1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Transforms/DialectConversion.h" 10 #include "mlir/IR/Block.h" 11 #include "mlir/IR/BlockAndValueMapping.h" 12 #include "mlir/IR/Builders.h" 13 #include "mlir/IR/BuiltinDialect.h" 14 #include "mlir/Rewrite/PatternApplicator.h" 15 #include "mlir/Transforms/Utils.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Support/Debug.h" 19 #include "llvm/Support/FormatVariadic.h" 20 #include "llvm/Support/SaveAndRestore.h" 21 #include "llvm/Support/ScopedPrinter.h" 22 23 using namespace mlir; 24 using namespace mlir::detail; 25 26 #define DEBUG_TYPE "dialect-conversion" 27 28 /// Recursively collect all of the operations to convert from within 'region'. 29 /// If 'target' is nonnull, operations that are recursively legal have their 30 /// regions pre-filtered to avoid considering them for legalization. 31 static LogicalResult 32 computeConversionSet(iterator_range<Region::iterator> region, 33 Location regionLoc, std::vector<Operation *> &toConvert, 34 ConversionTarget *target = nullptr) { 35 if (llvm::empty(region)) 36 return success(); 37 38 // Traverse starting from the entry block. 39 SmallVector<Block *, 16> worklist(1, &*region.begin()); 40 DenseSet<Block *> visitedBlocks; 41 visitedBlocks.insert(worklist.front()); 42 while (!worklist.empty()) { 43 Block *block = worklist.pop_back_val(); 44 45 // Compute the conversion set of each of the nested operations. 46 for (Operation &op : *block) { 47 toConvert.emplace_back(&op); 48 49 // Don't check this operation's children for conversion if the operation 50 // is recursively legal. 51 auto legalityInfo = target ? target->isLegal(&op) 52 : Optional<ConversionTarget::LegalOpDetails>(); 53 if (legalityInfo && legalityInfo->isRecursivelyLegal) 54 continue; 55 for (auto ®ion : op.getRegions()) { 56 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 57 toConvert, target))) 58 return failure(); 59 } 60 } 61 62 // Recurse to children that haven't been visited. 63 for (Block *succ : block->getSuccessors()) 64 if (visitedBlocks.insert(succ).second) 65 worklist.push_back(succ); 66 } 67 68 // Check that all blocks in the region were visited. 69 if (llvm::any_of(llvm::drop_begin(region, 1), 70 [&](Block &block) { return !visitedBlocks.count(&block); })) 71 return emitError(regionLoc, "unreachable blocks were not converted"); 72 return success(); 73 } 74 75 /// A utility function to log a successful result for the given reason. 76 template <typename... Args> 77 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { 78 LLVM_DEBUG({ 79 os.unindent(); 80 os.startLine() << "} -> SUCCESS"; 81 if (!fmt.empty()) 82 os.getOStream() << " : " 83 << llvm::formatv(fmt.data(), std::forward<Args>(args)...); 84 os.getOStream() << "\n"; 85 }); 86 } 87 88 /// A utility function to log a failure result for the given reason. 89 template <typename... Args> 90 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { 91 LLVM_DEBUG({ 92 os.unindent(); 93 os.startLine() << "} -> FAILURE : " 94 << llvm::formatv(fmt.data(), std::forward<Args>(args)...) 95 << "\n"; 96 }); 97 } 98 99 //===----------------------------------------------------------------------===// 100 // ConversionValueMapping 101 //===----------------------------------------------------------------------===// 102 103 namespace { 104 /// This class wraps a BlockAndValueMapping to provide recursive lookup 105 /// functionality, i.e. we will traverse if the mapped value also has a mapping. 106 struct ConversionValueMapping { 107 /// Lookup a mapped value within the map. If a mapping for the provided value 108 /// does not exist then return the provided value. If `desiredType` is 109 /// non-null, returns the most recently mapped value with that type. If an 110 /// operand of that type does not exist, defaults to normal behavior. 111 Value lookupOrDefault(Value from, Type desiredType = nullptr) const; 112 113 /// Lookup a mapped value within the map, or return null if a mapping does not 114 /// exist. If a mapping exists, this follows the same behavior of 115 /// `lookupOrDefault`. 116 Value lookupOrNull(Value from) const; 117 118 /// Map a value to the one provided. 119 void map(Value oldVal, Value newVal) { mapping.map(oldVal, newVal); } 120 121 /// Drop the last mapping for the given value. 122 void erase(Value value) { mapping.erase(value); } 123 124 private: 125 /// Current value mappings. 126 BlockAndValueMapping mapping; 127 }; 128 } // end anonymous namespace 129 130 Value ConversionValueMapping::lookupOrDefault(Value from, 131 Type desiredType) const { 132 // If there was no desired type, simply find the leaf value. 133 if (!desiredType) { 134 // If this value had a valid mapping, unmap that value as well in the case 135 // that it was also replaced. 136 while (auto mappedValue = mapping.lookupOrNull(from)) 137 from = mappedValue; 138 return from; 139 } 140 141 // Otherwise, try to find the deepest value that has the desired type. 142 Value desiredValue; 143 do { 144 if (from.getType() == desiredType) 145 desiredValue = from; 146 147 Value mappedValue = mapping.lookupOrNull(from); 148 if (!mappedValue) 149 break; 150 from = mappedValue; 151 } while (true); 152 153 // If the desired value was found use it, otherwise default to the leaf value. 154 return desiredValue ? desiredValue : from; 155 } 156 157 Value ConversionValueMapping::lookupOrNull(Value from) const { 158 Value result = lookupOrDefault(from); 159 return result == from ? nullptr : result; 160 } 161 162 //===----------------------------------------------------------------------===// 163 // ArgConverter 164 //===----------------------------------------------------------------------===// 165 namespace { 166 /// This class provides a simple interface for converting the types of block 167 /// arguments. This is done by creating a new block that contains the new legal 168 /// types and extracting the block that contains the old illegal types to allow 169 /// for undoing pending rewrites in the case of failure. 170 struct ArgConverter { 171 ArgConverter(PatternRewriter &rewriter) : rewriter(rewriter) {} 172 173 /// This structure contains the information pertaining to an argument that has 174 /// been converted. 175 struct ConvertedArgInfo { 176 ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize, 177 Value castValue = nullptr) 178 : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {} 179 180 /// The start index of in the new argument list that contains arguments that 181 /// replace the original. 182 unsigned newArgIdx; 183 184 /// The number of arguments that replaced the original argument. 185 unsigned newArgSize; 186 187 /// The cast value that was created to cast from the new arguments to the 188 /// old. This only used if 'newArgSize' > 1. 189 Value castValue; 190 }; 191 192 /// This structure contains information pertaining to a block that has had its 193 /// signature converted. 194 struct ConvertedBlockInfo { 195 ConvertedBlockInfo(Block *origBlock, TypeConverter &converter) 196 : origBlock(origBlock), converter(&converter) {} 197 198 /// The original block that was requested to have its signature converted. 199 Block *origBlock; 200 201 /// The conversion information for each of the arguments. The information is 202 /// None if the argument was dropped during conversion. 203 SmallVector<Optional<ConvertedArgInfo>, 1> argInfo; 204 205 /// The type converter used to convert the arguments. 206 TypeConverter *converter; 207 }; 208 209 /// Return if the signature of the given block has already been converted. 210 bool hasBeenConverted(Block *block) const { 211 return conversionInfo.count(block) || convertedBlocks.count(block); 212 } 213 214 /// Set the type converter to use for the given region. 215 void setConverter(Region *region, TypeConverter *typeConverter) { 216 assert(typeConverter && "expected valid type converter"); 217 regionToConverter[region] = typeConverter; 218 } 219 220 /// Return the type converter to use for the given region, or null if there 221 /// isn't one. 222 TypeConverter *getConverter(Region *region) { 223 return regionToConverter.lookup(region); 224 } 225 226 //===--------------------------------------------------------------------===// 227 // Rewrite Application 228 //===--------------------------------------------------------------------===// 229 230 /// Erase any rewrites registered for the blocks within the given operation 231 /// which is about to be removed. This merely drops the rewrites without 232 /// undoing them. 233 void notifyOpRemoved(Operation *op); 234 235 /// Cleanup and undo any generated conversions for the arguments of block. 236 /// This method replaces the new block with the original, reverting the IR to 237 /// its original state. 238 void discardRewrites(Block *block); 239 240 /// Fully replace uses of the old arguments with the new. 241 void applyRewrites(ConversionValueMapping &mapping); 242 243 /// Materialize any necessary conversions for converted arguments that have 244 /// live users, using the provided `findLiveUser` to search for a user that 245 /// survives the conversion process. 246 LogicalResult 247 materializeLiveConversions(ConversionValueMapping &mapping, 248 OpBuilder &builder, 249 function_ref<Operation *(Value)> findLiveUser); 250 251 //===--------------------------------------------------------------------===// 252 // Conversion 253 //===--------------------------------------------------------------------===// 254 255 /// Attempt to convert the signature of the given block, if successful a new 256 /// block is returned containing the new arguments. Returns `block` if it did 257 /// not require conversion. 258 FailureOr<Block *> convertSignature(Block *block, TypeConverter &converter, 259 ConversionValueMapping &mapping); 260 261 /// Apply the given signature conversion on the given block. The new block 262 /// containing the updated signature is returned. If no conversions were 263 /// necessary, e.g. if the block has no arguments, `block` is returned. 264 /// `converter` is used to generate any necessary cast operations that 265 /// translate between the origin argument types and those specified in the 266 /// signature conversion. 267 Block *applySignatureConversion( 268 Block *block, TypeConverter &converter, 269 TypeConverter::SignatureConversion &signatureConversion, 270 ConversionValueMapping &mapping); 271 272 /// Insert a new conversion into the cache. 273 void insertConversion(Block *newBlock, ConvertedBlockInfo &&info); 274 275 /// A collection of blocks that have had their arguments converted. This is a 276 /// map from the new replacement block, back to the original block. 277 llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo; 278 279 /// The set of original blocks that were converted. 280 DenseSet<Block *> convertedBlocks; 281 282 /// A mapping from valid regions, to those containing the original blocks of a 283 /// conversion. 284 DenseMap<Region *, std::unique_ptr<Region>> regionMapping; 285 286 /// A mapping of regions to type converters that should be used when 287 /// converting the arguments of blocks within that region. 288 DenseMap<Region *, TypeConverter *> regionToConverter; 289 290 /// The pattern rewriter to use when materializing conversions. 291 PatternRewriter &rewriter; 292 }; 293 } // end anonymous namespace 294 295 //===----------------------------------------------------------------------===// 296 // Rewrite Application 297 298 void ArgConverter::notifyOpRemoved(Operation *op) { 299 if (conversionInfo.empty()) 300 return; 301 302 for (Region ®ion : op->getRegions()) { 303 for (Block &block : region) { 304 // Drop any rewrites from within. 305 for (Operation &nestedOp : block) 306 if (nestedOp.getNumRegions()) 307 notifyOpRemoved(&nestedOp); 308 309 // Check if this block was converted. 310 auto it = conversionInfo.find(&block); 311 if (it == conversionInfo.end()) 312 continue; 313 314 // Drop all uses of the original arguments and delete the original block. 315 Block *origBlock = it->second.origBlock; 316 for (BlockArgument arg : origBlock->getArguments()) 317 arg.dropAllUses(); 318 conversionInfo.erase(it); 319 } 320 } 321 } 322 323 void ArgConverter::discardRewrites(Block *block) { 324 auto it = conversionInfo.find(block); 325 if (it == conversionInfo.end()) 326 return; 327 Block *origBlock = it->second.origBlock; 328 329 // Drop all uses of the new block arguments and replace uses of the new block. 330 for (int i = block->getNumArguments() - 1; i >= 0; --i) 331 block->getArgument(i).dropAllUses(); 332 block->replaceAllUsesWith(origBlock); 333 334 // Move the operations back the original block and the delete the new block. 335 origBlock->getOperations().splice(origBlock->end(), block->getOperations()); 336 origBlock->moveBefore(block); 337 block->erase(); 338 339 convertedBlocks.erase(origBlock); 340 conversionInfo.erase(it); 341 } 342 343 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) { 344 for (auto &info : conversionInfo) { 345 ConvertedBlockInfo &blockInfo = info.second; 346 Block *origBlock = blockInfo.origBlock; 347 348 // Process the remapping for each of the original arguments. 349 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 350 Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i]; 351 BlockArgument origArg = origBlock->getArgument(i); 352 353 // Handle the case of a 1->0 value mapping. 354 if (!argInfo) { 355 if (Value newArg = mapping.lookupOrNull(origArg)) 356 origArg.replaceAllUsesWith(newArg); 357 continue; 358 } 359 360 // Otherwise this is a 1->1+ value mapping. 361 Value castValue = argInfo->castValue; 362 assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping"); 363 364 // If the argument is still used, replace it with the generated cast. 365 if (!origArg.use_empty()) 366 origArg.replaceAllUsesWith(mapping.lookupOrDefault(castValue)); 367 368 // If all users of the cast were removed, we can drop it. Otherwise, keep 369 // the operation alive and let the user handle any remaining usages. 370 if (castValue.use_empty() && castValue.getDefiningOp()) 371 castValue.getDefiningOp()->erase(); 372 } 373 } 374 } 375 376 LogicalResult ArgConverter::materializeLiveConversions( 377 ConversionValueMapping &mapping, OpBuilder &builder, 378 function_ref<Operation *(Value)> findLiveUser) { 379 for (auto &info : conversionInfo) { 380 Block *newBlock = info.first; 381 ConvertedBlockInfo &blockInfo = info.second; 382 Block *origBlock = blockInfo.origBlock; 383 384 // Process the remapping for each of the original arguments. 385 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 386 // FIXME: We should run the below checks even if the type conversion was 387 // 1->N, but a lot of existing lowering rely on the block argument being 388 // blindly replaced. Those usages should be updated, and this if should be 389 // removed. 390 if (blockInfo.argInfo[i]) 391 continue; 392 393 // If the type of this argument changed and the argument is still live, we 394 // need to materialize a conversion. 395 BlockArgument origArg = origBlock->getArgument(i); 396 auto argReplacementValue = mapping.lookupOrDefault(origArg); 397 bool isDroppedArg = argReplacementValue == origArg; 398 if (argReplacementValue.getType() == origArg.getType() && !isDroppedArg) 399 continue; 400 Operation *liveUser = findLiveUser(origArg); 401 if (!liveUser) 402 continue; 403 404 if (OpResult result = argReplacementValue.dyn_cast<OpResult>()) 405 rewriter.setInsertionPointAfter(result.getOwner()); 406 else 407 rewriter.setInsertionPointToStart(newBlock); 408 Value newArg = blockInfo.converter->materializeSourceConversion( 409 rewriter, origArg.getLoc(), origArg.getType(), 410 isDroppedArg ? ValueRange() : ValueRange(argReplacementValue)); 411 if (!newArg) { 412 InFlightDiagnostic diag = 413 emitError(origArg.getLoc()) 414 << "failed to materialize conversion for block argument #" << i 415 << " that remained live after conversion, type was " 416 << origArg.getType(); 417 if (!isDroppedArg) 418 diag << ", with target type " << argReplacementValue.getType(); 419 diag.attachNote(liveUser->getLoc()) 420 << "see existing live user here: " << *liveUser; 421 return failure(); 422 } 423 mapping.map(origArg, newArg); 424 } 425 } 426 return success(); 427 } 428 429 //===----------------------------------------------------------------------===// 430 // Conversion 431 432 FailureOr<Block *> 433 ArgConverter::convertSignature(Block *block, TypeConverter &converter, 434 ConversionValueMapping &mapping) { 435 // Check if the block was already converted. If the block is detached, 436 // conservatively assume it is going to be deleted. 437 if (hasBeenConverted(block) || !block->getParent()) 438 return block; 439 440 // Try to convert the signature for the block with the provided converter. 441 if (auto conversion = converter.convertBlockSignature(block)) 442 return applySignatureConversion(block, converter, *conversion, mapping); 443 return failure(); 444 } 445 446 Block *ArgConverter::applySignatureConversion( 447 Block *block, TypeConverter &converter, 448 TypeConverter::SignatureConversion &signatureConversion, 449 ConversionValueMapping &mapping) { 450 // If no arguments are being changed or added, there is nothing to do. 451 unsigned origArgCount = block->getNumArguments(); 452 auto convertedTypes = signatureConversion.getConvertedTypes(); 453 if (origArgCount == 0 && convertedTypes.empty()) 454 return block; 455 456 // Split the block at the beginning to get a new block to use for the updated 457 // signature. 458 Block *newBlock = block->splitBlock(block->begin()); 459 block->replaceAllUsesWith(newBlock); 460 461 SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes)); 462 ArrayRef<Value> newArgs(newArgRange); 463 464 // Remap each of the original arguments as determined by the signature 465 // conversion. 466 ConvertedBlockInfo info(block, converter); 467 info.argInfo.resize(origArgCount); 468 469 OpBuilder::InsertionGuard guard(rewriter); 470 rewriter.setInsertionPointToStart(newBlock); 471 for (unsigned i = 0; i != origArgCount; ++i) { 472 auto inputMap = signatureConversion.getInputMapping(i); 473 if (!inputMap) 474 continue; 475 BlockArgument origArg = block->getArgument(i); 476 477 // If inputMap->replacementValue is not nullptr, then the argument is 478 // dropped and a replacement value is provided to be the remappedValue. 479 if (inputMap->replacementValue) { 480 assert(inputMap->size == 0 && 481 "invalid to provide a replacement value when the argument isn't " 482 "dropped"); 483 mapping.map(origArg, inputMap->replacementValue); 484 continue; 485 } 486 487 // Otherwise, this is a 1->1+ mapping. Call into the provided type converter 488 // to pack the new values. For 1->1 mappings, if there is no materialization 489 // provided, use the argument directly instead. 490 auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size); 491 Value newArg = converter.materializeArgumentConversion( 492 rewriter, origArg.getLoc(), origArg.getType(), replArgs); 493 if (!newArg) { 494 assert(replArgs.size() == 1 && 495 "couldn't materialize the result of 1->N conversion"); 496 newArg = replArgs.front(); 497 } 498 mapping.map(origArg, newArg); 499 info.argInfo[i] = 500 ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg); 501 } 502 503 // Remove the original block from the region and return the new one. 504 insertConversion(newBlock, std::move(info)); 505 return newBlock; 506 } 507 508 void ArgConverter::insertConversion(Block *newBlock, 509 ConvertedBlockInfo &&info) { 510 // Get a region to insert the old block. 511 Region *region = newBlock->getParent(); 512 std::unique_ptr<Region> &mappedRegion = regionMapping[region]; 513 if (!mappedRegion) 514 mappedRegion = std::make_unique<Region>(region->getParentOp()); 515 516 // Move the original block to the mapped region and emplace the conversion. 517 mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(), 518 info.origBlock->getIterator()); 519 convertedBlocks.insert(info.origBlock); 520 conversionInfo.insert({newBlock, std::move(info)}); 521 } 522 523 //===----------------------------------------------------------------------===// 524 // Rewriter and Translation State 525 //===----------------------------------------------------------------------===// 526 namespace { 527 /// This class contains a snapshot of the current conversion rewriter state. 528 /// This is useful when saving and undoing a set of rewrites. 529 struct RewriterState { 530 RewriterState(unsigned numCreatedOps, unsigned numReplacements, 531 unsigned numArgReplacements, unsigned numBlockActions, 532 unsigned numIgnoredOperations, unsigned numRootUpdates) 533 : numCreatedOps(numCreatedOps), numReplacements(numReplacements), 534 numArgReplacements(numArgReplacements), 535 numBlockActions(numBlockActions), 536 numIgnoredOperations(numIgnoredOperations), 537 numRootUpdates(numRootUpdates) {} 538 539 /// The current number of created operations. 540 unsigned numCreatedOps; 541 542 /// The current number of replacements queued. 543 unsigned numReplacements; 544 545 /// The current number of argument replacements queued. 546 unsigned numArgReplacements; 547 548 /// The current number of block actions performed. 549 unsigned numBlockActions; 550 551 /// The current number of ignored operations. 552 unsigned numIgnoredOperations; 553 554 /// The current number of operations that were updated in place. 555 unsigned numRootUpdates; 556 }; 557 558 /// The state of an operation that was updated by a pattern in-place. This 559 /// contains all of the necessary information to reconstruct an operation that 560 /// was updated in place. 561 class OperationTransactionState { 562 public: 563 OperationTransactionState() = default; 564 OperationTransactionState(Operation *op) 565 : op(op), loc(op->getLoc()), attrs(op->getMutableAttrDict()), 566 operands(op->operand_begin(), op->operand_end()), 567 successors(op->successor_begin(), op->successor_end()) {} 568 569 /// Discard the transaction state and reset the state of the original 570 /// operation. 571 void resetOperation() const { 572 op->setLoc(loc); 573 op->setAttrs(attrs); 574 op->setOperands(operands); 575 for (auto it : llvm::enumerate(successors)) 576 op->setSuccessor(it.value(), it.index()); 577 } 578 579 /// Return the original operation of this state. 580 Operation *getOperation() const { return op; } 581 582 private: 583 Operation *op; 584 LocationAttr loc; 585 MutableDictionaryAttr attrs; 586 SmallVector<Value, 8> operands; 587 SmallVector<Block *, 2> successors; 588 }; 589 590 /// This class represents one requested operation replacement via 'replaceOp' or 591 /// 'eraseOp`. 592 struct OpReplacement { 593 OpReplacement() = default; 594 OpReplacement(TypeConverter *converter) : converter(converter) {} 595 596 /// An optional type converter that can be used to materialize conversions 597 /// between the new and old values if necessary. 598 TypeConverter *converter = nullptr; 599 }; 600 601 /// The kind of the block action performed during the rewrite. Actions can be 602 /// undone if the conversion fails. 603 enum class BlockActionKind { 604 Create, 605 Erase, 606 Merge, 607 Move, 608 Split, 609 TypeConversion 610 }; 611 612 /// Original position of the given block in its parent region. During undo 613 /// actions, the block needs to be placed after `insertAfterBlock`. 614 struct BlockPosition { 615 Region *region; 616 Block *insertAfterBlock; 617 }; 618 619 /// Information needed to undo the merge actions. 620 /// - the source block, and 621 /// - the Operation that was the last operation in the dest block before the 622 /// merge (could be null if the dest block was empty). 623 struct MergeInfo { 624 Block *sourceBlock; 625 Operation *destBlockLastInst; 626 }; 627 628 /// The storage class for an undoable block action (one of BlockActionKind), 629 /// contains the information necessary to undo this action. 630 struct BlockAction { 631 static BlockAction getCreate(Block *block) { 632 return {BlockActionKind::Create, block, {}}; 633 } 634 static BlockAction getErase(Block *block, BlockPosition originalPosition) { 635 return {BlockActionKind::Erase, block, {originalPosition}}; 636 } 637 static BlockAction getMerge(Block *block, Block *sourceBlock) { 638 BlockAction action{BlockActionKind::Merge, block, {}}; 639 action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()}; 640 return action; 641 } 642 static BlockAction getMove(Block *block, BlockPosition originalPosition) { 643 return {BlockActionKind::Move, block, {originalPosition}}; 644 } 645 static BlockAction getSplit(Block *block, Block *originalBlock) { 646 BlockAction action{BlockActionKind::Split, block, {}}; 647 action.originalBlock = originalBlock; 648 return action; 649 } 650 static BlockAction getTypeConversion(Block *block) { 651 return BlockAction{BlockActionKind::TypeConversion, block, {}}; 652 } 653 654 // The action kind. 655 BlockActionKind kind; 656 657 // A pointer to the block that was created by the action. 658 Block *block; 659 660 union { 661 // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and 662 // contains a pointer to the region that originally contained the block as 663 // well as the position of the block in that region. 664 BlockPosition originalPosition; 665 // In use if kind == BlockActionKind::Split and contains a pointer to the 666 // block that was split into two parts. 667 Block *originalBlock; 668 // In use if kind == BlockActionKind::Merge, and contains the information 669 // needed to undo the merge. 670 MergeInfo mergeInfo; 671 }; 672 }; 673 } // end anonymous namespace 674 675 //===----------------------------------------------------------------------===// 676 // ConversionPatternRewriterImpl 677 //===----------------------------------------------------------------------===// 678 namespace mlir { 679 namespace detail { 680 struct ConversionPatternRewriterImpl { 681 ConversionPatternRewriterImpl(PatternRewriter &rewriter) 682 : argConverter(rewriter) {} 683 684 /// Cleanup and destroy any generated rewrite operations. This method is 685 /// invoked when the conversion process fails. 686 void discardRewrites(); 687 688 /// Apply all requested operation rewrites. This method is invoked when the 689 /// conversion process succeeds. 690 void applyRewrites(); 691 692 //===--------------------------------------------------------------------===// 693 // State Management 694 //===--------------------------------------------------------------------===// 695 696 /// Return the current state of the rewriter. 697 RewriterState getCurrentState(); 698 699 /// Reset the state of the rewriter to a previously saved point. 700 void resetState(RewriterState state); 701 702 /// Erase any blocks that were unlinked from their regions and stored in block 703 /// actions. 704 void eraseDanglingBlocks(); 705 706 /// Undo the block actions (motions, splits) one by one in reverse order until 707 /// "numActionsToKeep" actions remains. 708 void undoBlockActions(unsigned numActionsToKeep = 0); 709 710 /// Remap the given operands to those with potentially different types. The 711 /// provided type converter is used to ensure that the remapped types are 712 /// legal. Returns success if the operands could be remapped, failure 713 /// otherwise. 714 LogicalResult remapValues(Location loc, PatternRewriter &rewriter, 715 TypeConverter *converter, 716 Operation::operand_range operands, 717 SmallVectorImpl<Value> &remapped); 718 719 /// Returns true if the given operation is ignored, and does not need to be 720 /// converted. 721 bool isOpIgnored(Operation *op) const; 722 723 /// Recursively marks the nested operations under 'op' as ignored. This 724 /// removes them from being considered for legalization. 725 void markNestedOpsIgnored(Operation *op); 726 727 //===--------------------------------------------------------------------===// 728 // Type Conversion 729 //===--------------------------------------------------------------------===// 730 731 /// Convert the signature of the given block. 732 FailureOr<Block *> convertBlockSignature( 733 Block *block, TypeConverter &converter, 734 TypeConverter::SignatureConversion *conversion = nullptr); 735 736 /// Apply a signature conversion on the given region. 737 Block * 738 applySignatureConversion(Region *region, 739 TypeConverter::SignatureConversion &conversion); 740 741 /// Convert the types of block arguments within the given region. 742 FailureOr<Block *> 743 convertRegionTypes(Region *region, TypeConverter &converter, 744 TypeConverter::SignatureConversion *entryConversion); 745 746 //===--------------------------------------------------------------------===// 747 // Rewriter Notification Hooks 748 //===--------------------------------------------------------------------===// 749 750 /// PatternRewriter hook for replacing the results of an operation. 751 void notifyOpReplaced(Operation *op, ValueRange newValues); 752 753 /// Notifies that a block is about to be erased. 754 void notifyBlockIsBeingErased(Block *block); 755 756 /// Notifies that a block was created. 757 void notifyCreatedBlock(Block *block); 758 759 /// Notifies that a block was split. 760 void notifySplitBlock(Block *block, Block *continuation); 761 762 /// Notifies that `block` is being merged with `srcBlock`. 763 void notifyBlocksBeingMerged(Block *block, Block *srcBlock); 764 765 /// Notifies that the blocks of a region are about to be moved. 766 void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent, 767 Region::iterator before); 768 769 /// Notifies that the blocks of a region were cloned into another. 770 void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks, 771 Location origRegionLoc); 772 773 /// Notifies that a pattern match failed for the given reason. 774 LogicalResult 775 notifyMatchFailure(Location loc, 776 function_ref<void(Diagnostic &)> reasonCallback); 777 778 //===--------------------------------------------------------------------===// 779 // State 780 //===--------------------------------------------------------------------===// 781 782 // Mapping between replaced values that differ in type. This happens when 783 // replacing a value with one of a different type. 784 ConversionValueMapping mapping; 785 786 /// Utility used to convert block arguments. 787 ArgConverter argConverter; 788 789 /// Ordered vector of all of the newly created operations during conversion. 790 std::vector<Operation *> createdOps; 791 792 /// Ordered map of requested operation replacements. 793 llvm::MapVector<Operation *, OpReplacement> replacements; 794 795 /// Ordered vector of any requested block argument replacements. 796 SmallVector<BlockArgument, 4> argReplacements; 797 798 /// Ordered list of block operations (creations, splits, motions). 799 SmallVector<BlockAction, 4> blockActions; 800 801 /// A set of operations that should no longer be considered for legalization, 802 /// but were not directly replace/erased/etc. by a pattern. These are 803 /// generally child operations of other operations who were 804 /// replaced/erased/etc. This is not meant to be an exhaustive list of all 805 /// operations, but the minimal set that can be used to detect if a given 806 /// operation should be `ignored`. For example, we may add the operations that 807 /// define non-empty regions to the set, but not any of the others. This 808 /// simplifies the amount of memory needed as we can query if the parent 809 /// operation was ignored. 810 llvm::SetVector<Operation *> ignoredOps; 811 812 /// A transaction state for each of operations that were updated in-place. 813 SmallVector<OperationTransactionState, 4> rootUpdates; 814 815 /// A vector of indices into `replacements` of operations that were replaced 816 /// with values with different result types than the original operation, e.g. 817 /// 1->N conversion of some kind. 818 SmallVector<unsigned, 4> operationsWithChangedResults; 819 820 /// A default type converter, used when block conversions do not have one 821 /// explicitly provided. 822 TypeConverter defaultTypeConverter; 823 824 /// The current conversion pattern that is being rewritten, or nullptr if 825 /// called from outside of a conversion pattern rewrite. 826 const ConversionPattern *currentConversionPattern = nullptr; 827 828 #ifndef NDEBUG 829 /// A set of operations that have pending updates. This tracking isn't 830 /// strictly necessary, and is thus only active during debug builds for extra 831 /// verification. 832 SmallPtrSet<Operation *, 1> pendingRootUpdates; 833 834 /// A logger used to emit diagnostics during the conversion process. 835 llvm::ScopedPrinter logger{llvm::dbgs()}; 836 #endif 837 }; 838 } // end namespace detail 839 } // end namespace mlir 840 841 /// Detach any operations nested in the given operation from their parent 842 /// blocks, and erase the given operation. This can be used when the nested 843 /// operations are scheduled for erasure themselves, so deleting the regions of 844 /// the given operation together with their content would result in double-free. 845 /// This happens, for example, when rolling back op creation in the reverse 846 /// order and if the nested ops were created before the parent op. This function 847 /// does not need to collect nested ops recursively because it is expected to 848 /// also be called for each nested op when it is about to be deleted. 849 static void detachNestedAndErase(Operation *op) { 850 for (Region ®ion : op->getRegions()) { 851 for (Block &block : region.getBlocks()) { 852 while (!block.getOperations().empty()) 853 block.getOperations().remove(block.getOperations().begin()); 854 block.dropAllDefinedValueUses(); 855 } 856 } 857 op->erase(); 858 } 859 860 void ConversionPatternRewriterImpl::discardRewrites() { 861 // Reset any operations that were updated in place. 862 for (auto &state : rootUpdates) 863 state.resetOperation(); 864 865 undoBlockActions(); 866 867 // Remove any newly created ops. 868 for (auto *op : llvm::reverse(createdOps)) 869 detachNestedAndErase(op); 870 } 871 872 void ConversionPatternRewriterImpl::applyRewrites() { 873 // Apply all of the rewrites replacements requested during conversion. 874 for (auto &repl : replacements) { 875 for (OpResult result : repl.first->getResults()) 876 if (Value newValue = mapping.lookupOrNull(result)) 877 result.replaceAllUsesWith(newValue); 878 879 // If this operation defines any regions, drop any pending argument 880 // rewrites. 881 if (repl.first->getNumRegions()) 882 argConverter.notifyOpRemoved(repl.first); 883 } 884 885 // Apply all of the requested argument replacements. 886 for (BlockArgument arg : argReplacements) { 887 Value repl = mapping.lookupOrDefault(arg); 888 if (repl.isa<BlockArgument>()) { 889 arg.replaceAllUsesWith(repl); 890 continue; 891 } 892 893 // If the replacement value is an operation, we check to make sure that we 894 // don't replace uses that are within the parent operation of the 895 // replacement value. 896 Operation *replOp = repl.cast<OpResult>().getOwner(); 897 Block *replBlock = replOp->getBlock(); 898 arg.replaceUsesWithIf(repl, [&](OpOperand &operand) { 899 Operation *user = operand.getOwner(); 900 return user->getBlock() != replBlock || replOp->isBeforeInBlock(user); 901 }); 902 } 903 904 // In a second pass, erase all of the replaced operations in reverse. This 905 // allows processing nested operations before their parent region is 906 // destroyed. 907 for (auto &repl : llvm::reverse(replacements)) 908 repl.first->erase(); 909 910 argConverter.applyRewrites(mapping); 911 912 // Now that the ops have been erased, also erase dangling blocks. 913 eraseDanglingBlocks(); 914 } 915 916 //===----------------------------------------------------------------------===// 917 // State Management 918 919 RewriterState ConversionPatternRewriterImpl::getCurrentState() { 920 return RewriterState(createdOps.size(), replacements.size(), 921 argReplacements.size(), blockActions.size(), 922 ignoredOps.size(), rootUpdates.size()); 923 } 924 925 void ConversionPatternRewriterImpl::resetState(RewriterState state) { 926 // Reset any operations that were updated in place. 927 for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i) 928 rootUpdates[i].resetOperation(); 929 rootUpdates.resize(state.numRootUpdates); 930 931 // Reset any replaced arguments. 932 for (BlockArgument replacedArg : 933 llvm::drop_begin(argReplacements, state.numArgReplacements)) 934 mapping.erase(replacedArg); 935 argReplacements.resize(state.numArgReplacements); 936 937 // Undo any block actions. 938 undoBlockActions(state.numBlockActions); 939 940 // Reset any replaced operations and undo any saved mappings. 941 for (auto &repl : llvm::drop_begin(replacements, state.numReplacements)) 942 for (auto result : repl.first->getResults()) 943 mapping.erase(result); 944 while (replacements.size() != state.numReplacements) 945 replacements.pop_back(); 946 947 // Pop all of the newly created operations. 948 while (createdOps.size() != state.numCreatedOps) { 949 detachNestedAndErase(createdOps.back()); 950 createdOps.pop_back(); 951 } 952 953 // Pop all of the recorded ignored operations that are no longer valid. 954 while (ignoredOps.size() != state.numIgnoredOperations) 955 ignoredOps.pop_back(); 956 957 // Reset operations with changed results. 958 while (!operationsWithChangedResults.empty() && 959 operationsWithChangedResults.back() >= state.numReplacements) 960 operationsWithChangedResults.pop_back(); 961 } 962 963 void ConversionPatternRewriterImpl::eraseDanglingBlocks() { 964 for (auto &action : blockActions) 965 if (action.kind == BlockActionKind::Erase) 966 delete action.block; 967 } 968 969 void ConversionPatternRewriterImpl::undoBlockActions( 970 unsigned numActionsToKeep) { 971 for (auto &action : 972 llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) { 973 switch (action.kind) { 974 // Delete the created block. 975 case BlockActionKind::Create: { 976 // Unlink all of the operations within this block, they will be deleted 977 // separately. 978 auto &blockOps = action.block->getOperations(); 979 while (!blockOps.empty()) 980 blockOps.remove(blockOps.begin()); 981 action.block->dropAllDefinedValueUses(); 982 action.block->erase(); 983 break; 984 } 985 // Put the block (owned by action) back into its original position. 986 case BlockActionKind::Erase: { 987 auto &blockList = action.originalPosition.region->getBlocks(); 988 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 989 blockList.insert((insertAfterBlock 990 ? std::next(Region::iterator(insertAfterBlock)) 991 : blockList.end()), 992 action.block); 993 break; 994 } 995 // Split the block at the position which was originally the end of the 996 // destination block (owned by action), and put the instructions back into 997 // the block used before the merge. 998 case BlockActionKind::Merge: { 999 Block *sourceBlock = action.mergeInfo.sourceBlock; 1000 Block::iterator splitPoint = 1001 (action.mergeInfo.destBlockLastInst 1002 ? ++Block::iterator(action.mergeInfo.destBlockLastInst) 1003 : action.block->begin()); 1004 sourceBlock->getOperations().splice(sourceBlock->begin(), 1005 action.block->getOperations(), 1006 splitPoint, action.block->end()); 1007 break; 1008 } 1009 // Move the block back to its original position. 1010 case BlockActionKind::Move: { 1011 Region *originalRegion = action.originalPosition.region; 1012 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 1013 originalRegion->getBlocks().splice( 1014 (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock)) 1015 : originalRegion->end()), 1016 action.block->getParent()->getBlocks(), action.block); 1017 break; 1018 } 1019 // Merge back the block that was split out. 1020 case BlockActionKind::Split: { 1021 action.originalBlock->getOperations().splice( 1022 action.originalBlock->end(), action.block->getOperations()); 1023 action.block->dropAllDefinedValueUses(); 1024 action.block->erase(); 1025 break; 1026 } 1027 // Undo the type conversion. 1028 case BlockActionKind::TypeConversion: { 1029 argConverter.discardRewrites(action.block); 1030 break; 1031 } 1032 } 1033 } 1034 blockActions.resize(numActionsToKeep); 1035 } 1036 1037 LogicalResult ConversionPatternRewriterImpl::remapValues( 1038 Location loc, PatternRewriter &rewriter, TypeConverter *converter, 1039 Operation::operand_range operands, SmallVectorImpl<Value> &remapped) { 1040 remapped.reserve(llvm::size(operands)); 1041 1042 SmallVector<Type, 1> legalTypes; 1043 for (auto it : llvm::enumerate(operands)) { 1044 Value operand = it.value(); 1045 Type origType = operand.getType(); 1046 1047 // If a converter was provided, get the desired legal types for this 1048 // operand. 1049 Type desiredType; 1050 if (converter) { 1051 // If there is no legal conversion, fail to match this pattern. 1052 legalTypes.clear(); 1053 if (failed(converter->convertType(origType, legalTypes))) { 1054 return notifyMatchFailure(loc, [=](Diagnostic &diag) { 1055 diag << "unable to convert type for operand #" << it.index() 1056 << ", type was " << origType; 1057 }); 1058 } 1059 // TODO: There currently isn't any mechanism to do 1->N type conversion 1060 // via the PatternRewriter replacement API, so for now we just ignore it. 1061 if (legalTypes.size() == 1) 1062 desiredType = legalTypes.front(); 1063 } else { 1064 // TODO: What we should do here is just set `desiredType` to `origType` 1065 // and then handle the necessary type conversions after the conversion 1066 // process has finished. Unfortunately a lot of patterns currently rely on 1067 // receiving the new operands even if the types change, so we keep the 1068 // original behavior here for now until all of the patterns relying on 1069 // this get updated. 1070 } 1071 Value newOperand = mapping.lookupOrDefault(operand, desiredType); 1072 1073 // Handle the case where the conversion was 1->1 and the new operand type 1074 // isn't legal. 1075 Type newOperandType = newOperand.getType(); 1076 if (converter && desiredType && newOperandType != desiredType) { 1077 // Attempt to materialize a conversion for this new value. 1078 newOperand = converter->materializeTargetConversion( 1079 rewriter, loc, desiredType, newOperand); 1080 if (!newOperand) { 1081 return notifyMatchFailure(loc, [=](Diagnostic &diag) { 1082 diag << "unable to materialize a conversion for " 1083 "operand #" 1084 << it.index() << ", from " << newOperandType << " to " 1085 << desiredType; 1086 }); 1087 } 1088 } 1089 remapped.push_back(newOperand); 1090 } 1091 return success(); 1092 } 1093 1094 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const { 1095 // Check to see if this operation was replaced or its parent ignored. 1096 return replacements.count(op) || ignoredOps.count(op->getParentOp()); 1097 } 1098 1099 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) { 1100 // Walk this operation and collect nested operations that define non-empty 1101 // regions. We mark such operations as 'ignored' so that we know we don't have 1102 // to convert them, or their nested ops. 1103 if (op->getNumRegions() == 0) 1104 return; 1105 op->walk([&](Operation *op) { 1106 if (llvm::any_of(op->getRegions(), 1107 [](Region ®ion) { return !region.empty(); })) 1108 ignoredOps.insert(op); 1109 }); 1110 } 1111 1112 //===----------------------------------------------------------------------===// 1113 // Type Conversion 1114 1115 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature( 1116 Block *block, TypeConverter &converter, 1117 TypeConverter::SignatureConversion *conversion) { 1118 FailureOr<Block *> result = 1119 conversion ? argConverter.applySignatureConversion(block, converter, 1120 *conversion, mapping) 1121 : argConverter.convertSignature(block, converter, mapping); 1122 if (Block *newBlock = result.getValue()) { 1123 if (newBlock != block) 1124 blockActions.push_back(BlockAction::getTypeConversion(newBlock)); 1125 } 1126 return result; 1127 } 1128 1129 Block *ConversionPatternRewriterImpl::applySignatureConversion( 1130 Region *region, TypeConverter::SignatureConversion &conversion) { 1131 if (!region->empty()) { 1132 return *convertBlockSignature(®ion->front(), defaultTypeConverter, 1133 &conversion); 1134 } 1135 return nullptr; 1136 } 1137 1138 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes( 1139 Region *region, TypeConverter &converter, 1140 TypeConverter::SignatureConversion *entryConversion) { 1141 argConverter.setConverter(region, &converter); 1142 if (region->empty()) 1143 return nullptr; 1144 1145 // Convert the arguments of each block within the region. 1146 FailureOr<Block *> newEntry = 1147 convertBlockSignature(®ion->front(), converter, entryConversion); 1148 for (Block &block : llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) 1149 if (failed(convertBlockSignature(&block, converter))) 1150 return failure(); 1151 return newEntry; 1152 } 1153 1154 //===----------------------------------------------------------------------===// 1155 // Rewriter Notification Hooks 1156 1157 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op, 1158 ValueRange newValues) { 1159 assert(newValues.size() == op->getNumResults()); 1160 assert(!replacements.count(op) && "operation was already replaced"); 1161 1162 // Track if any of the results changed, e.g. erased and replaced with null. 1163 bool resultChanged = false; 1164 1165 // Create mappings for each of the new result values. 1166 Value newValue, result; 1167 for (auto it : llvm::zip(newValues, op->getResults())) { 1168 std::tie(newValue, result) = it; 1169 if (!newValue) { 1170 resultChanged = true; 1171 continue; 1172 } 1173 // Remap, and check for any result type changes. 1174 mapping.map(result, newValue); 1175 resultChanged |= (newValue.getType() != result.getType()); 1176 } 1177 if (resultChanged) 1178 operationsWithChangedResults.push_back(replacements.size()); 1179 1180 // Record the requested operation replacement. 1181 TypeConverter *converter = nullptr; 1182 if (currentConversionPattern) 1183 converter = currentConversionPattern->getTypeConverter(); 1184 replacements.insert(std::make_pair(op, OpReplacement(converter))); 1185 1186 // Mark this operation as recursively ignored so that we don't need to 1187 // convert any nested operations. 1188 markNestedOpsIgnored(op); 1189 } 1190 1191 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) { 1192 Region *region = block->getParent(); 1193 Block *origPrevBlock = block->getPrevNode(); 1194 blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock})); 1195 } 1196 1197 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) { 1198 blockActions.push_back(BlockAction::getCreate(block)); 1199 } 1200 1201 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block, 1202 Block *continuation) { 1203 blockActions.push_back(BlockAction::getSplit(continuation, block)); 1204 } 1205 1206 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block, 1207 Block *srcBlock) { 1208 blockActions.push_back(BlockAction::getMerge(block, srcBlock)); 1209 } 1210 1211 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore( 1212 Region ®ion, Region &parent, Region::iterator before) { 1213 if (region.empty()) 1214 return; 1215 Block *laterBlock = ®ion.back(); 1216 for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) { 1217 blockActions.push_back( 1218 BlockAction::getMove(laterBlock, {®ion, &earlierBlock})); 1219 laterBlock = &earlierBlock; 1220 } 1221 blockActions.push_back(BlockAction::getMove(laterBlock, {®ion, nullptr})); 1222 } 1223 1224 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore( 1225 iterator_range<Region::iterator> &blocks, Location origRegionLoc) { 1226 for (Block &block : blocks) 1227 blockActions.push_back(BlockAction::getCreate(&block)); 1228 1229 // Compute the conversion set for the inlined region. 1230 auto result = computeConversionSet(blocks, origRegionLoc, createdOps); 1231 1232 // This original region has already had its conversion set computed, so there 1233 // shouldn't be any new failures. 1234 (void)result; 1235 assert(succeeded(result) && "expected region to have no unreachable blocks"); 1236 } 1237 1238 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure( 1239 Location loc, function_ref<void(Diagnostic &)> reasonCallback) { 1240 LLVM_DEBUG({ 1241 Diagnostic diag(loc, DiagnosticSeverity::Remark); 1242 reasonCallback(diag); 1243 logger.startLine() << "** Failure : " << diag.str() << "\n"; 1244 }); 1245 return failure(); 1246 } 1247 1248 //===----------------------------------------------------------------------===// 1249 // ConversionPatternRewriter 1250 //===----------------------------------------------------------------------===// 1251 1252 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx) 1253 : PatternRewriter(ctx), 1254 impl(new detail::ConversionPatternRewriterImpl(*this)) {} 1255 ConversionPatternRewriter::~ConversionPatternRewriter() {} 1256 1257 /// PatternRewriter hook for replacing the results of an operation. 1258 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) { 1259 LLVM_DEBUG({ 1260 impl->logger.startLine() 1261 << "** Replace : '" << op->getName() << "'(" << op << ")\n"; 1262 }); 1263 impl->notifyOpReplaced(op, newValues); 1264 } 1265 1266 /// PatternRewriter hook for erasing a dead operation. The uses of this 1267 /// operation *must* be made dead by the end of the conversion process, 1268 /// otherwise an assert will be issued. 1269 void ConversionPatternRewriter::eraseOp(Operation *op) { 1270 LLVM_DEBUG({ 1271 impl->logger.startLine() 1272 << "** Erase : '" << op->getName() << "'(" << op << ")\n"; 1273 }); 1274 SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr); 1275 impl->notifyOpReplaced(op, nullRepls); 1276 } 1277 1278 void ConversionPatternRewriter::eraseBlock(Block *block) { 1279 impl->notifyBlockIsBeingErased(block); 1280 1281 // Mark all ops for erasure. 1282 for (Operation &op : *block) 1283 eraseOp(&op); 1284 1285 // Unlink the block from its parent region. The block is kept in the block 1286 // action and will be actually destroyed when rewrites are applied. This 1287 // allows us to keep the operations in the block live and undo the removal by 1288 // re-inserting the block. 1289 block->getParent()->getBlocks().remove(block); 1290 } 1291 1292 Block *ConversionPatternRewriter::applySignatureConversion( 1293 Region *region, TypeConverter::SignatureConversion &conversion) { 1294 return impl->applySignatureConversion(region, conversion); 1295 } 1296 1297 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes( 1298 Region *region, TypeConverter &converter, 1299 TypeConverter::SignatureConversion *entryConversion) { 1300 return impl->convertRegionTypes(region, converter, entryConversion); 1301 } 1302 1303 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from, 1304 Value to) { 1305 LLVM_DEBUG({ 1306 Operation *parentOp = from.getOwner()->getParentOp(); 1307 impl->logger.startLine() << "** Replace Argument : '" << from 1308 << "'(in region of '" << parentOp->getName() 1309 << "'(" << from.getOwner()->getParentOp() << ")\n"; 1310 }); 1311 impl->argReplacements.push_back(from); 1312 impl->mapping.map(impl->mapping.lookupOrDefault(from), to); 1313 } 1314 1315 /// Return the converted value that replaces 'key'. Return 'key' if there is 1316 /// no such a converted value. 1317 Value ConversionPatternRewriter::getRemappedValue(Value key) { 1318 return impl->mapping.lookupOrDefault(key); 1319 } 1320 1321 /// PatternRewriter hook for creating a new block with the given arguments. 1322 void ConversionPatternRewriter::notifyBlockCreated(Block *block) { 1323 impl->notifyCreatedBlock(block); 1324 } 1325 1326 /// PatternRewriter hook for splitting a block into two parts. 1327 Block *ConversionPatternRewriter::splitBlock(Block *block, 1328 Block::iterator before) { 1329 auto *continuation = PatternRewriter::splitBlock(block, before); 1330 impl->notifySplitBlock(block, continuation); 1331 return continuation; 1332 } 1333 1334 /// PatternRewriter hook for merging a block into another. 1335 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest, 1336 ValueRange argValues) { 1337 impl->notifyBlocksBeingMerged(dest, source); 1338 assert(llvm::all_of(source->getPredecessors(), 1339 [dest](Block *succ) { return succ == dest; }) && 1340 "expected 'source' to have no predecessors or only 'dest'"); 1341 assert(argValues.size() == source->getNumArguments() && 1342 "incorrect # of argument replacement values"); 1343 for (auto it : llvm::zip(source->getArguments(), argValues)) 1344 replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it)); 1345 dest->getOperations().splice(dest->end(), source->getOperations()); 1346 eraseBlock(source); 1347 } 1348 1349 /// PatternRewriter hook for moving blocks out of a region. 1350 void ConversionPatternRewriter::inlineRegionBefore(Region ®ion, 1351 Region &parent, 1352 Region::iterator before) { 1353 impl->notifyRegionIsBeingInlinedBefore(region, parent, before); 1354 PatternRewriter::inlineRegionBefore(region, parent, before); 1355 } 1356 1357 /// PatternRewriter hook for cloning blocks of one region into another. 1358 void ConversionPatternRewriter::cloneRegionBefore( 1359 Region ®ion, Region &parent, Region::iterator before, 1360 BlockAndValueMapping &mapping) { 1361 if (region.empty()) 1362 return; 1363 PatternRewriter::cloneRegionBefore(region, parent, before, mapping); 1364 1365 // Collect the range of the cloned blocks. 1366 auto clonedBeginIt = mapping.lookup(®ion.front())->getIterator(); 1367 auto clonedBlocks = llvm::make_range(clonedBeginIt, before); 1368 impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc()); 1369 } 1370 1371 /// PatternRewriter hook for creating a new operation. 1372 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) { 1373 LLVM_DEBUG({ 1374 impl->logger.startLine() 1375 << "** Insert : '" << op->getName() << "'(" << op << ")\n"; 1376 }); 1377 impl->createdOps.push_back(op); 1378 } 1379 1380 /// PatternRewriter hook for updating the root operation in-place. 1381 void ConversionPatternRewriter::startRootUpdate(Operation *op) { 1382 #ifndef NDEBUG 1383 impl->pendingRootUpdates.insert(op); 1384 #endif 1385 impl->rootUpdates.emplace_back(op); 1386 } 1387 1388 /// PatternRewriter hook for updating the root operation in-place. 1389 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) { 1390 // There is nothing to do here, we only need to track the operation at the 1391 // start of the update. 1392 #ifndef NDEBUG 1393 assert(impl->pendingRootUpdates.erase(op) && 1394 "operation did not have a pending in-place update"); 1395 #endif 1396 } 1397 1398 /// PatternRewriter hook for updating the root operation in-place. 1399 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) { 1400 #ifndef NDEBUG 1401 assert(impl->pendingRootUpdates.erase(op) && 1402 "operation did not have a pending in-place update"); 1403 #endif 1404 // Erase the last update for this operation. 1405 auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; }; 1406 auto &rootUpdates = impl->rootUpdates; 1407 auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp); 1408 rootUpdates.erase(rootUpdates.begin() + (rootUpdates.rend() - it)); 1409 } 1410 1411 /// PatternRewriter hook for notifying match failure reasons. 1412 LogicalResult ConversionPatternRewriter::notifyMatchFailure( 1413 Operation *op, function_ref<void(Diagnostic &)> reasonCallback) { 1414 return impl->notifyMatchFailure(op->getLoc(), reasonCallback); 1415 } 1416 1417 /// Return a reference to the internal implementation. 1418 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() { 1419 return *impl; 1420 } 1421 1422 //===----------------------------------------------------------------------===// 1423 // ConversionPattern 1424 //===----------------------------------------------------------------------===// 1425 1426 /// Attempt to match and rewrite the IR root at the specified operation. 1427 LogicalResult 1428 ConversionPattern::matchAndRewrite(Operation *op, 1429 PatternRewriter &rewriter) const { 1430 auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter); 1431 auto &rewriterImpl = dialectRewriter.getImpl(); 1432 1433 // Track the current conversion pattern in the rewriter. 1434 assert(!rewriterImpl.currentConversionPattern && 1435 "already inside of a pattern rewrite"); 1436 llvm::SaveAndRestore<const ConversionPattern *> currentPatternGuard( 1437 rewriterImpl.currentConversionPattern, this); 1438 1439 // Remap the operands of the operation. 1440 SmallVector<Value, 4> operands; 1441 if (failed(rewriterImpl.remapValues(op->getLoc(), rewriter, 1442 getTypeConverter(), op->getOperands(), 1443 operands))) { 1444 return failure(); 1445 } 1446 return matchAndRewrite(op, operands, dialectRewriter); 1447 } 1448 1449 //===----------------------------------------------------------------------===// 1450 // OperationLegalizer 1451 //===----------------------------------------------------------------------===// 1452 1453 namespace { 1454 /// A set of rewrite patterns that can be used to legalize a given operation. 1455 using LegalizationPatterns = SmallVector<const Pattern *, 1>; 1456 1457 /// This class defines a recursive operation legalizer. 1458 class OperationLegalizer { 1459 public: 1460 using LegalizationAction = ConversionTarget::LegalizationAction; 1461 1462 OperationLegalizer(ConversionTarget &targetInfo, 1463 const FrozenRewritePatternList &patterns); 1464 1465 /// Returns true if the given operation is known to be illegal on the target. 1466 bool isIllegal(Operation *op) const; 1467 1468 /// Attempt to legalize the given operation. Returns success if the operation 1469 /// was legalized, failure otherwise. 1470 LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter); 1471 1472 /// Returns the conversion target in use by the legalizer. 1473 ConversionTarget &getTarget() { return target; } 1474 1475 private: 1476 /// Attempt to legalize the given operation by folding it. 1477 LogicalResult legalizeWithFold(Operation *op, 1478 ConversionPatternRewriter &rewriter); 1479 1480 /// Attempt to legalize the given operation by applying a pattern. Returns 1481 /// success if the operation was legalized, failure otherwise. 1482 LogicalResult legalizeWithPattern(Operation *op, 1483 ConversionPatternRewriter &rewriter); 1484 1485 /// Return true if the given pattern may be applied to the given operation, 1486 /// false otherwise. 1487 bool canApplyPattern(Operation *op, const Pattern &pattern, 1488 ConversionPatternRewriter &rewriter); 1489 1490 /// Legalize the resultant IR after successfully applying the given pattern. 1491 LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern, 1492 ConversionPatternRewriter &rewriter, 1493 RewriterState &curState); 1494 1495 /// Legalizes the actions registered during the execution of a pattern. 1496 LogicalResult legalizePatternBlockActions(Operation *op, 1497 ConversionPatternRewriter &rewriter, 1498 ConversionPatternRewriterImpl &impl, 1499 RewriterState &state, 1500 RewriterState &newState); 1501 LogicalResult legalizePatternCreatedOperations( 1502 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1503 RewriterState &state, RewriterState &newState); 1504 LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter, 1505 ConversionPatternRewriterImpl &impl, 1506 RewriterState &state, 1507 RewriterState &newState); 1508 1509 //===--------------------------------------------------------------------===// 1510 // Cost Model 1511 //===--------------------------------------------------------------------===// 1512 1513 /// Build an optimistic legalization graph given the provided patterns. This 1514 /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with 1515 /// patterns for operations that are not directly legal, but may be 1516 /// transitively legal for the current target given the provided patterns. 1517 void buildLegalizationGraph( 1518 LegalizationPatterns &anyOpLegalizerPatterns, 1519 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1520 1521 /// Compute the benefit of each node within the computed legalization graph. 1522 /// This orders the patterns within 'legalizerPatterns' based upon two 1523 /// criteria: 1524 /// 1) Prefer patterns that have the lowest legalization depth, i.e. 1525 /// represent the more direct mapping to the target. 1526 /// 2) When comparing patterns with the same legalization depth, prefer the 1527 /// pattern with the highest PatternBenefit. This allows for users to 1528 /// prefer specific legalizations over others. 1529 void computeLegalizationGraphBenefit( 1530 LegalizationPatterns &anyOpLegalizerPatterns, 1531 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1532 1533 /// Compute the legalization depth when legalizing an operation of the given 1534 /// type. 1535 unsigned computeOpLegalizationDepth( 1536 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 1537 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1538 1539 /// Apply the conversion cost model to the given set of patterns, and return 1540 /// the smallest legalization depth of any of the patterns. See 1541 /// `computeLegalizationGraphBenefit` for the breakdown of the cost model. 1542 unsigned applyCostModelToPatterns( 1543 LegalizationPatterns &patterns, 1544 DenseMap<OperationName, unsigned> &minOpPatternDepth, 1545 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1546 1547 /// The current set of patterns that have been applied. 1548 SmallPtrSet<const Pattern *, 8> appliedPatterns; 1549 1550 /// The legalization information provided by the target. 1551 ConversionTarget ⌖ 1552 1553 /// The pattern applicator to use for conversions. 1554 PatternApplicator applicator; 1555 }; 1556 } // namespace 1557 1558 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo, 1559 const FrozenRewritePatternList &patterns) 1560 : target(targetInfo), applicator(patterns) { 1561 // The set of patterns that can be applied to illegal operations to transform 1562 // them into legal ones. 1563 DenseMap<OperationName, LegalizationPatterns> legalizerPatterns; 1564 LegalizationPatterns anyOpLegalizerPatterns; 1565 1566 buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns); 1567 computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns); 1568 } 1569 1570 bool OperationLegalizer::isIllegal(Operation *op) const { 1571 // Check if the target explicitly marked this operation as illegal. 1572 return target.getOpAction(op->getName()) == LegalizationAction::Illegal; 1573 } 1574 1575 LogicalResult 1576 OperationLegalizer::legalize(Operation *op, 1577 ConversionPatternRewriter &rewriter) { 1578 #ifndef NDEBUG 1579 const char *logLineComment = 1580 "//===-------------------------------------------===//\n"; 1581 1582 auto &rewriterImpl = rewriter.getImpl(); 1583 #endif 1584 LLVM_DEBUG({ 1585 auto &os = rewriterImpl.logger; 1586 os.getOStream() << "\n"; 1587 os.startLine() << logLineComment; 1588 os.startLine() << "Legalizing operation : '" << op->getName() << "'(" << op 1589 << ") {\n"; 1590 os.indent(); 1591 1592 // If the operation has no regions, just print it here. 1593 if (op->getNumRegions() == 0) { 1594 op->print(os.startLine(), OpPrintingFlags().printGenericOpForm()); 1595 os.getOStream() << "\n\n"; 1596 } 1597 }); 1598 1599 // Check if this operation is legal on the target. 1600 if (auto legalityInfo = target.isLegal(op)) { 1601 LLVM_DEBUG({ 1602 logSuccess( 1603 rewriterImpl.logger, "operation marked legal by the target{0}", 1604 legalityInfo->isRecursivelyLegal 1605 ? "; NOTE: operation is recursively legal; skipping internals" 1606 : ""); 1607 rewriterImpl.logger.startLine() << logLineComment; 1608 }); 1609 1610 // If this operation is recursively legal, mark its children as ignored so 1611 // that we don't consider them for legalization. 1612 if (legalityInfo->isRecursivelyLegal) 1613 rewriter.getImpl().markNestedOpsIgnored(op); 1614 return success(); 1615 } 1616 1617 // Check to see if the operation is ignored and doesn't need to be converted. 1618 if (rewriter.getImpl().isOpIgnored(op)) { 1619 LLVM_DEBUG({ 1620 logSuccess(rewriterImpl.logger, 1621 "operation marked 'ignored' during conversion"); 1622 rewriterImpl.logger.startLine() << logLineComment; 1623 }); 1624 return success(); 1625 } 1626 1627 // If the operation isn't legal, try to fold it in-place. 1628 // TODO: Should we always try to do this, even if the op is 1629 // already legal? 1630 if (succeeded(legalizeWithFold(op, rewriter))) { 1631 LLVM_DEBUG({ 1632 logSuccess(rewriterImpl.logger, "operation was folded"); 1633 rewriterImpl.logger.startLine() << logLineComment; 1634 }); 1635 return success(); 1636 } 1637 1638 // Otherwise, we need to apply a legalization pattern to this operation. 1639 if (succeeded(legalizeWithPattern(op, rewriter))) { 1640 LLVM_DEBUG({ 1641 logSuccess(rewriterImpl.logger, ""); 1642 rewriterImpl.logger.startLine() << logLineComment; 1643 }); 1644 return success(); 1645 } 1646 1647 LLVM_DEBUG({ 1648 logFailure(rewriterImpl.logger, "no matched legalization pattern"); 1649 rewriterImpl.logger.startLine() << logLineComment; 1650 }); 1651 return failure(); 1652 } 1653 1654 LogicalResult 1655 OperationLegalizer::legalizeWithFold(Operation *op, 1656 ConversionPatternRewriter &rewriter) { 1657 auto &rewriterImpl = rewriter.getImpl(); 1658 RewriterState curState = rewriterImpl.getCurrentState(); 1659 1660 LLVM_DEBUG({ 1661 rewriterImpl.logger.startLine() << "* Fold {\n"; 1662 rewriterImpl.logger.indent(); 1663 }); 1664 1665 // Try to fold the operation. 1666 SmallVector<Value, 2> replacementValues; 1667 rewriter.setInsertionPoint(op); 1668 if (failed(rewriter.tryFold(op, replacementValues))) { 1669 LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold")); 1670 return failure(); 1671 } 1672 1673 // Insert a replacement for 'op' with the folded replacement values. 1674 rewriter.replaceOp(op, replacementValues); 1675 1676 // Recursively legalize any new constant operations. 1677 for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size(); 1678 i != e; ++i) { 1679 Operation *cstOp = rewriterImpl.createdOps[i]; 1680 if (failed(legalize(cstOp, rewriter))) { 1681 LLVM_DEBUG(logFailure(rewriterImpl.logger, 1682 "generated constant '{0}' was illegal", 1683 cstOp->getName())); 1684 rewriterImpl.resetState(curState); 1685 return failure(); 1686 } 1687 } 1688 1689 LLVM_DEBUG(logSuccess(rewriterImpl.logger, "")); 1690 return success(); 1691 } 1692 1693 LogicalResult 1694 OperationLegalizer::legalizeWithPattern(Operation *op, 1695 ConversionPatternRewriter &rewriter) { 1696 auto &rewriterImpl = rewriter.getImpl(); 1697 1698 // Functor that returns if the given pattern may be applied. 1699 auto canApply = [&](const Pattern &pattern) { 1700 return canApplyPattern(op, pattern, rewriter); 1701 }; 1702 1703 // Functor that cleans up the rewriter state after a pattern failed to match. 1704 RewriterState curState = rewriterImpl.getCurrentState(); 1705 auto onFailure = [&](const Pattern &pattern) { 1706 LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match")); 1707 rewriterImpl.resetState(curState); 1708 appliedPatterns.erase(&pattern); 1709 }; 1710 1711 // Functor that performs additional legalization when a pattern is 1712 // successfully applied. 1713 auto onSuccess = [&](const Pattern &pattern) { 1714 auto result = legalizePatternResult(op, pattern, rewriter, curState); 1715 appliedPatterns.erase(&pattern); 1716 if (failed(result)) 1717 rewriterImpl.resetState(curState); 1718 return result; 1719 }; 1720 1721 // Try to match and rewrite a pattern on this operation. 1722 return applicator.matchAndRewrite(op, rewriter, canApply, onFailure, 1723 onSuccess); 1724 } 1725 1726 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern, 1727 ConversionPatternRewriter &rewriter) { 1728 LLVM_DEBUG({ 1729 auto &os = rewriter.getImpl().logger; 1730 os.getOStream() << "\n"; 1731 os.startLine() << "* Pattern : '" << op->getName() << " -> ("; 1732 llvm::interleaveComma(pattern.getGeneratedOps(), llvm::dbgs()); 1733 os.getOStream() << ")' {\n"; 1734 os.indent(); 1735 }); 1736 1737 // Ensure that we don't cycle by not allowing the same pattern to be 1738 // applied twice in the same recursion stack if it is not known to be safe. 1739 if (!pattern.hasBoundedRewriteRecursion() && 1740 !appliedPatterns.insert(&pattern).second) { 1741 LLVM_DEBUG( 1742 logFailure(rewriter.getImpl().logger, "pattern was already applied")); 1743 return false; 1744 } 1745 return true; 1746 } 1747 1748 LogicalResult 1749 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern, 1750 ConversionPatternRewriter &rewriter, 1751 RewriterState &curState) { 1752 auto &impl = rewriter.getImpl(); 1753 1754 #ifndef NDEBUG 1755 assert(impl.pendingRootUpdates.empty() && "dangling root updates"); 1756 #endif 1757 1758 // Check that the root was either replaced or updated in place. 1759 auto replacedRoot = [&] { 1760 return llvm::any_of( 1761 llvm::drop_begin(impl.replacements, curState.numReplacements), 1762 [op](auto &it) { return it.first == op; }); 1763 }; 1764 auto updatedRootInPlace = [&] { 1765 return llvm::any_of( 1766 llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates), 1767 [op](auto &state) { return state.getOperation() == op; }); 1768 }; 1769 (void)replacedRoot; 1770 (void)updatedRootInPlace; 1771 assert((replacedRoot() || updatedRootInPlace()) && 1772 "expected pattern to replace the root operation"); 1773 1774 // Legalize each of the actions registered during application. 1775 RewriterState newState = impl.getCurrentState(); 1776 if (failed(legalizePatternBlockActions(op, rewriter, impl, curState, 1777 newState)) || 1778 failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) || 1779 failed(legalizePatternCreatedOperations(rewriter, impl, curState, 1780 newState))) { 1781 return failure(); 1782 } 1783 1784 LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully")); 1785 return success(); 1786 } 1787 1788 LogicalResult OperationLegalizer::legalizePatternBlockActions( 1789 Operation *op, ConversionPatternRewriter &rewriter, 1790 ConversionPatternRewriterImpl &impl, RewriterState &state, 1791 RewriterState &newState) { 1792 SmallPtrSet<Operation *, 16> operationsToIgnore; 1793 1794 // If the pattern moved or created any blocks, make sure the types of block 1795 // arguments get legalized. 1796 for (int i = state.numBlockActions, e = newState.numBlockActions; i != e; 1797 ++i) { 1798 auto &action = impl.blockActions[i]; 1799 if (action.kind == BlockActionKind::TypeConversion || 1800 action.kind == BlockActionKind::Erase) 1801 continue; 1802 // Only check blocks outside of the current operation. 1803 Operation *parentOp = action.block->getParentOp(); 1804 if (!parentOp || parentOp == op || action.block->getNumArguments() == 0) 1805 continue; 1806 1807 // If the region of the block has a type converter, try to convert the block 1808 // directly. 1809 if (auto *converter = 1810 impl.argConverter.getConverter(action.block->getParent())) { 1811 if (failed(impl.convertBlockSignature(action.block, *converter))) { 1812 LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved " 1813 "block")); 1814 return failure(); 1815 } 1816 continue; 1817 } 1818 1819 // Otherwise, check that this operation isn't one generated by this pattern. 1820 // This is because we will attempt to legalize the parent operation, and 1821 // blocks in regions created by this pattern will already be legalized later 1822 // on. If we haven't built the set yet, build it now. 1823 if (operationsToIgnore.empty()) { 1824 auto createdOps = ArrayRef<Operation *>(impl.createdOps) 1825 .drop_front(state.numCreatedOps); 1826 operationsToIgnore.insert(createdOps.begin(), createdOps.end()); 1827 } 1828 1829 // If this operation should be considered for re-legalization, try it. 1830 if (operationsToIgnore.insert(parentOp).second && 1831 failed(legalize(parentOp, rewriter))) { 1832 LLVM_DEBUG(logFailure( 1833 impl.logger, "operation '{0}'({1}) became illegal after block action", 1834 parentOp->getName(), parentOp)); 1835 return failure(); 1836 } 1837 } 1838 return success(); 1839 } 1840 LogicalResult OperationLegalizer::legalizePatternCreatedOperations( 1841 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1842 RewriterState &state, RewriterState &newState) { 1843 for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) { 1844 Operation *op = impl.createdOps[i]; 1845 if (failed(legalize(op, rewriter))) { 1846 LLVM_DEBUG(logFailure(impl.logger, 1847 "generated operation '{0}'({1}) was illegal", 1848 op->getName(), op)); 1849 return failure(); 1850 } 1851 } 1852 return success(); 1853 } 1854 LogicalResult OperationLegalizer::legalizePatternRootUpdates( 1855 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1856 RewriterState &state, RewriterState &newState) { 1857 for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) { 1858 Operation *op = impl.rootUpdates[i].getOperation(); 1859 if (failed(legalize(op, rewriter))) { 1860 LLVM_DEBUG(logFailure(impl.logger, 1861 "operation updated in-place '{0}' was illegal", 1862 op->getName())); 1863 return failure(); 1864 } 1865 } 1866 return success(); 1867 } 1868 1869 //===----------------------------------------------------------------------===// 1870 // Cost Model 1871 1872 void OperationLegalizer::buildLegalizationGraph( 1873 LegalizationPatterns &anyOpLegalizerPatterns, 1874 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 1875 // A mapping between an operation and a set of operations that can be used to 1876 // generate it. 1877 DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps; 1878 // A mapping between an operation and any currently invalid patterns it has. 1879 DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns; 1880 // A worklist of patterns to consider for legality. 1881 llvm::SetVector<const Pattern *> patternWorklist; 1882 1883 // Build the mapping from operations to the parent ops that may generate them. 1884 applicator.walkAllPatterns([&](const Pattern &pattern) { 1885 Optional<OperationName> root = pattern.getRootKind(); 1886 1887 // If the pattern has no specific root, we can't analyze the relationship 1888 // between the root op and generated operations. Given that, add all such 1889 // patterns to the legalization set. 1890 if (!root) { 1891 anyOpLegalizerPatterns.push_back(&pattern); 1892 return; 1893 } 1894 1895 // Skip operations that are always known to be legal. 1896 if (target.getOpAction(*root) == LegalizationAction::Legal) 1897 return; 1898 1899 // Add this pattern to the invalid set for the root op and record this root 1900 // as a parent for any generated operations. 1901 invalidPatterns[*root].insert(&pattern); 1902 for (auto op : pattern.getGeneratedOps()) 1903 parentOps[op].insert(*root); 1904 1905 // Add this pattern to the worklist. 1906 patternWorklist.insert(&pattern); 1907 }); 1908 1909 // If there are any patterns that don't have a specific root kind, we can't 1910 // make direct assumptions about what operations will never be legalized. 1911 // Note: Technically we could, but it would require an analysis that may 1912 // recurse into itself. It would be better to perform this kind of filtering 1913 // at a higher level than here anyways. 1914 if (!anyOpLegalizerPatterns.empty()) { 1915 for (const Pattern *pattern : patternWorklist) 1916 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 1917 return; 1918 } 1919 1920 while (!patternWorklist.empty()) { 1921 auto *pattern = patternWorklist.pop_back_val(); 1922 1923 // Check to see if any of the generated operations are invalid. 1924 if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) { 1925 Optional<LegalizationAction> action = target.getOpAction(op); 1926 return !legalizerPatterns.count(op) && 1927 (!action || action == LegalizationAction::Illegal); 1928 })) 1929 continue; 1930 1931 // Otherwise, if all of the generated operation are valid, this op is now 1932 // legal so add all of the child patterns to the worklist. 1933 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 1934 invalidPatterns[*pattern->getRootKind()].erase(pattern); 1935 1936 // Add any invalid patterns of the parent operations to see if they have now 1937 // become legal. 1938 for (auto op : parentOps[*pattern->getRootKind()]) 1939 patternWorklist.set_union(invalidPatterns[op]); 1940 } 1941 } 1942 1943 void OperationLegalizer::computeLegalizationGraphBenefit( 1944 LegalizationPatterns &anyOpLegalizerPatterns, 1945 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 1946 // The smallest pattern depth, when legalizing an operation. 1947 DenseMap<OperationName, unsigned> minOpPatternDepth; 1948 1949 // For each operation that is transitively legal, compute a cost for it. 1950 for (auto &opIt : legalizerPatterns) 1951 if (!minOpPatternDepth.count(opIt.first)) 1952 computeOpLegalizationDepth(opIt.first, minOpPatternDepth, 1953 legalizerPatterns); 1954 1955 // Apply the cost model to the patterns that can match any operation. Those 1956 // with a specific operation type are already resolved when computing the op 1957 // legalization depth. 1958 if (!anyOpLegalizerPatterns.empty()) 1959 applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth, 1960 legalizerPatterns); 1961 1962 // Apply a cost model to the pattern applicator. We order patterns first by 1963 // depth then benefit. `legalizerPatterns` contains per-op patterns by 1964 // decreasing benefit. 1965 applicator.applyCostModel([&](const Pattern &pattern) { 1966 ArrayRef<const Pattern *> orderedPatternList; 1967 if (Optional<OperationName> rootName = pattern.getRootKind()) 1968 orderedPatternList = legalizerPatterns[*rootName]; 1969 else 1970 orderedPatternList = anyOpLegalizerPatterns; 1971 1972 // If the pattern is not found, then it was removed and cannot be matched. 1973 auto it = llvm::find(orderedPatternList, &pattern); 1974 if (it == orderedPatternList.end()) 1975 return PatternBenefit::impossibleToMatch(); 1976 1977 // Patterns found earlier in the list have higher benefit. 1978 return PatternBenefit(std::distance(it, orderedPatternList.end())); 1979 }); 1980 } 1981 1982 unsigned OperationLegalizer::computeOpLegalizationDepth( 1983 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 1984 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 1985 // Check for existing depth. 1986 auto depthIt = minOpPatternDepth.find(op); 1987 if (depthIt != minOpPatternDepth.end()) 1988 return depthIt->second; 1989 1990 // If a mapping for this operation does not exist, then this operation 1991 // is always legal. Return 0 as the depth for a directly legal operation. 1992 auto opPatternsIt = legalizerPatterns.find(op); 1993 if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty()) 1994 return 0u; 1995 1996 // Record this initial depth in case we encounter this op again when 1997 // recursively computing the depth. 1998 minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max()); 1999 2000 // Apply the cost model to the operation patterns, and update the minimum 2001 // depth. 2002 unsigned minDepth = applyCostModelToPatterns( 2003 opPatternsIt->second, minOpPatternDepth, legalizerPatterns); 2004 minOpPatternDepth[op] = minDepth; 2005 return minDepth; 2006 } 2007 2008 unsigned OperationLegalizer::applyCostModelToPatterns( 2009 LegalizationPatterns &patterns, 2010 DenseMap<OperationName, unsigned> &minOpPatternDepth, 2011 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2012 unsigned minDepth = std::numeric_limits<unsigned>::max(); 2013 2014 // Compute the depth for each pattern within the set. 2015 SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth; 2016 patternsByDepth.reserve(patterns.size()); 2017 for (const Pattern *pattern : patterns) { 2018 unsigned depth = 0; 2019 for (auto generatedOp : pattern->getGeneratedOps()) { 2020 unsigned generatedOpDepth = computeOpLegalizationDepth( 2021 generatedOp, minOpPatternDepth, legalizerPatterns); 2022 depth = std::max(depth, generatedOpDepth + 1); 2023 } 2024 patternsByDepth.emplace_back(pattern, depth); 2025 2026 // Update the minimum depth of the pattern list. 2027 minDepth = std::min(minDepth, depth); 2028 } 2029 2030 // If the operation only has one legalization pattern, there is no need to 2031 // sort them. 2032 if (patternsByDepth.size() == 1) 2033 return minDepth; 2034 2035 // Sort the patterns by those likely to be the most beneficial. 2036 llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(), 2037 [](const std::pair<const Pattern *, unsigned> *lhs, 2038 const std::pair<const Pattern *, unsigned> *rhs) { 2039 // First sort by the smaller pattern legalization 2040 // depth. 2041 if (lhs->second != rhs->second) 2042 return llvm::array_pod_sort_comparator<unsigned>( 2043 &lhs->second, &rhs->second); 2044 2045 // Then sort by the larger pattern benefit. 2046 auto lhsBenefit = lhs->first->getBenefit(); 2047 auto rhsBenefit = rhs->first->getBenefit(); 2048 return llvm::array_pod_sort_comparator<PatternBenefit>( 2049 &rhsBenefit, &lhsBenefit); 2050 }); 2051 2052 // Update the legalization pattern to use the new sorted list. 2053 patterns.clear(); 2054 for (auto &patternIt : patternsByDepth) 2055 patterns.push_back(patternIt.first); 2056 return minDepth; 2057 } 2058 2059 //===----------------------------------------------------------------------===// 2060 // OperationConverter 2061 //===----------------------------------------------------------------------===// 2062 namespace { 2063 enum OpConversionMode { 2064 // In this mode, the conversion will ignore failed conversions to allow 2065 // illegal operations to co-exist in the IR. 2066 Partial, 2067 2068 // In this mode, all operations must be legal for the given target for the 2069 // conversion to succeed. 2070 Full, 2071 2072 // In this mode, operations are analyzed for legality. No actual rewrites are 2073 // applied to the operations on success. 2074 Analysis, 2075 }; 2076 2077 // This class converts operations to a given conversion target via a set of 2078 // rewrite patterns. The conversion behaves differently depending on the 2079 // conversion mode. 2080 struct OperationConverter { 2081 explicit OperationConverter(ConversionTarget &target, 2082 const FrozenRewritePatternList &patterns, 2083 OpConversionMode mode, 2084 DenseSet<Operation *> *trackedOps = nullptr) 2085 : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {} 2086 2087 /// Converts the given operations to the conversion target. 2088 LogicalResult convertOperations(ArrayRef<Operation *> ops); 2089 2090 private: 2091 /// Converts an operation with the given rewriter. 2092 LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op); 2093 2094 /// This method is called after the conversion process to legalize any 2095 /// remaining artifacts and complete the conversion. 2096 LogicalResult finalize(ConversionPatternRewriter &rewriter); 2097 2098 /// Legalize the types of converted block arguments. 2099 LogicalResult 2100 legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter, 2101 ConversionPatternRewriterImpl &rewriterImpl); 2102 2103 /// Legalize an operation result that was marked as "erased". 2104 LogicalResult 2105 legalizeErasedResult(Operation *op, OpResult result, 2106 ConversionPatternRewriterImpl &rewriterImpl); 2107 2108 /// Legalize an operation result that was replaced with a value of a different 2109 /// type. 2110 LogicalResult 2111 legalizeChangedResultType(Operation *op, OpResult result, Value newValue, 2112 TypeConverter *replConverter, 2113 ConversionPatternRewriter &rewriter, 2114 ConversionPatternRewriterImpl &rewriterImpl); 2115 2116 /// The legalizer to use when converting operations. 2117 OperationLegalizer opLegalizer; 2118 2119 /// The conversion mode to use when legalizing operations. 2120 OpConversionMode mode; 2121 2122 /// A set of pre-existing operations. When mode == OpConversionMode::Analysis, 2123 /// this is populated with ops found to be legalizable to the target. 2124 /// When mode == OpConversionMode::Partial, this is populated with ops found 2125 /// *not* to be legalizable to the target. 2126 DenseSet<Operation *> *trackedOps; 2127 }; 2128 } // end anonymous namespace 2129 2130 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter, 2131 Operation *op) { 2132 // Legalize the given operation. 2133 if (failed(opLegalizer.legalize(op, rewriter))) { 2134 // Handle the case of a failed conversion for each of the different modes. 2135 // Full conversions expect all operations to be converted. 2136 if (mode == OpConversionMode::Full) 2137 return op->emitError() 2138 << "failed to legalize operation '" << op->getName() << "'"; 2139 // Partial conversions allow conversions to fail iff the operation was not 2140 // explicitly marked as illegal. If the user provided a nonlegalizableOps 2141 // set, non-legalizable ops are included. 2142 if (mode == OpConversionMode::Partial) { 2143 if (opLegalizer.isIllegal(op)) 2144 return op->emitError() 2145 << "failed to legalize operation '" << op->getName() 2146 << "' that was explicitly marked illegal"; 2147 if (trackedOps) 2148 trackedOps->insert(op); 2149 } 2150 } else if (mode == OpConversionMode::Analysis) { 2151 // Analysis conversions don't fail if any operations fail to legalize, 2152 // they are only interested in the operations that were successfully 2153 // legalized. 2154 trackedOps->insert(op); 2155 } 2156 return success(); 2157 } 2158 2159 LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) { 2160 if (ops.empty()) 2161 return success(); 2162 ConversionTarget &target = opLegalizer.getTarget(); 2163 2164 // Compute the set of operations and blocks to convert. 2165 std::vector<Operation *> toConvert; 2166 for (auto *op : ops) { 2167 toConvert.emplace_back(op); 2168 for (auto ®ion : op->getRegions()) 2169 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 2170 toConvert, &target))) 2171 return failure(); 2172 } 2173 2174 // Convert each operation and discard rewrites on failure. 2175 ConversionPatternRewriter rewriter(ops.front()->getContext()); 2176 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2177 for (auto *op : toConvert) 2178 if (failed(convert(rewriter, op))) 2179 return rewriterImpl.discardRewrites(), failure(); 2180 2181 // Now that all of the operations have been converted, finalize the conversion 2182 // process to ensure any lingering conversion artifacts are cleaned up and 2183 // legalized. 2184 if (failed(finalize(rewriter))) 2185 return rewriterImpl.discardRewrites(), failure(); 2186 2187 // After a successful conversion, apply rewrites if this is not an analysis 2188 // conversion. 2189 if (mode == OpConversionMode::Analysis) 2190 rewriterImpl.discardRewrites(); 2191 else 2192 rewriterImpl.applyRewrites(); 2193 return success(); 2194 } 2195 2196 LogicalResult 2197 OperationConverter::finalize(ConversionPatternRewriter &rewriter) { 2198 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2199 2200 // Legalize converted block arguments. 2201 if (failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl))) 2202 return failure(); 2203 2204 // Process requested operation replacements. 2205 for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size(); 2206 i != e; ++i) { 2207 unsigned replIdx = rewriterImpl.operationsWithChangedResults[i]; 2208 auto &repl = *(rewriterImpl.replacements.begin() + replIdx); 2209 for (OpResult result : repl.first->getResults()) { 2210 Value newValue = rewriterImpl.mapping.lookupOrNull(result); 2211 2212 // If the operation result was replaced with null, all of the uses of this 2213 // value should be replaced. 2214 if (!newValue) { 2215 if (failed(legalizeErasedResult(repl.first, result, rewriterImpl))) 2216 return failure(); 2217 continue; 2218 } 2219 2220 // Otherwise, check to see if the type of the result changed. 2221 if (result.getType() == newValue.getType()) 2222 continue; 2223 2224 // Legalize this result. 2225 rewriter.setInsertionPoint(repl.first); 2226 if (failed(legalizeChangedResultType(repl.first, result, newValue, 2227 repl.second.converter, rewriter, 2228 rewriterImpl))) 2229 return failure(); 2230 2231 // Update the end iterator for this loop in the case it was updated 2232 // when legalizing generated conversion operations. 2233 e = rewriterImpl.operationsWithChangedResults.size(); 2234 } 2235 } 2236 return success(); 2237 } 2238 2239 LogicalResult OperationConverter::legalizeConvertedArgumentTypes( 2240 ConversionPatternRewriter &rewriter, 2241 ConversionPatternRewriterImpl &rewriterImpl) { 2242 // Functor used to check if all users of a value will be dead after 2243 // conversion. 2244 auto findLiveUser = [&](Value val) { 2245 auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) { 2246 return rewriterImpl.isOpIgnored(user); 2247 }); 2248 return liveUserIt == val.user_end() ? nullptr : *liveUserIt; 2249 }; 2250 2251 // Materialize any necessary conversions for converted block arguments that 2252 // are still live. 2253 size_t numCreatedOps = rewriterImpl.createdOps.size(); 2254 if (failed(rewriterImpl.argConverter.materializeLiveConversions( 2255 rewriterImpl.mapping, rewriter, findLiveUser))) 2256 return failure(); 2257 2258 // Legalize any newly created operations during argument materialization. 2259 for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) { 2260 if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) { 2261 return rewriterImpl.createdOps[i]->emitError() 2262 << "failed to legalize conversion operation generated for block " 2263 "argument that remained live after conversion"; 2264 } 2265 } 2266 return success(); 2267 } 2268 2269 LogicalResult OperationConverter::legalizeErasedResult( 2270 Operation *op, OpResult result, 2271 ConversionPatternRewriterImpl &rewriterImpl) { 2272 // If the operation result was replaced with null, all of the uses of this 2273 // value should be replaced. 2274 auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) { 2275 return rewriterImpl.isOpIgnored(user); 2276 }); 2277 if (liveUserIt != result.user_end()) { 2278 InFlightDiagnostic diag = op->emitError("failed to legalize operation '") 2279 << op->getName() << "' marked as erased"; 2280 diag.attachNote(liveUserIt->getLoc()) 2281 << "found live user of result #" << result.getResultNumber() << ": " 2282 << *liveUserIt; 2283 return failure(); 2284 } 2285 return success(); 2286 } 2287 2288 LogicalResult OperationConverter::legalizeChangedResultType( 2289 Operation *op, OpResult result, Value newValue, 2290 TypeConverter *replConverter, ConversionPatternRewriter &rewriter, 2291 ConversionPatternRewriterImpl &rewriterImpl) { 2292 // Walk the users of this value to see if there are any live users that 2293 // weren't replaced during conversion. 2294 auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) { 2295 return rewriterImpl.isOpIgnored(user); 2296 }); 2297 if (liveUserIt == result.user_end()) 2298 return success(); 2299 2300 // If the replacement has a type converter, attempt to materialize a 2301 // conversion back to the original type. 2302 if (!replConverter) { 2303 // TODO: We should emit an error here, similarly to the case where the 2304 // result is replaced with null. Unfortunately a lot of existing 2305 // patterns rely on this behavior, so until those patterns are updated 2306 // we keep the legacy behavior here of just forwarding the new value. 2307 return success(); 2308 } 2309 2310 // Track the number of created operations so that new ones can be legalized. 2311 size_t numCreatedOps = rewriterImpl.createdOps.size(); 2312 2313 // Materialize a conversion for this live result value. 2314 Type resultType = result.getType(); 2315 Value convertedValue = replConverter->materializeSourceConversion( 2316 rewriter, op->getLoc(), resultType, newValue); 2317 if (!convertedValue) { 2318 InFlightDiagnostic diag = op->emitError() 2319 << "failed to materialize conversion for result #" 2320 << result.getResultNumber() << " of operation '" 2321 << op->getName() 2322 << "' that remained live after conversion"; 2323 diag.attachNote(liveUserIt->getLoc()) 2324 << "see existing live user here: " << *liveUserIt; 2325 return failure(); 2326 } 2327 2328 // Legalize all of the newly created conversion operations. 2329 for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) { 2330 if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) { 2331 return op->emitError("failed to legalize conversion operation generated ") 2332 << "for result #" << result.getResultNumber() << " of operation '" 2333 << op->getName() << "' that remained live after conversion"; 2334 } 2335 } 2336 2337 rewriterImpl.mapping.map(result, convertedValue); 2338 return success(); 2339 } 2340 2341 //===----------------------------------------------------------------------===// 2342 // Type Conversion 2343 //===----------------------------------------------------------------------===// 2344 2345 /// Remap an input of the original signature with a new set of types. The 2346 /// new types are appended to the new signature conversion. 2347 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo, 2348 ArrayRef<Type> types) { 2349 assert(!types.empty() && "expected valid types"); 2350 remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size()); 2351 addInputs(types); 2352 } 2353 2354 /// Append new input types to the signature conversion, this should only be 2355 /// used if the new types are not intended to remap an existing input. 2356 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) { 2357 assert(!types.empty() && 2358 "1->0 type remappings don't need to be added explicitly"); 2359 argTypes.append(types.begin(), types.end()); 2360 } 2361 2362 /// Remap an input of the original signature with a range of types in the 2363 /// new signature. 2364 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2365 unsigned newInputNo, 2366 unsigned newInputCount) { 2367 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2368 assert(newInputCount != 0 && "expected valid input count"); 2369 remappedInputs[origInputNo] = 2370 InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr}; 2371 } 2372 2373 /// Remap an input of the original signature to another `replacementValue` 2374 /// value. This would make the signature converter drop this argument. 2375 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2376 Value replacementValue) { 2377 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2378 remappedInputs[origInputNo] = 2379 InputMapping{origInputNo, /*size=*/0, replacementValue}; 2380 } 2381 2382 /// This hooks allows for converting a type. 2383 LogicalResult TypeConverter::convertType(Type t, 2384 SmallVectorImpl<Type> &results) { 2385 auto existingIt = cachedDirectConversions.find(t); 2386 if (existingIt != cachedDirectConversions.end()) { 2387 if (existingIt->second) 2388 results.push_back(existingIt->second); 2389 return success(existingIt->second != nullptr); 2390 } 2391 auto multiIt = cachedMultiConversions.find(t); 2392 if (multiIt != cachedMultiConversions.end()) { 2393 results.append(multiIt->second.begin(), multiIt->second.end()); 2394 return success(); 2395 } 2396 2397 // Walk the added converters in reverse order to apply the most recently 2398 // registered first. 2399 size_t currentCount = results.size(); 2400 for (ConversionCallbackFn &converter : llvm::reverse(conversions)) { 2401 if (Optional<LogicalResult> result = converter(t, results)) { 2402 if (!succeeded(*result)) { 2403 cachedDirectConversions.try_emplace(t, nullptr); 2404 return failure(); 2405 } 2406 auto newTypes = ArrayRef<Type>(results).drop_front(currentCount); 2407 if (newTypes.size() == 1) 2408 cachedDirectConversions.try_emplace(t, newTypes.front()); 2409 else 2410 cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes)); 2411 return success(); 2412 } 2413 } 2414 return failure(); 2415 } 2416 2417 /// This hook simplifies defining 1-1 type conversions. This function returns 2418 /// the type to convert to on success, and a null type on failure. 2419 Type TypeConverter::convertType(Type t) { 2420 // Use the multi-type result version to convert the type. 2421 SmallVector<Type, 1> results; 2422 if (failed(convertType(t, results))) 2423 return nullptr; 2424 2425 // Check to ensure that only one type was produced. 2426 return results.size() == 1 ? results.front() : nullptr; 2427 } 2428 2429 /// Convert the given set of types, filling 'results' as necessary. This 2430 /// returns failure if the conversion of any of the types fails, success 2431 /// otherwise. 2432 LogicalResult TypeConverter::convertTypes(ArrayRef<Type> types, 2433 SmallVectorImpl<Type> &results) { 2434 for (auto type : types) 2435 if (failed(convertType(type, results))) 2436 return failure(); 2437 return success(); 2438 } 2439 2440 /// Return true if the given type is legal for this type converter, i.e. the 2441 /// type converts to itself. 2442 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; } 2443 /// Return true if the given operation has legal operand and result types. 2444 bool TypeConverter::isLegal(Operation *op) { 2445 return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes()); 2446 } 2447 2448 /// Return true if the types of block arguments within the region are legal. 2449 bool TypeConverter::isLegal(Region *region) { 2450 return llvm::all_of(*region, [this](Block &block) { 2451 return isLegal(block.getArgumentTypes()); 2452 }); 2453 } 2454 2455 /// Return true if the inputs and outputs of the given function type are 2456 /// legal. 2457 bool TypeConverter::isSignatureLegal(FunctionType ty) { 2458 return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults())); 2459 } 2460 2461 /// This hook allows for converting a specific argument of a signature. 2462 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type, 2463 SignatureConversion &result) { 2464 // Try to convert the given input type. 2465 SmallVector<Type, 1> convertedTypes; 2466 if (failed(convertType(type, convertedTypes))) 2467 return failure(); 2468 2469 // If this argument is being dropped, there is nothing left to do. 2470 if (convertedTypes.empty()) 2471 return success(); 2472 2473 // Otherwise, add the new inputs. 2474 result.addInputs(inputNo, convertedTypes); 2475 return success(); 2476 } 2477 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types, 2478 SignatureConversion &result, 2479 unsigned origInputOffset) { 2480 for (unsigned i = 0, e = types.size(); i != e; ++i) 2481 if (failed(convertSignatureArg(origInputOffset + i, types[i], result))) 2482 return failure(); 2483 return success(); 2484 } 2485 2486 Value TypeConverter::materializeConversion( 2487 MutableArrayRef<MaterializationCallbackFn> materializations, 2488 OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) { 2489 for (MaterializationCallbackFn &fn : llvm::reverse(materializations)) 2490 if (Optional<Value> result = fn(builder, resultType, inputs, loc)) 2491 return result.getValue(); 2492 return nullptr; 2493 } 2494 2495 /// This function converts the type signature of the given block, by invoking 2496 /// 'convertSignatureArg' for each argument. This function should return a valid 2497 /// conversion for the signature on success, None otherwise. 2498 auto TypeConverter::convertBlockSignature(Block *block) 2499 -> Optional<SignatureConversion> { 2500 SignatureConversion conversion(block->getNumArguments()); 2501 if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion))) 2502 return llvm::None; 2503 return conversion; 2504 } 2505 2506 /// Create a default conversion pattern that rewrites the type signature of a 2507 /// FuncOp. 2508 namespace { 2509 struct FuncOpSignatureConversion : public OpConversionPattern<FuncOp> { 2510 FuncOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter) 2511 : OpConversionPattern(converter, ctx) {} 2512 2513 /// Hook for derived classes to implement combined matching and rewriting. 2514 LogicalResult 2515 matchAndRewrite(FuncOp funcOp, ArrayRef<Value> operands, 2516 ConversionPatternRewriter &rewriter) const override { 2517 FunctionType type = funcOp.getType(); 2518 2519 // Convert the original function types. 2520 TypeConverter::SignatureConversion result(type.getNumInputs()); 2521 SmallVector<Type, 1> newResults; 2522 if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) || 2523 failed(typeConverter->convertTypes(type.getResults(), newResults)) || 2524 failed(rewriter.convertRegionTypes(&funcOp.getBody(), *typeConverter, 2525 &result))) 2526 return failure(); 2527 2528 // Update the function signature in-place. 2529 rewriter.updateRootInPlace(funcOp, [&] { 2530 funcOp.setType(FunctionType::get(result.getConvertedTypes(), newResults, 2531 funcOp.getContext())); 2532 }); 2533 return success(); 2534 } 2535 }; 2536 } // end anonymous namespace 2537 2538 void mlir::populateFuncOpTypeConversionPattern( 2539 OwningRewritePatternList &patterns, MLIRContext *ctx, 2540 TypeConverter &converter) { 2541 patterns.insert<FuncOpSignatureConversion>(ctx, converter); 2542 } 2543 2544 //===----------------------------------------------------------------------===// 2545 // ConversionTarget 2546 //===----------------------------------------------------------------------===// 2547 2548 /// Register a legality action for the given operation. 2549 void ConversionTarget::setOpAction(OperationName op, 2550 LegalizationAction action) { 2551 legalOperations[op] = {action, /*isRecursivelyLegal=*/false, llvm::None}; 2552 } 2553 2554 /// Register a legality action for the given dialects. 2555 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames, 2556 LegalizationAction action) { 2557 for (StringRef dialect : dialectNames) 2558 legalDialects[dialect] = action; 2559 } 2560 2561 /// Get the legality action for the given operation. 2562 auto ConversionTarget::getOpAction(OperationName op) const 2563 -> Optional<LegalizationAction> { 2564 Optional<LegalizationInfo> info = getOpInfo(op); 2565 return info ? info->action : Optional<LegalizationAction>(); 2566 } 2567 2568 /// If the given operation instance is legal on this target, a structure 2569 /// containing legality information is returned. If the operation is not legal, 2570 /// None is returned. 2571 auto ConversionTarget::isLegal(Operation *op) const 2572 -> Optional<LegalOpDetails> { 2573 Optional<LegalizationInfo> info = getOpInfo(op->getName()); 2574 if (!info) 2575 return llvm::None; 2576 2577 // Returns true if this operation instance is known to be legal. 2578 auto isOpLegal = [&] { 2579 // Handle dynamic legality either with the provided legality function, or 2580 // the default hook on the derived instance. 2581 if (info->action == LegalizationAction::Dynamic) 2582 return info->legalityFn ? (*info->legalityFn)(op) 2583 : isDynamicallyLegal(op); 2584 2585 // Otherwise, the operation is only legal if it was marked 'Legal'. 2586 return info->action == LegalizationAction::Legal; 2587 }; 2588 if (!isOpLegal()) 2589 return llvm::None; 2590 2591 // This operation is legal, compute any additional legality information. 2592 LegalOpDetails legalityDetails; 2593 if (info->isRecursivelyLegal) { 2594 auto legalityFnIt = opRecursiveLegalityFns.find(op->getName()); 2595 if (legalityFnIt != opRecursiveLegalityFns.end()) 2596 legalityDetails.isRecursivelyLegal = legalityFnIt->second(op); 2597 else 2598 legalityDetails.isRecursivelyLegal = true; 2599 } 2600 return legalityDetails; 2601 } 2602 2603 /// Set the dynamic legality callback for the given operation. 2604 void ConversionTarget::setLegalityCallback( 2605 OperationName name, const DynamicLegalityCallbackFn &callback) { 2606 assert(callback && "expected valid legality callback"); 2607 auto infoIt = legalOperations.find(name); 2608 assert(infoIt != legalOperations.end() && 2609 infoIt->second.action == LegalizationAction::Dynamic && 2610 "expected operation to already be marked as dynamically legal"); 2611 infoIt->second.legalityFn = callback; 2612 } 2613 2614 /// Set the recursive legality callback for the given operation and mark the 2615 /// operation as recursively legal. 2616 void ConversionTarget::markOpRecursivelyLegal( 2617 OperationName name, const DynamicLegalityCallbackFn &callback) { 2618 auto infoIt = legalOperations.find(name); 2619 assert(infoIt != legalOperations.end() && 2620 infoIt->second.action != LegalizationAction::Illegal && 2621 "expected operation to already be marked as legal"); 2622 infoIt->second.isRecursivelyLegal = true; 2623 if (callback) 2624 opRecursiveLegalityFns[name] = callback; 2625 else 2626 opRecursiveLegalityFns.erase(name); 2627 } 2628 2629 /// Set the dynamic legality callback for the given dialects. 2630 void ConversionTarget::setLegalityCallback( 2631 ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) { 2632 assert(callback && "expected valid legality callback"); 2633 for (StringRef dialect : dialects) 2634 dialectLegalityFns[dialect] = callback; 2635 } 2636 2637 /// Get the legalization information for the given operation. 2638 auto ConversionTarget::getOpInfo(OperationName op) const 2639 -> Optional<LegalizationInfo> { 2640 // Check for info for this specific operation. 2641 auto it = legalOperations.find(op); 2642 if (it != legalOperations.end()) 2643 return it->second; 2644 // Check for info for the parent dialect. 2645 auto dialectIt = legalDialects.find(op.getDialect()); 2646 if (dialectIt != legalDialects.end()) { 2647 Optional<DynamicLegalityCallbackFn> callback; 2648 auto dialectFn = dialectLegalityFns.find(op.getDialect()); 2649 if (dialectFn != dialectLegalityFns.end()) 2650 callback = dialectFn->second; 2651 return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false, 2652 callback}; 2653 } 2654 // Otherwise, check if we mark unknown operations as dynamic. 2655 if (unknownOpsDynamicallyLegal) 2656 return LegalizationInfo{LegalizationAction::Dynamic, 2657 /*isRecursivelyLegal=*/false, unknownLegalityFn}; 2658 return llvm::None; 2659 } 2660 2661 //===----------------------------------------------------------------------===// 2662 // Op Conversion Entry Points 2663 //===----------------------------------------------------------------------===// 2664 2665 /// Apply a partial conversion on the given operations and all nested 2666 /// operations. This method converts as many operations to the target as 2667 /// possible, ignoring operations that failed to legalize. This method only 2668 /// returns failure if there ops explicitly marked as illegal. 2669 /// If an `unconvertedOps` set is provided, all operations that are found not 2670 /// to be legalizable to the given `target` are placed within that set. (Note 2671 /// that if there is an op explicitly marked as illegal, the conversion 2672 /// terminates and the `unconvertedOps` set will not necessarily be complete.) 2673 LogicalResult 2674 mlir::applyPartialConversion(ArrayRef<Operation *> ops, 2675 ConversionTarget &target, 2676 const FrozenRewritePatternList &patterns, 2677 DenseSet<Operation *> *unconvertedOps) { 2678 OperationConverter opConverter(target, patterns, OpConversionMode::Partial, 2679 unconvertedOps); 2680 return opConverter.convertOperations(ops); 2681 } 2682 LogicalResult 2683 mlir::applyPartialConversion(Operation *op, ConversionTarget &target, 2684 const FrozenRewritePatternList &patterns, 2685 DenseSet<Operation *> *unconvertedOps) { 2686 return applyPartialConversion(llvm::makeArrayRef(op), target, patterns, 2687 unconvertedOps); 2688 } 2689 2690 /// Apply a complete conversion on the given operations, and all nested 2691 /// operations. This method will return failure if the conversion of any 2692 /// operation fails. 2693 LogicalResult 2694 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target, 2695 const FrozenRewritePatternList &patterns) { 2696 OperationConverter opConverter(target, patterns, OpConversionMode::Full); 2697 return opConverter.convertOperations(ops); 2698 } 2699 LogicalResult 2700 mlir::applyFullConversion(Operation *op, ConversionTarget &target, 2701 const FrozenRewritePatternList &patterns) { 2702 return applyFullConversion(llvm::makeArrayRef(op), target, patterns); 2703 } 2704 2705 /// Apply an analysis conversion on the given operations, and all nested 2706 /// operations. This method analyzes which operations would be successfully 2707 /// converted to the target if a conversion was applied. All operations that 2708 /// were found to be legalizable to the given 'target' are placed within the 2709 /// provided 'convertedOps' set; note that no actual rewrites are applied to the 2710 /// operations on success and only pre-existing operations are added to the set. 2711 LogicalResult 2712 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops, 2713 ConversionTarget &target, 2714 const FrozenRewritePatternList &patterns, 2715 DenseSet<Operation *> &convertedOps) { 2716 OperationConverter opConverter(target, patterns, OpConversionMode::Analysis, 2717 &convertedOps); 2718 return opConverter.convertOperations(ops); 2719 } 2720 LogicalResult 2721 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target, 2722 const FrozenRewritePatternList &patterns, 2723 DenseSet<Operation *> &convertedOps) { 2724 return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns, 2725 convertedOps); 2726 } 2727