1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Transforms/DialectConversion.h"
10 #include "mlir/IR/Block.h"
11 #include "mlir/IR/BlockAndValueMapping.h"
12 #include "mlir/IR/Builders.h"
13 #include "mlir/IR/BuiltinOps.h"
14 #include "mlir/IR/FunctionSupport.h"
15 #include "mlir/Rewrite/PatternApplicator.h"
16 #include "mlir/Transforms/Utils.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/FormatVariadic.h"
21 #include "llvm/Support/SaveAndRestore.h"
22 #include "llvm/Support/ScopedPrinter.h"
23 
24 using namespace mlir;
25 using namespace mlir::detail;
26 
27 #define DEBUG_TYPE "dialect-conversion"
28 
29 /// Recursively collect all of the operations to convert from within 'region'.
30 /// If 'target' is nonnull, operations that are recursively legal have their
31 /// regions pre-filtered to avoid considering them for legalization.
32 static LogicalResult
33 computeConversionSet(iterator_range<Region::iterator> region,
34                      Location regionLoc, std::vector<Operation *> &toConvert,
35                      ConversionTarget *target = nullptr) {
36   if (llvm::empty(region))
37     return success();
38 
39   // Traverse starting from the entry block.
40   SmallVector<Block *, 16> worklist(1, &*region.begin());
41   DenseSet<Block *> visitedBlocks;
42   visitedBlocks.insert(worklist.front());
43   while (!worklist.empty()) {
44     Block *block = worklist.pop_back_val();
45 
46     // Compute the conversion set of each of the nested operations.
47     for (Operation &op : *block) {
48       toConvert.emplace_back(&op);
49 
50       // Don't check this operation's children for conversion if the operation
51       // is recursively legal.
52       auto legalityInfo = target ? target->isLegal(&op)
53                                  : Optional<ConversionTarget::LegalOpDetails>();
54       if (legalityInfo && legalityInfo->isRecursivelyLegal)
55         continue;
56       for (auto &region : op.getRegions()) {
57         if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
58                                         toConvert, target)))
59           return failure();
60       }
61     }
62 
63     // Recurse to children that haven't been visited.
64     for (Block *succ : block->getSuccessors())
65       if (visitedBlocks.insert(succ).second)
66         worklist.push_back(succ);
67   }
68 
69   // Check that all blocks in the region were visited.
70   if (llvm::any_of(llvm::drop_begin(region, 1),
71                    [&](Block &block) { return !visitedBlocks.count(&block); }))
72     return emitError(regionLoc, "unreachable blocks were not converted");
73   return success();
74 }
75 
76 /// A utility function to log a successful result for the given reason.
77 template <typename... Args>
78 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt,
79                        Args &&... args) {
80   LLVM_DEBUG({
81     os.unindent();
82     os.startLine() << "} -> SUCCESS";
83     if (!fmt.empty())
84       os.getOStream() << " : "
85                       << llvm::formatv(fmt.data(), std::forward<Args>(args)...);
86     os.getOStream() << "\n";
87   });
88 }
89 
90 /// A utility function to log a failure result for the given reason.
91 template <typename... Args>
92 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt,
93                        Args &&... args) {
94   LLVM_DEBUG({
95     os.unindent();
96     os.startLine() << "} -> FAILURE : "
97                    << llvm::formatv(fmt.data(), std::forward<Args>(args)...)
98                    << "\n";
99   });
100 }
101 
102 //===----------------------------------------------------------------------===//
103 // ConversionValueMapping
104 //===----------------------------------------------------------------------===//
105 
106 namespace {
107 /// This class wraps a BlockAndValueMapping to provide recursive lookup
108 /// functionality, i.e. we will traverse if the mapped value also has a mapping.
109 struct ConversionValueMapping {
110   /// Lookup a mapped value within the map. If a mapping for the provided value
111   /// does not exist then return the provided value. If `desiredType` is
112   /// non-null, returns the most recently mapped value with that type. If an
113   /// operand of that type does not exist, defaults to normal behavior.
114   Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
115 
116   /// Lookup a mapped value within the map, or return null if a mapping does not
117   /// exist. If a mapping exists, this follows the same behavior of
118   /// `lookupOrDefault`.
119   Value lookupOrNull(Value from) const;
120 
121   /// Map a value to the one provided.
122   void map(Value oldVal, Value newVal) { mapping.map(oldVal, newVal); }
123 
124   /// Drop the last mapping for the given value.
125   void erase(Value value) { mapping.erase(value); }
126 
127   /// Returns the inverse raw value mapping (without recursive query support).
128   BlockAndValueMapping getInverse() const { return mapping.getInverse(); }
129 
130 private:
131   /// Current value mappings.
132   BlockAndValueMapping mapping;
133 };
134 } // end anonymous namespace
135 
136 Value ConversionValueMapping::lookupOrDefault(Value from,
137                                               Type desiredType) const {
138   // If there was no desired type, simply find the leaf value.
139   if (!desiredType) {
140     // If this value had a valid mapping, unmap that value as well in the case
141     // that it was also replaced.
142     while (auto mappedValue = mapping.lookupOrNull(from))
143       from = mappedValue;
144     return from;
145   }
146 
147   // Otherwise, try to find the deepest value that has the desired type.
148   Value desiredValue;
149   do {
150     if (from.getType() == desiredType)
151       desiredValue = from;
152 
153     Value mappedValue = mapping.lookupOrNull(from);
154     if (!mappedValue)
155       break;
156     from = mappedValue;
157   } while (true);
158 
159   // If the desired value was found use it, otherwise default to the leaf value.
160   return desiredValue ? desiredValue : from;
161 }
162 
163 Value ConversionValueMapping::lookupOrNull(Value from) const {
164   Value result = lookupOrDefault(from);
165   return result == from ? nullptr : result;
166 }
167 
168 //===----------------------------------------------------------------------===//
169 // ArgConverter
170 //===----------------------------------------------------------------------===//
171 namespace {
172 /// This class provides a simple interface for converting the types of block
173 /// arguments. This is done by creating a new block that contains the new legal
174 /// types and extracting the block that contains the old illegal types to allow
175 /// for undoing pending rewrites in the case of failure.
176 struct ArgConverter {
177   ArgConverter(PatternRewriter &rewriter) : rewriter(rewriter) {}
178 
179   /// This structure contains the information pertaining to an argument that has
180   /// been converted.
181   struct ConvertedArgInfo {
182     ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
183                      Value castValue = nullptr)
184         : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
185 
186     /// The start index of in the new argument list that contains arguments that
187     /// replace the original.
188     unsigned newArgIdx;
189 
190     /// The number of arguments that replaced the original argument.
191     unsigned newArgSize;
192 
193     /// The cast value that was created to cast from the new arguments to the
194     /// old. This only used if 'newArgSize' > 1.
195     Value castValue;
196   };
197 
198   /// This structure contains information pertaining to a block that has had its
199   /// signature converted.
200   struct ConvertedBlockInfo {
201     ConvertedBlockInfo(Block *origBlock, TypeConverter &converter)
202         : origBlock(origBlock), converter(&converter) {}
203 
204     /// The original block that was requested to have its signature converted.
205     Block *origBlock;
206 
207     /// The conversion information for each of the arguments. The information is
208     /// None if the argument was dropped during conversion.
209     SmallVector<Optional<ConvertedArgInfo>, 1> argInfo;
210 
211     /// The type converter used to convert the arguments.
212     TypeConverter *converter;
213   };
214 
215   /// Return if the signature of the given block has already been converted.
216   bool hasBeenConverted(Block *block) const {
217     return conversionInfo.count(block) || convertedBlocks.count(block);
218   }
219 
220   /// Set the type converter to use for the given region.
221   void setConverter(Region *region, TypeConverter *typeConverter) {
222     assert(typeConverter && "expected valid type converter");
223     regionToConverter[region] = typeConverter;
224   }
225 
226   /// Return the type converter to use for the given region, or null if there
227   /// isn't one.
228   TypeConverter *getConverter(Region *region) {
229     return regionToConverter.lookup(region);
230   }
231 
232   //===--------------------------------------------------------------------===//
233   // Rewrite Application
234   //===--------------------------------------------------------------------===//
235 
236   /// Erase any rewrites registered for the blocks within the given operation
237   /// which is about to be removed. This merely drops the rewrites without
238   /// undoing them.
239   void notifyOpRemoved(Operation *op);
240 
241   /// Cleanup and undo any generated conversions for the arguments of block.
242   /// This method replaces the new block with the original, reverting the IR to
243   /// its original state.
244   void discardRewrites(Block *block);
245 
246   /// Fully replace uses of the old arguments with the new.
247   void applyRewrites(ConversionValueMapping &mapping);
248 
249   /// Materialize any necessary conversions for converted arguments that have
250   /// live users, using the provided `findLiveUser` to search for a user that
251   /// survives the conversion process.
252   LogicalResult
253   materializeLiveConversions(ConversionValueMapping &mapping,
254                              OpBuilder &builder,
255                              function_ref<Operation *(Value)> findLiveUser);
256 
257   //===--------------------------------------------------------------------===//
258   // Conversion
259   //===--------------------------------------------------------------------===//
260 
261   /// Attempt to convert the signature of the given block, if successful a new
262   /// block is returned containing the new arguments. Returns `block` if it did
263   /// not require conversion.
264   FailureOr<Block *>
265   convertSignature(Block *block, TypeConverter &converter,
266                    ConversionValueMapping &mapping,
267                    SmallVectorImpl<BlockArgument> &argReplacements);
268 
269   /// Apply the given signature conversion on the given block. The new block
270   /// containing the updated signature is returned. If no conversions were
271   /// necessary, e.g. if the block has no arguments, `block` is returned.
272   /// `converter` is used to generate any necessary cast operations that
273   /// translate between the origin argument types and those specified in the
274   /// signature conversion.
275   Block *applySignatureConversion(
276       Block *block, TypeConverter &converter,
277       TypeConverter::SignatureConversion &signatureConversion,
278       ConversionValueMapping &mapping,
279       SmallVectorImpl<BlockArgument> &argReplacements);
280 
281   /// Insert a new conversion into the cache.
282   void insertConversion(Block *newBlock, ConvertedBlockInfo &&info);
283 
284   /// A collection of blocks that have had their arguments converted. This is a
285   /// map from the new replacement block, back to the original block.
286   llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo;
287 
288   /// The set of original blocks that were converted.
289   DenseSet<Block *> convertedBlocks;
290 
291   /// A mapping from valid regions, to those containing the original blocks of a
292   /// conversion.
293   DenseMap<Region *, std::unique_ptr<Region>> regionMapping;
294 
295   /// A mapping of regions to type converters that should be used when
296   /// converting the arguments of blocks within that region.
297   DenseMap<Region *, TypeConverter *> regionToConverter;
298 
299   /// The pattern rewriter to use when materializing conversions.
300   PatternRewriter &rewriter;
301 };
302 } // end anonymous namespace
303 
304 //===----------------------------------------------------------------------===//
305 // Rewrite Application
306 
307 void ArgConverter::notifyOpRemoved(Operation *op) {
308   if (conversionInfo.empty())
309     return;
310 
311   for (Region &region : op->getRegions()) {
312     for (Block &block : region) {
313       // Drop any rewrites from within.
314       for (Operation &nestedOp : block)
315         if (nestedOp.getNumRegions())
316           notifyOpRemoved(&nestedOp);
317 
318       // Check if this block was converted.
319       auto it = conversionInfo.find(&block);
320       if (it == conversionInfo.end())
321         continue;
322 
323       // Drop all uses of the original arguments and delete the original block.
324       Block *origBlock = it->second.origBlock;
325       for (BlockArgument arg : origBlock->getArguments())
326         arg.dropAllUses();
327       conversionInfo.erase(it);
328     }
329   }
330 }
331 
332 void ArgConverter::discardRewrites(Block *block) {
333   auto it = conversionInfo.find(block);
334   if (it == conversionInfo.end())
335     return;
336   Block *origBlock = it->second.origBlock;
337 
338   // Drop all uses of the new block arguments and replace uses of the new block.
339   for (int i = block->getNumArguments() - 1; i >= 0; --i)
340     block->getArgument(i).dropAllUses();
341   block->replaceAllUsesWith(origBlock);
342 
343   // Move the operations back the original block and the delete the new block.
344   origBlock->getOperations().splice(origBlock->end(), block->getOperations());
345   origBlock->moveBefore(block);
346   block->erase();
347 
348   convertedBlocks.erase(origBlock);
349   conversionInfo.erase(it);
350 }
351 
352 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) {
353   for (auto &info : conversionInfo) {
354     ConvertedBlockInfo &blockInfo = info.second;
355     Block *origBlock = blockInfo.origBlock;
356 
357     // Process the remapping for each of the original arguments.
358     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
359       Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i];
360       BlockArgument origArg = origBlock->getArgument(i);
361 
362       // Handle the case of a 1->0 value mapping.
363       if (!argInfo) {
364         if (Value newArg = mapping.lookupOrNull(origArg))
365           origArg.replaceAllUsesWith(newArg);
366         continue;
367       }
368 
369       // Otherwise this is a 1->1+ value mapping.
370       Value castValue = argInfo->castValue;
371       assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
372 
373       // If the argument is still used, replace it with the generated cast.
374       if (!origArg.use_empty())
375         origArg.replaceAllUsesWith(mapping.lookupOrDefault(castValue));
376     }
377   }
378 }
379 
380 LogicalResult ArgConverter::materializeLiveConversions(
381     ConversionValueMapping &mapping, OpBuilder &builder,
382     function_ref<Operation *(Value)> findLiveUser) {
383   for (auto &info : conversionInfo) {
384     Block *newBlock = info.first;
385     ConvertedBlockInfo &blockInfo = info.second;
386     Block *origBlock = blockInfo.origBlock;
387 
388     // Process the remapping for each of the original arguments.
389     for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) {
390       // FIXME: We should run the below checks even if the type conversion was
391       // 1->N, but a lot of existing lowering rely on the block argument being
392       // blindly replaced. Those usages should be updated, and this if should be
393       // removed.
394       if (blockInfo.argInfo[i])
395         continue;
396 
397       // If the type of this argument changed and the argument is still live, we
398       // need to materialize a conversion.
399       BlockArgument origArg = origBlock->getArgument(i);
400       auto argReplacementValue = mapping.lookupOrDefault(origArg);
401       bool isDroppedArg = argReplacementValue == origArg;
402       if (argReplacementValue.getType() == origArg.getType() && !isDroppedArg)
403         continue;
404       Operation *liveUser = findLiveUser(origArg);
405       if (!liveUser)
406         continue;
407 
408       if (OpResult result = argReplacementValue.dyn_cast<OpResult>())
409         rewriter.setInsertionPointAfter(result.getOwner());
410       else
411         rewriter.setInsertionPointToStart(newBlock);
412       Value newArg = blockInfo.converter->materializeSourceConversion(
413           rewriter, origArg.getLoc(), origArg.getType(),
414           isDroppedArg ? ValueRange() : ValueRange(argReplacementValue));
415       if (!newArg) {
416         InFlightDiagnostic diag =
417             emitError(origArg.getLoc())
418             << "failed to materialize conversion for block argument #" << i
419             << " that remained live after conversion, type was "
420             << origArg.getType();
421         if (!isDroppedArg)
422           diag << ", with target type " << argReplacementValue.getType();
423         diag.attachNote(liveUser->getLoc())
424             << "see existing live user here: " << *liveUser;
425         return failure();
426       }
427       mapping.map(origArg, newArg);
428     }
429   }
430   return success();
431 }
432 
433 //===----------------------------------------------------------------------===//
434 // Conversion
435 
436 FailureOr<Block *> ArgConverter::convertSignature(
437     Block *block, TypeConverter &converter, ConversionValueMapping &mapping,
438     SmallVectorImpl<BlockArgument> &argReplacements) {
439   // Check if the block was already converted. If the block is detached,
440   // conservatively assume it is going to be deleted.
441   if (hasBeenConverted(block) || !block->getParent())
442     return block;
443 
444   // Try to convert the signature for the block with the provided converter.
445   if (auto conversion = converter.convertBlockSignature(block))
446     return applySignatureConversion(block, converter, *conversion, mapping,
447                                     argReplacements);
448   return failure();
449 }
450 
451 Block *ArgConverter::applySignatureConversion(
452     Block *block, TypeConverter &converter,
453     TypeConverter::SignatureConversion &signatureConversion,
454     ConversionValueMapping &mapping,
455     SmallVectorImpl<BlockArgument> &argReplacements) {
456   // If no arguments are being changed or added, there is nothing to do.
457   unsigned origArgCount = block->getNumArguments();
458   auto convertedTypes = signatureConversion.getConvertedTypes();
459   if (origArgCount == 0 && convertedTypes.empty())
460     return block;
461 
462   // Split the block at the beginning to get a new block to use for the updated
463   // signature.
464   Block *newBlock = block->splitBlock(block->begin());
465   block->replaceAllUsesWith(newBlock);
466 
467   SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes));
468   ArrayRef<Value> newArgs(newArgRange);
469 
470   // Remap each of the original arguments as determined by the signature
471   // conversion.
472   ConvertedBlockInfo info(block, converter);
473   info.argInfo.resize(origArgCount);
474 
475   OpBuilder::InsertionGuard guard(rewriter);
476   rewriter.setInsertionPointToStart(newBlock);
477   for (unsigned i = 0; i != origArgCount; ++i) {
478     auto inputMap = signatureConversion.getInputMapping(i);
479     if (!inputMap)
480       continue;
481     BlockArgument origArg = block->getArgument(i);
482 
483     // If inputMap->replacementValue is not nullptr, then the argument is
484     // dropped and a replacement value is provided to be the remappedValue.
485     if (inputMap->replacementValue) {
486       assert(inputMap->size == 0 &&
487              "invalid to provide a replacement value when the argument isn't "
488              "dropped");
489       mapping.map(origArg, inputMap->replacementValue);
490       argReplacements.push_back(origArg);
491       continue;
492     }
493 
494     // Otherwise, this is a 1->1+ mapping. Call into the provided type converter
495     // to pack the new values. For 1->1 mappings, if there is no materialization
496     // provided, use the argument directly instead.
497     auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
498     Value newArg = converter.materializeArgumentConversion(
499         rewriter, origArg.getLoc(), origArg.getType(), replArgs);
500     if (!newArg) {
501       assert(replArgs.size() == 1 &&
502              "couldn't materialize the result of 1->N conversion");
503       newArg = replArgs.front();
504     }
505     mapping.map(origArg, newArg);
506     argReplacements.push_back(origArg);
507     info.argInfo[i] =
508         ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
509   }
510 
511   // Remove the original block from the region and return the new one.
512   insertConversion(newBlock, std::move(info));
513   return newBlock;
514 }
515 
516 void ArgConverter::insertConversion(Block *newBlock,
517                                     ConvertedBlockInfo &&info) {
518   // Get a region to insert the old block.
519   Region *region = newBlock->getParent();
520   std::unique_ptr<Region> &mappedRegion = regionMapping[region];
521   if (!mappedRegion)
522     mappedRegion = std::make_unique<Region>(region->getParentOp());
523 
524   // Move the original block to the mapped region and emplace the conversion.
525   mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(),
526                                    info.origBlock->getIterator());
527   convertedBlocks.insert(info.origBlock);
528   conversionInfo.insert({newBlock, std::move(info)});
529 }
530 
531 //===----------------------------------------------------------------------===//
532 // Rewriter and Translation State
533 //===----------------------------------------------------------------------===//
534 namespace {
535 /// This class contains a snapshot of the current conversion rewriter state.
536 /// This is useful when saving and undoing a set of rewrites.
537 struct RewriterState {
538   RewriterState(unsigned numCreatedOps, unsigned numReplacements,
539                 unsigned numArgReplacements, unsigned numBlockActions,
540                 unsigned numIgnoredOperations, unsigned numRootUpdates)
541       : numCreatedOps(numCreatedOps), numReplacements(numReplacements),
542         numArgReplacements(numArgReplacements),
543         numBlockActions(numBlockActions),
544         numIgnoredOperations(numIgnoredOperations),
545         numRootUpdates(numRootUpdates) {}
546 
547   /// The current number of created operations.
548   unsigned numCreatedOps;
549 
550   /// The current number of replacements queued.
551   unsigned numReplacements;
552 
553   /// The current number of argument replacements queued.
554   unsigned numArgReplacements;
555 
556   /// The current number of block actions performed.
557   unsigned numBlockActions;
558 
559   /// The current number of ignored operations.
560   unsigned numIgnoredOperations;
561 
562   /// The current number of operations that were updated in place.
563   unsigned numRootUpdates;
564 };
565 
566 /// The state of an operation that was updated by a pattern in-place. This
567 /// contains all of the necessary information to reconstruct an operation that
568 /// was updated in place.
569 class OperationTransactionState {
570 public:
571   OperationTransactionState() = default;
572   OperationTransactionState(Operation *op)
573       : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()),
574         operands(op->operand_begin(), op->operand_end()),
575         successors(op->successor_begin(), op->successor_end()) {}
576 
577   /// Discard the transaction state and reset the state of the original
578   /// operation.
579   void resetOperation() const {
580     op->setLoc(loc);
581     op->setAttrs(attrs);
582     op->setOperands(operands);
583     for (auto it : llvm::enumerate(successors))
584       op->setSuccessor(it.value(), it.index());
585   }
586 
587   /// Return the original operation of this state.
588   Operation *getOperation() const { return op; }
589 
590 private:
591   Operation *op;
592   LocationAttr loc;
593   DictionaryAttr attrs;
594   SmallVector<Value, 8> operands;
595   SmallVector<Block *, 2> successors;
596 };
597 
598 /// This class represents one requested operation replacement via 'replaceOp' or
599 /// 'eraseOp`.
600 struct OpReplacement {
601   OpReplacement() = default;
602   OpReplacement(TypeConverter *converter) : converter(converter) {}
603 
604   /// An optional type converter that can be used to materialize conversions
605   /// between the new and old values if necessary.
606   TypeConverter *converter = nullptr;
607 };
608 
609 /// The kind of the block action performed during the rewrite.  Actions can be
610 /// undone if the conversion fails.
611 enum class BlockActionKind {
612   Create,
613   Erase,
614   Merge,
615   Move,
616   Split,
617   TypeConversion
618 };
619 
620 /// Original position of the given block in its parent region. During undo
621 /// actions, the block needs to be placed after `insertAfterBlock`.
622 struct BlockPosition {
623   Region *region;
624   Block *insertAfterBlock;
625 };
626 
627 /// Information needed to undo the merge actions.
628 /// - the source block, and
629 /// - the Operation that was the last operation in the dest block before the
630 ///   merge (could be null if the dest block was empty).
631 struct MergeInfo {
632   Block *sourceBlock;
633   Operation *destBlockLastInst;
634 };
635 
636 /// The storage class for an undoable block action (one of BlockActionKind),
637 /// contains the information necessary to undo this action.
638 struct BlockAction {
639   static BlockAction getCreate(Block *block) {
640     return {BlockActionKind::Create, block, {}};
641   }
642   static BlockAction getErase(Block *block, BlockPosition originalPosition) {
643     return {BlockActionKind::Erase, block, {originalPosition}};
644   }
645   static BlockAction getMerge(Block *block, Block *sourceBlock) {
646     BlockAction action{BlockActionKind::Merge, block, {}};
647     action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()};
648     return action;
649   }
650   static BlockAction getMove(Block *block, BlockPosition originalPosition) {
651     return {BlockActionKind::Move, block, {originalPosition}};
652   }
653   static BlockAction getSplit(Block *block, Block *originalBlock) {
654     BlockAction action{BlockActionKind::Split, block, {}};
655     action.originalBlock = originalBlock;
656     return action;
657   }
658   static BlockAction getTypeConversion(Block *block) {
659     return BlockAction{BlockActionKind::TypeConversion, block, {}};
660   }
661 
662   // The action kind.
663   BlockActionKind kind;
664 
665   // A pointer to the block that was created by the action.
666   Block *block;
667 
668   union {
669     // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and
670     // contains a pointer to the region that originally contained the block as
671     // well as the position of the block in that region.
672     BlockPosition originalPosition;
673     // In use if kind == BlockActionKind::Split and contains a pointer to the
674     // block that was split into two parts.
675     Block *originalBlock;
676     // In use if kind == BlockActionKind::Merge, and contains the information
677     // needed to undo the merge.
678     MergeInfo mergeInfo;
679   };
680 };
681 } // end anonymous namespace
682 
683 //===----------------------------------------------------------------------===//
684 // ConversionPatternRewriterImpl
685 //===----------------------------------------------------------------------===//
686 namespace mlir {
687 namespace detail {
688 struct ConversionPatternRewriterImpl {
689   ConversionPatternRewriterImpl(PatternRewriter &rewriter)
690       : argConverter(rewriter) {}
691 
692   /// Cleanup and destroy any generated rewrite operations. This method is
693   /// invoked when the conversion process fails.
694   void discardRewrites();
695 
696   /// Apply all requested operation rewrites. This method is invoked when the
697   /// conversion process succeeds.
698   void applyRewrites();
699 
700   //===--------------------------------------------------------------------===//
701   // State Management
702   //===--------------------------------------------------------------------===//
703 
704   /// Return the current state of the rewriter.
705   RewriterState getCurrentState();
706 
707   /// Reset the state of the rewriter to a previously saved point.
708   void resetState(RewriterState state);
709 
710   /// Erase any blocks that were unlinked from their regions and stored in block
711   /// actions.
712   void eraseDanglingBlocks();
713 
714   /// Undo the block actions (motions, splits) one by one in reverse order until
715   /// "numActionsToKeep" actions remains.
716   void undoBlockActions(unsigned numActionsToKeep = 0);
717 
718   /// Remap the given operands to those with potentially different types. The
719   /// provided type converter is used to ensure that the remapped types are
720   /// legal. Returns success if the operands could be remapped, failure
721   /// otherwise.
722   LogicalResult remapValues(Location loc, PatternRewriter &rewriter,
723                             TypeConverter *converter,
724                             Operation::operand_range operands,
725                             SmallVectorImpl<Value> &remapped);
726 
727   /// Returns true if the given operation is ignored, and does not need to be
728   /// converted.
729   bool isOpIgnored(Operation *op) const;
730 
731   /// Recursively marks the nested operations under 'op' as ignored. This
732   /// removes them from being considered for legalization.
733   void markNestedOpsIgnored(Operation *op);
734 
735   //===--------------------------------------------------------------------===//
736   // Type Conversion
737   //===--------------------------------------------------------------------===//
738 
739   /// Convert the signature of the given block.
740   FailureOr<Block *> convertBlockSignature(
741       Block *block, TypeConverter &converter,
742       TypeConverter::SignatureConversion *conversion = nullptr);
743 
744   /// Apply a signature conversion on the given region, using `converter` for
745   /// materializations if not null.
746   Block *
747   applySignatureConversion(Region *region,
748                            TypeConverter::SignatureConversion &conversion,
749                            TypeConverter *converter);
750 
751   /// Convert the types of block arguments within the given region.
752   FailureOr<Block *>
753   convertRegionTypes(Region *region, TypeConverter &converter,
754                      TypeConverter::SignatureConversion *entryConversion);
755 
756   /// Convert the types of non-entry block arguments within the given region.
757   LogicalResult convertNonEntryRegionTypes(Region *region,
758                                            TypeConverter &converter);
759 
760   //===--------------------------------------------------------------------===//
761   // Rewriter Notification Hooks
762   //===--------------------------------------------------------------------===//
763 
764   /// PatternRewriter hook for replacing the results of an operation.
765   void notifyOpReplaced(Operation *op, ValueRange newValues);
766 
767   /// Notifies that a block is about to be erased.
768   void notifyBlockIsBeingErased(Block *block);
769 
770   /// Notifies that a block was created.
771   void notifyCreatedBlock(Block *block);
772 
773   /// Notifies that a block was split.
774   void notifySplitBlock(Block *block, Block *continuation);
775 
776   /// Notifies that `block` is being merged with `srcBlock`.
777   void notifyBlocksBeingMerged(Block *block, Block *srcBlock);
778 
779   /// Notifies that the blocks of a region are about to be moved.
780   void notifyRegionIsBeingInlinedBefore(Region &region, Region &parent,
781                                         Region::iterator before);
782 
783   /// Notifies that the blocks of a region were cloned into another.
784   void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks,
785                                    Location origRegionLoc);
786 
787   /// Notifies that a pattern match failed for the given reason.
788   LogicalResult
789   notifyMatchFailure(Location loc,
790                      function_ref<void(Diagnostic &)> reasonCallback);
791 
792   //===--------------------------------------------------------------------===//
793   // State
794   //===--------------------------------------------------------------------===//
795 
796   // Mapping between replaced values that differ in type. This happens when
797   // replacing a value with one of a different type.
798   ConversionValueMapping mapping;
799 
800   /// Utility used to convert block arguments.
801   ArgConverter argConverter;
802 
803   /// Ordered vector of all of the newly created operations during conversion.
804   std::vector<Operation *> createdOps;
805 
806   /// Ordered map of requested operation replacements.
807   llvm::MapVector<Operation *, OpReplacement> replacements;
808 
809   /// Ordered vector of any requested block argument replacements.
810   SmallVector<BlockArgument, 4> argReplacements;
811 
812   /// Ordered list of block operations (creations, splits, motions).
813   SmallVector<BlockAction, 4> blockActions;
814 
815   /// A set of operations that should no longer be considered for legalization,
816   /// but were not directly replace/erased/etc. by a pattern. These are
817   /// generally child operations of other operations who were
818   /// replaced/erased/etc. This is not meant to be an exhaustive list of all
819   /// operations, but the minimal set that can be used to detect if a given
820   /// operation should be `ignored`. For example, we may add the operations that
821   /// define non-empty regions to the set, but not any of the others. This
822   /// simplifies the amount of memory needed as we can query if the parent
823   /// operation was ignored.
824   llvm::SetVector<Operation *> ignoredOps;
825 
826   /// A transaction state for each of operations that were updated in-place.
827   SmallVector<OperationTransactionState, 4> rootUpdates;
828 
829   /// A vector of indices into `replacements` of operations that were replaced
830   /// with values with different result types than the original operation, e.g.
831   /// 1->N conversion of some kind.
832   SmallVector<unsigned, 4> operationsWithChangedResults;
833 
834   /// A default type converter, used when block conversions do not have one
835   /// explicitly provided.
836   TypeConverter defaultTypeConverter;
837 
838   /// The current conversion pattern that is being rewritten, or nullptr if
839   /// called from outside of a conversion pattern rewrite.
840   const ConversionPattern *currentConversionPattern = nullptr;
841 
842 #ifndef NDEBUG
843   /// A set of operations that have pending updates. This tracking isn't
844   /// strictly necessary, and is thus only active during debug builds for extra
845   /// verification.
846   SmallPtrSet<Operation *, 1> pendingRootUpdates;
847 
848   /// A logger used to emit diagnostics during the conversion process.
849   llvm::ScopedPrinter logger{llvm::dbgs()};
850 #endif
851 };
852 } // end namespace detail
853 } // end namespace mlir
854 
855 /// Detach any operations nested in the given operation from their parent
856 /// blocks, and erase the given operation. This can be used when the nested
857 /// operations are scheduled for erasure themselves, so deleting the regions of
858 /// the given operation together with their content would result in double-free.
859 /// This happens, for example, when rolling back op creation in the reverse
860 /// order and if the nested ops were created before the parent op. This function
861 /// does not need to collect nested ops recursively because it is expected to
862 /// also be called for each nested op when it is about to be deleted.
863 static void detachNestedAndErase(Operation *op) {
864   for (Region &region : op->getRegions()) {
865     for (Block &block : region.getBlocks()) {
866       while (!block.getOperations().empty())
867         block.getOperations().remove(block.getOperations().begin());
868       block.dropAllDefinedValueUses();
869     }
870   }
871   op->dropAllUses();
872   op->erase();
873 }
874 
875 void ConversionPatternRewriterImpl::discardRewrites() {
876   // Reset any operations that were updated in place.
877   for (auto &state : rootUpdates)
878     state.resetOperation();
879 
880   undoBlockActions();
881 
882   // Remove any newly created ops.
883   for (auto *op : llvm::reverse(createdOps))
884     detachNestedAndErase(op);
885 }
886 
887 void ConversionPatternRewriterImpl::applyRewrites() {
888   // Apply all of the rewrites replacements requested during conversion.
889   for (auto &repl : replacements) {
890     for (OpResult result : repl.first->getResults())
891       if (Value newValue = mapping.lookupOrNull(result))
892         result.replaceAllUsesWith(newValue);
893 
894     // If this operation defines any regions, drop any pending argument
895     // rewrites.
896     if (repl.first->getNumRegions())
897       argConverter.notifyOpRemoved(repl.first);
898   }
899 
900   // Apply all of the requested argument replacements.
901   for (BlockArgument arg : argReplacements) {
902     Value repl = mapping.lookupOrDefault(arg);
903     if (repl.isa<BlockArgument>()) {
904       arg.replaceAllUsesWith(repl);
905       continue;
906     }
907 
908     // If the replacement value is an operation, we check to make sure that we
909     // don't replace uses that are within the parent operation of the
910     // replacement value.
911     Operation *replOp = repl.cast<OpResult>().getOwner();
912     Block *replBlock = replOp->getBlock();
913     arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
914       Operation *user = operand.getOwner();
915       return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
916     });
917   }
918 
919   // In a second pass, erase all of the replaced operations in reverse. This
920   // allows processing nested operations before their parent region is
921   // destroyed. Because we process in reverse order, producers may be deleted
922   // before their users (a pattern deleting a producer and then the consumer)
923   // so we first drop all uses explicitly.
924   for (auto &repl : llvm::reverse(replacements)) {
925     repl.first->dropAllUses();
926     repl.first->erase();
927   }
928 
929   argConverter.applyRewrites(mapping);
930 
931   // Now that the ops have been erased, also erase dangling blocks.
932   eraseDanglingBlocks();
933 }
934 
935 //===----------------------------------------------------------------------===//
936 // State Management
937 
938 RewriterState ConversionPatternRewriterImpl::getCurrentState() {
939   return RewriterState(createdOps.size(), replacements.size(),
940                        argReplacements.size(), blockActions.size(),
941                        ignoredOps.size(), rootUpdates.size());
942 }
943 
944 void ConversionPatternRewriterImpl::resetState(RewriterState state) {
945   // Reset any operations that were updated in place.
946   for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i)
947     rootUpdates[i].resetOperation();
948   rootUpdates.resize(state.numRootUpdates);
949 
950   // Reset any replaced arguments.
951   for (BlockArgument replacedArg :
952        llvm::drop_begin(argReplacements, state.numArgReplacements))
953     mapping.erase(replacedArg);
954   argReplacements.resize(state.numArgReplacements);
955 
956   // Undo any block actions.
957   undoBlockActions(state.numBlockActions);
958 
959   // Reset any replaced operations and undo any saved mappings.
960   for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
961     for (auto result : repl.first->getResults())
962       mapping.erase(result);
963   while (replacements.size() != state.numReplacements)
964     replacements.pop_back();
965 
966   // Pop all of the newly created operations.
967   while (createdOps.size() != state.numCreatedOps) {
968     detachNestedAndErase(createdOps.back());
969     createdOps.pop_back();
970   }
971 
972   // Pop all of the recorded ignored operations that are no longer valid.
973   while (ignoredOps.size() != state.numIgnoredOperations)
974     ignoredOps.pop_back();
975 
976   // Reset operations with changed results.
977   while (!operationsWithChangedResults.empty() &&
978          operationsWithChangedResults.back() >= state.numReplacements)
979     operationsWithChangedResults.pop_back();
980 }
981 
982 void ConversionPatternRewriterImpl::eraseDanglingBlocks() {
983   for (auto &action : blockActions)
984     if (action.kind == BlockActionKind::Erase)
985       delete action.block;
986 }
987 
988 void ConversionPatternRewriterImpl::undoBlockActions(
989     unsigned numActionsToKeep) {
990   for (auto &action :
991        llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
992     switch (action.kind) {
993     // Delete the created block.
994     case BlockActionKind::Create: {
995       // Unlink all of the operations within this block, they will be deleted
996       // separately.
997       auto &blockOps = action.block->getOperations();
998       while (!blockOps.empty())
999         blockOps.remove(blockOps.begin());
1000       action.block->dropAllDefinedValueUses();
1001       action.block->erase();
1002       break;
1003     }
1004     // Put the block (owned by action) back into its original position.
1005     case BlockActionKind::Erase: {
1006       auto &blockList = action.originalPosition.region->getBlocks();
1007       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1008       blockList.insert((insertAfterBlock
1009                             ? std::next(Region::iterator(insertAfterBlock))
1010                             : blockList.begin()),
1011                        action.block);
1012       break;
1013     }
1014     // Split the block at the position which was originally the end of the
1015     // destination block (owned by action), and put the instructions back into
1016     // the block used before the merge.
1017     case BlockActionKind::Merge: {
1018       Block *sourceBlock = action.mergeInfo.sourceBlock;
1019       Block::iterator splitPoint =
1020           (action.mergeInfo.destBlockLastInst
1021                ? ++Block::iterator(action.mergeInfo.destBlockLastInst)
1022                : action.block->begin());
1023       sourceBlock->getOperations().splice(sourceBlock->begin(),
1024                                           action.block->getOperations(),
1025                                           splitPoint, action.block->end());
1026       break;
1027     }
1028     // Move the block back to its original position.
1029     case BlockActionKind::Move: {
1030       Region *originalRegion = action.originalPosition.region;
1031       Block *insertAfterBlock = action.originalPosition.insertAfterBlock;
1032       originalRegion->getBlocks().splice(
1033           (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock))
1034                             : originalRegion->end()),
1035           action.block->getParent()->getBlocks(), action.block);
1036       break;
1037     }
1038     // Merge back the block that was split out.
1039     case BlockActionKind::Split: {
1040       action.originalBlock->getOperations().splice(
1041           action.originalBlock->end(), action.block->getOperations());
1042       action.block->dropAllDefinedValueUses();
1043       action.block->erase();
1044       break;
1045     }
1046     // Undo the type conversion.
1047     case BlockActionKind::TypeConversion: {
1048       argConverter.discardRewrites(action.block);
1049       break;
1050     }
1051     }
1052   }
1053   blockActions.resize(numActionsToKeep);
1054 }
1055 
1056 LogicalResult ConversionPatternRewriterImpl::remapValues(
1057     Location loc, PatternRewriter &rewriter, TypeConverter *converter,
1058     Operation::operand_range operands, SmallVectorImpl<Value> &remapped) {
1059   remapped.reserve(llvm::size(operands));
1060 
1061   SmallVector<Type, 1> legalTypes;
1062   for (auto it : llvm::enumerate(operands)) {
1063     Value operand = it.value();
1064     Type origType = operand.getType();
1065 
1066     // If a converter was provided, get the desired legal types for this
1067     // operand.
1068     Type desiredType;
1069     if (converter) {
1070       // If there is no legal conversion, fail to match this pattern.
1071       legalTypes.clear();
1072       if (failed(converter->convertType(origType, legalTypes))) {
1073         return notifyMatchFailure(loc, [=](Diagnostic &diag) {
1074           diag << "unable to convert type for operand #" << it.index()
1075                << ", type was " << origType;
1076         });
1077       }
1078       // TODO: There currently isn't any mechanism to do 1->N type conversion
1079       // via the PatternRewriter replacement API, so for now we just ignore it.
1080       if (legalTypes.size() == 1)
1081         desiredType = legalTypes.front();
1082     } else {
1083       // TODO: What we should do here is just set `desiredType` to `origType`
1084       // and then handle the necessary type conversions after the conversion
1085       // process has finished. Unfortunately a lot of patterns currently rely on
1086       // receiving the new operands even if the types change, so we keep the
1087       // original behavior here for now until all of the patterns relying on
1088       // this get updated.
1089     }
1090     Value newOperand = mapping.lookupOrDefault(operand, desiredType);
1091 
1092     // Handle the case where the conversion was 1->1 and the new operand type
1093     // isn't legal.
1094     Type newOperandType = newOperand.getType();
1095     if (converter && desiredType && newOperandType != desiredType) {
1096       // Attempt to materialize a conversion for this new value.
1097       newOperand = converter->materializeTargetConversion(
1098           rewriter, loc, desiredType, newOperand);
1099       if (!newOperand) {
1100         return notifyMatchFailure(loc, [=](Diagnostic &diag) {
1101           diag << "unable to materialize a conversion for "
1102                   "operand #"
1103                << it.index() << ", from " << newOperandType << " to "
1104                << desiredType;
1105         });
1106       }
1107     }
1108     remapped.push_back(newOperand);
1109   }
1110   return success();
1111 }
1112 
1113 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
1114   // Check to see if this operation was replaced or its parent ignored.
1115   return replacements.count(op) || ignoredOps.count(op->getParentOp());
1116 }
1117 
1118 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) {
1119   // Walk this operation and collect nested operations that define non-empty
1120   // regions. We mark such operations as 'ignored' so that we know we don't have
1121   // to convert them, or their nested ops.
1122   if (op->getNumRegions() == 0)
1123     return;
1124   op->walk([&](Operation *op) {
1125     if (llvm::any_of(op->getRegions(),
1126                      [](Region &region) { return !region.empty(); }))
1127       ignoredOps.insert(op);
1128   });
1129 }
1130 
1131 //===----------------------------------------------------------------------===//
1132 // Type Conversion
1133 
1134 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
1135     Block *block, TypeConverter &converter,
1136     TypeConverter::SignatureConversion *conversion) {
1137   FailureOr<Block *> result =
1138       conversion ? argConverter.applySignatureConversion(
1139                        block, converter, *conversion, mapping, argReplacements)
1140                  : argConverter.convertSignature(block, converter, mapping,
1141                                                  argReplacements);
1142   if (Block *newBlock = result.getValue()) {
1143     if (newBlock != block)
1144       blockActions.push_back(BlockAction::getTypeConversion(newBlock));
1145   }
1146   return result;
1147 }
1148 
1149 Block *ConversionPatternRewriterImpl::applySignatureConversion(
1150     Region *region, TypeConverter::SignatureConversion &conversion,
1151     TypeConverter *converter) {
1152   if (!region->empty()) {
1153     return *convertBlockSignature(&region->front(),
1154                                   converter ? *converter : defaultTypeConverter,
1155                                   &conversion);
1156   }
1157   return nullptr;
1158 }
1159 
1160 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
1161     Region *region, TypeConverter &converter,
1162     TypeConverter::SignatureConversion *entryConversion) {
1163   argConverter.setConverter(region, &converter);
1164   if (region->empty())
1165     return nullptr;
1166 
1167   if (failed(convertNonEntryRegionTypes(region, converter)))
1168     return failure();
1169 
1170   FailureOr<Block *> newEntry =
1171       convertBlockSignature(&region->front(), converter, entryConversion);
1172   return newEntry;
1173 }
1174 
1175 LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes(
1176     Region *region, TypeConverter &converter) {
1177   argConverter.setConverter(region, &converter);
1178   if (region->empty())
1179     return success();
1180 
1181   // Convert the arguments of each block within the region.
1182   for (Block &block : llvm::make_early_inc_range(llvm::drop_begin(*region, 1)))
1183     if (failed(convertBlockSignature(&block, converter)))
1184       return failure();
1185   return success();
1186 }
1187 
1188 //===----------------------------------------------------------------------===//
1189 // Rewriter Notification Hooks
1190 
1191 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
1192                                                      ValueRange newValues) {
1193   assert(newValues.size() == op->getNumResults());
1194   assert(!replacements.count(op) && "operation was already replaced");
1195 
1196   // Track if any of the results changed, e.g. erased and replaced with null.
1197   bool resultChanged = false;
1198 
1199   // Create mappings for each of the new result values.
1200   Value newValue, result;
1201   for (auto it : llvm::zip(newValues, op->getResults())) {
1202     std::tie(newValue, result) = it;
1203     if (!newValue) {
1204       resultChanged = true;
1205       continue;
1206     }
1207     // Remap, and check for any result type changes.
1208     mapping.map(result, newValue);
1209     resultChanged |= (newValue.getType() != result.getType());
1210   }
1211   if (resultChanged)
1212     operationsWithChangedResults.push_back(replacements.size());
1213 
1214   // Record the requested operation replacement.
1215   TypeConverter *converter = nullptr;
1216   if (currentConversionPattern)
1217     converter = currentConversionPattern->getTypeConverter();
1218   replacements.insert(std::make_pair(op, OpReplacement(converter)));
1219 
1220   // Mark this operation as recursively ignored so that we don't need to
1221   // convert any nested operations.
1222   markNestedOpsIgnored(op);
1223 }
1224 
1225 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
1226   Region *region = block->getParent();
1227   Block *origPrevBlock = block->getPrevNode();
1228   blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock}));
1229 }
1230 
1231 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) {
1232   blockActions.push_back(BlockAction::getCreate(block));
1233 }
1234 
1235 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
1236                                                      Block *continuation) {
1237   blockActions.push_back(BlockAction::getSplit(continuation, block));
1238 }
1239 
1240 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block,
1241                                                             Block *srcBlock) {
1242   blockActions.push_back(BlockAction::getMerge(block, srcBlock));
1243 }
1244 
1245 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
1246     Region &region, Region &parent, Region::iterator before) {
1247   if (region.empty())
1248     return;
1249   Block *laterBlock = &region.back();
1250   for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) {
1251     blockActions.push_back(
1252         BlockAction::getMove(laterBlock, {&region, &earlierBlock}));
1253     laterBlock = &earlierBlock;
1254   }
1255   blockActions.push_back(BlockAction::getMove(laterBlock, {&region, nullptr}));
1256 }
1257 
1258 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore(
1259     iterator_range<Region::iterator> &blocks, Location origRegionLoc) {
1260   for (Block &block : blocks)
1261     blockActions.push_back(BlockAction::getCreate(&block));
1262 
1263   // Compute the conversion set for the inlined region.
1264   auto result = computeConversionSet(blocks, origRegionLoc, createdOps);
1265 
1266   // This original region has already had its conversion set computed, so there
1267   // shouldn't be any new failures.
1268   (void)result;
1269   assert(succeeded(result) && "expected region to have no unreachable blocks");
1270 }
1271 
1272 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure(
1273     Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
1274   LLVM_DEBUG({
1275     Diagnostic diag(loc, DiagnosticSeverity::Remark);
1276     reasonCallback(diag);
1277     logger.startLine() << "** Failure : " << diag.str() << "\n";
1278   });
1279   return failure();
1280 }
1281 
1282 //===----------------------------------------------------------------------===//
1283 // ConversionPatternRewriter
1284 //===----------------------------------------------------------------------===//
1285 
1286 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx)
1287     : PatternRewriter(ctx),
1288       impl(new detail::ConversionPatternRewriterImpl(*this)) {}
1289 ConversionPatternRewriter::~ConversionPatternRewriter() {}
1290 
1291 /// PatternRewriter hook for replacing the results of an operation when the
1292 /// given functor returns true.
1293 void ConversionPatternRewriter::replaceOpWithIf(
1294     Operation *op, ValueRange newValues, bool *allUsesReplaced,
1295     llvm::unique_function<bool(OpOperand &) const> functor) {
1296   // TODO: To support this we will need to rework a bit of how replacements are
1297   // tracked, given that this isn't guranteed to replace all of the uses of an
1298   // operation. The main change is that now an operation can be replaced
1299   // multiple times, in parts. The current "set" based tracking is mainly useful
1300   // for tracking if a replaced operation should be ignored, i.e. if all of the
1301   // uses will be replaced.
1302   llvm_unreachable(
1303       "replaceOpWithIf is currently not supported by DialectConversion");
1304 }
1305 
1306 /// PatternRewriter hook for replacing the results of an operation.
1307 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
1308   LLVM_DEBUG({
1309     impl->logger.startLine()
1310         << "** Replace : '" << op->getName() << "'(" << op << ")\n";
1311   });
1312   impl->notifyOpReplaced(op, newValues);
1313 }
1314 
1315 /// PatternRewriter hook for erasing a dead operation. The uses of this
1316 /// operation *must* be made dead by the end of the conversion process,
1317 /// otherwise an assert will be issued.
1318 void ConversionPatternRewriter::eraseOp(Operation *op) {
1319   LLVM_DEBUG({
1320     impl->logger.startLine()
1321         << "** Erase   : '" << op->getName() << "'(" << op << ")\n";
1322   });
1323   SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
1324   impl->notifyOpReplaced(op, nullRepls);
1325 }
1326 
1327 void ConversionPatternRewriter::eraseBlock(Block *block) {
1328   impl->notifyBlockIsBeingErased(block);
1329 
1330   // Mark all ops for erasure.
1331   for (Operation &op : *block)
1332     eraseOp(&op);
1333 
1334   // Unlink the block from its parent region. The block is kept in the block
1335   // action and will be actually destroyed when rewrites are applied. This
1336   // allows us to keep the operations in the block live and undo the removal by
1337   // re-inserting the block.
1338   block->getParent()->getBlocks().remove(block);
1339 }
1340 
1341 Block *ConversionPatternRewriter::applySignatureConversion(
1342     Region *region, TypeConverter::SignatureConversion &conversion,
1343     TypeConverter *converter) {
1344   return impl->applySignatureConversion(region, conversion, converter);
1345 }
1346 
1347 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
1348     Region *region, TypeConverter &converter,
1349     TypeConverter::SignatureConversion *entryConversion) {
1350   return impl->convertRegionTypes(region, converter, entryConversion);
1351 }
1352 
1353 LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes(
1354     Region *region, TypeConverter &converter) {
1355   return impl->convertNonEntryRegionTypes(region, converter);
1356 }
1357 
1358 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
1359                                                            Value to) {
1360   LLVM_DEBUG({
1361     Operation *parentOp = from.getOwner()->getParentOp();
1362     impl->logger.startLine() << "** Replace Argument : '" << from
1363                              << "'(in region of '" << parentOp->getName()
1364                              << "'(" << from.getOwner()->getParentOp() << ")\n";
1365   });
1366   impl->argReplacements.push_back(from);
1367   impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
1368 }
1369 
1370 /// Return the converted value that replaces 'key'. Return 'key' if there is
1371 /// no such a converted value.
1372 Value ConversionPatternRewriter::getRemappedValue(Value key) {
1373   return impl->mapping.lookupOrDefault(key);
1374 }
1375 
1376 /// PatternRewriter hook for creating a new block with the given arguments.
1377 void ConversionPatternRewriter::notifyBlockCreated(Block *block) {
1378   impl->notifyCreatedBlock(block);
1379 }
1380 
1381 /// PatternRewriter hook for splitting a block into two parts.
1382 Block *ConversionPatternRewriter::splitBlock(Block *block,
1383                                              Block::iterator before) {
1384   auto *continuation = PatternRewriter::splitBlock(block, before);
1385   impl->notifySplitBlock(block, continuation);
1386   return continuation;
1387 }
1388 
1389 /// PatternRewriter hook for merging a block into another.
1390 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest,
1391                                             ValueRange argValues) {
1392   impl->notifyBlocksBeingMerged(dest, source);
1393   assert(llvm::all_of(source->getPredecessors(),
1394                       [dest](Block *succ) { return succ == dest; }) &&
1395          "expected 'source' to have no predecessors or only 'dest'");
1396   assert(argValues.size() == source->getNumArguments() &&
1397          "incorrect # of argument replacement values");
1398   for (auto it : llvm::zip(source->getArguments(), argValues))
1399     replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
1400   dest->getOperations().splice(dest->end(), source->getOperations());
1401   eraseBlock(source);
1402 }
1403 
1404 /// PatternRewriter hook for moving blocks out of a region.
1405 void ConversionPatternRewriter::inlineRegionBefore(Region &region,
1406                                                    Region &parent,
1407                                                    Region::iterator before) {
1408   impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
1409   PatternRewriter::inlineRegionBefore(region, parent, before);
1410 }
1411 
1412 /// PatternRewriter hook for cloning blocks of one region into another.
1413 void ConversionPatternRewriter::cloneRegionBefore(
1414     Region &region, Region &parent, Region::iterator before,
1415     BlockAndValueMapping &mapping) {
1416   if (region.empty())
1417     return;
1418   PatternRewriter::cloneRegionBefore(region, parent, before, mapping);
1419 
1420   // Collect the range of the cloned blocks.
1421   auto clonedBeginIt = mapping.lookup(&region.front())->getIterator();
1422   auto clonedBlocks = llvm::make_range(clonedBeginIt, before);
1423   impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc());
1424 }
1425 
1426 /// PatternRewriter hook for creating a new operation.
1427 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) {
1428   LLVM_DEBUG({
1429     impl->logger.startLine()
1430         << "** Insert  : '" << op->getName() << "'(" << op << ")\n";
1431   });
1432   impl->createdOps.push_back(op);
1433 }
1434 
1435 /// PatternRewriter hook for updating the root operation in-place.
1436 void ConversionPatternRewriter::startRootUpdate(Operation *op) {
1437 #ifndef NDEBUG
1438   impl->pendingRootUpdates.insert(op);
1439 #endif
1440   impl->rootUpdates.emplace_back(op);
1441 }
1442 
1443 /// PatternRewriter hook for updating the root operation in-place.
1444 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) {
1445   // There is nothing to do here, we only need to track the operation at the
1446   // start of the update.
1447 #ifndef NDEBUG
1448   assert(impl->pendingRootUpdates.erase(op) &&
1449          "operation did not have a pending in-place update");
1450 #endif
1451 }
1452 
1453 /// PatternRewriter hook for updating the root operation in-place.
1454 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) {
1455 #ifndef NDEBUG
1456   assert(impl->pendingRootUpdates.erase(op) &&
1457          "operation did not have a pending in-place update");
1458 #endif
1459   // Erase the last update for this operation.
1460   auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; };
1461   auto &rootUpdates = impl->rootUpdates;
1462   auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp);
1463   rootUpdates.erase(rootUpdates.begin() + (rootUpdates.rend() - it));
1464 }
1465 
1466 /// PatternRewriter hook for notifying match failure reasons.
1467 LogicalResult ConversionPatternRewriter::notifyMatchFailure(
1468     Operation *op, function_ref<void(Diagnostic &)> reasonCallback) {
1469   return impl->notifyMatchFailure(op->getLoc(), reasonCallback);
1470 }
1471 
1472 /// Return a reference to the internal implementation.
1473 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
1474   return *impl;
1475 }
1476 
1477 //===----------------------------------------------------------------------===//
1478 // ConversionPattern
1479 //===----------------------------------------------------------------------===//
1480 
1481 /// Attempt to match and rewrite the IR root at the specified operation.
1482 LogicalResult
1483 ConversionPattern::matchAndRewrite(Operation *op,
1484                                    PatternRewriter &rewriter) const {
1485   auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
1486   auto &rewriterImpl = dialectRewriter.getImpl();
1487 
1488   // Track the current conversion pattern in the rewriter.
1489   assert(!rewriterImpl.currentConversionPattern &&
1490          "already inside of a pattern rewrite");
1491   llvm::SaveAndRestore<const ConversionPattern *> currentPatternGuard(
1492       rewriterImpl.currentConversionPattern, this);
1493 
1494   // Remap the operands of the operation.
1495   SmallVector<Value, 4> operands;
1496   if (failed(rewriterImpl.remapValues(op->getLoc(), rewriter,
1497                                       getTypeConverter(), op->getOperands(),
1498                                       operands))) {
1499     return failure();
1500   }
1501   return matchAndRewrite(op, operands, dialectRewriter);
1502 }
1503 
1504 //===----------------------------------------------------------------------===//
1505 // OperationLegalizer
1506 //===----------------------------------------------------------------------===//
1507 
1508 namespace {
1509 /// A set of rewrite patterns that can be used to legalize a given operation.
1510 using LegalizationPatterns = SmallVector<const Pattern *, 1>;
1511 
1512 /// This class defines a recursive operation legalizer.
1513 class OperationLegalizer {
1514 public:
1515   using LegalizationAction = ConversionTarget::LegalizationAction;
1516 
1517   OperationLegalizer(ConversionTarget &targetInfo,
1518                      const FrozenRewritePatternSet &patterns);
1519 
1520   /// Returns true if the given operation is known to be illegal on the target.
1521   bool isIllegal(Operation *op) const;
1522 
1523   /// Attempt to legalize the given operation. Returns success if the operation
1524   /// was legalized, failure otherwise.
1525   LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
1526 
1527   /// Returns the conversion target in use by the legalizer.
1528   ConversionTarget &getTarget() { return target; }
1529 
1530 private:
1531   /// Attempt to legalize the given operation by folding it.
1532   LogicalResult legalizeWithFold(Operation *op,
1533                                  ConversionPatternRewriter &rewriter);
1534 
1535   /// Attempt to legalize the given operation by applying a pattern. Returns
1536   /// success if the operation was legalized, failure otherwise.
1537   LogicalResult legalizeWithPattern(Operation *op,
1538                                     ConversionPatternRewriter &rewriter);
1539 
1540   /// Return true if the given pattern may be applied to the given operation,
1541   /// false otherwise.
1542   bool canApplyPattern(Operation *op, const Pattern &pattern,
1543                        ConversionPatternRewriter &rewriter);
1544 
1545   /// Legalize the resultant IR after successfully applying the given pattern.
1546   LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
1547                                       ConversionPatternRewriter &rewriter,
1548                                       RewriterState &curState);
1549 
1550   /// Legalizes the actions registered during the execution of a pattern.
1551   LogicalResult legalizePatternBlockActions(Operation *op,
1552                                             ConversionPatternRewriter &rewriter,
1553                                             ConversionPatternRewriterImpl &impl,
1554                                             RewriterState &state,
1555                                             RewriterState &newState);
1556   LogicalResult legalizePatternCreatedOperations(
1557       ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1558       RewriterState &state, RewriterState &newState);
1559   LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
1560                                            ConversionPatternRewriterImpl &impl,
1561                                            RewriterState &state,
1562                                            RewriterState &newState);
1563 
1564   //===--------------------------------------------------------------------===//
1565   // Cost Model
1566   //===--------------------------------------------------------------------===//
1567 
1568   /// Build an optimistic legalization graph given the provided patterns. This
1569   /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
1570   /// patterns for operations that are not directly legal, but may be
1571   /// transitively legal for the current target given the provided patterns.
1572   void buildLegalizationGraph(
1573       LegalizationPatterns &anyOpLegalizerPatterns,
1574       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1575 
1576   /// Compute the benefit of each node within the computed legalization graph.
1577   /// This orders the patterns within 'legalizerPatterns' based upon two
1578   /// criteria:
1579   ///  1) Prefer patterns that have the lowest legalization depth, i.e.
1580   ///     represent the more direct mapping to the target.
1581   ///  2) When comparing patterns with the same legalization depth, prefer the
1582   ///     pattern with the highest PatternBenefit. This allows for users to
1583   ///     prefer specific legalizations over others.
1584   void computeLegalizationGraphBenefit(
1585       LegalizationPatterns &anyOpLegalizerPatterns,
1586       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1587 
1588   /// Compute the legalization depth when legalizing an operation of the given
1589   /// type.
1590   unsigned computeOpLegalizationDepth(
1591       OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
1592       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1593 
1594   /// Apply the conversion cost model to the given set of patterns, and return
1595   /// the smallest legalization depth of any of the patterns. See
1596   /// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
1597   unsigned applyCostModelToPatterns(
1598       LegalizationPatterns &patterns,
1599       DenseMap<OperationName, unsigned> &minOpPatternDepth,
1600       DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
1601 
1602   /// The current set of patterns that have been applied.
1603   SmallPtrSet<const Pattern *, 8> appliedPatterns;
1604 
1605   /// The legalization information provided by the target.
1606   ConversionTarget &target;
1607 
1608   /// The pattern applicator to use for conversions.
1609   PatternApplicator applicator;
1610 };
1611 } // namespace
1612 
1613 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo,
1614                                        const FrozenRewritePatternSet &patterns)
1615     : target(targetInfo), applicator(patterns) {
1616   // The set of patterns that can be applied to illegal operations to transform
1617   // them into legal ones.
1618   DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
1619   LegalizationPatterns anyOpLegalizerPatterns;
1620 
1621   buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
1622   computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
1623 }
1624 
1625 bool OperationLegalizer::isIllegal(Operation *op) const {
1626   // Check if the target explicitly marked this operation as illegal.
1627   return target.getOpAction(op->getName()) == LegalizationAction::Illegal;
1628 }
1629 
1630 LogicalResult
1631 OperationLegalizer::legalize(Operation *op,
1632                              ConversionPatternRewriter &rewriter) {
1633 #ifndef NDEBUG
1634   const char *logLineComment =
1635       "//===-------------------------------------------===//\n";
1636 
1637   auto &rewriterImpl = rewriter.getImpl();
1638 #endif
1639   LLVM_DEBUG({
1640     auto &os = rewriterImpl.logger;
1641     os.getOStream() << "\n";
1642     os.startLine() << logLineComment;
1643     os.startLine() << "Legalizing operation : '" << op->getName() << "'(" << op
1644                    << ") {\n";
1645     os.indent();
1646 
1647     // If the operation has no regions, just print it here.
1648     if (op->getNumRegions() == 0) {
1649       op->print(os.startLine(), OpPrintingFlags().printGenericOpForm());
1650       os.getOStream() << "\n\n";
1651     }
1652   });
1653 
1654   // Check if this operation is legal on the target.
1655   if (auto legalityInfo = target.isLegal(op)) {
1656     LLVM_DEBUG({
1657       logSuccess(
1658           rewriterImpl.logger, "operation marked legal by the target{0}",
1659           legalityInfo->isRecursivelyLegal
1660               ? "; NOTE: operation is recursively legal; skipping internals"
1661               : "");
1662       rewriterImpl.logger.startLine() << logLineComment;
1663     });
1664 
1665     // If this operation is recursively legal, mark its children as ignored so
1666     // that we don't consider them for legalization.
1667     if (legalityInfo->isRecursivelyLegal)
1668       rewriter.getImpl().markNestedOpsIgnored(op);
1669     return success();
1670   }
1671 
1672   // Check to see if the operation is ignored and doesn't need to be converted.
1673   if (rewriter.getImpl().isOpIgnored(op)) {
1674     LLVM_DEBUG({
1675       logSuccess(rewriterImpl.logger,
1676                  "operation marked 'ignored' during conversion");
1677       rewriterImpl.logger.startLine() << logLineComment;
1678     });
1679     return success();
1680   }
1681 
1682   // If the operation isn't legal, try to fold it in-place.
1683   // TODO: Should we always try to do this, even if the op is
1684   // already legal?
1685   if (succeeded(legalizeWithFold(op, rewriter))) {
1686     LLVM_DEBUG({
1687       logSuccess(rewriterImpl.logger, "operation was folded");
1688       rewriterImpl.logger.startLine() << logLineComment;
1689     });
1690     return success();
1691   }
1692 
1693   // Otherwise, we need to apply a legalization pattern to this operation.
1694   if (succeeded(legalizeWithPattern(op, rewriter))) {
1695     LLVM_DEBUG({
1696       logSuccess(rewriterImpl.logger, "");
1697       rewriterImpl.logger.startLine() << logLineComment;
1698     });
1699     return success();
1700   }
1701 
1702   LLVM_DEBUG({
1703     logFailure(rewriterImpl.logger, "no matched legalization pattern");
1704     rewriterImpl.logger.startLine() << logLineComment;
1705   });
1706   return failure();
1707 }
1708 
1709 LogicalResult
1710 OperationLegalizer::legalizeWithFold(Operation *op,
1711                                      ConversionPatternRewriter &rewriter) {
1712   auto &rewriterImpl = rewriter.getImpl();
1713   RewriterState curState = rewriterImpl.getCurrentState();
1714 
1715   LLVM_DEBUG({
1716     rewriterImpl.logger.startLine() << "* Fold {\n";
1717     rewriterImpl.logger.indent();
1718   });
1719 
1720   // Try to fold the operation.
1721   SmallVector<Value, 2> replacementValues;
1722   rewriter.setInsertionPoint(op);
1723   if (failed(rewriter.tryFold(op, replacementValues))) {
1724     LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
1725     return failure();
1726   }
1727 
1728   // Insert a replacement for 'op' with the folded replacement values.
1729   rewriter.replaceOp(op, replacementValues);
1730 
1731   // Recursively legalize any new constant operations.
1732   for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size();
1733        i != e; ++i) {
1734     Operation *cstOp = rewriterImpl.createdOps[i];
1735     if (failed(legalize(cstOp, rewriter))) {
1736       LLVM_DEBUG(logFailure(rewriterImpl.logger,
1737                             "generated constant '{0}' was illegal",
1738                             cstOp->getName()));
1739       rewriterImpl.resetState(curState);
1740       return failure();
1741     }
1742   }
1743 
1744   LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
1745   return success();
1746 }
1747 
1748 LogicalResult
1749 OperationLegalizer::legalizeWithPattern(Operation *op,
1750                                         ConversionPatternRewriter &rewriter) {
1751   auto &rewriterImpl = rewriter.getImpl();
1752 
1753   // Functor that returns if the given pattern may be applied.
1754   auto canApply = [&](const Pattern &pattern) {
1755     return canApplyPattern(op, pattern, rewriter);
1756   };
1757 
1758   // Functor that cleans up the rewriter state after a pattern failed to match.
1759   RewriterState curState = rewriterImpl.getCurrentState();
1760   auto onFailure = [&](const Pattern &pattern) {
1761     LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match"));
1762     rewriterImpl.resetState(curState);
1763     appliedPatterns.erase(&pattern);
1764   };
1765 
1766   // Functor that performs additional legalization when a pattern is
1767   // successfully applied.
1768   auto onSuccess = [&](const Pattern &pattern) {
1769     auto result = legalizePatternResult(op, pattern, rewriter, curState);
1770     appliedPatterns.erase(&pattern);
1771     if (failed(result))
1772       rewriterImpl.resetState(curState);
1773     return result;
1774   };
1775 
1776   // Try to match and rewrite a pattern on this operation.
1777   return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
1778                                     onSuccess);
1779 }
1780 
1781 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
1782                                          ConversionPatternRewriter &rewriter) {
1783   LLVM_DEBUG({
1784     auto &os = rewriter.getImpl().logger;
1785     os.getOStream() << "\n";
1786     os.startLine() << "* Pattern : '" << op->getName() << " -> (";
1787     llvm::interleaveComma(pattern.getGeneratedOps(), llvm::dbgs());
1788     os.getOStream() << ")' {\n";
1789     os.indent();
1790   });
1791 
1792   // Ensure that we don't cycle by not allowing the same pattern to be
1793   // applied twice in the same recursion stack if it is not known to be safe.
1794   if (!pattern.hasBoundedRewriteRecursion() &&
1795       !appliedPatterns.insert(&pattern).second) {
1796     LLVM_DEBUG(
1797         logFailure(rewriter.getImpl().logger, "pattern was already applied"));
1798     return false;
1799   }
1800   return true;
1801 }
1802 
1803 LogicalResult
1804 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
1805                                           ConversionPatternRewriter &rewriter,
1806                                           RewriterState &curState) {
1807   auto &impl = rewriter.getImpl();
1808 
1809 #ifndef NDEBUG
1810   assert(impl.pendingRootUpdates.empty() && "dangling root updates");
1811 #endif
1812 
1813   // Check that the root was either replaced or updated in place.
1814   auto replacedRoot = [&] {
1815     return llvm::any_of(
1816         llvm::drop_begin(impl.replacements, curState.numReplacements),
1817         [op](auto &it) { return it.first == op; });
1818   };
1819   auto updatedRootInPlace = [&] {
1820     return llvm::any_of(
1821         llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates),
1822         [op](auto &state) { return state.getOperation() == op; });
1823   };
1824   (void)replacedRoot;
1825   (void)updatedRootInPlace;
1826   assert((replacedRoot() || updatedRootInPlace()) &&
1827          "expected pattern to replace the root operation");
1828 
1829   // Legalize each of the actions registered during application.
1830   RewriterState newState = impl.getCurrentState();
1831   if (failed(legalizePatternBlockActions(op, rewriter, impl, curState,
1832                                          newState)) ||
1833       failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
1834       failed(legalizePatternCreatedOperations(rewriter, impl, curState,
1835                                               newState))) {
1836     return failure();
1837   }
1838 
1839   LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
1840   return success();
1841 }
1842 
1843 LogicalResult OperationLegalizer::legalizePatternBlockActions(
1844     Operation *op, ConversionPatternRewriter &rewriter,
1845     ConversionPatternRewriterImpl &impl, RewriterState &state,
1846     RewriterState &newState) {
1847   SmallPtrSet<Operation *, 16> operationsToIgnore;
1848 
1849   // If the pattern moved or created any blocks, make sure the types of block
1850   // arguments get legalized.
1851   for (int i = state.numBlockActions, e = newState.numBlockActions; i != e;
1852        ++i) {
1853     auto &action = impl.blockActions[i];
1854     if (action.kind == BlockActionKind::TypeConversion ||
1855         action.kind == BlockActionKind::Erase)
1856       continue;
1857     // Only check blocks outside of the current operation.
1858     Operation *parentOp = action.block->getParentOp();
1859     if (!parentOp || parentOp == op || action.block->getNumArguments() == 0)
1860       continue;
1861 
1862     // If the region of the block has a type converter, try to convert the block
1863     // directly.
1864     if (auto *converter =
1865             impl.argConverter.getConverter(action.block->getParent())) {
1866       if (failed(impl.convertBlockSignature(action.block, *converter))) {
1867         LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
1868                                            "block"));
1869         return failure();
1870       }
1871       continue;
1872     }
1873 
1874     // Otherwise, check that this operation isn't one generated by this pattern.
1875     // This is because we will attempt to legalize the parent operation, and
1876     // blocks in regions created by this pattern will already be legalized later
1877     // on. If we haven't built the set yet, build it now.
1878     if (operationsToIgnore.empty()) {
1879       auto createdOps = ArrayRef<Operation *>(impl.createdOps)
1880                             .drop_front(state.numCreatedOps);
1881       operationsToIgnore.insert(createdOps.begin(), createdOps.end());
1882     }
1883 
1884     // If this operation should be considered for re-legalization, try it.
1885     if (operationsToIgnore.insert(parentOp).second &&
1886         failed(legalize(parentOp, rewriter))) {
1887       LLVM_DEBUG(logFailure(
1888           impl.logger, "operation '{0}'({1}) became illegal after block action",
1889           parentOp->getName(), parentOp));
1890       return failure();
1891     }
1892   }
1893   return success();
1894 }
1895 LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
1896     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1897     RewriterState &state, RewriterState &newState) {
1898   for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) {
1899     Operation *op = impl.createdOps[i];
1900     if (failed(legalize(op, rewriter))) {
1901       LLVM_DEBUG(logFailure(impl.logger,
1902                             "generated operation '{0}'({1}) was illegal",
1903                             op->getName(), op));
1904       return failure();
1905     }
1906   }
1907   return success();
1908 }
1909 LogicalResult OperationLegalizer::legalizePatternRootUpdates(
1910     ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
1911     RewriterState &state, RewriterState &newState) {
1912   for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) {
1913     Operation *op = impl.rootUpdates[i].getOperation();
1914     if (failed(legalize(op, rewriter))) {
1915       LLVM_DEBUG(logFailure(impl.logger,
1916                             "operation updated in-place '{0}' was illegal",
1917                             op->getName()));
1918       return failure();
1919     }
1920   }
1921   return success();
1922 }
1923 
1924 //===----------------------------------------------------------------------===//
1925 // Cost Model
1926 
1927 void OperationLegalizer::buildLegalizationGraph(
1928     LegalizationPatterns &anyOpLegalizerPatterns,
1929     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
1930   // A mapping between an operation and a set of operations that can be used to
1931   // generate it.
1932   DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
1933   // A mapping between an operation and any currently invalid patterns it has.
1934   DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
1935   // A worklist of patterns to consider for legality.
1936   llvm::SetVector<const Pattern *> patternWorklist;
1937 
1938   // Build the mapping from operations to the parent ops that may generate them.
1939   applicator.walkAllPatterns([&](const Pattern &pattern) {
1940     Optional<OperationName> root = pattern.getRootKind();
1941 
1942     // If the pattern has no specific root, we can't analyze the relationship
1943     // between the root op and generated operations. Given that, add all such
1944     // patterns to the legalization set.
1945     if (!root) {
1946       anyOpLegalizerPatterns.push_back(&pattern);
1947       return;
1948     }
1949 
1950     // Skip operations that are always known to be legal.
1951     if (target.getOpAction(*root) == LegalizationAction::Legal)
1952       return;
1953 
1954     // Add this pattern to the invalid set for the root op and record this root
1955     // as a parent for any generated operations.
1956     invalidPatterns[*root].insert(&pattern);
1957     for (auto op : pattern.getGeneratedOps())
1958       parentOps[op].insert(*root);
1959 
1960     // Add this pattern to the worklist.
1961     patternWorklist.insert(&pattern);
1962   });
1963 
1964   // If there are any patterns that don't have a specific root kind, we can't
1965   // make direct assumptions about what operations will never be legalized.
1966   // Note: Technically we could, but it would require an analysis that may
1967   // recurse into itself. It would be better to perform this kind of filtering
1968   // at a higher level than here anyways.
1969   if (!anyOpLegalizerPatterns.empty()) {
1970     for (const Pattern *pattern : patternWorklist)
1971       legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
1972     return;
1973   }
1974 
1975   while (!patternWorklist.empty()) {
1976     auto *pattern = patternWorklist.pop_back_val();
1977 
1978     // Check to see if any of the generated operations are invalid.
1979     if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
1980           Optional<LegalizationAction> action = target.getOpAction(op);
1981           return !legalizerPatterns.count(op) &&
1982                  (!action || action == LegalizationAction::Illegal);
1983         }))
1984       continue;
1985 
1986     // Otherwise, if all of the generated operation are valid, this op is now
1987     // legal so add all of the child patterns to the worklist.
1988     legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
1989     invalidPatterns[*pattern->getRootKind()].erase(pattern);
1990 
1991     // Add any invalid patterns of the parent operations to see if they have now
1992     // become legal.
1993     for (auto op : parentOps[*pattern->getRootKind()])
1994       patternWorklist.set_union(invalidPatterns[op]);
1995   }
1996 }
1997 
1998 void OperationLegalizer::computeLegalizationGraphBenefit(
1999     LegalizationPatterns &anyOpLegalizerPatterns,
2000     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2001   // The smallest pattern depth, when legalizing an operation.
2002   DenseMap<OperationName, unsigned> minOpPatternDepth;
2003 
2004   // For each operation that is transitively legal, compute a cost for it.
2005   for (auto &opIt : legalizerPatterns)
2006     if (!minOpPatternDepth.count(opIt.first))
2007       computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
2008                                  legalizerPatterns);
2009 
2010   // Apply the cost model to the patterns that can match any operation. Those
2011   // with a specific operation type are already resolved when computing the op
2012   // legalization depth.
2013   if (!anyOpLegalizerPatterns.empty())
2014     applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
2015                              legalizerPatterns);
2016 
2017   // Apply a cost model to the pattern applicator. We order patterns first by
2018   // depth then benefit. `legalizerPatterns` contains per-op patterns by
2019   // decreasing benefit.
2020   applicator.applyCostModel([&](const Pattern &pattern) {
2021     ArrayRef<const Pattern *> orderedPatternList;
2022     if (Optional<OperationName> rootName = pattern.getRootKind())
2023       orderedPatternList = legalizerPatterns[*rootName];
2024     else
2025       orderedPatternList = anyOpLegalizerPatterns;
2026 
2027     // If the pattern is not found, then it was removed and cannot be matched.
2028     auto it = llvm::find(orderedPatternList, &pattern);
2029     if (it == orderedPatternList.end())
2030       return PatternBenefit::impossibleToMatch();
2031 
2032     // Patterns found earlier in the list have higher benefit.
2033     return PatternBenefit(std::distance(it, orderedPatternList.end()));
2034   });
2035 }
2036 
2037 unsigned OperationLegalizer::computeOpLegalizationDepth(
2038     OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
2039     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2040   // Check for existing depth.
2041   auto depthIt = minOpPatternDepth.find(op);
2042   if (depthIt != minOpPatternDepth.end())
2043     return depthIt->second;
2044 
2045   // If a mapping for this operation does not exist, then this operation
2046   // is always legal. Return 0 as the depth for a directly legal operation.
2047   auto opPatternsIt = legalizerPatterns.find(op);
2048   if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
2049     return 0u;
2050 
2051   // Record this initial depth in case we encounter this op again when
2052   // recursively computing the depth.
2053   minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
2054 
2055   // Apply the cost model to the operation patterns, and update the minimum
2056   // depth.
2057   unsigned minDepth = applyCostModelToPatterns(
2058       opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
2059   minOpPatternDepth[op] = minDepth;
2060   return minDepth;
2061 }
2062 
2063 unsigned OperationLegalizer::applyCostModelToPatterns(
2064     LegalizationPatterns &patterns,
2065     DenseMap<OperationName, unsigned> &minOpPatternDepth,
2066     DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
2067   unsigned minDepth = std::numeric_limits<unsigned>::max();
2068 
2069   // Compute the depth for each pattern within the set.
2070   SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
2071   patternsByDepth.reserve(patterns.size());
2072   for (const Pattern *pattern : patterns) {
2073     unsigned depth = 0;
2074     for (auto generatedOp : pattern->getGeneratedOps()) {
2075       unsigned generatedOpDepth = computeOpLegalizationDepth(
2076           generatedOp, minOpPatternDepth, legalizerPatterns);
2077       depth = std::max(depth, generatedOpDepth + 1);
2078     }
2079     patternsByDepth.emplace_back(pattern, depth);
2080 
2081     // Update the minimum depth of the pattern list.
2082     minDepth = std::min(minDepth, depth);
2083   }
2084 
2085   // If the operation only has one legalization pattern, there is no need to
2086   // sort them.
2087   if (patternsByDepth.size() == 1)
2088     return minDepth;
2089 
2090   // Sort the patterns by those likely to be the most beneficial.
2091   llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(),
2092                        [](const std::pair<const Pattern *, unsigned> *lhs,
2093                           const std::pair<const Pattern *, unsigned> *rhs) {
2094                          // First sort by the smaller pattern legalization
2095                          // depth.
2096                          if (lhs->second != rhs->second)
2097                            return llvm::array_pod_sort_comparator<unsigned>(
2098                                &lhs->second, &rhs->second);
2099 
2100                          // Then sort by the larger pattern benefit.
2101                          auto lhsBenefit = lhs->first->getBenefit();
2102                          auto rhsBenefit = rhs->first->getBenefit();
2103                          return llvm::array_pod_sort_comparator<PatternBenefit>(
2104                              &rhsBenefit, &lhsBenefit);
2105                        });
2106 
2107   // Update the legalization pattern to use the new sorted list.
2108   patterns.clear();
2109   for (auto &patternIt : patternsByDepth)
2110     patterns.push_back(patternIt.first);
2111   return minDepth;
2112 }
2113 
2114 //===----------------------------------------------------------------------===//
2115 // OperationConverter
2116 //===----------------------------------------------------------------------===//
2117 namespace {
2118 enum OpConversionMode {
2119   // In this mode, the conversion will ignore failed conversions to allow
2120   // illegal operations to co-exist in the IR.
2121   Partial,
2122 
2123   // In this mode, all operations must be legal for the given target for the
2124   // conversion to succeed.
2125   Full,
2126 
2127   // In this mode, operations are analyzed for legality. No actual rewrites are
2128   // applied to the operations on success.
2129   Analysis,
2130 };
2131 
2132 // This class converts operations to a given conversion target via a set of
2133 // rewrite patterns. The conversion behaves differently depending on the
2134 // conversion mode.
2135 struct OperationConverter {
2136   explicit OperationConverter(ConversionTarget &target,
2137                               const FrozenRewritePatternSet &patterns,
2138                               OpConversionMode mode,
2139                               DenseSet<Operation *> *trackedOps = nullptr)
2140       : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {}
2141 
2142   /// Converts the given operations to the conversion target.
2143   LogicalResult convertOperations(ArrayRef<Operation *> ops);
2144 
2145 private:
2146   /// Converts an operation with the given rewriter.
2147   LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
2148 
2149   /// This method is called after the conversion process to legalize any
2150   /// remaining artifacts and complete the conversion.
2151   LogicalResult finalize(ConversionPatternRewriter &rewriter);
2152 
2153   /// Legalize the types of converted block arguments.
2154   LogicalResult
2155   legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
2156                                  ConversionPatternRewriterImpl &rewriterImpl);
2157 
2158   /// Legalize an operation result that was marked as "erased".
2159   LogicalResult
2160   legalizeErasedResult(Operation *op, OpResult result,
2161                        ConversionPatternRewriterImpl &rewriterImpl);
2162 
2163   /// Legalize an operation result that was replaced with a value of a different
2164   /// type.
2165   LogicalResult
2166   legalizeChangedResultType(Operation *op, OpResult result, Value newValue,
2167                             TypeConverter *replConverter,
2168                             ConversionPatternRewriter &rewriter,
2169                             ConversionPatternRewriterImpl &rewriterImpl,
2170                             const BlockAndValueMapping &inverseMapping);
2171 
2172   /// The legalizer to use when converting operations.
2173   OperationLegalizer opLegalizer;
2174 
2175   /// The conversion mode to use when legalizing operations.
2176   OpConversionMode mode;
2177 
2178   /// A set of pre-existing operations. When mode == OpConversionMode::Analysis,
2179   /// this is populated with ops found to be legalizable to the target.
2180   /// When mode == OpConversionMode::Partial, this is populated with ops found
2181   /// *not* to be legalizable to the target.
2182   DenseSet<Operation *> *trackedOps;
2183 };
2184 } // end anonymous namespace
2185 
2186 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
2187                                           Operation *op) {
2188   // Legalize the given operation.
2189   if (failed(opLegalizer.legalize(op, rewriter))) {
2190     // Handle the case of a failed conversion for each of the different modes.
2191     // Full conversions expect all operations to be converted.
2192     if (mode == OpConversionMode::Full)
2193       return op->emitError()
2194              << "failed to legalize operation '" << op->getName() << "'";
2195     // Partial conversions allow conversions to fail iff the operation was not
2196     // explicitly marked as illegal. If the user provided a nonlegalizableOps
2197     // set, non-legalizable ops are included.
2198     if (mode == OpConversionMode::Partial) {
2199       if (opLegalizer.isIllegal(op))
2200         return op->emitError()
2201                << "failed to legalize operation '" << op->getName()
2202                << "' that was explicitly marked illegal";
2203       if (trackedOps)
2204         trackedOps->insert(op);
2205     }
2206   } else if (mode == OpConversionMode::Analysis) {
2207     // Analysis conversions don't fail if any operations fail to legalize,
2208     // they are only interested in the operations that were successfully
2209     // legalized.
2210     trackedOps->insert(op);
2211   }
2212   return success();
2213 }
2214 
2215 LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
2216   if (ops.empty())
2217     return success();
2218   ConversionTarget &target = opLegalizer.getTarget();
2219 
2220   // Compute the set of operations and blocks to convert.
2221   std::vector<Operation *> toConvert;
2222   for (auto *op : ops) {
2223     toConvert.emplace_back(op);
2224     for (auto &region : op->getRegions())
2225       if (failed(computeConversionSet(region.getBlocks(), region.getLoc(),
2226                                       toConvert, &target)))
2227         return failure();
2228   }
2229 
2230   // Convert each operation and discard rewrites on failure.
2231   ConversionPatternRewriter rewriter(ops.front()->getContext());
2232   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2233   for (auto *op : toConvert)
2234     if (failed(convert(rewriter, op)))
2235       return rewriterImpl.discardRewrites(), failure();
2236 
2237   // Now that all of the operations have been converted, finalize the conversion
2238   // process to ensure any lingering conversion artifacts are cleaned up and
2239   // legalized.
2240   if (failed(finalize(rewriter)))
2241     return rewriterImpl.discardRewrites(), failure();
2242   // After a successful conversion, apply rewrites if this is not an analysis
2243   // conversion.
2244   if (mode == OpConversionMode::Analysis)
2245     rewriterImpl.discardRewrites();
2246   else {
2247     rewriterImpl.applyRewrites();
2248 
2249     // It is possible for a later pattern to erase an op that was originally
2250     // identified as illegal and added to the trackedOps, remove it now after
2251     // replacements have been computed.
2252     if (trackedOps)
2253       for (auto &repl : rewriterImpl.replacements)
2254         trackedOps->erase(repl.first);
2255   }
2256   return success();
2257 }
2258 
2259 LogicalResult
2260 OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
2261   ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
2262 
2263   // Legalize converted block arguments.
2264   if (failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
2265     return failure();
2266 
2267   if (rewriterImpl.operationsWithChangedResults.empty())
2268     return success();
2269 
2270   Optional<BlockAndValueMapping> inverseMapping;
2271 
2272   // Process requested operation replacements.
2273   for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size();
2274        i != e; ++i) {
2275     unsigned replIdx = rewriterImpl.operationsWithChangedResults[i];
2276     auto &repl = *(rewriterImpl.replacements.begin() + replIdx);
2277     for (OpResult result : repl.first->getResults()) {
2278       Value newValue = rewriterImpl.mapping.lookupOrNull(result);
2279 
2280       // If the operation result was replaced with null, all of the uses of this
2281       // value should be replaced.
2282       if (!newValue) {
2283         if (failed(legalizeErasedResult(repl.first, result, rewriterImpl)))
2284           return failure();
2285         continue;
2286       }
2287 
2288       // Otherwise, check to see if the type of the result changed.
2289       if (result.getType() == newValue.getType())
2290         continue;
2291 
2292       // Compute the inverse mapping only if it is really needed.
2293       if (!inverseMapping)
2294         inverseMapping = rewriterImpl.mapping.getInverse();
2295 
2296       // Legalize this result.
2297       rewriter.setInsertionPoint(repl.first);
2298       if (failed(legalizeChangedResultType(repl.first, result, newValue,
2299                                            repl.second.converter, rewriter,
2300                                            rewriterImpl, *inverseMapping)))
2301         return failure();
2302 
2303       // Update the end iterator for this loop in the case it was updated
2304       // when legalizing generated conversion operations.
2305       e = rewriterImpl.operationsWithChangedResults.size();
2306     }
2307   }
2308   return success();
2309 }
2310 
2311 LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
2312     ConversionPatternRewriter &rewriter,
2313     ConversionPatternRewriterImpl &rewriterImpl) {
2314   // Functor used to check if all users of a value will be dead after
2315   // conversion.
2316   auto findLiveUser = [&](Value val) {
2317     auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
2318       return rewriterImpl.isOpIgnored(user);
2319     });
2320     return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
2321   };
2322 
2323   // Materialize any necessary conversions for converted block arguments that
2324   // are still live.
2325   size_t numCreatedOps = rewriterImpl.createdOps.size();
2326   if (failed(rewriterImpl.argConverter.materializeLiveConversions(
2327           rewriterImpl.mapping, rewriter, findLiveUser)))
2328     return failure();
2329 
2330   // Legalize any newly created operations during argument materialization.
2331   for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) {
2332     if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) {
2333       return rewriterImpl.createdOps[i]->emitError()
2334              << "failed to legalize conversion operation generated for block "
2335                 "argument that remained live after conversion";
2336     }
2337   }
2338   return success();
2339 }
2340 
2341 LogicalResult OperationConverter::legalizeErasedResult(
2342     Operation *op, OpResult result,
2343     ConversionPatternRewriterImpl &rewriterImpl) {
2344   // If the operation result was replaced with null, all of the uses of this
2345   // value should be replaced.
2346   auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
2347     return rewriterImpl.isOpIgnored(user);
2348   });
2349   if (liveUserIt != result.user_end()) {
2350     InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
2351                               << op->getName() << "' marked as erased";
2352     diag.attachNote(liveUserIt->getLoc())
2353         << "found live user of result #" << result.getResultNumber() << ": "
2354         << *liveUserIt;
2355     return failure();
2356   }
2357   return success();
2358 }
2359 
2360 /// Finds a user of the given value, or of any other value that the given value
2361 /// replaced, that was not replaced in the conversion process.
2362 static Operation *
2363 findLiveUserOfReplaced(Value value, ConversionPatternRewriterImpl &rewriterImpl,
2364                        const BlockAndValueMapping &inverseMapping) {
2365   do {
2366     // Walk the users of this value to see if there are any live users that
2367     // weren't replaced during conversion.
2368     auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
2369       return rewriterImpl.isOpIgnored(user);
2370     });
2371     if (liveUserIt != value.user_end())
2372       return *liveUserIt;
2373     value = inverseMapping.lookupOrNull(value);
2374   } while (value != nullptr);
2375   return nullptr;
2376 }
2377 
2378 LogicalResult OperationConverter::legalizeChangedResultType(
2379     Operation *op, OpResult result, Value newValue,
2380     TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
2381     ConversionPatternRewriterImpl &rewriterImpl,
2382     const BlockAndValueMapping &inverseMapping) {
2383   Operation *liveUser =
2384       findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
2385   if (!liveUser)
2386     return success();
2387 
2388   // If the replacement has a type converter, attempt to materialize a
2389   // conversion back to the original type.
2390   if (!replConverter) {
2391     // TODO: We should emit an error here, similarly to the case where the
2392     // result is replaced with null. Unfortunately a lot of existing
2393     // patterns rely on this behavior, so until those patterns are updated
2394     // we keep the legacy behavior here of just forwarding the new value.
2395     return success();
2396   }
2397 
2398   // Track the number of created operations so that new ones can be legalized.
2399   size_t numCreatedOps = rewriterImpl.createdOps.size();
2400 
2401   // Materialize a conversion for this live result value.
2402   Type resultType = result.getType();
2403   Value convertedValue = replConverter->materializeSourceConversion(
2404       rewriter, op->getLoc(), resultType, newValue);
2405   if (!convertedValue) {
2406     InFlightDiagnostic diag = op->emitError()
2407                               << "failed to materialize conversion for result #"
2408                               << result.getResultNumber() << " of operation '"
2409                               << op->getName()
2410                               << "' that remained live after conversion";
2411     diag.attachNote(liveUser->getLoc())
2412         << "see existing live user here: " << *liveUser;
2413     return failure();
2414   }
2415 
2416   // Legalize all of the newly created conversion operations.
2417   for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) {
2418     if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) {
2419       return op->emitError("failed to legalize conversion operation generated ")
2420              << "for result #" << result.getResultNumber() << " of operation '"
2421              << op->getName() << "' that remained live after conversion";
2422     }
2423   }
2424 
2425   rewriterImpl.mapping.map(result, convertedValue);
2426   return success();
2427 }
2428 
2429 //===----------------------------------------------------------------------===//
2430 // Type Conversion
2431 //===----------------------------------------------------------------------===//
2432 
2433 /// Remap an input of the original signature with a new set of types. The
2434 /// new types are appended to the new signature conversion.
2435 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
2436                                                    ArrayRef<Type> types) {
2437   assert(!types.empty() && "expected valid types");
2438   remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
2439   addInputs(types);
2440 }
2441 
2442 /// Append new input types to the signature conversion, this should only be
2443 /// used if the new types are not intended to remap an existing input.
2444 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
2445   assert(!types.empty() &&
2446          "1->0 type remappings don't need to be added explicitly");
2447   argTypes.append(types.begin(), types.end());
2448 }
2449 
2450 /// Remap an input of the original signature with a range of types in the
2451 /// new signature.
2452 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2453                                                     unsigned newInputNo,
2454                                                     unsigned newInputCount) {
2455   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2456   assert(newInputCount != 0 && "expected valid input count");
2457   remappedInputs[origInputNo] =
2458       InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
2459 }
2460 
2461 /// Remap an input of the original signature to another `replacementValue`
2462 /// value. This would make the signature converter drop this argument.
2463 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
2464                                                     Value replacementValue) {
2465   assert(!remappedInputs[origInputNo] && "input has already been remapped");
2466   remappedInputs[origInputNo] =
2467       InputMapping{origInputNo, /*size=*/0, replacementValue};
2468 }
2469 
2470 /// This hooks allows for converting a type.
2471 LogicalResult TypeConverter::convertType(Type t,
2472                                          SmallVectorImpl<Type> &results) {
2473   auto existingIt = cachedDirectConversions.find(t);
2474   if (existingIt != cachedDirectConversions.end()) {
2475     if (existingIt->second)
2476       results.push_back(existingIt->second);
2477     return success(existingIt->second != nullptr);
2478   }
2479   auto multiIt = cachedMultiConversions.find(t);
2480   if (multiIt != cachedMultiConversions.end()) {
2481     results.append(multiIt->second.begin(), multiIt->second.end());
2482     return success();
2483   }
2484 
2485   // Walk the added converters in reverse order to apply the most recently
2486   // registered first.
2487   size_t currentCount = results.size();
2488   for (ConversionCallbackFn &converter : llvm::reverse(conversions)) {
2489     if (Optional<LogicalResult> result = converter(t, results)) {
2490       if (!succeeded(*result)) {
2491         cachedDirectConversions.try_emplace(t, nullptr);
2492         return failure();
2493       }
2494       auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
2495       if (newTypes.size() == 1)
2496         cachedDirectConversions.try_emplace(t, newTypes.front());
2497       else
2498         cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
2499       return success();
2500     }
2501   }
2502   return failure();
2503 }
2504 
2505 /// This hook simplifies defining 1-1 type conversions. This function returns
2506 /// the type to convert to on success, and a null type on failure.
2507 Type TypeConverter::convertType(Type t) {
2508   // Use the multi-type result version to convert the type.
2509   SmallVector<Type, 1> results;
2510   if (failed(convertType(t, results)))
2511     return nullptr;
2512 
2513   // Check to ensure that only one type was produced.
2514   return results.size() == 1 ? results.front() : nullptr;
2515 }
2516 
2517 /// Convert the given set of types, filling 'results' as necessary. This
2518 /// returns failure if the conversion of any of the types fails, success
2519 /// otherwise.
2520 LogicalResult TypeConverter::convertTypes(TypeRange types,
2521                                           SmallVectorImpl<Type> &results) {
2522   for (Type type : types)
2523     if (failed(convertType(type, results)))
2524       return failure();
2525   return success();
2526 }
2527 
2528 /// Return true if the given type is legal for this type converter, i.e. the
2529 /// type converts to itself.
2530 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; }
2531 /// Return true if the given operation has legal operand and result types.
2532 bool TypeConverter::isLegal(Operation *op) {
2533   return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
2534 }
2535 
2536 /// Return true if the types of block arguments within the region are legal.
2537 bool TypeConverter::isLegal(Region *region) {
2538   return llvm::all_of(*region, [this](Block &block) {
2539     return isLegal(block.getArgumentTypes());
2540   });
2541 }
2542 
2543 /// Return true if the inputs and outputs of the given function type are
2544 /// legal.
2545 bool TypeConverter::isSignatureLegal(FunctionType ty) {
2546   return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
2547 }
2548 
2549 /// This hook allows for converting a specific argument of a signature.
2550 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
2551                                                  SignatureConversion &result) {
2552   // Try to convert the given input type.
2553   SmallVector<Type, 1> convertedTypes;
2554   if (failed(convertType(type, convertedTypes)))
2555     return failure();
2556 
2557   // If this argument is being dropped, there is nothing left to do.
2558   if (convertedTypes.empty())
2559     return success();
2560 
2561   // Otherwise, add the new inputs.
2562   result.addInputs(inputNo, convertedTypes);
2563   return success();
2564 }
2565 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types,
2566                                                   SignatureConversion &result,
2567                                                   unsigned origInputOffset) {
2568   for (unsigned i = 0, e = types.size(); i != e; ++i)
2569     if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
2570       return failure();
2571   return success();
2572 }
2573 
2574 Value TypeConverter::materializeConversion(
2575     MutableArrayRef<MaterializationCallbackFn> materializations,
2576     OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) {
2577   for (MaterializationCallbackFn &fn : llvm::reverse(materializations))
2578     if (Optional<Value> result = fn(builder, resultType, inputs, loc))
2579       return result.getValue();
2580   return nullptr;
2581 }
2582 
2583 /// This function converts the type signature of the given block, by invoking
2584 /// 'convertSignatureArg' for each argument. This function should return a valid
2585 /// conversion for the signature on success, None otherwise.
2586 auto TypeConverter::convertBlockSignature(Block *block)
2587     -> Optional<SignatureConversion> {
2588   SignatureConversion conversion(block->getNumArguments());
2589   if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
2590     return llvm::None;
2591   return conversion;
2592 }
2593 
2594 /// Create a default conversion pattern that rewrites the type signature of a
2595 /// FunctionLike op. This only supports FunctionLike ops which use FunctionType
2596 /// to represent their type.
2597 namespace {
2598 struct FunctionLikeSignatureConversion : public ConversionPattern {
2599   FunctionLikeSignatureConversion(StringRef functionLikeOpName,
2600                                   MLIRContext *ctx, TypeConverter &converter)
2601       : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
2602 
2603   /// Hook to implement combined matching and rewriting for FunctionLike ops.
2604   LogicalResult
2605   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
2606                   ConversionPatternRewriter &rewriter) const override {
2607     FunctionType type = mlir::impl::getFunctionType(op);
2608 
2609     // Convert the original function types.
2610     TypeConverter::SignatureConversion result(type.getNumInputs());
2611     SmallVector<Type, 1> newResults;
2612     if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) ||
2613         failed(typeConverter->convertTypes(type.getResults(), newResults)) ||
2614         failed(rewriter.convertRegionTypes(&mlir::impl::getFunctionBody(op),
2615                                            *typeConverter, &result)))
2616       return failure();
2617 
2618     // Update the function signature in-place.
2619     auto newType = FunctionType::get(rewriter.getContext(),
2620                                      result.getConvertedTypes(), newResults);
2621 
2622     rewriter.updateRootInPlace(
2623         op, [&] { mlir::impl::setFunctionType(op, newType); });
2624 
2625     return success();
2626   }
2627 };
2628 } // end anonymous namespace
2629 
2630 void mlir::populateFunctionLikeTypeConversionPattern(
2631     StringRef functionLikeOpName, RewritePatternSet &patterns,
2632     TypeConverter &converter) {
2633   patterns.add<FunctionLikeSignatureConversion>(
2634       functionLikeOpName, patterns.getContext(), converter);
2635 }
2636 
2637 void mlir::populateFuncOpTypeConversionPattern(RewritePatternSet &patterns,
2638                                                TypeConverter &converter) {
2639   populateFunctionLikeTypeConversionPattern<FuncOp>(patterns, converter);
2640 }
2641 
2642 //===----------------------------------------------------------------------===//
2643 // ConversionTarget
2644 //===----------------------------------------------------------------------===//
2645 
2646 /// Register a legality action for the given operation.
2647 void ConversionTarget::setOpAction(OperationName op,
2648                                    LegalizationAction action) {
2649   legalOperations[op] = {action, /*isRecursivelyLegal=*/false, llvm::None};
2650 }
2651 
2652 /// Register a legality action for the given dialects.
2653 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
2654                                         LegalizationAction action) {
2655   for (StringRef dialect : dialectNames)
2656     legalDialects[dialect] = action;
2657 }
2658 
2659 /// Get the legality action for the given operation.
2660 auto ConversionTarget::getOpAction(OperationName op) const
2661     -> Optional<LegalizationAction> {
2662   Optional<LegalizationInfo> info = getOpInfo(op);
2663   return info ? info->action : Optional<LegalizationAction>();
2664 }
2665 
2666 /// If the given operation instance is legal on this target, a structure
2667 /// containing legality information is returned. If the operation is not legal,
2668 /// None is returned.
2669 auto ConversionTarget::isLegal(Operation *op) const
2670     -> Optional<LegalOpDetails> {
2671   Optional<LegalizationInfo> info = getOpInfo(op->getName());
2672   if (!info)
2673     return llvm::None;
2674 
2675   // Returns true if this operation instance is known to be legal.
2676   auto isOpLegal = [&] {
2677     // Handle dynamic legality either with the provided legality function, or
2678     // the default hook on the derived instance.
2679     if (info->action == LegalizationAction::Dynamic)
2680       return info->legalityFn ? (*info->legalityFn)(op)
2681                               : isDynamicallyLegal(op);
2682 
2683     // Otherwise, the operation is only legal if it was marked 'Legal'.
2684     return info->action == LegalizationAction::Legal;
2685   };
2686   if (!isOpLegal())
2687     return llvm::None;
2688 
2689   // This operation is legal, compute any additional legality information.
2690   LegalOpDetails legalityDetails;
2691   if (info->isRecursivelyLegal) {
2692     auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
2693     if (legalityFnIt != opRecursiveLegalityFns.end())
2694       legalityDetails.isRecursivelyLegal = legalityFnIt->second(op);
2695     else
2696       legalityDetails.isRecursivelyLegal = true;
2697   }
2698   return legalityDetails;
2699 }
2700 
2701 /// Set the dynamic legality callback for the given operation.
2702 void ConversionTarget::setLegalityCallback(
2703     OperationName name, const DynamicLegalityCallbackFn &callback) {
2704   assert(callback && "expected valid legality callback");
2705   auto infoIt = legalOperations.find(name);
2706   assert(infoIt != legalOperations.end() &&
2707          infoIt->second.action == LegalizationAction::Dynamic &&
2708          "expected operation to already be marked as dynamically legal");
2709   infoIt->second.legalityFn = callback;
2710 }
2711 
2712 /// Set the recursive legality callback for the given operation and mark the
2713 /// operation as recursively legal.
2714 void ConversionTarget::markOpRecursivelyLegal(
2715     OperationName name, const DynamicLegalityCallbackFn &callback) {
2716   auto infoIt = legalOperations.find(name);
2717   assert(infoIt != legalOperations.end() &&
2718          infoIt->second.action != LegalizationAction::Illegal &&
2719          "expected operation to already be marked as legal");
2720   infoIt->second.isRecursivelyLegal = true;
2721   if (callback)
2722     opRecursiveLegalityFns[name] = callback;
2723   else
2724     opRecursiveLegalityFns.erase(name);
2725 }
2726 
2727 /// Set the dynamic legality callback for the given dialects.
2728 void ConversionTarget::setLegalityCallback(
2729     ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
2730   assert(callback && "expected valid legality callback");
2731   for (StringRef dialect : dialects)
2732     dialectLegalityFns[dialect] = callback;
2733 }
2734 
2735 /// Get the legalization information for the given operation.
2736 auto ConversionTarget::getOpInfo(OperationName op) const
2737     -> Optional<LegalizationInfo> {
2738   // Check for info for this specific operation.
2739   auto it = legalOperations.find(op);
2740   if (it != legalOperations.end())
2741     return it->second;
2742   // Check for info for the parent dialect.
2743   auto dialectIt = legalDialects.find(op.getDialectNamespace());
2744   if (dialectIt != legalDialects.end()) {
2745     Optional<DynamicLegalityCallbackFn> callback;
2746     auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
2747     if (dialectFn != dialectLegalityFns.end())
2748       callback = dialectFn->second;
2749     return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
2750                             callback};
2751   }
2752   // Otherwise, check if we mark unknown operations as dynamic.
2753   if (unknownOpsDynamicallyLegal)
2754     return LegalizationInfo{LegalizationAction::Dynamic,
2755                             /*isRecursivelyLegal=*/false, unknownLegalityFn};
2756   return llvm::None;
2757 }
2758 
2759 //===----------------------------------------------------------------------===//
2760 // Op Conversion Entry Points
2761 //===----------------------------------------------------------------------===//
2762 
2763 /// Apply a partial conversion on the given operations and all nested
2764 /// operations. This method converts as many operations to the target as
2765 /// possible, ignoring operations that failed to legalize. This method only
2766 /// returns failure if there ops explicitly marked as illegal.
2767 /// If an `unconvertedOps` set is provided, all operations that are found not
2768 /// to be legalizable to the given `target` are placed within that set. (Note
2769 /// that if there is an op explicitly marked as illegal, the conversion
2770 /// terminates and the `unconvertedOps` set will not necessarily be complete.)
2771 LogicalResult
2772 mlir::applyPartialConversion(ArrayRef<Operation *> ops,
2773                              ConversionTarget &target,
2774                              const FrozenRewritePatternSet &patterns,
2775                              DenseSet<Operation *> *unconvertedOps) {
2776   OperationConverter opConverter(target, patterns, OpConversionMode::Partial,
2777                                  unconvertedOps);
2778   return opConverter.convertOperations(ops);
2779 }
2780 LogicalResult
2781 mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
2782                              const FrozenRewritePatternSet &patterns,
2783                              DenseSet<Operation *> *unconvertedOps) {
2784   return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
2785                                 unconvertedOps);
2786 }
2787 
2788 /// Apply a complete conversion on the given operations, and all nested
2789 /// operations. This method will return failure if the conversion of any
2790 /// operation fails.
2791 LogicalResult
2792 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
2793                           const FrozenRewritePatternSet &patterns) {
2794   OperationConverter opConverter(target, patterns, OpConversionMode::Full);
2795   return opConverter.convertOperations(ops);
2796 }
2797 LogicalResult
2798 mlir::applyFullConversion(Operation *op, ConversionTarget &target,
2799                           const FrozenRewritePatternSet &patterns) {
2800   return applyFullConversion(llvm::makeArrayRef(op), target, patterns);
2801 }
2802 
2803 /// Apply an analysis conversion on the given operations, and all nested
2804 /// operations. This method analyzes which operations would be successfully
2805 /// converted to the target if a conversion was applied. All operations that
2806 /// were found to be legalizable to the given 'target' are placed within the
2807 /// provided 'convertedOps' set; note that no actual rewrites are applied to the
2808 /// operations on success and only pre-existing operations are added to the set.
2809 LogicalResult
2810 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops,
2811                               ConversionTarget &target,
2812                               const FrozenRewritePatternSet &patterns,
2813                               DenseSet<Operation *> &convertedOps) {
2814   OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
2815                                  &convertedOps);
2816   return opConverter.convertOperations(ops);
2817 }
2818 LogicalResult
2819 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
2820                               const FrozenRewritePatternSet &patterns,
2821                               DenseSet<Operation *> &convertedOps) {
2822   return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
2823                                  convertedOps);
2824 }
2825