookupOrDefault`.
118   Value lookupOrNull(Value from, Type desiredType = nullptr) const;
119 
120   /// Map a value to the one provided.
121   void map(Value oldVal, Value newVal) {
122     LLVM_DEBUG({
123       for (Value it = newVal; it; it = mapping.lookupOrNull(it))
124         assert(it != oldVal && "inserting cyclic mapping");
125     });
126     mapping.map(oldVal, newVal);
127   }
128 
129   /// Try to map a value to the one provided. Returns false if a transitive
130   /// mapping from the new value to the old value already exists, true if the
131   /// map was updated.
132   bool tryMap(Value oldVal, Value newVal);
133 
134   /// Drop the last mapping for the given value.
135   void erase(Value value) { mapping.erase(value); }
136 
137   /// Returns the inverse raw value mapping (without recursive query support).
138   DenseMap<Value, SmallVector<Value>> getInverse() const {
139     DenseMap<Value, SmallVector<Value>> inverse;
140     for (auto &it : mapping.getValueMap())
141       inverse[it.second].push_back(it.first);
142     return inverse;
143   }
144 
145 private:
146   /// Current value mappings.
147   BlockAndValueMapping mapping;
148 };
149 } // end anonymous namespace
150 
151 Value ConversionValueMapping::lookupOrDefault(Value from,
152                                               Type desiredType) const {
153   // If there was no desired type, simply find the leaf value.
154   if (!desiredType) {
155     // If this value had a valid mapping, unmap that value as well in the case
156     // that it was also replaced.
157     while (auto mappedValue = mapping.lookupOrNull(from))
158       from = mappedValue;
159     return from;
160   }
161 
162   // Otherwise, try to find the deepest value that has the desired type.
163   Value desiredValue;
164   do {
165     if (from.getType() == desiredType)
166       desiredValue = from;
167 
168     Value mappedValue = mapping.lookupOrNull(from);
169     if (!mappedValue)
170       break;
171     from = mappedValue;
172   } while (true);
173 
174   // If the desired value was found use it, otherwise default to the leaf value.
175   return desiredValue ? desiredValue : from;
176 }
177 
178 Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const {
179   Value result = lookupOrDefault(from, desiredType);
180   if (result == from || (desiredType && result.getType() != desiredType))
181     return nullptr;
182   return result;
183 }
184 
185 bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) {
186   for (Value it = newVal; it; it = mapping.lookupOrNull(it))
187     if (it == oldVal)
188       return false;
189   map(oldVal, newVal);
190   return true;
191 }
192 
193 //===----------------------------------------------------------------------===//
194 // Rewriter and Translation State
195 //===----------------------------------------------------------------------===//
196 namespace {
197 /// This class contains a snapshot of the current conversion rewriter state.
198 /// This is useful when saving and undoing a set of rewrites.
199 struct RewriterState {
200   RewriterState(unsigned numCreatedOps, unsigned numUnresolvedMaterializations,
201                 unsigned numReplacements, unsigned numArgReplacements,
202                 unsigned numBlockActions, unsigned numIgnoredOperations,
203                 unsigned numRootUpdates)
204       : numCreatedOps(numCreatedOps),
205         numUnresolvedMaterializations(numUnresolvedMaterializations),
206         numReplacements(numReplacements),
207         numArgReplacements(numArgReplacements),
208         numBlockActions(numBlockActions),
209         numIgnoredOperations(numIgnoredOperations),
210         numRootUpdates(numRootUpdates) {}
211 
212   /// The current number of created operations.
213   unsigned numCreatedOps;
214 
215   /// The current number of unresolved materializations.
216   unsigned numUnresolvedMaterializations;
217 
218   /// The current number of replacements queued.
219   unsigned numReplacements;
220 
221   /// The current number of argument replacements queued.
222   unsigned numArgReplacements;
223 
224   /// The current number of block actions performed.
225   unsigned numBlockActions;
226 
227   /// The current number of ignored operations.
228   unsigned numIgnoredOperations;
229 
230   /// The current number of operations that were updated in place.
231   unsigned numRootUpdates;
232 };
233 
234 //===----------------------------------------------------------------------===//
235 // OperationTransactionState
236 
237 /// The state of an operation that was updated by a pattern in-place. This
238 /// contains all of the necessary information to reconstruct an operation that
239 /// was updated in place.
240 class OperationTransactionState {
241 public:
242   OperationTransactionState() = default;
243   OperationTransactionState(Operation *op)
244       : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()),
245         operands(op->operand_begin(), op->operand_end()),
246         successors(op->successor_begin(), op->successor_end()) {}
247 
248   /// Discard the transaction state and reset the state of the original
249   /// operation.
250   void resetOperation() const {
251     op->setLoc(loc);
252     op->setAttrs(attrs);
253     op->setOperands(operands);
254     for (auto it : llvm::enumerate(successors))
255       op->setSuccessor(it.value(), it.index());
256   }
257 
258   /// Return the original operation of this state.
259   Operation *getOperation() const { return op; }
260 
261 private:
262   Operation *op;
263   LocationAttr loc;
264   DictionaryAttr attrs;
265   SmallVector<Value, 8> operands;
266   SmallVector<Block *, 2> successors;
267 };
268 
269 //===----------------------------------------------------------------------===//
270 // OpReplacement
271 
272 /// This class represents one requested operation replacement via 'replaceOp' or
273 /// 'eraseOp`.
274 struct OpReplacement {
275   OpReplacement(TypeConverter *converter = nullptr) : converter(converter) {}
276 
277   /// An optional type converter that can be used to materialize conversions
278   /// between the new and old values if necessary.
279   TypeConverter *converter;
280 };
281 
282 //===----------------------------------------------------------------------===//
283 // BlockAction
284 
285 /// The kind of the block action performed during the rewrite.  Actions can be
286 /// undone if the conversion fails.
287 enum class BlockActionKind {
288   Create,
289   Erase,
290   Merge,
291   Move,
292   Split,
293   TypeConversion
294 };
295 
296 /// Original position of the given block in its parent region. During undo
297 /// actions, the block needs to be placed after `insertAfterBlock`.
298 struct BlockPosition {
299   Region *region;
300   Block *insertAfterBlock;
301 };
302 
303 /// Information needed to undo the merge actions.
304 /// - the source block, and
305 /// - the Operation that was the last operation in the dest block before the
306 ///   merge (could be null if the dest block was empty).
307 struct MergeInfo {
308   Block *sourceBlock;
309   Operation *destBlockLastInst;
310 };
311 
312 /// The storage class for an undoable block action (one of BlockActionKind),
313 /// contains the information necessary to undo this action.
314 struct BlockAction {
315   static BlockAction getCreate(Block *block) {
316     return {BlockActionKind::Create, block, {}};
317   }
318   static BlockAction getErase(Block *block, BlockPosition originalPosition) {
319     return {BlockActionKind::Erase, block, {originalPosition}};
320   }
321   static BlockAction getMerge(Block *block, Block *sourceBlock) {
322     BlockAction action{BlockActionKind::Merge, block, {}};
323     action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()};
324     return action;
325   }
326   static BlockAction getMove(Block *block, BlockPosition originalPosition) {
327     return {BlockActionKind::Move, block, {originalPosition}};
328   }
329   static BlockAction getSplit(Block *block, Block *originalBlock) {
330     BlockAction action{BlockActionKind::Split, block, {}};
331     action.originalBlock = originalBlock;
332     return action;
333   }
334   static BlockAction getTypeConversion(Block *block) {
335     return BlockAction{BlockActionKind::TypeConversion, block, {}};
336   }
337 
338   // The action kind.
339   BlockActionKind kind;
340 
341   // A pointer to the block that was created by the action.
342   Block *block;
343 
344   union {
345     // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and
346     // contains a pointer to the region that originally contained the block as
347     // well as the position of the block in that region.
348     BlockPosition originalPosition;
349     // In use if kind == BlockActionKind::Split and contains a pointer to the
350     // block that was split into two parts.
351     Block *originalBlock;
352     // In use if kind == BlockActionKind::Merge, and contains the information
353     // needed to undo the merge.
354     MergeInfo mergeInfo;
355   };
356 };
357 
358 //===----------------------------------------------------------------------===//
359 // UnresolvedMaterialization
360 
361 /// This class represents an unresolved materialization, i.e. a materialization
362 /// that was inserted during conversion that needs to be legalized at the end of
363 /// the conversion process.
364 class UnresolvedMaterialization {
365 public:
366   /// The type of materialization.
367   enum Kind {
368     /// This materialization materializes a conversion for an illegal block
369     /// argument type, to a legal one.
370     Argument,
371 
372     /// This materialization materializes a conversion from an illegal type to a
373     /// legal one.
374     Target
375   };
376 
377   UnresolvedMaterialization(UnrealizedConversionCastOp op = nullptr,
378                             TypeConverter *converter = nullptr,
379                             Kind kind = Target, Type origOutputType = nullptr)
380       : op(op), converterAndKind(converter, kind),
381         origOutputType(origOutputType) {}
382 
383   /// Return the temporary conversion operation inserted for this
384   /// materialization.
385   UnrealizedConversionCastOp getOp() const { return op; }
386 
387   /// Return the type converter of this materialization (which may be null).
388   TypeConverter *getConverter() const { return converterAndKind.getPointer(); }
389 
390   /// Return the kind of this materialization.
391   Kind getKind() const { return converterAndKind.getInt(); }
392 
393   /// Set the kind of this materialization.
394   void setKind(Kind kind) { converterAndKind.setInt(kind); }
395 
396   /// Return the original illegal output type of the input values.
397   Type getOrigOutputType() const { return origOutputType; }
398 
399 private:
400   /// The unresolved materialization operation created during conversion.
401   UnrealizedConversionCastOp op;
402 
403   /// The corresponding type converter to use when resolving this
404   /// materialization, and the kind of this materialization.
405   llvm::PointerIntPair<TypeConverter *, 1, Kind> converterAndKind;
406 
407   /// The original output type. This is only used for argument conversions.
408   Type origOutputType;
409 };
410 } // end anonymous namespace
411 
412 /// Build an unresolved materialization operation given an output type and set
413 /// of input operands.
414 static Value buildUnresolvedMaterialization(
415     UnresolvedMaterialization::Kind kind, Block *insertBlock,
416     Block::iterator insertPt, Location loc, ValueRange inputs, Type outputType,
417     Type origOutputType, TypeConverter *converter,
418     SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
419   // Avoid materializing an unnecessary cast.
420   if (inputs.size() == 1 && inputs.front().getType() == outputType)
421     return inputs.front();
422 
423   // Create an unresolved materialization. We use a new OpBuilder to avoid
424   // tracking the materialization like we do for other operations.
425   OpBuilder builder(insertBlock, insertPt);
426   auto convertOp =
427       builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs);
428   unresolvedMaterializations.emplace_back(convertOp, converter, kind,
429                                           origOutputType);
430   return convertOp.getResult(0);
431 }
432 static Value buildUnresolvedArgumentMaterialization(
433     PatternRewriter &rewriter, Location loc, ValueRange inputs,
434     Type origOutputType, Type outputType, TypeConverter *converter,
435     SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
436   return buildUnresolvedMaterialization(
437       UnresolvedMaterialization::Argument, rewriter.getInsertionBlock(),
438       rewriter.getInsertionPoint(), loc, inputs, outputType, origOutputType,
439       converter, unresolvedMaterializations);
440 }
441 static Value buildUnresolvedTargetMaterialization(
442     Location loc, Value input, Type outputType, TypeConverter *converter,
443     SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) {
444   Block *insertBlock = input.getParentBlock();
445   Block::iterator insertPt = insertBlock->begin();
446   if (OpResult inputRes = input.dyn_cast<OpResult>())
447     insertPt = ++inputRes.getOwner()->getIterator();
448 
449   return buildUnresolvedMaterialization(
450       UnresolvedMaterialization::Target, insertBlock, insertPt, loc, input,
451       outputType, outputType, converter, unresolvedMaterializations);
452 }
453 
454 //===----------------------------------------------------------------------===//
455 // ArgConverter
456 //===----------------------------------------------------------------------===//
457 namespace {
458 /// This class provides a simple interface for converting the types of block
459 /// arguments. This is done by creating a new block that contains the new legal
460 /// types and extracting the block that contains the old illegal types to allow
461 /// for undoing pending rewrites in the case of failure.
462 struct ArgConverter {
463   ArgConverter(
464       PatternRewriter &rewriter,
465       SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations)
466       : rewriter(rewriter),
467         unresolvedMaterializations(unresolvedMaterializations) {}
468 
469   /// This structure contains the information pertaining to an argument that has
470   /// been converted.
471   struct ConvertedArgInfo {
472     ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
473                      Value castValue = nullptr)
474         : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
475 
476     /// The start index of in the new argument list that contains arguments that
477     /// replace the original.
478     unsigned newArgIdx;
479 
480     /// The number of arguments that replaced the original argument.
481     unsigned newArgSize;
482 
483     /// The cast value that was created to cast from the new arguments to the
484     /// old. This only used if 'newArgSize' > 1.
485     Value castValue;
486   };
487 
488   /// This structure contains information pertaining to a block that has had its
489   /// signature converted.
490   struct ConvertedBlockInfo {
491     ConvertedBlockInfo(Block *origBlock, TypeConverter *converter)
492         : origBlock(origBlock), converter(converter) {}
493 
494     /// The original block that was requested to have its signature converted.
495     Block *origBlock;
496 
497     /// The conversion information for each of the arguments. The information is
498     /// None if the argument was dropped during conversion.
499     SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
500 
501     /// The type converter used to convert the arguments.
502     TypeConverter *converter;
503   };
504 
505   /// Return if the signature of the given block has already been converted.
506   bool hasBeenConverted(Block *block) const {
507     return conversionInfo.count(block) || convertedBlocks.count(block);
508   }
509 
510   /// Set the type converter to use for the given region.
511   void setConverter(Region *region, TypeConverter *typeConverter) {
512     assert(typeConverter && "expected valid type converter");
513     regionToConverter[region] = typeConverter;
514   }
515 
516   /// Return the type converter to use for the given region, or null if there
517   /// isn't one.
518   TypeConverter *getConverter(Region *region) {
519     return regionToConverter.lookup(region);
520   }
521 
522   //===--------------------------------------------------------------------===//
523   // Rewrite Application
524   //===--------------------------------------------------------------------===//
525 
526   /// Erase any rewrites registered for the blocks within the given operation
527   /// which is about to be removed. This merely drops the rewrites without
528   /// undoing them.
529   void notifyOpRemoved(Operation *op);
530 
531   /// Cleanup and undo any generated conversions for the arguments of block.
532   /// This method replaces the new block with the original, reverting the IR to
533   /// its original state.
534   void discardRewrites(Block *block);
535 
536   /// Fully replace uses of the old arguments with the new.
537   void applyRewrites(ConversionValueMapping &mapping);
538 
539   /// Materialize any necessary conversions for converted arguments that have
540   /// live users, using the provided `findLiveUser` to search for a user that
541   /// survives the conversion process.
542   LogicalResult
543   materializeLiveConversions(ConversionValueMapping &mapping,
544                              OpBuilder &builder,
545                              function_ref<Operation *(Value)> findLiveUser);
546 
547   //===--------------------------------------------------------------------===//
548   // Conversion
549   //===--------------------------------------------------------------------===//
550 
551   /// Attempt to convert the signature of the given block, if successful a new
552   /// block is returned containing the new arguments. Returns `block` if it did
553   /// not require conversion.
554   FailureOr<Block *>
555   convertSignature(Block *block, TypeConverter *converter,
556                    ConversionValueMapping &mapping,
557                    SmallVectorImpl<BlockArgument> &argReplacements);
558 
559   /// Apply the given signature conversion on the given block. The new block
560   /// containing the updated signature is returned. If no conversions were
561   /// necessary, e.g. if the block has no arguments, `block` is returned.
562   /// `converter` is used to generate any necessary cast operations that
563   /// translate between the origin argument types and those specified in the
564   /// signature conversion.
565   Block *applySignatureConversion(
566       Block *block, TypeConverter *converter,
567       TypeConverter::SignatureConversion &signatureConversion,
568       ConversionValueMapping &mapping,
569       SmallVectorImpl<BlockArgument> &argReplacements);
570 
571   /// Insert a new conversion into the cache.
572   void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
573 
574   /// A collection of blocks that have had their arguments converted. This is a
575   /// map from the new replacement block, back to the original block.
576   llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
577 
578   /// The set of original blocks that were converted.
579   DenseSet<Block *> convertedBlocks;
580 
581   /// A mapping from valid regions, to those containing the original blocks of a
582   /// conversion.
583   DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
584 
585   /// A mapping of regions to type converters that should be used when
586   /// converting the arguments of blocks within that region.
587   DenseMap<Region *, TypeConverter *> regionToConverter;
588 
589   /// The pattern rewriter to use when materializing conversions.
590   PatternRewriter &rewriter;
591 
592   /// An ordered set of unresolved materializations during conversion.
593   SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations;
594 };
595 } // end anonymous namespace
596 
597 //===----------------------------------------------------------------------===//
598 // Rewrite Application
599 
600 void ArgConverter::notifyOpRemoved(Operation *op) {
601   if (conversionInfo.empty())
602     return;
603 
604   for (Region &region : op->getRegions()) {
605     for (Block &block : region) {
606       // Drop any rewrites from within.
607       for (Operation &nestedOp : block)
608         if (nestedOp.getNumRegions())
609           notifyOpRemoved(&nestedOp);
610 
611       // Check if this block was converted.
612       auto it = conversionInfo.find(&block);
613       if (it == conversionInfo.end())
614         continue;
615 
616       // Drop all uses of the original arguments and delete the original block.
617       Block *origBlock = it->second.origBlock;
618       for (BlockArgument arg : origBlock->getArguments())
619         arg.dropAllUses();
620       conversionInfo.erase(it);
621     }
622   }
623 }
624 
625 void ArgConverter::discardRewrites(Block *block) {
626   auto it = conversionInfo.find(block);
627   if (it == conversionInfo.end())
628     return;
629   Block *origBlock = it->second.origBlock;
630 
631   // Drop all uses of the new block arguments and replace uses of the new block.
632   for (int i = block->getNumArguments() - 1; i >= 0; --i)
633     block->getArgument(i).dropAllUses();
634   block->replaceAllUsesWith(origBlock);
635 
636   // Move the operations back the original block and the delete the new block.
637   origBlock->getOperations().splice(origBlock->end(), block->getOperations());
638   origBlock->moveBefore(block);
639   block->erase();
640 
641   convertedBlocks.erase(origBlock);
642   conversionInfo.erase(it);
643 }
644 
645 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
646   for (auto &info : conversionInfo) {
647     ConvertedBlockInfo &blockInfo = info.second;
648     Block *origBlock = blockInfo.origBlock;
649 
650     // Process the remapping for each of the original arguments.
651     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
652       Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
653       BlockArgument origArg = origBlock->getArgument(i);
654 
655       // Handle the case of a 1->0 value mapping.
656       if (!argInfo) {
657         if (Value newArg = mapping.lookupOrNull(origArg, origArg.getType()))
658           origArg.replaceAllUsesWith(newArg);
659         continue;
660       }
661 
662       // Otherwise this is a 1->1+ value mapping.
663       Value castValue = argInfo->castValue;
664       assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
665 
666       // If the argument is still used, replace it with the generated cast.
667       if (!origArg.use_empty()) {
668         origArg.replaceAllUsesWith(
669             mapping.lookupOrDefault(castValue, origArg.getType()));
670       }
671     }
672   }
673 }
674 
675 LogicalResult ArgConverter::materializeLiveConversions(
676     ConversionValueMapping &mapping, OpBuilder &builder,
677     function_ref<Operation *(Value)> findLiveUser) {
678   for (auto &info : conversionInfo) {
679     Block *newBlock = info.first;
680     ConvertedBlockInfo &blockInfo = info.second;
681     Block *origBlock = blockInfo.origBlock;
682 
683     // Process the remapping for each of the original arguments.
684     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
685       // FIXME: We should run the below checks even if a type converter wasn't
686       // provided, but a lot of existing lowering rely on the block argument
687       // being blindly replaced. We should rework argument materialization to be
688       // more robust for temporary source materializations, update existing
689       // patterns, and remove these checks.
690       if (!blockInfo.converter && blockInfo.argInfo[i])
691         continue;
692 
693       // If the type of this argument changed and the argument is still live, we
694       // need to materialize a conversion.
695       BlockArgument origArg = origBlock->getArgument(i);
696       if (mapping.lookupOrNull(origArg, origArg.getType()))
697         continue;
698       Operation *liveUser = findLiveUser(origArg);
699       if (!liveUser)
700         continue;
701 
702       Value replacementValue = mapping.lookupOrDefault(origArg);
703       bool isDroppedArg = replacementValue == origArg;
704       if (isDroppedArg)
705         rewriter.setInsertionPointToStart(newBlock);
706       else
707         rewriter.setInsertionPointAfterValue(replacementValue);
708       Value newArg;
709       if (blockInfo.converter) {
710         newArg = blockInfo.converter->materializeSourceConversion(
711             rewriter, origArg.getLoc(), origArg.getType(),
712             isDroppedArg ? ValueRange() : ValueRange(replacementValue));
713         assert((!newArg || newArg.getType() == origArg.getType()) &&
714                "materialization hook did not provide a value of the expected "
715                "type");
716       }
717       if (!newArg) {
718         InFlightDiagnostic diag =
719             emitError(origArg.getLoc())
720             << "failed to materialize conversion for block argument #" << i
721             << " that remained live after conversion, type was "
722             << origArg.getType();
723         if (!isDroppedArg)
724           diag << ", with target type " << replacementValue.getType();
725         diag.attachNote(liveUser->getLoc())
726             << "see existing live user here: " << *liveUser;
727         return failure();
728       }
729       mapping.map(origArg, newArg);
730     }
731   }
732   return success();
733 }
734 
735 //===----------------------------------------------------------------------===//
736 // Conversion
737 
738 FailureOr<Block *> ArgConverter::convertSignature(
739     Block *block, TypeConverter *converter, ConversionValueMapping &mapping,
740     SmallVectorImpl<BlockArgument> &argReplacements) {
741   // Check if the block was already converted. If the block is detached,
742   // conservatively assume it is going to be deleted.
743   if (hasBeenConverted(block) || !block->getParent())
744     return block;
745   // If a converter wasn't provided, and the block wasn't already converted,
746   // there is nothing we can do.
747   if (!converter)
748     return failure();
749 
750   // Try to convert the signature for the block with the provided converter.
751   if (auto conversion = converter->convertBlockSignature(block))
752     return applySignatureConversion(block, converter, *conversion, mapping,
753                                     argReplacements);
754   return failure();
755 }
756 
757 Block *ArgConverter::applySignatureConversion(
758     Block *block, TypeConverter *converter,
759     TypeConverter::SignatureConversion &signatureConversion,
760     ConversionValueMapping &mapping,
761     SmallVectorImpl<BlockArgument> &argReplacements) {
762   // If no arguments are being changed or added, there is nothing to do.
763   unsigned origArgCount = block->getNumArguments();
764   auto convertedTypes = signatureConversion.getConvertedTypes();
765   if (origArgCount == 0 && convertedTypes.empty())
766     return block;
767 
768   // Split the block at the beginning to get a new block to use for the updated
769   // signature.
770   Block *newBlock = block->splitBlock(block->begin());
771   block->replaceAllUsesWith(newBlock);
772 
773   SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes));
774   ArrayRef<Value> newArgs(newArgRange);
775 
776   // Remap each of the original arguments as determined by the signature
777   // conversion.
778   ConvertedBlockInfo info(block, converter);
779   info.argInfo.resize(origArgCount);
780 
781   OpBuilder::InsertionGuard guard(rewriter);
782   rewriter.setInsertionPointToStart(newBlock);
783   for (unsigned i = 0; i != origArgCount; ++i) {
784     auto inputMap = signatureConversion.getInputMapping(i);
785     if (!inputMap)
786       continue;
787     BlockArgument origArg = block->getArgument(i);
788 
789     // If inputMap->replacementValue is not nullptr, then the argument is
790     // dropped and a replacement value is provided to be the remappedValue.
791     if (inputMap->replacementValue) {
792       assert(inputMap->size == 0 &&
793              "invalid to provide a replacement value when the argument isn't "
794              "dropped");
795       mapping.map(origArg, inputMap->replacementValue);
796       argReplacements.push_back(origArg);
797       continue;
798     }
799 
800     // Otherwise, this is a 1->1+ mapping.
801     auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
802     Value newArg;
803 
804     // If this is a 1->1 mapping and the types of new and replacement arguments
805     // match (i.e. it's an identity map), then the argument is mapped to its
806     // original type.
807     // FIXME: We simply pass through the replacement argument if there wasn't a
808     // converter, which isn't great as it allows implicit type conversions to
809     // appear. We should properly restructure this code to handle cases where a
810     // converter isn't provided and also to properly handle the case where an
811     // argument materialization is actually a temporary source materialization
812     // (e.g. in the case of 1->N).
813     if (replArgs.size() == 1 &&
814         (!converter || replArgs[0].getType() == origArg.getType())) {
815       newArg = replArgs.front();
816     } else {
817       Type origOutputType = origArg.getType();
818 
819       // Legalize the argument output type.
820       Type outputType = origOutputType;
821       if (Type legalOutputType = converter->convertType(outputType))
822         outputType = legalOutputType;
823 
824       newArg = buildUnresolvedArgumentMaterialization(
825           rewriter, origArg.getLoc(), replArgs, origOutputType, outputType,
826           converter, unresolvedMaterializations);
827     }
828 
829     mapping.map(origArg, newArg);
830     argReplacements.push_back(origArg);
831     info.argInfo[i] =
832         ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
833   }
834 
835   // Remove the original block from the region and return the new one.
836   insertConversion(newBlock, std::move(info));
837   return newBlock;
838 }
839 
840 void ArgConverter::insertConversion(Block *newBlock,
841                                     ConvertedBlockInfo &&info) {
842   // Get a region to insert the old block.
843   Region *region = newBlock->getParent();
844   std::unique_ptr<Region> &mappedRegion = regionMapping[region];
845   if (!mappedRegion)
846     mappedRegion = std::make_unique<Region>(region->getParentOp());
847 
848   // Move the original block to the mapped region and emplace the conversion.
849   mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
850                                    info.origBlock->getIterator());
851   convertedBlocks.insert(info.origBlock);
852   conversionInfo.insert({newBlock, std::move(info)});
853 }
854 
855 //===----------------------------------------------------------------------===//
856 // ConversionPatternRewriterImpl
857 //===----------------------------------------------------------------------===//
858 namespace mlir {
859 namespace detail {
860 struct ConversionPatternRewriterImpl {
861   ConversionPatternRewriterImpl(PatternRewriter &rewriter)
862       : argConverter(rewriter, unresolvedMaterializations) {}
863 
864   /// Cleanup and destroy any generated rewrite operations. This method is
865   /// invoked when the conversion process fails.
866   void discardRewrites();
867 
868   /// Apply all requested operation rewrites. This method is invoked when the
869   /// conversion process succeeds.
870   void applyRewrites();
871 
872   //===--------------------------------------------------------------------===//
873   // State Management
874   //===--------------------------------------------------------------------===//
875 
876   /// Return the current state of the rewriter.
877   RewriterState getCurrentState();
878 
879   /// Reset the state of the rewriter to a previously saved point.
880   void resetState(RewriterState state);
881 
882   /// Erase any blocks that were unlinked from their regions and stored in block
883   /// actions.
884   void eraseDanglingBlocks();
885 
886   /// Undo the block actions (motions, splits) one by one in reverse order until
887   /// "numActionsToKeep" actions remains.
888   void undoBlockActions(unsigned numActionsToKeep = 0);
889 
890   /// Remap the given values to those with potentially different types. Returns
891   /// success if the values could be remapped, failure otherwise. `valueDiagTag`
892   /// is the tag used when describing a value within a diagnostic, e.g.
893   /// "operand".
894   LogicalResult remapValues(StringRef valueDiagTag, Optional<Location> inputLoc,
895                             PatternRewriter &rewriter, ValueRange values,
896                             SmallVectorImpl<Value> &remapped);
897 
898   /// Returns true if the given operation is ignored, and does not need to be
899   /// converted.
900   bool isOpIgnored(Operation *op) const;
901 
902   /// Recursively marks the nested operations under 'op' as ignored. This
903   /// removes them from being considered for legalization.
904   void markNestedOpsIgnored(Operation *op);
905 
906   //===--------------------------------------------------------------------===//
907   // Type Conversion
908   //===--------------------------------------------------------------------===//
909 
910   /// Convert the signature of the given block.
911   FailureOr<Block *> convertBlockSignature(
912       Block *block, TypeConverter *converter,
913       TypeConverter::SignatureConversion *conversion = nullptr);
914 
915   /// Apply a signature conversion on the given region, using `converter` for
916   /// materializations if not null.
917   Block *
918   applySignatureConversion(Region *region,
919                            TypeConverter::SignatureConversion &conversion,
920                            TypeConverter *converter);
921 
922   /// Convert the types of block arguments within the given region.
923   FailureOr<Block *>
924   convertRegionTypes(Region *region, TypeConverter &converter,
925                      TypeConverter::SignatureConversion *entryConversion);
926 
927   /// Convert the types of non-entry block arguments within the given region.
928   LogicalResult convertNonEntryRegionTypes(
929       Region *region, TypeConverter &converter,
930       ArrayRef<TypeConverter::SignatureConversion> blockConversions = {});
931 
932   //===--------------------------------------------------------------------===//
933   // Rewriter Notification Hooks
934   //===--------------------------------------------------------------------===//
935 
936   /// PatternRewriter hook for replacing the results of an operation.
937   void notifyOpReplaced(Operation *op, ValueRange newValues);
938 
939   /// Notifies that a block is about to be erased.
940   void notifyBlockIsBeingErased(Block *block);
941 
942   /// Notifies that a block was created.
943   void notifyCreatedBlock(Block *block);
944 
945   /// Notifies that a block was split.
946   void notifySplitBlock(Block *block, Block *continuation);
947 
948   /// Notifies that `block` is being merged with `srcBlock`.
949   void notifyBlocksBeingMerged(Block *block, Block *srcBlock);
950 
951   /// Notifies that the blocks of a region are about to be moved.
952   void notifyRegionIsBeingInlinedBefore(Region &region, Region &parent,
953                                         Region::iterator before);
954 
955   /// Notifies that the blocks of a region were cloned into another.
956   void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
957                                    Location origRegionLoc);
958 
959   /// Notifies that a pattern match failed for the given reason.
960   LogicalResult
961   notifyMatchFailure(Location loc,
962                      function_ref<void(Diagnostic &)> reasonCallback);
963 
964   //===--------------------------------------------------------------------===//
965   // State
966   //===--------------------------------------------------------------------===//
967 
968   // Mapping between replaced values that differ in type. This happens when
969   // replacing a value with one of a different type.
970   ConversionValueMapping mapping;
971 
972   /// Utility used to convert block arguments.
973   ArgConverter argConverter;
974 
975   /// Ordered vector of all of the newly created operations during conversion.
976   SmallVector<Operation *> createdOps;
977 
978   /// Ordered vector of all unresolved type conversion materializations during
979   /// conversion.
980   SmallVector<UnresolvedMaterialization> unresolvedMaterializations;
981 
982   /// Ordered map of requested operation replacements.
983   llvm::MapVector<Operation *, OpReplacement> replacements;
984 
985   /// Ordered vector of any requested block argument replacements.
986   SmallVector<BlockArgument, 4> argReplacements;
987 
988   /// Ordered list of block operations (creations, splits, motions).
989   SmallVector<BlockAction, 4> blockActions;
990 
991   /// A set of operations that should no longer be considered for legalization,
992   /// but were not directly replace/erased/etc. by a pattern. These are
993   /// generally child operations of other operations who were
994   /// replaced/erased/etc. This is not meant to be an exhaustive list of all
995   /// operations, but the minimal set that can be used to detect if a given
996   /// operation should be `ignored`. For example, we may add the operations that
997   /// define non-empty regions to the set, but not any of the others. This
998   /// simplifies the amount of memory needed as we can query if the parent
999   /// operation was ignored.
1000   SetVector<Operation *> ignoredOps;
1001 
1002   /// A transaction state for each of operations that were updated in-place.
1003   SmallVector<OperationTransactionState, 4> rootUpdates;
1004 
1005   /// A vector of indices into `replacements` of operations that were replaced
1006   /// with values with different result types than the original operation, e.g.
1007   /// 1->N conversion of some kind.
1008   SmallVector<unsigned, 4> operationsWithChangedResults;
1009 
1010   /// The current type converter, or nullptr if no type converter is currently
1011   /// active.
1012   TypeConverter *currentTypeConverter = nullptr;
1013 
1014 #ifndef NDEBUG
1015   /// A set of operations that have pending updates. This tracking isn't
1016   /// strictly necessary, and is thus only active during debug builds for extra
1017   /// verification.
1018   SmallPtrSet<Operation *, 1> pendingRootUpdates;
1019 
1020   /// A logger used to emit diagnostics during the conversion process.
1021   llvm::ScopedPrinter logger{llvm::dbgs()};
1022 #endif
1023 };
1024 } // end namespace detail
1025 } // end namespace mlir
1026 
1027 /// Detach any operations nested in the given operation from their parent
1028 /// blocks, and erase the given operation. This can be used when the nested
1029 /// operations are scheduled for erasure themselves, so deleting the regions of
1030 /// the given operation together with their content would result in double-free.
1031 /// This happens, for example, when rolling back op creation in the reverse
1032 /// order and if the nested ops were created before the parent op. This function
1033 /// does not need to collect nested ops recursively because it is expected to
1034 /// also be called for each nested op when it is about to be deleted.
1035 static void detachNestedAndErase(Operation *op) {
1036   for (Region &region : op->getRegions()) {
1037     for (Block &block : region.getBlocks()) {
1038       while (!block.getOperations().empty())
1039         block.getOperations().remove(block.getOperations().begin());
1040       block.dropAllDefinedValueUses();
1041     }
1042   }
1043   op->dropAllUses();
1044   op->erase();
1045 }
1046 
1047 void ConversionPatternRewriterImpl::discardRewrites() {
1048   // Reset any operations that were updated in place.
1049   for (auto &state : rootUpdates)
1050     state.resetOperation();
1051 
1052   undoBlockActions();
1053 
1054   // Remove any newly created ops.
1055   for (UnresolvedMaterialization &materialization : unresolvedMaterializations)
1056     detachNestedAndErase(materialization.getOp());
1057   for (auto *op : llvm::reverse(createdOps))
1058     detachNestedAndErase(op);
1059 }
1060 
1061 void ConversionPatternRewriterImpl::applyRewrites() {
1062   // Apply all of the rewrites replacements requested during conversion.
1063   for (auto &repl : replacements) {
1064     for (OpResult result : repl.first->getResults())
1065       if (Value newValue = mapping.lookupOrNull(result, result.getType()))
1066         result.replaceAllUsesWith(newValue);
1067 
1068     // If this operation defines any regions, drop any pending argument
1069     // rewrites.
1070     if (repl.first->getNumRegions())
1071       argConverter.notifyOpRemoved(repl.first);
1072   }
1073 
1074   // Apply all of the requested argument replacements.
1075   for (BlockArgument arg : argReplacements) {
1076     Value repl = mapping.lookupOrNull(arg, arg.getType());
1077     if (!repl)
1078       continue;
1079 
1080     if (repl.isa<BlockArgument>()) {
1081       arg.replaceAllUsesWith(repl);
1082       continue;
1083     }
1084 
1085     // If the replacement value is an operation, we check to make sure that we
1086     // don't replace uses that are within the parent operation of the
1087     // replacement value.
1088     Operation *replOp = repl.cast<OpResult>().getOwner();
1089     Block *replBlock = replOp->getBlock();
1090     arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
1091       Operation *user = operand.getOwner();
1092       return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
1093     });
1094   }
1095 
1096   // Drop all of the unresolved materialization operations created during
1097   // conversion.
1098   for (auto &mat : unresolvedMaterializations) {
1099     mat.getOp()->dropAllUses();
1100     mat.getOp()->erase();
1101   }
1102 
1103   // In a second pass, erase all of the replaced operations in reverse. This
1104   // allows processing nested operations before their parent region is
1105   // destroyed. Because we process in reverse order, producers may be deleted
1106   // before their users (a pattern deleting a producer and then the consumer)
1107   // so we first drop all uses explicitly.
1108   for (auto &repl : llvm::reverse(replacements)) {
1109     repl.first->dropAllUses();
1110     repl.first->erase();
1111   }
1112 
1113   argConverter.applyRewrites(mapping);
1114 
1115   // Now that the ops have been erased, also erase dangling blocks.
1116   eraseDanglingBlocks();
1117 }
1118 
1119 //===----------------------------------------------------------------------===//
1120 // State Management
1121 
1122 RewriterState ConversionPatternRewriterImpl::getCurrentState() {
1123   return RewriterState(createdOps.size(), unresolvedMaterializations.size(),
1124                        replacements.size(), argReplacements.size(),
1125                        blockActions.size(), ignoredOps.size(),
1126                        rootUpdates.size());
1127 }
1128 
1129 void ConversionPatternRewriterImpl::resetState(RewriterState state) {
1130   // Reset any operations that were updated in place.
1131   for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
1132     rootUpdates[i].resetOperation();
1133   rootUpdates.resize(state.numRootUpdates);
1134 
1135   // Reset any replaced arguments.
1136   for (BlockArgument replacedArg :
1137        llvm::drop_begin(argReplacements, state.numArgReplacements))
1138     mapping.erase(replacedArg);
1139   argReplacements.resize(state.numArgReplacements);
1140 
1141   // Undo any block actions.
1142   undoBlockActions(state.numBlockActions);
1143 
1144   // Reset any replaced operations and undo any saved mappings.
1145   for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
1146     for (auto result : repl.first->getResults())
1147       mapping.erase(result);
1148   while (replacements.size() != state.numReplacements)
1149     replacements.pop_back();
1150 
1151   // Pop all of the newly inserted materializations.
1152   while (unresolvedMaterializations.size() !=
1153          state.numUnresolvedMaterializations) {
1154     UnresolvedMaterialization mat = unresolvedMaterializations.pop_back_val();
1155     UnrealizedConversionCastOp op = mat.getOp();
1156 
1157     // If this was a target materialization, drop the mapping that was inserted.
1158     if (mat.getKind() == UnresolvedMaterialization::Target) {
1159       for (Value input : op->getOperands())
1160         mapping.erase(input);
1161     }
1162     detachNestedAndErase(op);
1163   }
1164 
1165   // Pop all of the newly created operations.
1166   while (createdOps.size() != state.numCreatedOps) {
1167     detachNestedAndErase(createdOps.back());
1168     createdOps.pop_back();
1169   }
1170 
1171   // Pop all of the recorded ignored operations that are no longer valid.
1172   while (ignoredOps.size() != state.numIgnoredOperations)
1173     ignoredOps.pop_back();
1174 
1175   // Reset operations with changed results.
1176   while (!operationsWithChangedResults.empty() &&
1177          operationsWithChangedResults.back() >= state.numReplacements)
1178     operationsWithChangedResults.pop_back();
1179 }
1180 
1181 void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
1182   for (auto &action : blockActions)
1183     if (action.kind == BlockActionKind::Erase)
1184       delete action.block;
1185 }
1186 
1187 void ConversionPatternRewriterImpl::undoBlockActions(
1188     unsigned numActionsToKeep) {
1189   for (auto &action :
1190        llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
1191     switch (action.kind) {
1192     // Delete the created block.
1193     case BlockActionKind::Create: {
1194       // Unlink all of the operations within this block, they will be deleted
1195       // separately.
1196       auto &blockOps = action.block->getOperations();
1197       while (!blockOps.empty())
1198         blockOps.remove(blockOps.begin());
1199       action.block->dropAllDefinedValueUses();
1200       action.block->erase();
1201       break;
1202     }
1203     // Put the block (owned by action) back into its original position.
1204     case BlockActionKind::Erase: {
1205       auto &blockList = action.originalPosition.region->getBlocks();
1206       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1207       blockList.insert((insertAfterBlock
1208                             ? std::next(Region::iterator(insertAfterBlock))
1209                             : blockList.begin()),
1210                        action.block);
1211       break;
1212     }
1213     // Split the block at the position which was originally the end of the
1214     // destination block (owned by action), and put the instructions back into
1215     // the block used before the merge.
1216     case BlockActionKind::Merge: {
1217       Block *sourceBlock = action.mergeInfo.sourceBlock;
1218       Block::iterator splitPoint =
1219           (action.mergeInfo.destBlockLastInst
1220                ? ++Block::iterator(action.mergeInfo.destBlockLastInst)
1221                : action.block->begin());
1222       sourceBlock->getOperations().splice(sourceBlock->begin(),
1223                                           action.block->getOperations(),
1224                                           splitPoint, action.block->end());
1225       break;
1226     }
1227     // Move the block back to its original position.
1228     case BlockActionKind::Move: {
1229       Region *originalRegion = action.originalPosition.region;
1230       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1231       originalRegion->getBlocks().splice(
1232           (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
1233                             : originalRegion->end()),
1234           action.block->getParent()->getBlocks(), action.block);
1235       break;
1236     }
1237     // Merge back the block that was split out.
1238     case BlockActionKind::Split: {
1239       action.originalBlock->getOperations().splice(
1240           action.originalBlock->end(), action.block->getOperations());
1241       action.block->dropAllDefinedValueUses();
1242       action.block->erase();
1243       break;
1244     }
1245     // Undo the type conversion.
1246     case BlockActionKind::TypeConversion: {
1247       argConverter.discardRewrites(action.block);
1248       break;
1249     }
1250     }
1251   }
1252   blockActions.resize(numActionsToKeep);
1253 }
1254 
1255 LogicalResult ConversionPatternRewriterImpl::remapValues(
1256     StringRef valueDiagTag, Optional<Location> inputLoc,
1257     PatternRewriter &rewriter, ValueRange values,
1258     SmallVectorImpl<Value> &remapped) {
1259   remapped.reserve(llvm::size(values));
1260 
1261   SmallVector<Type, 1> legalTypes;
1262   for (auto it : llvm::enumerate(values)) {
1263     Value operand = it.value();
1264     Type origType = operand.getType();
1265 
1266     // If a converter was provided, get the desired legal types for this
1267     // operand.
1268     Type desiredType;
1269     if (currentTypeConverter) {
1270       // If there is no legal conversion, fail to match this pattern.
1271       legalTypes.clear();
1272       if (failed(currentTypeConverter->convertType(origType, legalTypes))) {
1273         Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
1274         return notifyMatchFailure(operandLoc, [=](Diagnostic &diag) {
1275           diag << "unable to convert type for " << valueDiagTag << " #"
1276                << it.index() << ", type was " << origType;
1277         });
1278       }
1279       // TODO: There currently isn't any mechanism to do 1->N type conversion
1280       // via the PatternRewriter replacement API, so for now we just ignore it.
1281       if (legalTypes.size() == 1)
1282         desiredType = legalTypes.front();
1283     } else {
1284       // TODO: What we should do here is just set `desiredType` to `origType`
1285       // and then handle the necessary type conversions after the conversion
1286       // process has finished. Unfortunately a lot of patterns currently rely on
1287       // receiving the new operands even if the types change, so we keep the
1288       // original behavior here for now until all of the patterns relying on
1289       // this get updated.
1290     }
1291     Value newOperand = mapping.lookupOrDefault(operand, desiredType);
1292 
1293     // Handle the case where the conversion was 1->1 and the new operand type
1294     // isn't legal.
1295     Type newOperandType = newOperand.getType();
1296     if (currentTypeConverter && desiredType && newOperandType != desiredType) {
1297       Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
1298       Value castValue = buildUnresolvedTargetMaterialization(
1299           operandLoc, newOperand, desiredType, currentTypeConverter,
1300           unresolvedMaterializations);
1301       mapping.map(mapping.lookupOrDefault(newOperand), castValue);
1302       newOperand = castValue;
1303     }
1304     remapped.push_back(newOperand);
1305   }
1306   return success();
1307 }
1308 
1309 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
1310   // Check to see if this operation was replaced or its parent ignored.
1311   return replacements.count(op) || ignoredOps.count(op->getParentOp());
1312 }
1313 
1314 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
1315   // Walk this operation and collect nested operations that define non-empty
1316   // regions. We mark such operations as 'ignored' so that we know we don't have
1317   // to convert them, or their nested ops.
1318   if (op->getNumRegions() == 0)
1319     return;
1320   op->walk([&](Operation *op) {
1321     if (llvm::any_of(op->getRegions(),
1322                      [](Region &region) { return !region.empty(); }))
1323       ignoredOps.insert(op);
1324   });
1325 }
1326 
1327 //===----------------------------------------------------------------------===//
1328 // Type Conversion
1329 
1330 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
1331     Block *block, TypeConverter *converter,
1332     TypeConverter::SignatureConversion *conversion) {
1333   FailureOr<Block *> result =
1334       conversion ? argConverter.applySignatureConversion(
1335                        block, converter, *conversion, mapping, argReplacements)
1336                  : argConverter.convertSignature(block, converter, mapping,
1337                                                  argReplacements);
1338   if (failed(result))
1339     return failure();
1340   if (Block *newBlock = result.getValue()) {
1341     if (newBlock != block)
1342       blockActions.push_back(BlockAction::getTypeConversion(newBlock));
1343   }
1344   return result;
1345 }
1346 
1347 Block *ConversionPatternRewriterImpl::applySignatureConversion(
1348     Region *region, TypeConverter::SignatureConversion &conversion,
1349     TypeConverter *converter) {
1350   if (!region->empty())
1351     return *convertBlockSignature(&region->front(), converter, &conversion);
1352   return nullptr;
1353 }
1354 
1355 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
1356     Region *region, TypeConverter &converter,
1357     TypeConverter::SignatureConversion *entryConversion) {
1358   argConverter.setConverter(region, &converter);
1359   if (region->empty())
1360     return nullptr;
1361 
1362   if (failed(convertNonEntryRegionTypes(region, converter)))
1363     return failure();
1364 
1365   FailureOr<Block *> newEntry =
1366       convertBlockSignature(&region->front(), &converter, entryConversion);
1367   return newEntry;
1368 }
1369 
1370 LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes(
1371     Region *region, TypeConverter &converter,
1372     ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1373   argConverter.setConverter(region, &converter);
1374   if (region->empty())
1375     return success();
1376 
1377   // Convert the arguments of each block within the region.
1378   int blockIdx = 0;
1379   assert((blockConversions.empty() ||
1380           blockConversions.size() == region->getBlocks().size() - 1) &&
1381          "expected either to provide no SignatureConversions at all or to "
1382          "provide a SignatureConversion for each non-entry block");
1383 
1384   for (Block &block :
1385        llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
1386     TypeConverter::SignatureConversion *blockConversion =
1387         blockConversions.empty()
1388             ? nullptr
1389             : const_cast<TypeConverter::SignatureConversion *>(
1390                   &blockConversions[blockIdx++]);
1391 
1392     if (failed(convertBlockSignature(&block, &converter, blockConversion)))
1393       return failure();
1394   }
1395   return success();
1396 }
1397 
1398 //===----------------------------------------------------------------------===//
1399 // Rewriter Notification Hooks
1400 
1401 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
1402                                                      ValueRange newValues) {
1403   assert(newValues.size() == op->getNumResults());
1404   assert(!replacements.count(op) && "operation was already replaced");
1405 
1406   // Track if any of the results changed, e.g. erased and replaced with null.
1407   bool resultChanged = false;
1408 
1409   // Create mappings for each of the new result values.
1410   Value newValue, result;
1411   for (auto it : llvm::zip(newValues, op->getResults())) {
1412     std::tie(newValue, result) = it;
1413     if (!newValue) {
1414       resultChanged = true;
1415       continue;
1416     }
1417     // Remap, and check for any result type changes.
1418     mapping.map(result, newValue);
1419     resultChanged |= (newValue.getType() != result.getType());
1420   }
1421   if (resultChanged)
1422     operationsWithChangedResults.push_back(replacements.size());
1423 
1424   // Record the requested operation replacement.
1425   replacements.insert(std::make_pair(op, OpReplacement(currentTypeConverter)));
1426 
1427   // Mark this operation as recursively ignored so that we don't need to
1428   // convert any nested operations.
1429   markNestedOpsIgnored(op);
1430 }
1431 
1432 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
1433   Region *region = block->getParent();
1434   Block *origPrevBlock = block->getPrevNode();
1435   blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
1436 }
1437 
1438 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
1439   blockActions.push_back(BlockAction::getCreate(block));
1440 }
1441 
1442 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
1443                                                      Block *continuation) {
1444   blockActions.push_back(BlockAction::getSplit(continuation, block));
1445 }
1446 
1447 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block,
1448                                                             Block *srcBlock) {
1449   blockActions.push_back(BlockAction::getMerge(block, srcBlock));
1450 }
1451 
1452 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
1453     Region &region, Region &parent, Region::iterator before) {
1454   if (region.empty())
1455     return;
1456   Block *laterBlock = &region.back();
1457   for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) {
1458     blockActions.push_back(
1459         BlockAction::getMove(laterBlock, {&region, &earlierBlock}));
1460     laterBlock = &earlierBlock;
1461   }
1462   blockActions.push_back(BlockAction::getMove(laterBlock, {&region, nullptr}));
1463 }
1464 
1465 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
1466     iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
1467   for (Block &block : blocks)
1468     blockActions.push_back(BlockAction::getCreate(&block));
1469 
1470   // Compute the conversion set for the inlined region.
1471   auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
1472 
1473   // This original region has already had its conversion set computed, so there
1474   // shouldn't be any new failures.
1475   (void)result;
1476   assert(succeeded(result) && "expected region to have no unreachable blocks");
1477 }
1478 
1479 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
1480     Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
1481   LLVM_DEBUG({
1482     Diagnostic diag(loc, DiagnosticSeverity::Remark);
1483     reasonCallback(diag);
1484     logger.startLine() << "** Failure : " << diag.str() << "\n";
1485   });
1486   return failure();
1487 }
1488 
1489 //===----------------------------------------------------------------------===//
1490 // ConversionPatternRewriter
1491 //===----------------------------------------------------------------------===//
1492 
1493 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
1494     : PatternRewriter(ctx),
1495       impl(new detail::ConversionPatternRewriterImpl(*this)) {}
1496 ConversionPatternRewriter::~ConversionPatternRewriter() {}
1497 
1498 void ConversionPatternRewriter::replaceOpWithIf(
1499     Operation *op, ValueRange newValues, bool *allUsesReplaced,
1500     llvm::unique_function<bool(OpOperand &) const> functor) {
1501   // TODO: To support this we will need to rework a bit of how replacements are
1502   // tracked, given that this isn't guranteed to replace all of the uses of an
1503   // operation. The main change is that now an operation can be replaced
1504   // multiple times, in parts. The current "set" based tracking is mainly useful
1505   // for tracking if a replaced operation should be ignored, i.e. if all of the
1506   // uses will be replaced.
1507   llvm_unreachable(
1508       "replaceOpWithIf is currently not supported by DialectConversion");
1509 }
1510 
1511 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
1512   LLVM_DEBUG({
1513     impl->logger.startLine()
1514         << "** Replace : '" << op->getName() << "'(" << op << ")\n";
1515   });
1516   impl->notifyOpReplaced(op, newValues);
1517 }
1518 
1519 void ConversionPatternRewriter::eraseOp(Operation *op) {
1520   LLVM_DEBUG({
1521     impl->logger.startLine()
1522         << "** Erase   : '" << op->getName() << "'(" << op << ")\n";
1523   });
1524   SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
1525   impl->notifyOpReplaced(op, nullRepls);
1526 }
1527 
1528 void ConversionPatternRewriter::eraseBlock(Block *block) {
1529   impl->notifyBlockIsBeingErased(block);
1530 
1531   // Mark all ops for erasure.
1532   for (Operation &op : *block)
1533     eraseOp(&op);
1534 
1535   // Unlink the block from its parent region. The block is kept in the block
1536   // action and will be actually destroyed when rewrites are applied. This
1537   // allows us to keep the operations in the block live and undo the removal by
1538   // re-inserting the block.
1539   block->getParent()->getBlocks().remove(block);
1540 }
1541 
1542 Block *ConversionPatternRewriter::applySignatureConversion(
1543     Region *region, TypeConverter::SignatureConversion &conversion,
1544     TypeConverter *converter) {
1545   return impl->applySignatureConversion(region, conversion, converter);
1546 }
1547 
1548 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
1549     Region *region, TypeConverter &converter,
1550     TypeConverter::SignatureConversion *entryConversion) {
1551   return impl->convertRegionTypes(region, converter, entryConversion);
1552 }
1553 
1554 LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes(
1555     Region *region, TypeConverter &converter,
1556     ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
1557   return impl->convertNonEntryRegionTypes(region, converter, blockConversions);
1558 }
1559 
1560 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
1561                                                            Value to) {
1562   LLVM_DEBUG({
1563     Operation *parentOp = from.getOwner()->getParentOp();
1564     impl->logger.startLine() << "** Replace Argument : '" << from
1565                              << "'(in region of '" << parentOp->getName()
1566                              << "'(" << from.getOwner()->getParentOp() << ")\n";
1567   });
1568   impl->argReplacements.push_back(from);
1569   impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
1570 }
1571 
1572 Value ConversionPatternRewriter::getRemappedValue(Value key) {
1573   SmallVector<Value> remappedValues;
1574   if (failed(impl->remapValues("value", /*inputLoc=*/llvm::None, *this, key,
1575                                remappedValues)))
1576     return nullptr;
1577   return remappedValues.front();
1578 }
1579 
1580 LogicalResult
1581 ConversionPatternRewriter::getRemappedValues(ValueRange keys,
1582                                              SmallVectorImpl<Value> &results) {
1583   if (keys.empty())
1584     return success();
1585   return impl->remapValues("value", /*inputLoc=*/llvm::None, *this, keys,
1586                            results);
1587 }
1588 
1589 void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
1590   impl->notifyCreatedBlock(block);
1591 }
1592 
1593 Block *ConversionPatternRewriter::splitBlock(Block *block,
1594                                              Block::iterator before) {
1595   auto *continuation = PatternRewriter::splitBlock(block, before);
1596   impl->notifySplitBlock(block, continuation);
1597   return continuation;
1598 }
1599 
1600 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
1601                                             ValueRange argValues) {
1602   impl->notifyBlocksBeingMerged(dest, source);
1603   assert(llvm::all_of(source->getPredecessors(),
1604                       [dest](Block *succ) { return succ == dest; }) &&
1605          "expected 'source' to have no predecessors or only 'dest'");
1606   assert(argValues.size() == source->getNumArguments() &&
1607          "incorrect # of argument replacement values");
1608   for (auto it : llvm::zip(source->getArguments(), argValues))
1609     replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
1610   dest->getOperations().splice(dest->end(), source->getOperations());
1611   eraseBlock(source);
1612 }
1613 
1614 void ConversionPatternRewriter::inlineRegionBefore(Region &region,
1615                                                    Region &parent,
1616                                                    Region::iterator before) {
1617   impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
1618   PatternRewriter::inlineRegionBefore(region, parent, before);
1619 }
1620 
1621 void ConversionPatternRewriter::cloneRegionBefore(
1622     Region &region, Region &parent, Region::iterator before,
1623     BlockAndValueMapping &mapping) {
1624   if (region.empty())
1625     return;
1626   PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
1627 
1628   // Collect the range of the cloned blocks.
1629   auto clonedBeginIt = mapping.lookup(&region.front())->getIterator();
1630   auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
1631   impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
1632 }
1633 
1634 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
1635   LLVM_DEBUG({
1636     impl->logger.startLine()
1637         << "** Insert  : '" << op->getName() << "'(" << op << ")\n";
1638   });
1639   impl->createdOps.push_back(op);
1640 }
1641 
1642 void ConversionPatternRewriter::startRootUpdate(Operation *op) {
1643 #ifndef NDEBUG
1644   impl->pendingRootUpdates.insert(op);
1645 #endif
1646   impl->rootUpdates.emplace_back(op);
1647 }
1648 
1649 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
1650   // There is nothing to do here, we only need to track the operation at the
1651   // start of the update.
1652 #ifndef NDEBUG
1653   assert(impl->pendingRootUpdates.erase(op) &&
1654          "operation did not have a pending in-place update");
1655 #endif
1656 }
1657 
1658 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
1659 #ifndef NDEBUG
1660   assert(impl->pendingRootUpdates.erase(op) &&
1661          "operation did not have a pending in-place update");
1662 #endif
1663   // Erase the last update for this operation.
1664   auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
1665   auto &rootUpdates = impl->rootUpdates;
1666   auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
1667   assert(it != rootUpdates.rend() && "no root update started on op");
1668   (*it).resetOperation();
1669   int updateIdx = std::prev(rootUpdates.rend()) - it;
1670   rootUpdates.erase(rootUpdates.begin() + updateIdx);
1671 }
1672 
1673 LogicalResult ConversionPatternRewriter::notifyMatchFailure(
1674     Operation *op, function_ref<void(Diagnostic &)> reasonCallback) {
1675   return impl->notifyMatchFailure(op->getLoc(), reasonCallback);
1676 }
1677 
1678 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
1679   return *impl;
1680 }
1681 
1682 //===----------------------------------------------------------------------===//
1683 // ConversionPattern
1684 //===----------------------------------------------------------------------===//
1685 
1686 LogicalResult
1687 ConversionPattern::matchAndRewrite(Operation *op,
1688                                    PatternRewriter &rewriter) const {
1689   auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
1690   auto &rewriterImpl = dialectRewriter.getImpl();
1691 
1692   // Track the current conversion pattern type converter in the rewriter.
1693   llvm::SaveAndRestore<TypeConverter *> currentConverterGuard(
1694       rewriterImpl.currentTypeConverter, getTypeConverter());
1695 
1696   // Remap the operands of the operation.
1697   SmallVector<Value, 4> operands;
1698   if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter,
1699                                       op->getOperands(), operands))) {
1700     return failure();
1701   }
1702   return matchAndRewrite(op, operands, dialectRewriter);
1703 }
1704 
1705 //===----------------------------------------------------------------------===//
1706 // OperationLegalizer
1707 //===----------------------------------------------------------------------===//
1708 
1709 namespace {
1710 /// A set of rewrite patterns that can be used to legalize a given operation.
1711 using LegalizationPatterns = SmallVector<const Pattern *, 1>;
1712 
1713 /// This class defines a recursive operation legalizer.
1714 class OperationLegalizer {
1715 public:
1716   using LegalizationAction = ConversionTarget::LegalizationAction;
1717 
1718   OperationLegalizer(ConversionTarget &targetInfo,
1719                      const FrozenRewritePatternSet &patterns);
1720 
1721   /// Returns true if the given operation is known to be illegal on the target.
1722   bool isIllegal(Operation *op) const;
1723 
1724   /// Attempt to legalize the given operation. Returns success if the operation
1725   /// was legalized, failure otherwise.
1726   LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
1727 
1728   /// Returns the conversion target in use by the legalizer.
1729   ConversionTarget &getTarget() { return target; }
1730 
1731 private:
1732   /// Attempt to legalize the given operation by folding it.
1733   LogicalResult legalizeWithFold(Operation *op,
1734                                  ConversionPatternRewriter &rewriter);
1735 
1736   /// Attempt to legalize the given operation by applying a pattern. Returns
1737   /// success if the operation was legalized, failure otherwise.
1738   LogicalResult legalizeWithPattern(Operation *op,
1739                                     ConversionPatternRewriter &rewriter);
1740 
1741   /// Return true if the given pattern may be applied to the given operation,
1742   /// false otherwise.
1743   bool canApplyPattern(Operation *op, const Pattern &pattern,
1744                        ConversionPatternRewriter &rewriter);
1745 
1746   /// Legalize the resultant IR after successfully applying the given pattern.
1747   LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
1748                                       ConversionPatternRewriter &rewriter,
1749                                       RewriterState &curState);
1750 
1751   /// Legalizes the actions registered during the execution of a pattern.
1752   LogicalResult legalizePatternBlockActions(Operation *op,
1753                                             ConversionPatternRewriter &rewriter,
1754                                             ConversionPatternRewriterImpl &impl,
1755                                             RewriterState &state,
1756                                             RewriterState &newState);
1757   LogicalResult legalizePatternCreatedOperations(
1758       ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1759       RewriterState &state, RewriterState &newState);
1760   LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
1761                                            ConversionPatternRewriterImpl &impl,
1762                                            RewriterState &state,
1763                                            RewriterState &newState);
1764 
1765   //===--------------------------------------------------------------------===//
1766   // Cost Model
1767   //===--------------------------------------------------------------------===//
1768 
1769   /// Build an optimistic legalization graph given the provided patterns. This
1770   /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
1771   /// patterns for operations that are not directly legal, but may be
1772   /// transitively legal for the current target given the provided patterns.
1773   void buildLegalizationGraph(
1774       LegalizationPatterns &anyOpLegalizerPatterns,
1775       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1776 
1777   /// Compute the benefit of each node within the computed legalization graph.
1778   /// This orders the patterns within 'legalizerPatterns' based upon two
1779   /// criteria:
1780   ///  1) Prefer patterns that have the lowest legalization depth, i.e.
1781   ///     represent the more direct mapping to the target.
1782   ///  2) When comparing patterns with the same legalization depth, prefer the
1783   ///     pattern with the highest PatternBenefit. This allows for users to
1784   ///     prefer specific legalizations over others.
1785   void computeLegalizationGraphBenefit(
1786       LegalizationPatterns &anyOpLegalizerPatterns,
1787       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1788 
1789   /// Compute the legalization depth when legalizing an operation of the given
1790   /// type.
1791   unsigned computeOpLegalizationDepth(
1792       OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
1793       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1794 
1795   /// Apply the conversion cost model to the given set of patterns, and return
1796   /// the smallest legalization depth of any of the patterns. See
1797   /// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
1798   unsigned applyCostModelToPatterns(
1799       LegalizationPatterns &patterns,
1800       DenseMap<OperationName, unsigned> &minOpPatternDepth,
1801       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1802 
1803   /// The current set of patterns that have been applied.
1804   SmallPtrSet<const Pattern *, 8> appliedPatterns;
1805 
1806   /// The legalization information provided by the target.
1807   ConversionTarget &target;
1808 
1809   /// The pattern applicator to use for conversions.
1810   PatternApplicator applicator;
1811 };
1812 } // namespace
1813 
1814 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo,
1815                                        const FrozenRewritePatternSet &patterns)
1816     : target(targetInfo), applicator(patterns) {
1817   // The set of patterns that can be applied to illegal operations to transform
1818   // them into legal ones.
1819   DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
1820   LegalizationPatterns anyOpLegalizerPatterns;
1821 
1822   buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
1823   computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
1824 }
1825 
1826 bool OperationLegalizer::isIllegal(Operation *op) const {
1827   // Check if the target explicitly marked this operation as illegal.
1828   if (auto info = target.getOpAction(op->getName())) {
1829     if (*info == LegalizationAction::Dynamic)
1830       return !target.isLegal(op);
1831     return *info == LegalizationAction::Illegal;
1832   }
1833 
1834   return false;
1835 }
1836 
1837 LogicalResult
1838 OperationLegalizer::legalize(Operation *op,
1839                              ConversionPatternRewriter &rewriter) {
1840 #ifndef NDEBUG
1841   const char *logLineComment =
1842       "//===-------------------------------------------===//\n";
1843 
1844   auto &logger = rewriter.getImpl().logger;
1845 #endif
1846   LLVM_DEBUG({
1847     logger.getOStream() << "\n";
1848     logger.startLine() << logLineComment;
1849     logger.startLine() << "Legalizing operation : '" << op->getName() << "'("
1850                        << op << ") {\n";
1851     logger.indent();
1852 
1853     // If the operation has no regions, just print it here.
1854     if (op->getNumRegions() == 0) {
1855       op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm());
1856       logger.getOStream() << "\n\n";
1857     }
1858   });
1859 
1860   // Check if this operation is legal on the target.
1861   if (auto legalityInfo = target.isLegal(op)) {
1862     LLVM_DEBUG({
1863       logSuccess(
1864           logger, "operation marked legal by the target{0}",
1865           legalityInfo->isRecursivelyLegal
1866               ? "; NOTE: operation is recursively legal; skipping internals"
1867               : "");
1868       logger.startLine() << logLineComment;
1869     });
1870 
1871     // If this operation is recursively legal, mark its children as ignored so
1872     // that we don't consider them for legalization.
1873     if (legalityInfo->isRecursivelyLegal)
1874       rewriter.getImpl().markNestedOpsIgnored(op);
1875     return success();
1876   }
1877 
1878   // Check to see if the operation is ignored and doesn't need to be converted.
1879   if (rewriter.getImpl().isOpIgnored(op)) {
1880     LLVM_DEBUG({
1881       logSuccess(logger, "operation marked 'ignored' during conversion");
1882       logger.startLine() << logLineComment;
1883     });
1884     return success();
1885   }
1886 
1887   // If the operation isn't legal, try to fold it in-place.
1888   // TODO: Should we always try to do this, even if the op is
1889   // already legal?
1890   if (succeeded(legalizeWithFold(op, rewriter))) {
1891     LLVM_DEBUG({
1892       logSuccess(logger, "operation was folded");
1893       logger.startLine() << logLineComment;
1894     });
1895     return success();
1896   }
1897 
1898   // Otherwise, we need to apply a legalization pattern to this operation.
1899   if (succeeded(legalizeWithPattern(op, rewriter))) {
1900     LLVM_DEBUG({
1901       logSuccess(logger, "");
1902       logger.startLine() << logLineComment;
1903     });
1904     return success();
1905   }
1906 
1907   LLVM_DEBUG({
1908     logFailure(logger, "no matched legalization pattern");
1909     logger.startLine() << logLineComment;
1910   });
1911   return failure();
1912 }
1913 
1914 LogicalResult
1915 OperationLegalizer::legalizeWithFold(Operation *op,
1916                                      ConversionPatternRewriter &rewriter) {
1917   auto &rewriterImpl = rewriter.getImpl();
1918   RewriterState curState = rewriterImpl.getCurrentState();
1919 
1920   LLVM_DEBUG({
1921     rewriterImpl.logger.startLine() << "* Fold {\n";
1922     rewriterImpl.logger.indent();
1923   });
1924 
1925   // Try to fold the operation.
1926   SmallVector<Value, 2> replacementValues;
1927   rewriter.setInsertionPoint(op);
1928   if (failed(rewriter.tryFold(op, replacementValues))) {
1929     LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
1930     return failure();
1931   }
1932 
1933   // Insert a replacement for 'op' with the folded replacement values.
1934   rewriter.replaceOp(op, replacementValues);
1935 
1936   // Recursively legalize any new constant operations.
1937   for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
1938        i != e; ++i) {
1939     Operation *cstOp = rewriterImpl.createdOps[i];
1940     if (failed(legalize(cstOp, rewriter))) {
1941       LLVM_DEBUG(logFailure(rewriterImpl.logger,
1942                             "generated constant '{0}' was illegal",
1943                             cstOp->getName()));
1944       rewriterImpl.resetState(curState);
1945       return failure();
1946     }
1947   }
1948 
1949   LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
1950   return success();
1951 }
1952 
1953 LogicalResult
1954 OperationLegalizer::legalizeWithPattern(Operation *op,
1955                                         ConversionPatternRewriter &rewriter) {
1956   auto &rewriterImpl = rewriter.getImpl();
1957 
1958   // Functor that returns if the given pattern may be applied.
1959   auto canApply = [&](const Pattern &pattern) {
1960     return canApplyPattern(op, pattern, rewriter);
1961   };
1962 
1963   // Functor that cleans up the rewriter state after a pattern failed to match.
1964   RewriterState curState = rewriterImpl.getCurrentState();
1965   auto onFailure = [&](const Pattern &pattern) {
1966     LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match"));
1967     rewriterImpl.resetState(curState);
1968     appliedPatterns.erase(&pattern);
1969   };
1970 
1971   // Functor that performs additional legalization when a pattern is
1972   // successfully applied.
1973   auto onSuccess = [&](const Pattern &pattern) {
1974     auto result = legalizePatternResult(op, pattern, rewriter, curState);
1975     appliedPatterns.erase(&pattern);
1976     if (failed(result))
1977       rewriterImpl.resetState(curState);
1978     return result;
1979   };
1980 
1981   // Try to match and rewrite a pattern on this operation.
1982   return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
1983                                     onSuccess);
1984 }
1985 
1986 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
1987                                          ConversionPatternRewriter &rewriter) {
1988   LLVM_DEBUG({
1989     auto &os = rewriter.getImpl().logger;
1990     os.getOStream() << "\n";
1991     os.startLine() << "* Pattern : '" << op->getName() << " -> (";
1992     llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream());
1993     os.getOStream() << ")' {\n";
1994     os.indent();
1995   });
1996 
1997   // Ensure that we don't cycle by not allowing the same pattern to be
1998   // applied twice in the same recursion stack if it is not known to be safe.
1999   if (!pattern.hasBoundedRewriteRecursion() &&
2000       !appliedPatterns.insert(&pattern).second) {
2001     LLVM_DEBUG(
2002         logFailure(rewriter.getImpl().logger, "pattern was already applied"));
2003     return false;
2004   }
2005   return true;
2006 }
2007 
2008 LogicalResult
2009 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
2010                                           ConversionPatternRewriter &rewriter,
2011                                           RewriterState &curState) {
2012   auto &impl = rewriter.getImpl();
2013 
2014 #ifndef NDEBUG
2015   assert(impl.pendingRootUpdates.empty() && "dangling root updates");
2016 #endif
2017 
2018   // Check that the root was either replaced or updated in place.
2019   auto replacedRoot = [&] {
2020     return llvm::any_of(
2021         llvm::drop_begin(impl.replacements, curState.numReplacements),
2022         [op](auto &it) { return it.first == op; });
2023   };
2024   auto updatedRootInPlace = [&] {
2025     return llvm::any_of(
2026         llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
2027         [op](auto &state) { return state.getOperation() == op; });
2028   };
2029   (void)replacedRoot;
2030   (void)updatedRootInPlace;
2031   assert((replacedRoot() || updatedRootInPlace()) &&
2032          "expected pattern to replace the root operation");
2033 
2034   // Legalize each of the actions registered during application.
2035   RewriterState newState = impl.getCurrentState();
2036   if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
2037                                          newState)) ||
2038       failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
2039       failed(legalizePatternCreatedOperations(rewriter, impl, curState,
2040                                               newState))) {
2041     return failure();
2042   }
2043 
2044   LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
2045   return success();
2046 }
2047 
2048 LogicalResult OperationLegalizer::legalizePatternBlockActions(
2049     Operation *op, ConversionPatternRewriter &rewriter,
2050     ConversionPatternRewriterImpl &impl, RewriterState &state,
2051     RewriterState &newState) {
2052   SmallPtrSet<Operation *, 16> operationsToIgnore;
2053 
2054   // If the pattern moved or created any blocks, make sure the types of block
2055   // arguments get legalized.
2056   for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
2057        ++i) {
2058     auto &action = impl.blockActions[i];
2059     if (action.kind == BlockActionKind::TypeConversion ||
2060         action.kind == BlockActionKind::Erase)
2061       continue;
2062     // Only check blocks outside of the current operation.
2063     Operation *parentOp = action.block->getParentOp();
2064     if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
2065       continue;
2066 
2067     // If the region of the block has a type converter, try to convert the block
2068     // directly.
2069     if (auto *converter =
2070             impl.argConverter.getConverter(action.block->getParent())) {
2071       if (failed(impl.convertBlockSignature(action.block, converter))) {
2072         LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
2073                                            "block"));
2074         return failure();
2075       }
2076       continue;
2077     }
2078 
2079     // Otherwise, check that this operation isn't one generated by this pattern.
2080     // This is because we will attempt to legalize the parent operation, and
2081     // blocks in regions created by this pattern will already be legalized later
2082     // on. If we haven't built the set yet, build it now.
2083     if (operationsToIgnore.empty()) {
2084       auto createdOps = ArrayRef<Operation *>(impl.createdOps)
2085                             .drop_front(state.numCreatedOps);
2086       operationsToIgnore.insert(createdOps.begin(), createdOps.end());
2087     }
2088 
2089     // If this operation should be considered for re-legalization, try it.
2090     if (operationsToIgnore.insert(parentOp).second &&
2091         failed(legalize(parentOp, rewriter))) {
2092       LLVM_DEBUG(logFailure(
2093           impl.logger, "operation '{0}'({1}) became illegal after block action",
2094           parentOp->getName(), parentOp));
2095       return failure();
2096     }
2097   }
2098   return success();
2099 }
2100 
2101 LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
2102     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
2103     RewriterState &state, RewriterState &newState) {
2104   for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
2105     Operation *op = impl.createdOps[i];
2106     if (failed(legalize(op, rewriter))) {
2107       LLVM_DEBUG(logFailure(impl.logger,
2108                             "generated operation '{0}'({1}) was illegal",
2109                             op->getName(), op));
2110       return failure();
2111     }
2112   }
2113   return success();
2114 }
2115 
2116 LogicalResult OperationLegalizer::legalizePatternRootUpdates(
2117     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
2118     RewriterState &state, RewriterState &newState) {
2119   for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
2120     Operation *op = impl.rootUpdates[i].getOperation();
2121     if (failed(legalize(op, rewriter))) {
2122       LLVM_DEBUG(logFailure(impl.logger,
2123                             "operation updated in-place '{0}' was illegal",
2124                             op->getName()));
2125       return failure();
2126     }
2127   }
2128   return success();
2129 }
2130 
2131 //===----------------------------------------------------------------------===//
2132 // Cost Model
2133 
2134 void OperationLegalizer::buildLegalizationGraph(
2135     LegalizationPatterns &anyOpLegalizerPatterns,
2136     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2137   // A mapping between an operation and a set of operations that can be used to
2138   // generate it.
2139   DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
2140   // A mapping between an operation and any currently invalid patterns it has.
2141   DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
2142   // A worklist of patterns to consider for legality.
2143   SetVector<const Pattern *> patternWorklist;
2144 
2145   // Build the mapping from operations to the parent ops that may generate them.
2146   applicator.walkAllPatterns([&](const Pattern &pattern) {
2147     Optional<OperationName> root = pattern.getRootKind();
2148 
2149     // If the pattern has no specific root, we can't analyze the relationship
2150     // between the root op and generated operations. Given that, add all such
2151     // patterns to the legalization set.
2152     if (!root) {
2153       anyOpLegalizerPatterns.push_back(&pattern);
2154       return;
2155     }
2156 
2157     // Skip operations that are always known to be legal.
2158     if (target.getOpAction(*root) == LegalizationAction::Legal)
2159       return;
2160 
2161     // Add this pattern to the invalid set for the root op and record this root
2162     // as a parent for any generated operations.
2163     invalidPatterns[*root].insert(&pattern);
2164     for (auto op : pattern.getGeneratedOps())
2165       parentOps[op].insert(*root);
2166 
2167     // Add this pattern to the worklist.
2168     patternWorklist.insert(&pattern);
2169   });
2170 
2171   // If there are any patterns that don't have a specific root kind, we can't
2172   // make direct assumptions about what operations will never be legalized.
2173   // Note: Technically we could, but it would require an analysis that may
2174   // recurse into itself. It would be better to perform this kind of filtering
2175   // at a higher level than here anyways.
2176   if (!anyOpLegalizerPatterns.empty()) {
2177     for (const Pattern *pattern : patternWorklist)
2178       legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2179     return;
2180   }
2181 
2182   while (!patternWorklist.empty()) {
2183     auto *pattern = patternWorklist.pop_back_val();
2184 
2185     // Check to see if any of the generated operations are invalid.
2186     if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
2187           Optional<LegalizationAction> action = target.getOpAction(op);
2188           return !legalizerPatterns.count(op) &&
2189                  (!action || action == LegalizationAction::Illegal);
2190         }))
2191       continue;
2192 
2193     // Otherwise, if all of the generated operation are valid, this op is now
2194     // legal so add all of the child patterns to the worklist.
2195     legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
2196     invalidPatterns[*pattern->getRootKind()].erase(pattern);
2197 
2198     // Add any invalid patterns of the parent operations to see if they have now
2199     // become legal.
2200     for (auto op : parentOps[*pattern->getRootKind()])
2201       patternWorklist.set_union(invalidPatterns[op]);
2202   }
2203 }
2204 
2205 void OperationLegalizer::computeLegalizationGraphBenefit(
2206     LegalizationPatterns &anyOpLegalizerPatterns,
2207     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2208   // The smallest pattern depth, when legalizing an operation.
2209   DenseMap<OperationName, unsigned> minOpPatternDepth;
2210 
2211   // For each operation that is transitively legal, compute a cost for it.
2212   for (auto &opIt : legalizerPatterns)
2213     if (!minOpPatternDepth.count(opIt.first))
2214       computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
2215                                  legalizerPatterns);
2216 
2217   // Apply the cost model to the patterns that can match any operation. Those
2218   // with a specific operation type are already resolved when computing the op
2219   // legalization depth.
2220   if (!anyOpLegalizerPatterns.empty())
2221     applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
2222                              legalizerPatterns);
2223 
2224   // Apply a cost model to the pattern applicator. We order patterns first by
2225   // depth then benefit. `legalizerPatterns` contains per-op patterns by
2226   // decreasing benefit.
2227   applicator.applyCostModel([&](const Pattern &pattern) {
2228     ArrayRef<const Pattern *> orderedPatternList;
2229     if (Optional<OperationName> rootName = pattern.getRootKind())
2230       orderedPatternList = legalizerPatterns[*rootName];
2231     else
2232       orderedPatternList = anyOpLegalizerPatterns;
2233 
2234     // If the pattern is not found, then it was removed and cannot be matched.
2235     auto *it = llvm::find(orderedPatternList, &pattern);
2236     if (it == orderedPatternList.end())
2237       return PatternBenefit::impossibleToMatch();
2238 
2239     // Patterns found earlier in the list have higher benefit.
2240     return PatternBenefit(std::distance(it, orderedPatternList.end()));
2241   });
2242 }
2243 
2244 unsigned OperationLegalizer::computeOpLegalizationDepth(
2245     OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
2246     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2247   // Check for existing depth.
2248   auto depthIt = minOpPatternDepth.find(op);
2249   if (depthIt != minOpPatternDepth.end())
2250     return depthIt->second;
2251 
2252   // If a mapping for this operation does not exist, then this operation
2253   // is always legal. Return 0 as the depth for a directly legal operation.
2254   auto opPatternsIt = legalizerPatterns.find(op);
2255   if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
2256     return 0u;
2257 
2258   // Record this initial depth in case we encounter this op again when
2259   // recursively computing the depth.
2260   minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
2261 
2262   // Apply the cost model to the operation patterns, and update the minimum
2263   // depth.
2264   unsigned minDepth = applyCostModelToPatterns(
2265       opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
2266   minOpPatternDepth[op] = minDepth;
2267   return minDepth;
2268 }
2269 
2270 unsigned OperationLegalizer::applyCostModelToPatterns(
2271     LegalizationPatterns &patterns,
2272     DenseMap<OperationName, unsigned> &minOpPatternDepth,
2273     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2274   unsigned minDepth = std::numeric_limits<unsigned>::max();
2275 
2276   // Compute the depth for each pattern within the set.
2277   SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
2278   patternsByDepth.reserve(patterns.size());
2279   for (const Pattern *pattern : patterns) {
2280     unsigned depth = 1;
2281     for (auto generatedOp : pattern->getGeneratedOps()) {
2282       unsigned generatedOpDepth = computeOpLegalizationDepth(
2283           generatedOp, minOpPatternDepth, legalizerPatterns);
2284       depth = std::max(depth, generatedOpDepth + 1);
2285     }
2286     patternsByDepth.emplace_back(pattern, depth);
2287 
2288     // Update the minimum depth of the pattern list.
2289     minDepth = std::min(minDepth, depth);
2290   }
2291 
2292   // If the operation only has one legalization pattern, there is no need to
2293   // sort them.
2294   if (patternsByDepth.size() == 1)
2295     return minDepth;
2296 
2297   // Sort the patterns by those likely to be the most beneficial.
2298   llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(),
2299                        [](const std::pair<const Pattern *, unsigned> *lhs,
2300                           const std::pair<const Pattern *, unsigned> *rhs) {
2301                          // First sort by the smaller pattern legalization
2302                          // depth.
2303                          if (lhs->second != rhs->second)
2304                            return llvm::array_pod_sort_comparator<unsigned>(
2305                                &lhs->second, &rhs->second);
2306 
2307                          // Then sort by the larger pattern benefit.
2308                          auto lhsBenefit = lhs->first->getBenefit();
2309                          auto rhsBenefit = rhs->first->getBenefit();
2310                          return llvm::array_pod_sort_comparator<PatternBenefit>(
2311                              &rhsBenefit, &lhsBenefit);
2312                        });
2313 
2314   // Update the legalization pattern to use the new sorted list.
2315   patterns.clear();
2316   for (auto &patternIt : patternsByDepth)
2317     patterns.push_back(patternIt.first);
2318   return minDepth;
2319 }
2320 
2321 //===----------------------------------------------------------------------===//
2322 // OperationConverter
2323 //===----------------------------------------------------------------------===//
2324 namespace {
2325 enum OpConversionMode {
2326   /// In this mode, the conversion will ignore failed conversions to allow
2327   /// illegal operations to co-exist in the IR.
2328   Partial,
2329 
2330   /// In this mode, all operations must be legal for the given target for the
2331   /// conversion to succeed.
2332   Full,
2333 
2334   /// In this mode, operations are analyzed for legality. No actual rewrites are
2335   /// applied to the operations on success.
2336   Analysis,
2337 };
2338 
2339 // This class converts operations to a given conversion target via a set of
2340 // rewrite patterns. The conversion behaves differently depending on the
2341 // conversion mode.
2342 struct OperationConverter {
2343   explicit OperationConverter(ConversionTarget &target,
2344                               const FrozenRewritePatternSet &patterns,
2345                               OpConversionMode mode,
2346                               DenseSet<Operation *> *trackedOps = nullptr)
2347       : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}
2348 
2349   /// Converts the given operations to the conversion target.
2350   LogicalResult convertOperations(ArrayRef<Operation *> ops);
2351 
2352 private:
2353   /// Converts an operation with the given rewriter.
2354   LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
2355 
2356   /// This method is called after the conversion process to legalize any
2357   /// remaining artifacts and complete the conversion.
2358   LogicalResult finalize(ConversionPatternRewriter &rewriter);
2359 
2360   /// Legalize the types of converted block arguments.
2361   LogicalResult
2362   legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
2363                                  ConversionPatternRewriterImpl &rewriterImpl);
2364 
2365   /// Legalize any unresolved type materializations.
2366   LogicalResult legalizeUnresolvedMaterializations(
2367       ConversionPatternRewriter &rewriter,
2368       ConversionPatternRewriterImpl &rewriterImpl,
2369       Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping);
2370 
2371   /// Legalize an operation result that was marked as "erased".
2372   LogicalResult
2373   legalizeErasedResult(Operation *op, OpResult result,
2374                        ConversionPatternRewriterImpl &rewriterImpl);
2375 
2376   /// Legalize an operation result that was replaced with a value of a different
2377   /// type.
2378   LogicalResult legalizeChangedResultType(
2379       Operation *op, OpResult result, Value newValue,
2380       TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2381       ConversionPatternRewriterImpl &rewriterImpl,
2382       const DenseMap<Value, SmallVector<Value>> &inverseMapping);
2383 
2384   /// The legalizer to use when converting operations.
2385   OperationLegalizer opLegalizer;
2386 
2387   /// The conversion mode to use when legalizing operations.
2388   OpConversionMode mode;
2389 
2390   /// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
2391   /// this is populated with ops found to be legalizable to the target.
2392   /// When mode == OpConversionMode::Partial, this is populated with ops found
2393   /// *not* to be legalizable to the target.
2394   DenseSet<Operation *> *trackedOps;
2395 };
2396 } // end anonymous namespace
2397 
2398 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
2399                                           Operation *op) {
2400   // Legalize the given operation.
2401   if (failed(opLegalizer.legalize(op, rewriter))) {
2402     // Handle the case of a failed conversion for each of the different modes.
2403     // Full conversions expect all operations to be converted.
2404     if (mode == OpConversionMode::Full)
2405       return op->emitError()
2406              << "failed to legalize operation '" << op->getName() << "'";
2407     // Partial conversions allow conversions to fail iff the operation was not
2408     // explicitly marked as illegal. If the user provided a nonlegalizableOps
2409     // set, non-legalizable ops are included.
2410     if (mode == OpConversionMode::Partial) {
2411       if (opLegalizer.isIllegal(op))
2412         return op->emitError()
2413                << "failed to legalize operation '" << op->getName()
2414                << "' that was explicitly marked illegal";
2415       if (trackedOps)
2416         trackedOps->insert(op);
2417     }
2418   } else if (mode == OpConversionMode::Analysis) {
2419     // Analysis conversions don't fail if any operations fail to legalize,
2420     // they are only interested in the operations that were successfully
2421     // legalized.
2422     trackedOps->insert(op);
2423   }
2424   return success();
2425 }
2426 
2427 LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
2428   if (ops.empty())
2429     return success();
2430   ConversionTarget &target = opLegalizer.getTarget();
2431 
2432   // Compute the set of operations and blocks to convert.
2433   SmallVector<Operation *> toConvert;
2434   for (auto *op : ops) {
2435     toConvert.emplace_back(op);
2436     for (auto &region : op->getRegions())
2437       if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
2438                                       toConvert, &target)))
2439         return failure();
2440   }
2441 
2442   // Convert each operation and discard rewrites on failure.
2443   ConversionPatternRewriter rewriter(ops.front()->getContext());
2444   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2445   for (auto *op : toConvert)
2446     if (failed(convert(rewriter, op)))
2447       return rewriterImpl.discardRewrites(), failure();
2448 
2449   // Now that all of the operations have been converted, finalize the conversion
2450   // process to ensure any lingering conversion artifacts are cleaned up and
2451   // legalized.
2452   if (failed(finalize(rewriter)))
2453     return rewriterImpl.discardRewrites(), failure();
2454 
2455   // After a successful conversion, apply rewrites if this is not an analysis
2456   // conversion.
2457   if (mode == OpConversionMode::Analysis) {
2458     rewriterImpl.discardRewrites();
2459   } else {
2460     rewriterImpl.applyRewrites();
2461 
2462     // It is possible for a later pattern to erase an op that was originally
2463     // identified as illegal and added to the trackedOps, remove it now after
2464     // replacements have been computed.
2465     if (trackedOps)
2466       for (auto &repl : rewriterImpl.replacements)
2467         trackedOps->erase(repl.first);
2468   }
2469   return success();
2470 }
2471 
2472 LogicalResult
2473 OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
2474   Optional<DenseMap<Value, SmallVector<Value>>> inverseMapping;
2475   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2476   if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl,
2477                                                 inverseMapping)) ||
2478       failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
2479     return failure();
2480 
2481   if (rewriterImpl.operationsWithChangedResults.empty())
2482     return success();
2483 
2484   // Process requested operation replacements.
2485   for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
2486        i != e; ++i) {
2487     unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
2488     auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
2489     for (OpResult result : repl.first->getResults()) {
2490       Value newValue = rewriterImpl.mapping.lookupOrNull(result);
2491 
2492       // If the operation result was replaced with null, all of the uses of this
2493       // value should be replaced.
2494       if (!newValue) {
2495         if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
2496           return failure();
2497         continue;
2498       }
2499 
2500       // Otherwise, check to see if the type of the result changed.
2501       if (result.getType() == newValue.getType())
2502         continue;
2503 
2504       // Compute the inverse mapping only if it is really needed.
2505       if (!inverseMapping)
2506         inverseMapping = rewriterImpl.mapping.getInverse();
2507 
2508       // Legalize this result.
2509       rewriter.setInsertionPoint(repl.first);
2510       if (failed(legalizeChangedResultType(repl.first, result, newValue,
2511                                            repl.second.converter, rewriter,
2512                                            rewriterImpl, *inverseMapping)))
2513         return failure();
2514 
2515       // Update the end iterator for this loop in the case it was updated
2516       // when legalizing generated conversion operations.
2517       e = rewriterImpl.operationsWithChangedResults.size();
2518     }
2519   }
2520   return success();
2521 }
2522 
2523 LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
2524     ConversionPatternRewriter &rewriter,
2525     ConversionPatternRewriterImpl &rewriterImpl) {
2526   // Functor used to check if all users of a value will be dead after
2527   // conversion.
2528   auto findLiveUser = [&](Value val) {
2529     auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
2530       return rewriterImpl.isOpIgnored(user);
2531     });
2532     return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
2533   };
2534   return rewriterImpl.argConverter.materializeLiveConversions(
2535       rewriterImpl.mapping, rewriter, findLiveUser);
2536 }
2537 
2538 /// Replace the results of a materialization operation with the given values.
2539 static void
2540 replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl,
2541                        ResultRange matResults, ValueRange values,
2542                        DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2543   matResults.replaceAllUsesWith(values);
2544 
2545   // For each of the materialization results, update the inverse mappings to
2546   // point to the replacement values.
2547   for (auto it : llvm::zip(matResults, values)) {
2548     Value matResult, newValue;
2549     std::tie(matResult, newValue) = it;
2550     auto inverseMapIt = inverseMapping.find(matResult);
2551     if (inverseMapIt == inverseMapping.end())
2552       continue;
2553 
2554     // Update the reverse mapping, or remove the mapping if we couldn't update
2555     // it. Not being able to update signals that the mapping would have become
2556     // circular (i.e. %foo -> newValue -> %foo), which may occur as values are
2557     // propagated through temporary materializations. We simply drop the
2558     // mapping, and let the post-conversion replacement logic handle updating
2559     // uses.
2560     for (Value inverseMapVal : inverseMapIt->second)
2561       if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue))
2562         rewriterImpl.mapping.erase(inverseMapVal);
2563   }
2564 }
2565 
2566 /// Compute all of the unresolved materializations that will persist beyond the
2567 /// conversion process, and require inserting a proper user materialization for.
2568 static void computeNecessaryMaterializations(
2569     DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
2570     ConversionPatternRewriter &rewriter,
2571     ConversionPatternRewriterImpl &rewriterImpl,
2572     DenseMap<Value, SmallVector<Value>> &inverseMapping,
2573     SetVector<UnresolvedMaterialization *> &necessaryMaterializations) {
2574   auto isLive = [&](Value value) {
2575     auto findFn = [&](Operation *user) {
2576       auto matIt = materializationOps.find(user);
2577       if (matIt != materializationOps.end())
2578         return !necessaryMaterializations.count(matIt->second);
2579       return rewriterImpl.isOpIgnored(user);
2580     };
2581     return llvm::find_if_not(value.getUsers(), findFn) != value.user_end();
2582   };
2583 
2584   llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue =
2585       [&](Value invalidRoot, Value value, Type type) {
2586         // Check to see if the input operation was remapped to a variant of the
2587         // output.
2588         Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
2589         if (remappedValue.getType() == type && remappedValue != invalidRoot)
2590           return remappedValue;
2591 
2592         // Check to see if the input is a materialization operation that
2593         // provides an inverse conversion. We just check blindly for
2594         // UnrealizedConversionCastOp here, but it has no effect on correctness.
2595         auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>();
2596         if (inputCastOp && inputCastOp->getNumOperands() == 1)
2597           return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0),
2598                                      type);
2599 
2600         return Value();
2601       };
2602 
2603   SetVector<UnresolvedMaterialization *> worklist;
2604   for (auto &mat : rewriterImpl.unresolvedMaterializations) {
2605     materializationOps.try_emplace(mat.getOp(), &mat);
2606     worklist.insert(&mat);
2607   }
2608   while (!worklist.empty()) {
2609     UnresolvedMaterialization *mat = worklist.pop_back_val();
2610     UnrealizedConversionCastOp op = mat->getOp();
2611 
2612     // We currently only handle target materializations here.
2613     assert(op->getNumResults() == 1 && "unexpected materialization type");
2614     OpResult opResult = op->getOpResult(0);
2615     Type outputType = opResult.getType();
2616     Operation::operand_range inputOperands = op.getOperands();
2617 
2618     // Try to forward propagate operands for user conversion casts that result
2619     // in the input types of the current cast.
2620     for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) {
2621       auto castOp = dyn_cast<UnrealizedConversionCastOp>(user);
2622       if (!castOp)
2623         continue;
2624       if (castOp->getResultTypes() == inputOperands.getTypes()) {
2625         replaceMaterialization(rewriterImpl, opResult, inputOperands,
2626                                inverseMapping);
2627         necessaryMaterializations.remove(materializationOps.lookup(user));
2628       }
2629     }
2630 
2631     // Try to avoid materializing a resolved materialization if possible.
2632     // Handle the case of a 1-1 materialization.
2633     if (inputOperands.size() == 1) {
2634       // Check to see if the input operation was remapped to a variant of the
2635       // output.
2636       Value remappedValue =
2637           lookupRemappedValue(opResult, inputOperands[0], outputType);
2638       if (remappedValue && remappedValue != opResult) {
2639         replaceMaterialization(rewriterImpl, opResult, remappedValue,
2640                                inverseMapping);
2641         necessaryMaterializations.remove(mat);
2642         continue;
2643       }
2644     } else {
2645       // TODO: Avoid materializing other types of conversions here.
2646     }
2647 
2648     // Check to see if this is an argument materialization.
2649     auto isBlockArg = [](Value v) { return v.isa<BlockArgument>(); };
2650     if (llvm::any_of(op->getOperands(), isBlockArg) ||
2651         llvm::any_of(inverseMapping[op->getResult(0)], isBlockArg)) {
2652       mat->setKind(UnresolvedMaterialization::Argument);
2653     }
2654 
2655     // If the materialization does not have any live users, we don't need to
2656     // generate a user materialization for it.
2657     // FIXME: For argument materializations, we currently need to check if any
2658     // of the inverse mapped values are used because some patterns expect blind
2659     // value replacement even if the types differ in some cases. When those
2660     // patterns are fixed, we can drop the argument special case here.
2661     bool isMaterializationLive = isLive(opResult);
2662     if (mat->getKind() == UnresolvedMaterialization::Argument)
2663       isMaterializationLive |= llvm::any_of(inverseMapping[opResult], isLive);
2664     if (!isMaterializationLive)
2665       continue;
2666     if (!necessaryMaterializations.insert(mat))
2667       continue;
2668 
2669     // Reprocess input materializations to see if they have an updated status.
2670     for (Value input : inputOperands) {
2671       if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) {
2672         if (auto *mat = materializationOps.lookup(parentOp))
2673           worklist.insert(mat);
2674       }
2675     }
2676   }
2677 }
2678 
2679 /// Legalize the given unresolved materialization. Returns success if the
2680 /// materialization was legalized, failure otherise.
2681 static LogicalResult legalizeUnresolvedMaterialization(
2682     UnresolvedMaterialization &mat,
2683     DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps,
2684     ConversionPatternRewriter &rewriter,
2685     ConversionPatternRewriterImpl &rewriterImpl,
2686     DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2687   auto findLiveUser = [&](auto &&users) {
2688     auto liveUserIt = llvm::find_if_not(
2689         users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); });
2690     return liveUserIt == users.end() ? nullptr : *liveUserIt;
2691   };
2692 
2693   llvm::unique_function<Value(Value, Type)> lookupRemappedValue =
2694       [&](Value value, Type type) {
2695         // Check to see if the input operation was remapped to a variant of the
2696         // output.
2697         Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
2698         if (remappedValue.getType() == type)
2699           return remappedValue;
2700         return Value();
2701       };
2702 
2703   UnrealizedConversionCastOp op = mat.getOp();
2704   if (!rewriterImpl.ignoredOps.insert(op))
2705     return success();
2706 
2707   // We currently only handle target materializations here.
2708   OpResult opResult = op->getOpResult(0);
2709   Operation::operand_range inputOperands = op.getOperands();
2710   Type outputType = opResult.getType();
2711 
2712   // If any input to this materialization is another materialization, resolve
2713   // the input first.
2714   for (Value value : op->getOperands()) {
2715     auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>();
2716     if (!valueCast)
2717       continue;
2718 
2719     auto matIt = materializationOps.find(valueCast);
2720     if (matIt != materializationOps.end())
2721       if (failed(legalizeUnresolvedMaterialization(
2722               *matIt->second, materializationOps, rewriter, rewriterImpl,
2723               inverseMapping)))
2724         return failure();
2725   }
2726 
2727   // Perform a last ditch attempt to avoid materializing a resolved
2728   // materialization if possible.
2729   // Handle the case of a 1-1 materialization.
2730   if (inputOperands.size() == 1) {
2731     // Check to see if the input operation was remapped to a variant of the
2732     // output.
2733     Value remappedValue = lookupRemappedValue(inputOperands[0], outputType);
2734     if (remappedValue && remappedValue != opResult) {
2735       replaceMaterialization(rewriterImpl, opResult, remappedValue,
2736                              inverseMapping);
2737       return success();
2738     }
2739   } else {
2740     // TODO: Avoid materializing other types of conversions here.
2741   }
2742 
2743   // Try to materialize the conversion.
2744   if (TypeConverter *converter = mat.getConverter()) {
2745     // FIXME: Determine a suitable insertion location when there are multiple
2746     // inputs.
2747     if (inputOperands.size() == 1)
2748       rewriter.setInsertionPointAfterValue(inputOperands.front());
2749     else
2750       rewriter.setInsertionPoint(op);
2751 
2752     Value newMaterialization;
2753     switch (mat.getKind()) {
2754     case UnresolvedMaterialization::Argument:
2755       // Try to materialize an argument conversion.
2756       // FIXME: The current argument materialization hook expects the original
2757       // output type, even though it doesn't use that as the actual output type
2758       // of the generated IR. The output type is just used as an indicator of
2759       // the type of materialization to do. This behavior is really awkward in
2760       // that it diverges from the behavior of the other hooks, and can be
2761       // easily misunderstood. We should clean up the argument hooks to better
2762       // represent the desired invariants we actually care about.
2763       newMaterialization = converter->materializeArgumentConversion(
2764           rewriter, op->getLoc(), mat.getOrigOutputType(), inputOperands);
2765       if (newMaterialization)
2766         break;
2767 
2768       // If an argument materialization failed, fallback to trying a target
2769       // materialization.
2770       LLVM_FALLTHROUGH;
2771     case UnresolvedMaterialization::Target:
2772       newMaterialization = converter->materializeTargetConversion(
2773           rewriter, op->getLoc(), outputType, inputOperands);
2774       break;
2775     }
2776     if (newMaterialization) {
2777       replaceMaterialization(rewriterImpl, opResult, newMaterialization,
2778                              inverseMapping);
2779       return success();
2780     }
2781   }
2782 
2783   InFlightDiagnostic diag = op->emitError()
2784                             << "failed to legalize unresolved materialization "
2785                                "from "
2786                             << inputOperands.getTypes() << " to " << outputType
2787                             << " that remained live after conversion";
2788   if (Operation *liveUser = findLiveUser(op->getUsers())) {
2789     diag.attachNote(liveUser->getLoc())
2790         << "see existing live user here: " << *liveUser;
2791   }
2792   return failure();
2793 }
2794 
2795 LogicalResult OperationConverter::legalizeUnresolvedMaterializations(
2796     ConversionPatternRewriter &rewriter,
2797     ConversionPatternRewriterImpl &rewriterImpl,
2798     Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) {
2799   if (rewriterImpl.unresolvedMaterializations.empty())
2800     return success();
2801   inverseMapping = rewriterImpl.mapping.getInverse();
2802 
2803   // As an initial step, compute all of the inserted materializations that we
2804   // expect to persist beyond the conversion process.
2805   DenseMap<Operation *, UnresolvedMaterialization *> materializationOps;
2806   SetVector<UnresolvedMaterialization *> necessaryMaterializations;
2807   computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl,
2808                                    *inverseMapping, necessaryMaterializations);
2809 
2810   // Once computed, legalize any necessary materializations.
2811   for (auto *mat : necessaryMaterializations) {
2812     if (failed(legalizeUnresolvedMaterialization(
2813             *mat, materializationOps, rewriter, rewriterImpl, *inverseMapping)))
2814       return failure();
2815   }
2816   return success();
2817 }
2818 
2819 LogicalResult OperationConverter::legalizeErasedResult(
2820     Operation *op, OpResult result,
2821     ConversionPatternRewriterImpl &rewriterImpl) {
2822   // If the operation result was replaced with null, all of the uses of this
2823   // value should be replaced.
2824   auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
2825     return rewriterImpl.isOpIgnored(user);
2826   });
2827   if (liveUserIt != result.user_end()) {
2828     InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
2829                               << op->getName() << "' marked as erased";
2830     diag.attachNote(liveUserIt->getLoc())
2831         << "found live user of result #" << result.getResultNumber() << ": "
2832         << *liveUserIt;
2833     return failure();
2834   }
2835   return success();
2836 }
2837 
2838 /// Finds a user of the given value, or of any other value that the given value
2839 /// replaced, that was not replaced in the conversion process.
2840 static Operation *findLiveUserOfReplaced(
2841     Value initialValue, ConversionPatternRewriterImpl &rewriterImpl,
2842     const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2843   SmallVector<Value> worklist(1, initialValue);
2844   while (!worklist.empty()) {
2845     Value value = worklist.pop_back_val();
2846 
2847     // Walk the users of this value to see if there are any live users that
2848     // weren't replaced during conversion.
2849     auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
2850       return rewriterImpl.isOpIgnored(user);
2851     });
2852     if (liveUserIt != value.user_end())
2853       return *liveUserIt;
2854     auto mapIt = inverseMapping.find(value);
2855     if (mapIt != inverseMapping.end())
2856       worklist.append(mapIt->second);
2857   }
2858   return nullptr;
2859 }
2860 
2861 LogicalResult OperationConverter::legalizeChangedResultType(
2862     Operation *op, OpResult result, Value newValue,
2863     TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2864     ConversionPatternRewriterImpl &rewriterImpl,
2865     const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
2866   Operation *liveUser =
2867       findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
2868   if (!liveUser)
2869     return success();
2870 
2871   // Functor used to emit a conversion error for a failed materialization.
2872   auto emitConversionError = [&] {
2873     InFlightDiagnostic diag = op->emitError()
2874                               << "failed to materialize conversion for result #"
2875                               << result.getResultNumber() << " of operation '"
2876                               << op->getName()
2877                               << "' that remained live after conversion";
2878     diag.attachNote(liveUser->getLoc())
2879         << "see existing live user here: " << *liveUser;
2880     return failure();
2881   };
2882 
2883   // If the replacement has a type converter, attempt to materialize a
2884   // conversion back to the original type.
2885   if (!replConverter)
2886     return emitConversionError();
2887 
2888   // Materialize a conversion for this live result value.
2889   Type resultType = result.getType();
2890   Value convertedValue = replConverter->materializeSourceConversion(
2891       rewriter, op->getLoc(), resultType, newValue);
2892   if (!convertedValue)
2893     return emitConversionError();
2894 
2895   rewriterImpl.mapping.map(result, convertedValue);
2896   return success();
2897 }
2898 
2899 //===----------------------------------------------------------------------===//
2900 // Type Conversion
2901 //===----------------------------------------------------------------------===//
2902 
2903 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
2904                                                    ArrayRef<Type> types) {
2905   assert(!types.empty() && "expected valid types");
2906   remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
2907   addInputs(types);
2908 }
2909 
2910 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
2911   assert(!types.empty() &&
2912          "1->0 type remappings don't need to be added explicitly");
2913   argTypes.append(types.begin(), types.end());
2914 }
2915 
2916 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2917                                                     unsigned newInputNo,
2918                                                     unsigned newInputCount) {
2919   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2920   assert(newInputCount != 0 && "expected valid input count");
2921   remappedInputs[origInputNo] =
2922       InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
2923 }
2924 
2925 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2926                                                     Value replacementValue) {
2927   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2928   remappedInputs[origInputNo] =
2929       InputMapping{origInputNo, /*size=*/0, replacementValue};
2930 }
2931 
2932 LogicalResult TypeConverter::convertType(Type t,
2933                                          SmallVectorImpl<Type> &results) {
2934   auto existingIt = cachedDirectConversions.find(t);
2935   if (existingIt != cachedDirectConversions.end()) {
2936     if (existingIt->second)
2937       results.push_back(existingIt->second);
2938     return success(existingIt->second != nullptr);
2939   }
2940   auto multiIt = cachedMultiConversions.find(t);
2941   if (multiIt != cachedMultiConversions.end()) {
2942     results.append(multiIt->second.begin(), multiIt->second.end());
2943     return success();
2944   }
2945 
2946   // Walk the added converters in reverse order to apply the most recently
2947   // registered first.
2948   size_t currentCount = results.size();
2949   for (ConversionCallbackFn &converter : llvm::reverse(conversions)) {
2950     if (Optional<LogicalResult> result = converter(t, results)) {
2951       if (!succeeded(*result)) {
2952         cachedDirectConversions.try_emplace(t, nullptr);
2953         return failure();
2954       }
2955       auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
2956       if (newTypes.size() == 1)
2957         cachedDirectConversions.try_emplace(t, newTypes.front());
2958       else
2959         cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
2960       return success();
2961     }
2962   }
2963   return failure();
2964 }
2965 
2966 Type TypeConverter::convertType(Type t) {
2967   // Use the multi-type result version to convert the type.
2968   SmallVector<Type, 1> results;
2969   if (failed(convertType(t, results)))
2970     return nullptr;
2971 
2972   // Check to ensure that only one type was produced.
2973   return results.size() == 1 ? results.front() : nullptr;
2974 }
2975 
2976 LogicalResult TypeConverter::convertTypes(TypeRange types,
2977                                           SmallVectorImpl<Type> &results) {
2978   for (Type type : types)
2979     if (failed(convertType(type, results)))
2980       return failure();
2981   return success();
2982 }
2983 
2984 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; }
2985 bool TypeConverter::isLegal(Operation *op) {
2986   return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
2987 }
2988 
2989 bool TypeConverter::isLegal(Region *region) {
2990   return llvm::all_of(*region, [this](Block &block) {
2991     return isLegal(block.getArgumentTypes());
2992   });
2993 }
2994 
2995 bool TypeConverter::isSignatureLegal(FunctionType ty) {
2996   return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
2997 }
2998 
2999 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
3000                                                  SignatureConversion &result) {
3001   // Try to convert the given input type.
3002   SmallVector<Type, 1> convertedTypes;
3003   if (failed(convertType(type, convertedTypes)))
3004     return failure();
3005 
3006   // If this argument is being dropped, there is nothing left to do.
3007   if (convertedTypes.empty())
3008     return success();
3009 
3010   // Otherwise, add the new inputs.
3011   result.addInputs(inputNo, convertedTypes);
3012   return success();
3013 }
3014 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types,
3015                                                   SignatureConversion &result,
3016                                                   unsigned origInputOffset) {
3017   for (unsigned i = 0, e = types.size(); i != e; ++i)
3018     if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
3019       return failure();
3020   return success();
3021 }
3022 
3023 Value TypeConverter::materializeConversion(
3024     MutableArrayRef<MaterializationCallbackFn> materializations,
3025     OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) {
3026   for (MaterializationCallbackFn &fn : llvm::reverse(materializations))
3027     if (Optional<Value> result = fn(builder, resultType, inputs, loc))
3028       return result.getValue();
3029   return nullptr;
3030 }
3031 
3032 auto TypeConverter::convertBlockSignature(Block *block)
3033     -> Optional<SignatureConversion> {
3034   SignatureConversion conversion(block->getNumArguments());
3035   if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
3036     return llvm::None;
3037   return conversion;
3038 }
3039 
3040 //===----------------------------------------------------------------------===//
3041 // FunctionLikeSignatureConversion
3042 //===----------------------------------------------------------------------===//
3043 
3044 /// Create a default conversion pattern that rewrites the type signature of a
3045 /// FunctionLike op. This only supports FunctionLike ops which use FunctionType
3046 /// to represent their type.
3047 namespace {
3048 struct FunctionLikeSignatureConversion : public ConversionPattern {
3049   FunctionLikeSignatureConversion(StringRef functionLikeOpName,
3050                                   MLIRContext *ctx, TypeConverter &converter)
3051       : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
3052 
3053   /// Hook to implement combined matching and rewriting for FunctionLike ops.
3054   LogicalResult
3055   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
3056                   ConversionPatternRewriter &rewriter) const override {
3057     FunctionType type = function_like_impl::getFunctionType(op);
3058 
3059     // Convert the original function types.
3060     TypeConverter::SignatureConversion result(type.getNumInputs());
3061     SmallVector<Type, 1> newResults;
3062     if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) ||
3063         failed(typeConverter->convertTypes(type.getResults(), newResults)) ||
3064         failed(rewriter.convertRegionTypes(
3065             &function_like_impl::getFunctionBody(op), *typeConverter, &result)))
3066       return failure();
3067 
3068     // Update the function signature in-place.
3069     auto newType = FunctionType::get(rewriter.getContext(),
3070                                      result.getConvertedTypes(), newResults);
3071 
3072     rewriter.updateRootInPlace(
3073         op, [&] { function_like_impl::setFunctionType(op, newType); });
3074 
3075     return success();
3076   }
3077 };
3078 } // end anonymous namespace
3079 
3080 void mlir::populateFunctionLikeTypeConversionPattern(
3081     StringRef functionLikeOpName, RewritePatternSet &patterns,
3082     TypeConverter &converter) {
3083   patterns.add<FunctionLikeSignatureConversion>(
3084       functionLikeOpName, patterns.getContext(), converter);
3085 }
3086 
3087 void mlir::populateFuncOpTypeConversionPattern(RewritePatternSet &patterns,
3088                                                TypeConverter &converter) {
3089   populateFunctionLikeTypeConversionPattern<FuncOp>(patterns, converter);
3090 }
3091 
3092 //===----------------------------------------------------------------------===//
3093 // ConversionTarget
3094 //===----------------------------------------------------------------------===//
3095 
3096 void ConversionTarget::setOpAction(OperationName op,
3097                                    LegalizationAction action) {
3098   legalOperations[op].action = action;
3099 }
3100 
3101 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
3102                                         LegalizationAction action) {
3103   for (StringRef dialect : dialectNames)
3104     legalDialects[dialect] = action;
3105 }
3106 
3107 auto ConversionTarget::getOpAction(OperationName op) const
3108     -> Optional<LegalizationAction> {
3109   Optional<LegalizationInfo> info = getOpInfo(op);
3110   return info ? info->action : Optional<LegalizationAction>();
3111 }
3112 
3113 auto ConversionTarget::isLegal(Operation *op) const
3114     -> Optional<LegalOpDetails> {
3115   Optional<LegalizationInfo> info = getOpInfo(op->getName());
3116   if (!info)
3117     return llvm::None;
3118 
3119   // Returns true if this operation instance is known to be legal.
3120   auto isOpLegal = [&] {
3121     // Handle dynamic legality either with the provided legality function.
3122     if (info->action == LegalizationAction::Dynamic) {
3123       Optional<bool> result = info->legalityFn(op);
3124       if (result)
3125         return *result;
3126     }
3127 
3128     // Otherwise, the operation is only legal if it was marked 'Legal'.
3129     return info->action == LegalizationAction::Legal;
3130   };
3131   if (!isOpLegal())
3132     return llvm::None;
3133 
3134   // This operation is legal, compute any additional legality information.
3135   LegalOpDetails legalityDetails;
3136   if (info->isRecursivelyLegal) {
3137     auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
3138     if (legalityFnIt != opRecursiveLegalityFns.end()) {
3139       legalityDetails.isRecursivelyLegal =
3140           legalityFnIt->second(op).getValueOr(true);
3141     } else {
3142       legalityDetails.isRecursivelyLegal = true;
3143     }
3144   }
3145   return legalityDetails;
3146 }
3147 
3148 static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks(
3149     ConversionTarget::DynamicLegalityCallbackFn oldCallback,
3150     ConversionTarget::DynamicLegalityCallbackFn newCallback) {
3151   if (!oldCallback)
3152     return newCallback;
3153 
3154   auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)](
3155                    Operation *op) -> Optional<bool> {
3156     if (Optional<bool> result = newCl(op))
3157       return *result;
3158 
3159     return oldCl(op);
3160   };
3161   return chain;
3162 }
3163 
3164 void ConversionTarget::setLegalityCallback(
3165     OperationName name, const DynamicLegalityCallbackFn &callback) {
3166   assert(callback && "expected valid legality callback");
3167   auto infoIt = legalOperations.find(name);
3168   assert(infoIt != legalOperations.end() &&
3169          infoIt->second.action == LegalizationAction::Dynamic &&
3170          "expected operation to already be marked as dynamically legal");
3171   infoIt->second.legalityFn =
3172       composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback);
3173 }
3174 
3175 void ConversionTarget::markOpRecursivelyLegal(
3176     OperationName name, const DynamicLegalityCallbackFn &callback) {
3177   auto infoIt = legalOperations.find(name);
3178   assert(infoIt != legalOperations.end() &&
3179          infoIt->second.action != LegalizationAction::Illegal &&
3180          "expected operation to already be marked as legal");
3181   infoIt->second.isRecursivelyLegal = true;
3182   if (callback)
3183     opRecursiveLegalityFns[name] = composeLegalityCallbacks(
3184         std::move(opRecursiveLegalityFns[name]), callback);
3185   else
3186     opRecursiveLegalityFns.erase(name);
3187 }
3188 
3189 void ConversionTarget::setLegalityCallback(
3190     ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
3191   assert(callback && "expected valid legality callback");
3192   for (StringRef dialect : dialects)
3193     dialectLegalityFns[dialect] = composeLegalityCallbacks(
3194         std::move(dialectLegalityFns[dialect]), callback);
3195 }
3196 
3197 void ConversionTarget::setLegalityCallback(
3198     const DynamicLegalityCallbackFn &callback) {
3199   assert(callback && "expected valid legality callback");
3200   unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback);
3201 }
3202 
3203 auto ConversionTarget::getOpInfo(OperationName op) const
3204     -> Optional<LegalizationInfo> {
3205   // Check for info for this specific operation.
3206   auto it = legalOperations.find(op);
3207   if (it != legalOperations.end())
3208     return it->second;
3209   // Check for info for the parent dialect.
3210   auto dialectIt = legalDialects.find(op.getDialectNamespace());
3211   if (dialectIt != legalDialects.end()) {
3212     DynamicLegalityCallbackFn callback;
3213     auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
3214     if (dialectFn != dialectLegalityFns.end())
3215       callback = dialectFn->second;
3216     return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
3217                             callback};
3218   }
3219   // Otherwise, check if we mark unknown operations as dynamic.
3220   if (unknownLegalityFn)
3221     return LegalizationInfo{LegalizationAction::Dynamic,
3222                             /*isRecursivelyLegal=*/false, unknownLegalityFn};
3223   return llvm::None;
3224 }
3225 
3226 //===----------------------------------------------------------------------===//
3227 // Op Conversion Entry Points
3228 //===----------------------------------------------------------------------===//
3229 
3230 //===----------------------------------------------------------------------===//
3231 // Partial Conversion
3232 
3233 LogicalResult
3234 mlir::applyPartialConversion(ArrayRef<Operation *> ops,
3235                              ConversionTarget &target,
3236                              const FrozenRewritePatternSet &patterns,
3237                              DenseSet<Operation *> *unconvertedOps) {
3238   OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
3239                                  unconvertedOps);
3240   return opConverter.convertOperations(ops);
3241 }
3242 LogicalResult
3243 mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
3244                              const FrozenRewritePatternSet &patterns,
3245                              DenseSet<Operation *> *unconvertedOps) {
3246   return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
3247                                 unconvertedOps);
3248 }
3249 
3250 //===----------------------------------------------------------------------===//
3251 // Full Conversion
3252 
3253 LogicalResult
3254 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
3255                           const FrozenRewritePatternSet &patterns) {
3256   OperationConverter opConverter(target, patterns, OpConversionMode::Full);
3257   return opConverter.convertOperations(ops);
3258 }
3259 LogicalResult
3260 mlir::applyFullConversion(Operation *op, ConversionTarget &target,
3261                           const FrozenRewritePatternSet &patterns) {
3262   return applyFullConversion(llvm::makeArrayRef(op), target, patterns);
3263 }
3264 
3265 //===----------------------------------------------------------------------===//
3266 // Analysis Conversion
3267 
3268 LogicalResult
3269 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
3270                               ConversionTarget &target,
3271                               const FrozenRewritePatternSet &patterns,
3272                               DenseSet<Operation *> &convertedOps) {
3273   OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
3274                                  &convertedOps);
3275   return opConverter.convertOperations(ops);
3276 }
3277 LogicalResult
3278 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
3279                               const FrozenRewritePatternSet &patterns,
3280                               DenseSet<Operation *> &convertedOps) {
3281   return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
3282                                  convertedOps);
3283 }
3284