1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Transforms/DialectConversion.h" 10 #include "mlir/IR/Block.h" 11 #include "mlir/IR/BlockAndValueMapping.h" 12 #include "mlir/IR/Builders.h" 13 #include "mlir/IR/BuiltinOps.h" 14 #include "mlir/IR/FunctionSupport.h" 15 #include "mlir/Rewrite/PatternApplicator.h" 16 #include "mlir/Transforms/Utils.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/FormatVariadic.h" 21 #include "llvm/Support/SaveAndRestore.h" 22 #include "llvm/Support/ScopedPrinter.h" 23 24 using namespace mlir; 25 using namespace mlir::detail; 26 27 #define DEBUG_TYPE "dialect-conversion" 28 29 /// Recursively collect all of the operations to convert from within 'region'. 30 /// If 'target' is nonnull, operations that are recursively legal have their 31 /// regions pre-filtered to avoid considering them for legalization. 32 static LogicalResult 33 computeConversionSet(iterator_range<Region::iterator> region, 34 Location regionLoc, 35 SmallVectorImpl<Operation *> &toConvert, 36 ConversionTarget *target = nullptr) { 37 if (llvm::empty(region)) 38 return success(); 39 40 // Traverse starting from the entry block. 41 SmallVector<Block *, 16> worklist(1, &*region.begin()); 42 DenseSet<Block *> visitedBlocks; 43 visitedBlocks.insert(worklist.front()); 44 while (!worklist.empty()) { 45 Block *block = worklist.pop_back_val(); 46 47 // Compute the conversion set of each of the nested operations. 48 for (Operation &op : *block) { 49 toConvert.emplace_back(&op); 50 51 // Don't check this operation's children for conversion if the operation 52 // is recursively legal. 53 auto legalityInfo = target ? target->isLegal(&op) 54 : Optional<ConversionTarget::LegalOpDetails>(); 55 if (legalityInfo && legalityInfo->isRecursivelyLegal) 56 continue; 57 for (auto ®ion : op.getRegions()) { 58 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 59 toConvert, target))) 60 return failure(); 61 } 62 } 63 64 // Recurse to children that haven't been visited. 65 for (Block *succ : block->getSuccessors()) 66 if (visitedBlocks.insert(succ).second) 67 worklist.push_back(succ); 68 } 69 70 // Check that all blocks in the region were visited. 71 if (llvm::any_of(llvm::drop_begin(region, 1), 72 [&](Block &block) { return !visitedBlocks.count(&block); })) 73 return emitError(regionLoc, "unreachable blocks were not converted"); 74 return success(); 75 } 76 77 /// A utility function to log a successful result for the given reason. 78 template <typename... Args> 79 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { 80 LLVM_DEBUG({ 81 os.unindent(); 82 os.startLine() << "} -> SUCCESS"; 83 if (!fmt.empty()) 84 os.getOStream() << " : " 85 << llvm::formatv(fmt.data(), std::forward<Args>(args)...); 86 os.getOStream() << "\n"; 87 }); 88 } 89 90 /// A utility function to log a failure result for the given reason. 91 template <typename... Args> 92 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { 93 LLVM_DEBUG({ 94 os.unindent(); 95 os.startLine() << "} -> FAILURE : " 96 << llvm::formatv(fmt.data(), std::forward<Args>(args)...) 97 << "\n"; 98 }); 99 } 100 101 //===----------------------------------------------------------------------===// 102 // ConversionValueMapping 103 //===----------------------------------------------------------------------===// 104 105 namespace { 106 /// This class wraps a BlockAndValueMapping to provide recursive lookup 107 /// functionality, i.e. we will traverse if the mapped value also has a mapping. 108 struct ConversionValueMapping { 109 /// Lookup a mapped value within the map. If a mapping for the provided value 110 /// does not exist then return the provided value. If `desiredType` is 111 /// non-null, returns the most recently mapped value with that type. If an 112 /// operand of that type does not exist, defaults to normal behavior. 113 Value lookupOrDefault(Value from, Type desiredType = nullptr) const; 114 115 /// Lookup a mapped value within the map, or return null if a mapping does not 116 /// exist. If a mapping exists, this follows the same behavior of 117 /// `lookupOrDefault`. 118 Value lookupOrNull(Value from, Type desiredType = nullptr) const; 119 120 /// Map a value to the one provided. 121 void map(Value oldVal, Value newVal) { 122 LLVM_DEBUG({ 123 for (Value it = newVal; it; it = mapping.lookupOrNull(it)) 124 assert(it != oldVal && "inserting cyclic mapping"); 125 }); 126 mapping.map(oldVal, newVal); 127 } 128 129 /// Try to map a value to the one provided. Returns false if a transitive 130 /// mapping from the new value to the old value already exists, true if the 131 /// map was updated. 132 bool tryMap(Value oldVal, Value newVal); 133 134 /// Drop the last mapping for the given value. 135 void erase(Value value) { mapping.erase(value); } 136 137 /// Returns the inverse raw value mapping (without recursive query support). 138 DenseMap<Value, SmallVector<Value>> getInverse() const { 139 DenseMap<Value, SmallVector<Value>> inverse; 140 for (auto &it : mapping.getValueMap()) 141 inverse[it.second].push_back(it.first); 142 return inverse; 143 } 144 145 private: 146 /// Current value mappings. 147 BlockAndValueMapping mapping; 148 }; 149 } // end anonymous namespace 150 151 Value ConversionValueMapping::lookupOrDefault(Value from, 152 Type desiredType) const { 153 // If there was no desired type, simply find the leaf value. 154 if (!desiredType) { 155 // If this value had a valid mapping, unmap that value as well in the case 156 // that it was also replaced. 157 while (auto mappedValue = mapping.lookupOrNull(from)) 158 from = mappedValue; 159 return from; 160 } 161 162 // Otherwise, try to find the deepest value that has the desired type. 163 Value desiredValue; 164 do { 165 if (from.getType() == desiredType) 166 desiredValue = from; 167 168 Value mappedValue = mapping.lookupOrNull(from); 169 if (!mappedValue) 170 break; 171 from = mappedValue; 172 } while (true); 173 174 // If the desired value was found use it, otherwise default to the leaf value. 175 return desiredValue ? desiredValue : from; 176 } 177 178 Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const { 179 Value result = lookupOrDefault(from, desiredType); 180 if (result == from || (desiredType && result.getType() != desiredType)) 181 return nullptr; 182 return result; 183 } 184 185 bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) { 186 for (Value it = newVal; it; it = mapping.lookupOrNull(it)) 187 if (it == oldVal) 188 return false; 189 map(oldVal, newVal); 190 return true; 191 } 192 193 //===----------------------------------------------------------------------===// 194 // Rewriter and Translation State 195 //===----------------------------------------------------------------------===// 196 namespace { 197 /// This class contains a snapshot of the current conversion rewriter state. 198 /// This is useful when saving and undoing a set of rewrites. 199 struct RewriterState { 200 RewriterState(unsigned numCreatedOps, unsigned numUnresolvedMaterializations, 201 unsigned numReplacements, unsigned numArgReplacements, 202 unsigned numBlockActions, unsigned numIgnoredOperations, 203 unsigned numRootUpdates) 204 : numCreatedOps(numCreatedOps), 205 numUnresolvedMaterializations(numUnresolvedMaterializations), 206 numReplacements(numReplacements), 207 numArgReplacements(numArgReplacements), 208 numBlockActions(numBlockActions), 209 numIgnoredOperations(numIgnoredOperations), 210 numRootUpdates(numRootUpdates) {} 211 212 /// The current number of created operations. 213 unsigned numCreatedOps; 214 215 /// The current number of unresolved materializations. 216 unsigned numUnresolvedMaterializations; 217 218 /// The current number of replacements queued. 219 unsigned numReplacements; 220 221 /// The current number of argument replacements queued. 222 unsigned numArgReplacements; 223 224 /// The current number of block actions performed. 225 unsigned numBlockActions; 226 227 /// The current number of ignored operations. 228 unsigned numIgnoredOperations; 229 230 /// The current number of operations that were updated in place. 231 unsigned numRootUpdates; 232 }; 233 234 //===----------------------------------------------------------------------===// 235 // OperationTransactionState 236 237 /// The state of an operation that was updated by a pattern in-place. This 238 /// contains all of the necessary information to reconstruct an operation that 239 /// was updated in place. 240 class OperationTransactionState { 241 public: 242 OperationTransactionState() = default; 243 OperationTransactionState(Operation *op) 244 : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()), 245 operands(op->operand_begin(), op->operand_end()), 246 successors(op->successor_begin(), op->successor_end()) {} 247 248 /// Discard the transaction state and reset the state of the original 249 /// operation. 250 void resetOperation() const { 251 op->setLoc(loc); 252 op->setAttrs(attrs); 253 op->setOperands(operands); 254 for (auto it : llvm::enumerate(successors)) 255 op->setSuccessor(it.value(), it.index()); 256 } 257 258 /// Return the original operation of this state. 259 Operation *getOperation() const { return op; } 260 261 private: 262 Operation *op; 263 LocationAttr loc; 264 DictionaryAttr attrs; 265 SmallVector<Value, 8> operands; 266 SmallVector<Block *, 2> successors; 267 }; 268 269 //===----------------------------------------------------------------------===// 270 // OpReplacement 271 272 /// This class represents one requested operation replacement via 'replaceOp' or 273 /// 'eraseOp`. 274 struct OpReplacement { 275 OpReplacement(TypeConverter *converter = nullptr) : converter(converter) {} 276 277 /// An optional type converter that can be used to materialize conversions 278 /// between the new and old values if necessary. 279 TypeConverter *converter; 280 }; 281 282 //===----------------------------------------------------------------------===// 283 // BlockAction 284 285 /// The kind of the block action performed during the rewrite. Actions can be 286 /// undone if the conversion fails. 287 enum class BlockActionKind { 288 Create, 289 Erase, 290 Merge, 291 Move, 292 Split, 293 TypeConversion 294 }; 295 296 /// Original position of the given block in its parent region. During undo 297 /// actions, the block needs to be placed after `insertAfterBlock`. 298 struct BlockPosition { 299 Region *region; 300 Block *insertAfterBlock; 301 }; 302 303 /// Information needed to undo the merge actions. 304 /// - the source block, and 305 /// - the Operation that was the last operation in the dest block before the 306 /// merge (could be null if the dest block was empty). 307 struct MergeInfo { 308 Block *sourceBlock; 309 Operation *destBlockLastInst; 310 }; 311 312 /// The storage class for an undoable block action (one of BlockActionKind), 313 /// contains the information necessary to undo this action. 314 struct BlockAction { 315 static BlockAction getCreate(Block *block) { 316 return {BlockActionKind::Create, block, {}}; 317 } 318 static BlockAction getErase(Block *block, BlockPosition originalPosition) { 319 return {BlockActionKind::Erase, block, {originalPosition}}; 320 } 321 static BlockAction getMerge(Block *block, Block *sourceBlock) { 322 BlockAction action{BlockActionKind::Merge, block, {}}; 323 action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()}; 324 return action; 325 } 326 static BlockAction getMove(Block *block, BlockPosition originalPosition) { 327 return {BlockActionKind::Move, block, {originalPosition}}; 328 } 329 static BlockAction getSplit(Block *block, Block *originalBlock) { 330 BlockAction action{BlockActionKind::Split, block, {}}; 331 action.originalBlock = originalBlock; 332 return action; 333 } 334 static BlockAction getTypeConversion(Block *block) { 335 return BlockAction{BlockActionKind::TypeConversion, block, {}}; 336 } 337 338 // The action kind. 339 BlockActionKind kind; 340 341 // A pointer to the block that was created by the action. 342 Block *block; 343 344 union { 345 // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and 346 // contains a pointer to the region that originally contained the block as 347 // well as the position of the block in that region. 348 BlockPosition originalPosition; 349 // In use if kind == BlockActionKind::Split and contains a pointer to the 350 // block that was split into two parts. 351 Block *originalBlock; 352 // In use if kind == BlockActionKind::Merge, and contains the information 353 // needed to undo the merge. 354 MergeInfo mergeInfo; 355 }; 356 }; 357 358 //===----------------------------------------------------------------------===// 359 // UnresolvedMaterialization 360 361 /// This class represents an unresolved materialization, i.e. a materialization 362 /// that was inserted during conversion that needs to be legalized at the end of 363 /// the conversion process. 364 class UnresolvedMaterialization { 365 public: 366 /// The type of materialization. 367 enum Kind { 368 /// This materialization materializes a conversion for an illegal block 369 /// argument type, to a legal one. 370 Argument, 371 372 /// This materialization materializes a conversion from an illegal type to a 373 /// legal one. 374 Target 375 }; 376 377 UnresolvedMaterialization(UnrealizedConversionCastOp op = nullptr, 378 TypeConverter *converter = nullptr, 379 Kind kind = Target, Type origOutputType = nullptr) 380 : op(op), converterAndKind(converter, kind), 381 origOutputType(origOutputType) {} 382 383 /// Return the temporary conversion operation inserted for this 384 /// materialization. 385 UnrealizedConversionCastOp getOp() const { return op; } 386 387 /// Return the type converter of this materialization (which may be null). 388 TypeConverter *getConverter() const { return converterAndKind.getPointer(); } 389 390 /// Return the kind of this materialization. 391 Kind getKind() const { return converterAndKind.getInt(); } 392 393 /// Set the kind of this materialization. 394 void setKind(Kind kind) { converterAndKind.setInt(kind); } 395 396 /// Return the original illegal output type of the input values. 397 Type getOrigOutputType() const { return origOutputType; } 398 399 private: 400 /// The unresolved materialization operation created during conversion. 401 UnrealizedConversionCastOp op; 402 403 /// The corresponding type converter to use when resolving this 404 /// materialization, and the kind of this materialization. 405 llvm::PointerIntPair<TypeConverter *, 1, Kind> converterAndKind; 406 407 /// The original output type. This is only used for argument conversions. 408 Type origOutputType; 409 }; 410 } // end anonymous namespace 411 412 /// Build an unresolved materialization operation given an output type and set 413 /// of input operands. 414 static Value buildUnresolvedMaterialization( 415 UnresolvedMaterialization::Kind kind, Block *insertBlock, 416 Block::iterator insertPt, Location loc, ValueRange inputs, Type outputType, 417 Type origOutputType, TypeConverter *converter, 418 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) { 419 // Avoid materializing an unnecessary cast. 420 if (inputs.size() == 1 && inputs.front().getType() == outputType) 421 return inputs.front(); 422 423 // Create an unresolved materialization. We use a new OpBuilder to avoid 424 // tracking the materialization like we do for other operations. 425 OpBuilder builder(insertBlock, insertPt); 426 auto convertOp = 427 builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs); 428 unresolvedMaterializations.emplace_back(convertOp, converter, kind, 429 origOutputType); 430 return convertOp.getResult(0); 431 } 432 static Value buildUnresolvedArgumentMaterialization( 433 PatternRewriter &rewriter, Location loc, ValueRange inputs, 434 Type origOutputType, Type outputType, TypeConverter *converter, 435 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) { 436 return buildUnresolvedMaterialization( 437 UnresolvedMaterialization::Argument, rewriter.getInsertionBlock(), 438 rewriter.getInsertionPoint(), loc, inputs, outputType, origOutputType, 439 converter, unresolvedMaterializations); 440 } 441 static Value buildUnresolvedTargetMaterialization( 442 Location loc, Value input, Type outputType, TypeConverter *converter, 443 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) { 444 Block *insertBlock = input.getParentBlock(); 445 Block::iterator insertPt = insertBlock->begin(); 446 if (OpResult inputRes = input.dyn_cast<OpResult>()) 447 insertPt = ++inputRes.getOwner()->getIterator(); 448 449 return buildUnresolvedMaterialization( 450 UnresolvedMaterialization::Target, insertBlock, insertPt, loc, input, 451 outputType, outputType, converter, unresolvedMaterializations); 452 } 453 454 //===----------------------------------------------------------------------===// 455 // ArgConverter 456 //===----------------------------------------------------------------------===// 457 namespace { 458 /// This class provides a simple interface for converting the types of block 459 /// arguments. This is done by creating a new block that contains the new legal 460 /// types and extracting the block that contains the old illegal types to allow 461 /// for undoing pending rewrites in the case of failure. 462 struct ArgConverter { 463 ArgConverter( 464 PatternRewriter &rewriter, 465 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) 466 : rewriter(rewriter), 467 unresolvedMaterializations(unresolvedMaterializations) {} 468 469 /// This structure contains the information pertaining to an argument that has 470 /// been converted. 471 struct ConvertedArgInfo { 472 ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize, 473 Value castValue = nullptr) 474 : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {} 475 476 /// The start index of in the new argument list that contains arguments that 477 /// replace the original. 478 unsigned newArgIdx; 479 480 /// The number of arguments that replaced the original argument. 481 unsigned newArgSize; 482 483 /// The cast value that was created to cast from the new arguments to the 484 /// old. This only used if 'newArgSize' > 1. 485 Value castValue; 486 }; 487 488 /// This structure contains information pertaining to a block that has had its 489 /// signature converted. 490 struct ConvertedBlockInfo { 491 ConvertedBlockInfo(Block *origBlock, TypeConverter *converter) 492 : origBlock(origBlock), converter(converter) {} 493 494 /// The original block that was requested to have its signature converted. 495 Block *origBlock; 496 497 /// The conversion information for each of the arguments. The information is 498 /// None if the argument was dropped during conversion. 499 SmallVector<Optional<ConvertedArgInfo>, 1> argInfo; 500 501 /// The type converter used to convert the arguments. 502 TypeConverter *converter; 503 }; 504 505 /// Return if the signature of the given block has already been converted. 506 bool hasBeenConverted(Block *block) const { 507 return conversionInfo.count(block) || convertedBlocks.count(block); 508 } 509 510 /// Set the type converter to use for the given region. 511 void setConverter(Region *region, TypeConverter *typeConverter) { 512 assert(typeConverter && "expected valid type converter"); 513 regionToConverter[region] = typeConverter; 514 } 515 516 /// Return the type converter to use for the given region, or null if there 517 /// isn't one. 518 TypeConverter *getConverter(Region *region) { 519 return regionToConverter.lookup(region); 520 } 521 522 //===--------------------------------------------------------------------===// 523 // Rewrite Application 524 //===--------------------------------------------------------------------===// 525 526 /// Erase any rewrites registered for the blocks within the given operation 527 /// which is about to be removed. This merely drops the rewrites without 528 /// undoing them. 529 void notifyOpRemoved(Operation *op); 530 531 /// Cleanup and undo any generated conversions for the arguments of block. 532 /// This method replaces the new block with the original, reverting the IR to 533 /// its original state. 534 void discardRewrites(Block *block); 535 536 /// Fully replace uses of the old arguments with the new. 537 void applyRewrites(ConversionValueMapping &mapping); 538 539 /// Materialize any necessary conversions for converted arguments that have 540 /// live users, using the provided `findLiveUser` to search for a user that 541 /// survives the conversion process. 542 LogicalResult 543 materializeLiveConversions(ConversionValueMapping &mapping, 544 OpBuilder &builder, 545 function_ref<Operation *(Value)> findLiveUser); 546 547 //===--------------------------------------------------------------------===// 548 // Conversion 549 //===--------------------------------------------------------------------===// 550 551 /// Attempt to convert the signature of the given block, if successful a new 552 /// block is returned containing the new arguments. Returns `block` if it did 553 /// not require conversion. 554 FailureOr<Block *> 555 convertSignature(Block *block, TypeConverter *converter, 556 ConversionValueMapping &mapping, 557 SmallVectorImpl<BlockArgument> &argReplacements); 558 559 /// Apply the given signature conversion on the given block. The new block 560 /// containing the updated signature is returned. If no conversions were 561 /// necessary, e.g. if the block has no arguments, `block` is returned. 562 /// `converter` is used to generate any necessary cast operations that 563 /// translate between the origin argument types and those specified in the 564 /// signature conversion. 565 Block *applySignatureConversion( 566 Block *block, TypeConverter *converter, 567 TypeConverter::SignatureConversion &signatureConversion, 568 ConversionValueMapping &mapping, 569 SmallVectorImpl<BlockArgument> &argReplacements); 570 571 /// Insert a new conversion into the cache. 572 void insertConversion(Block *newBlock, ConvertedBlockInfo &&info); 573 574 /// A collection of blocks that have had their arguments converted. This is a 575 /// map from the new replacement block, back to the original block. 576 llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo; 577 578 /// The set of original blocks that were converted. 579 DenseSet<Block *> convertedBlocks; 580 581 /// A mapping from valid regions, to those containing the original blocks of a 582 /// conversion. 583 DenseMap<Region *, std::unique_ptr<Region>> regionMapping; 584 585 /// A mapping of regions to type converters that should be used when 586 /// converting the arguments of blocks within that region. 587 DenseMap<Region *, TypeConverter *> regionToConverter; 588 589 /// The pattern rewriter to use when materializing conversions. 590 PatternRewriter &rewriter; 591 592 /// An ordered set of unresolved materializations during conversion. 593 SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations; 594 }; 595 } // end anonymous namespace 596 597 //===----------------------------------------------------------------------===// 598 // Rewrite Application 599 600 void ArgConverter::notifyOpRemoved(Operation *op) { 601 if (conversionInfo.empty()) 602 return; 603 604 for (Region ®ion : op->getRegions()) { 605 for (Block &block : region) { 606 // Drop any rewrites from within. 607 for (Operation &nestedOp : block) 608 if (nestedOp.getNumRegions()) 609 notifyOpRemoved(&nestedOp); 610 611 // Check if this block was converted. 612 auto it = conversionInfo.find(&block); 613 if (it == conversionInfo.end()) 614 continue; 615 616 // Drop all uses of the original arguments and delete the original block. 617 Block *origBlock = it->second.origBlock; 618 for (BlockArgument arg : origBlock->getArguments()) 619 arg.dropAllUses(); 620 conversionInfo.erase(it); 621 } 622 } 623 } 624 625 void ArgConverter::discardRewrites(Block *block) { 626 auto it = conversionInfo.find(block); 627 if (it == conversionInfo.end()) 628 return; 629 Block *origBlock = it->second.origBlock; 630 631 // Drop all uses of the new block arguments and replace uses of the new block. 632 for (int i = block->getNumArguments() - 1; i >= 0; --i) 633 block->getArgument(i).dropAllUses(); 634 block->replaceAllUsesWith(origBlock); 635 636 // Move the operations back the original block and the delete the new block. 637 origBlock->getOperations().splice(origBlock->end(), block->getOperations()); 638 origBlock->moveBefore(block); 639 block->erase(); 640 641 convertedBlocks.erase(origBlock); 642 conversionInfo.erase(it); 643 } 644 645 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) { 646 for (auto &info : conversionInfo) { 647 ConvertedBlockInfo &blockInfo = info.second; 648 Block *origBlock = blockInfo.origBlock; 649 650 // Process the remapping for each of the original arguments. 651 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 652 Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i]; 653 BlockArgument origArg = origBlock->getArgument(i); 654 655 // Handle the case of a 1->0 value mapping. 656 if (!argInfo) { 657 if (Value newArg = mapping.lookupOrNull(origArg, origArg.getType())) 658 origArg.replaceAllUsesWith(newArg); 659 continue; 660 } 661 662 // Otherwise this is a 1->1+ value mapping. 663 Value castValue = argInfo->castValue; 664 assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping"); 665 666 // If the argument is still used, replace it with the generated cast. 667 if (!origArg.use_empty()) { 668 origArg.replaceAllUsesWith( 669 mapping.lookupOrDefault(castValue, origArg.getType())); 670 } 671 } 672 } 673 } 674 675 LogicalResult ArgConverter::materializeLiveConversions( 676 ConversionValueMapping &mapping, OpBuilder &builder, 677 function_ref<Operation *(Value)> findLiveUser) { 678 for (auto &info : conversionInfo) { 679 Block *newBlock = info.first; 680 ConvertedBlockInfo &blockInfo = info.second; 681 Block *origBlock = blockInfo.origBlock; 682 683 // Process the remapping for each of the original arguments. 684 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 685 // FIXME: We should run the below checks even if a type converter wasn't 686 // provided, but a lot of existing lowering rely on the block argument 687 // being blindly replaced. We should rework argument materialization to be 688 // more robust for temporary source materializations, update existing 689 // patterns, and remove these checks. 690 if (!blockInfo.converter && blockInfo.argInfo[i]) 691 continue; 692 693 // If the type of this argument changed and the argument is still live, we 694 // need to materialize a conversion. 695 BlockArgument origArg = origBlock->getArgument(i); 696 if (mapping.lookupOrNull(origArg, origArg.getType())) 697 continue; 698 Operation *liveUser = findLiveUser(origArg); 699 if (!liveUser) 700 continue; 701 702 Value replacementValue = mapping.lookupOrDefault(origArg); 703 bool isDroppedArg = replacementValue == origArg; 704 if (isDroppedArg) 705 rewriter.setInsertionPointToStart(newBlock); 706 else 707 rewriter.setInsertionPointAfterValue(replacementValue); 708 Value newArg; 709 if (blockInfo.converter) { 710 newArg = blockInfo.converter->materializeSourceConversion( 711 rewriter, origArg.getLoc(), origArg.getType(), 712 isDroppedArg ? ValueRange() : ValueRange(replacementValue)); 713 assert((!newArg || newArg.getType() == origArg.getType()) && 714 "materialization hook did not provide a value of the expected " 715 "type"); 716 } 717 if (!newArg) { 718 InFlightDiagnostic diag = 719 emitError(origArg.getLoc()) 720 << "failed to materialize conversion for block argument #" << i 721 << " that remained live after conversion, type was " 722 << origArg.getType(); 723 if (!isDroppedArg) 724 diag << ", with target type " << replacementValue.getType(); 725 diag.attachNote(liveUser->getLoc()) 726 << "see existing live user here: " << *liveUser; 727 return failure(); 728 } 729 mapping.map(origArg, newArg); 730 } 731 } 732 return success(); 733 } 734 735 //===----------------------------------------------------------------------===// 736 // Conversion 737 738 FailureOr<Block *> ArgConverter::convertSignature( 739 Block *block, TypeConverter *converter, ConversionValueMapping &mapping, 740 SmallVectorImpl<BlockArgument> &argReplacements) { 741 // Check if the block was already converted. If the block is detached, 742 // conservatively assume it is going to be deleted. 743 if (hasBeenConverted(block) || !block->getParent()) 744 return block; 745 // If a converter wasn't provided, and the block wasn't already converted, 746 // there is nothing we can do. 747 if (!converter) 748 return failure(); 749 750 // Try to convert the signature for the block with the provided converter. 751 if (auto conversion = converter->convertBlockSignature(block)) 752 return applySignatureConversion(block, converter, *conversion, mapping, 753 argReplacements); 754 return failure(); 755 } 756 757 Block *ArgConverter::applySignatureConversion( 758 Block *block, TypeConverter *converter, 759 TypeConverter::SignatureConversion &signatureConversion, 760 ConversionValueMapping &mapping, 761 SmallVectorImpl<BlockArgument> &argReplacements) { 762 // If no arguments are being changed or added, there is nothing to do. 763 unsigned origArgCount = block->getNumArguments(); 764 auto convertedTypes = signatureConversion.getConvertedTypes(); 765 if (origArgCount == 0 && convertedTypes.empty()) 766 return block; 767 768 // Split the block at the beginning to get a new block to use for the updated 769 // signature. 770 Block *newBlock = block->splitBlock(block->begin()); 771 block->replaceAllUsesWith(newBlock); 772 773 SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes)); 774 ArrayRef<Value> newArgs(newArgRange); 775 776 // Remap each of the original arguments as determined by the signature 777 // conversion. 778 ConvertedBlockInfo info(block, converter); 779 info.argInfo.resize(origArgCount); 780 781 OpBuilder::InsertionGuard guard(rewriter); 782 rewriter.setInsertionPointToStart(newBlock); 783 for (unsigned i = 0; i != origArgCount; ++i) { 784 auto inputMap = signatureConversion.getInputMapping(i); 785 if (!inputMap) 786 continue; 787 BlockArgument origArg = block->getArgument(i); 788 789 // If inputMap->replacementValue is not nullptr, then the argument is 790 // dropped and a replacement value is provided to be the remappedValue. 791 if (inputMap->replacementValue) { 792 assert(inputMap->size == 0 && 793 "invalid to provide a replacement value when the argument isn't " 794 "dropped"); 795 mapping.map(origArg, inputMap->replacementValue); 796 argReplacements.push_back(origArg); 797 continue; 798 } 799 800 // Otherwise, this is a 1->1+ mapping. 801 auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size); 802 Value newArg; 803 804 // If this is a 1->1 mapping and the types of new and replacement arguments 805 // match (i.e. it's an identity map), then the argument is mapped to its 806 // original type. 807 // FIXME: We simply pass through the replacement argument if there wasn't a 808 // converter, which isn't great as it allows implicit type conversions to 809 // appear. We should properly restructure this code to handle cases where a 810 // converter isn't provided and also to properly handle the case where an 811 // argument materialization is actually a temporary source materialization 812 // (e.g. in the case of 1->N). 813 if (replArgs.size() == 1 && 814 (!converter || replArgs[0].getType() == origArg.getType())) { 815 newArg = replArgs.front(); 816 } else { 817 Type origOutputType = origArg.getType(); 818 819 // Legalize the argument output type. 820 Type outputType = origOutputType; 821 if (Type legalOutputType = converter->convertType(outputType)) 822 outputType = legalOutputType; 823 824 newArg = buildUnresolvedArgumentMaterialization( 825 rewriter, origArg.getLoc(), replArgs, origOutputType, outputType, 826 converter, unresolvedMaterializations); 827 } 828 829 mapping.map(origArg, newArg); 830 argReplacements.push_back(origArg); 831 info.argInfo[i] = 832 ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg); 833 } 834 835 // Remove the original block from the region and return the new one. 836 insertConversion(newBlock, std::move(info)); 837 return newBlock; 838 } 839 840 void ArgConverter::insertConversion(Block *newBlock, 841 ConvertedBlockInfo &&info) { 842 // Get a region to insert the old block. 843 Region *region = newBlock->getParent(); 844 std::unique_ptr<Region> &mappedRegion = regionMapping[region]; 845 if (!mappedRegion) 846 mappedRegion = std::make_unique<Region>(region->getParentOp()); 847 848 // Move the original block to the mapped region and emplace the conversion. 849 mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(), 850 info.origBlock->getIterator()); 851 convertedBlocks.insert(info.origBlock); 852 conversionInfo.insert({newBlock, std::move(info)}); 853 } 854 855 //===----------------------------------------------------------------------===// 856 // ConversionPatternRewriterImpl 857 //===----------------------------------------------------------------------===// 858 namespace mlir { 859 namespace detail { 860 struct ConversionPatternRewriterImpl { 861 ConversionPatternRewriterImpl(PatternRewriter &rewriter) 862 : argConverter(rewriter, unresolvedMaterializations) {} 863 864 /// Cleanup and destroy any generated rewrite operations. This method is 865 /// invoked when the conversion process fails. 866 void discardRewrites(); 867 868 /// Apply all requested operation rewrites. This method is invoked when the 869 /// conversion process succeeds. 870 void applyRewrites(); 871 872 //===--------------------------------------------------------------------===// 873 // State Management 874 //===--------------------------------------------------------------------===// 875 876 /// Return the current state of the rewriter. 877 RewriterState getCurrentState(); 878 879 /// Reset the state of the rewriter to a previously saved point. 880 void resetState(RewriterState state); 881 882 /// Erase any blocks that were unlinked from their regions and stored in block 883 /// actions. 884 void eraseDanglingBlocks(); 885 886 /// Undo the block actions (motions, splits) one by one in reverse order until 887 /// "numActionsToKeep" actions remains. 888 void undoBlockActions(unsigned numActionsToKeep = 0); 889 890 /// Remap the given values to those with potentially different types. Returns 891 /// success if the values could be remapped, failure otherwise. `valueDiagTag` 892 /// is the tag used when describing a value within a diagnostic, e.g. 893 /// "operand". 894 LogicalResult remapValues(StringRef valueDiagTag, Optional<Location> inputLoc, 895 PatternRewriter &rewriter, ValueRange values, 896 SmallVectorImpl<Value> &remapped); 897 898 /// Returns true if the given operation is ignored, and does not need to be 899 /// converted. 900 bool isOpIgnored(Operation *op) const; 901 902 /// Recursively marks the nested operations under 'op' as ignored. This 903 /// removes them from being considered for legalization. 904 void markNestedOpsIgnored(Operation *op); 905 906 //===--------------------------------------------------------------------===// 907 // Type Conversion 908 //===--------------------------------------------------------------------===// 909 910 /// Convert the signature of the given block. 911 FailureOr<Block *> convertBlockSignature( 912 Block *block, TypeConverter *converter, 913 TypeConverter::SignatureConversion *conversion = nullptr); 914 915 /// Apply a signature conversion on the given region, using `converter` for 916 /// materializations if not null. 917 Block * 918 applySignatureConversion(Region *region, 919 TypeConverter::SignatureConversion &conversion, 920 TypeConverter *converter); 921 922 /// Convert the types of block arguments within the given region. 923 FailureOr<Block *> 924 convertRegionTypes(Region *region, TypeConverter &converter, 925 TypeConverter::SignatureConversion *entryConversion); 926 927 /// Convert the types of non-entry block arguments within the given region. 928 LogicalResult convertNonEntryRegionTypes( 929 Region *region, TypeConverter &converter, 930 ArrayRef<TypeConverter::SignatureConversion> blockConversions = {}); 931 932 //===--------------------------------------------------------------------===// 933 // Rewriter Notification Hooks 934 //===--------------------------------------------------------------------===// 935 936 /// PatternRewriter hook for replacing the results of an operation. 937 void notifyOpReplaced(Operation *op, ValueRange newValues); 938 939 /// Notifies that a block is about to be erased. 940 void notifyBlockIsBeingErased(Block *block); 941 942 /// Notifies that a block was created. 943 void notifyCreatedBlock(Block *block); 944 945 /// Notifies that a block was split. 946 void notifySplitBlock(Block *block, Block *continuation); 947 948 /// Notifies that `block` is being merged with `srcBlock`. 949 void notifyBlocksBeingMerged(Block *block, Block *srcBlock); 950 951 /// Notifies that the blocks of a region are about to be moved. 952 void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent, 953 Region::iterator before); 954 955 /// Notifies that the blocks of a region were cloned into another. 956 void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks, 957 Location origRegionLoc); 958 959 /// Notifies that a pattern match failed for the given reason. 960 LogicalResult 961 notifyMatchFailure(Location loc, 962 function_ref<void(Diagnostic &)> reasonCallback); 963 964 //===--------------------------------------------------------------------===// 965 // State 966 //===--------------------------------------------------------------------===// 967 968 // Mapping between replaced values that differ in type. This happens when 969 // replacing a value with one of a different type. 970 ConversionValueMapping mapping; 971 972 /// Utility used to convert block arguments. 973 ArgConverter argConverter; 974 975 /// Ordered vector of all of the newly created operations during conversion. 976 SmallVector<Operation *> createdOps; 977 978 /// Ordered vector of all unresolved type conversion materializations during 979 /// conversion. 980 SmallVector<UnresolvedMaterialization> unresolvedMaterializations; 981 982 /// Ordered map of requested operation replacements. 983 llvm::MapVector<Operation *, OpReplacement> replacements; 984 985 /// Ordered vector of any requested block argument replacements. 986 SmallVector<BlockArgument, 4> argReplacements; 987 988 /// Ordered list of block operations (creations, splits, motions). 989 SmallVector<BlockAction, 4> blockActions; 990 991 /// A set of operations that should no longer be considered for legalization, 992 /// but were not directly replace/erased/etc. by a pattern. These are 993 /// generally child operations of other operations who were 994 /// replaced/erased/etc. This is not meant to be an exhaustive list of all 995 /// operations, but the minimal set that can be used to detect if a given 996 /// operation should be `ignored`. For example, we may add the operations that 997 /// define non-empty regions to the set, but not any of the others. This 998 /// simplifies the amount of memory needed as we can query if the parent 999 /// operation was ignored. 1000 SetVector<Operation *> ignoredOps; 1001 1002 /// A transaction state for each of operations that were updated in-place. 1003 SmallVector<OperationTransactionState, 4> rootUpdates; 1004 1005 /// A vector of indices into `replacements` of operations that were replaced 1006 /// with values with different result types than the original operation, e.g. 1007 /// 1->N conversion of some kind. 1008 SmallVector<unsigned, 4> operationsWithChangedResults; 1009 1010 /// The current type converter, or nullptr if no type converter is currently 1011 /// active. 1012 TypeConverter *currentTypeConverter = nullptr; 1013 1014 #ifndef NDEBUG 1015 /// A set of operations that have pending updates. This tracking isn't 1016 /// strictly necessary, and is thus only active during debug builds for extra 1017 /// verification. 1018 SmallPtrSet<Operation *, 1> pendingRootUpdates; 1019 1020 /// A logger used to emit diagnostics during the conversion process. 1021 llvm::ScopedPrinter logger{llvm::dbgs()}; 1022 #endif 1023 }; 1024 } // end namespace detail 1025 } // end namespace mlir 1026 1027 /// Detach any operations nested in the given operation from their parent 1028 /// blocks, and erase the given operation. This can be used when the nested 1029 /// operations are scheduled for erasure themselves, so deleting the regions of 1030 /// the given operation together with their content would result in double-free. 1031 /// This happens, for example, when rolling back op creation in the reverse 1032 /// order and if the nested ops were created before the parent op. This function 1033 /// does not need to collect nested ops recursively because it is expected to 1034 /// also be called for each nested op when it is about to be deleted. 1035 static void detachNestedAndErase(Operation *op) { 1036 for (Region ®ion : op->getRegions()) { 1037 for (Block &block : region.getBlocks()) { 1038 while (!block.getOperations().empty()) 1039 block.getOperations().remove(block.getOperations().begin()); 1040 block.dropAllDefinedValueUses(); 1041 } 1042 } 1043 op->dropAllUses(); 1044 op->erase(); 1045 } 1046 1047 void ConversionPatternRewriterImpl::discardRewrites() { 1048 // Reset any operations that were updated in place. 1049 for (auto &state : rootUpdates) 1050 state.resetOperation(); 1051 1052 undoBlockActions(); 1053 1054 // Remove any newly created ops. 1055 for (UnresolvedMaterialization &materialization : unresolvedMaterializations) 1056 detachNestedAndErase(materialization.getOp()); 1057 for (auto *op : llvm::reverse(createdOps)) 1058 detachNestedAndErase(op); 1059 } 1060 1061 void ConversionPatternRewriterImpl::applyRewrites() { 1062 // Apply all of the rewrites replacements requested during conversion. 1063 for (auto &repl : replacements) { 1064 for (OpResult result : repl.first->getResults()) 1065 if (Value newValue = mapping.lookupOrNull(result, result.getType())) 1066 result.replaceAllUsesWith(newValue); 1067 1068 // If this operation defines any regions, drop any pending argument 1069 // rewrites. 1070 if (repl.first->getNumRegions()) 1071 argConverter.notifyOpRemoved(repl.first); 1072 } 1073 1074 // Apply all of the requested argument replacements. 1075 for (BlockArgument arg : argReplacements) { 1076 Value repl = mapping.lookupOrNull(arg, arg.getType()); 1077 if (!repl) 1078 continue; 1079 1080 if (repl.isa<BlockArgument>()) { 1081 arg.replaceAllUsesWith(repl); 1082 continue; 1083 } 1084 1085 // If the replacement value is an operation, we check to make sure that we 1086 // don't replace uses that are within the parent operation of the 1087 // replacement value. 1088 Operation *replOp = repl.cast<OpResult>().getOwner(); 1089 Block *replBlock = replOp->getBlock(); 1090 arg.replaceUsesWithIf(repl, [&](OpOperand &operand) { 1091 Operation *user = operand.getOwner(); 1092 return user->getBlock() != replBlock || replOp->isBeforeInBlock(user); 1093 }); 1094 } 1095 1096 // Drop all of the unresolved materialization operations created during 1097 // conversion. 1098 for (auto &mat : unresolvedMaterializations) { 1099 mat.getOp()->dropAllUses(); 1100 mat.getOp()->erase(); 1101 } 1102 1103 // In a second pass, erase all of the replaced operations in reverse. This 1104 // allows processing nested operations before their parent region is 1105 // destroyed. Because we process in reverse order, producers may be deleted 1106 // before their users (a pattern deleting a producer and then the consumer) 1107 // so we first drop all uses explicitly. 1108 for (auto &repl : llvm::reverse(replacements)) { 1109 repl.first->dropAllUses(); 1110 repl.first->erase(); 1111 } 1112 1113 argConverter.applyRewrites(mapping); 1114 1115 // Now that the ops have been erased, also erase dangling blocks. 1116 eraseDanglingBlocks(); 1117 } 1118 1119 //===----------------------------------------------------------------------===// 1120 // State Management 1121 1122 RewriterState ConversionPatternRewriterImpl::getCurrentState() { 1123 return RewriterState(createdOps.size(), unresolvedMaterializations.size(), 1124 replacements.size(), argReplacements.size(), 1125 blockActions.size(), ignoredOps.size(), 1126 rootUpdates.size()); 1127 } 1128 1129 void ConversionPatternRewriterImpl::resetState(RewriterState state) { 1130 // Reset any operations that were updated in place. 1131 for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i) 1132 rootUpdates[i].resetOperation(); 1133 rootUpdates.resize(state.numRootUpdates); 1134 1135 // Reset any replaced arguments. 1136 for (BlockArgument replacedArg : 1137 llvm::drop_begin(argReplacements, state.numArgReplacements)) 1138 mapping.erase(replacedArg); 1139 argReplacements.resize(state.numArgReplacements); 1140 1141 // Undo any block actions. 1142 undoBlockActions(state.numBlockActions); 1143 1144 // Reset any replaced operations and undo any saved mappings. 1145 for (auto &repl : llvm::drop_begin(replacements, state.numReplacements)) 1146 for (auto result : repl.first->getResults()) 1147 mapping.erase(result); 1148 while (replacements.size() != state.numReplacements) 1149 replacements.pop_back(); 1150 1151 // Pop all of the newly inserted materializations. 1152 while (unresolvedMaterializations.size() != 1153 state.numUnresolvedMaterializations) { 1154 UnresolvedMaterialization mat = unresolvedMaterializations.pop_back_val(); 1155 UnrealizedConversionCastOp op = mat.getOp(); 1156 1157 // If this was a target materialization, drop the mapping that was inserted. 1158 if (mat.getKind() == UnresolvedMaterialization::Target) { 1159 for (Value input : op->getOperands()) 1160 mapping.erase(input); 1161 } 1162 detachNestedAndErase(op); 1163 } 1164 1165 // Pop all of the newly created operations. 1166 while (createdOps.size() != state.numCreatedOps) { 1167 detachNestedAndErase(createdOps.back()); 1168 createdOps.pop_back(); 1169 } 1170 1171 // Pop all of the recorded ignored operations that are no longer valid. 1172 while (ignoredOps.size() != state.numIgnoredOperations) 1173 ignoredOps.pop_back(); 1174 1175 // Reset operations with changed results. 1176 while (!operationsWithChangedResults.empty() && 1177 operationsWithChangedResults.back() >= state.numReplacements) 1178 operationsWithChangedResults.pop_back(); 1179 } 1180 1181 void ConversionPatternRewriterImpl::eraseDanglingBlocks() { 1182 for (auto &action : blockActions) 1183 if (action.kind == BlockActionKind::Erase) 1184 delete action.block; 1185 } 1186 1187 void ConversionPatternRewriterImpl::undoBlockActions( 1188 unsigned numActionsToKeep) { 1189 for (auto &action : 1190 llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) { 1191 switch (action.kind) { 1192 // Delete the created block. 1193 case BlockActionKind::Create: { 1194 // Unlink all of the operations within this block, they will be deleted 1195 // separately. 1196 auto &blockOps = action.block->getOperations(); 1197 while (!blockOps.empty()) 1198 blockOps.remove(blockOps.begin()); 1199 action.block->dropAllDefinedValueUses(); 1200 action.block->erase(); 1201 break; 1202 } 1203 // Put the block (owned by action) back into its original position. 1204 case BlockActionKind::Erase: { 1205 auto &blockList = action.originalPosition.region->getBlocks(); 1206 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 1207 blockList.insert((insertAfterBlock 1208 ? std::next(Region::iterator(insertAfterBlock)) 1209 : blockList.begin()), 1210 action.block); 1211 break; 1212 } 1213 // Split the block at the position which was originally the end of the 1214 // destination block (owned by action), and put the instructions back into 1215 // the block used before the merge. 1216 case BlockActionKind::Merge: { 1217 Block *sourceBlock = action.mergeInfo.sourceBlock; 1218 Block::iterator splitPoint = 1219 (action.mergeInfo.destBlockLastInst 1220 ? ++Block::iterator(action.mergeInfo.destBlockLastInst) 1221 : action.block->begin()); 1222 sourceBlock->getOperations().splice(sourceBlock->begin(), 1223 action.block->getOperations(), 1224 splitPoint, action.block->end()); 1225 break; 1226 } 1227 // Move the block back to its original position. 1228 case BlockActionKind::Move: { 1229 Region *originalRegion = action.originalPosition.region; 1230 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 1231 originalRegion->getBlocks().splice( 1232 (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock)) 1233 : originalRegion->end()), 1234 action.block->getParent()->getBlocks(), action.block); 1235 break; 1236 } 1237 // Merge back the block that was split out. 1238 case BlockActionKind::Split: { 1239 action.originalBlock->getOperations().splice( 1240 action.originalBlock->end(), action.block->getOperations()); 1241 action.block->dropAllDefinedValueUses(); 1242 action.block->erase(); 1243 break; 1244 } 1245 // Undo the type conversion. 1246 case BlockActionKind::TypeConversion: { 1247 argConverter.discardRewrites(action.block); 1248 break; 1249 } 1250 } 1251 } 1252 blockActions.resize(numActionsToKeep); 1253 } 1254 1255 LogicalResult ConversionPatternRewriterImpl::remapValues( 1256 StringRef valueDiagTag, Optional<Location> inputLoc, 1257 PatternRewriter &rewriter, ValueRange values, 1258 SmallVectorImpl<Value> &remapped) { 1259 remapped.reserve(llvm::size(values)); 1260 1261 SmallVector<Type, 1> legalTypes; 1262 for (auto it : llvm::enumerate(values)) { 1263 Value operand = it.value(); 1264 Type origType = operand.getType(); 1265 1266 // If a converter was provided, get the desired legal types for this 1267 // operand. 1268 Type desiredType; 1269 if (currentTypeConverter) { 1270 // If there is no legal conversion, fail to match this pattern. 1271 legalTypes.clear(); 1272 if (failed(currentTypeConverter->convertType(origType, legalTypes))) { 1273 Location operandLoc = inputLoc ? *inputLoc : operand.getLoc(); 1274 return notifyMatchFailure(operandLoc, [=](Diagnostic &diag) { 1275 diag << "unable to convert type for " << valueDiagTag << " #" 1276 << it.index() << ", type was " << origType; 1277 }); 1278 } 1279 // TODO: There currently isn't any mechanism to do 1->N type conversion 1280 // via the PatternRewriter replacement API, so for now we just ignore it. 1281 if (legalTypes.size() == 1) 1282 desiredType = legalTypes.front(); 1283 } else { 1284 // TODO: What we should do here is just set `desiredType` to `origType` 1285 // and then handle the necessary type conversions after the conversion 1286 // process has finished. Unfortunately a lot of patterns currently rely on 1287 // receiving the new operands even if the types change, so we keep the 1288 // original behavior here for now until all of the patterns relying on 1289 // this get updated. 1290 } 1291 Value newOperand = mapping.lookupOrDefault(operand, desiredType); 1292 1293 // Handle the case where the conversion was 1->1 and the new operand type 1294 // isn't legal. 1295 Type newOperandType = newOperand.getType(); 1296 if (currentTypeConverter && desiredType && newOperandType != desiredType) { 1297 Location operandLoc = inputLoc ? *inputLoc : operand.getLoc(); 1298 Value castValue = buildUnresolvedTargetMaterialization( 1299 operandLoc, newOperand, desiredType, currentTypeConverter, 1300 unresolvedMaterializations); 1301 mapping.map(mapping.lookupOrDefault(newOperand), castValue); 1302 newOperand = castValue; 1303 } 1304 remapped.push_back(newOperand); 1305 } 1306 return success(); 1307 } 1308 1309 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const { 1310 // Check to see if this operation was replaced or its parent ignored. 1311 return replacements.count(op) || ignoredOps.count(op->getParentOp()); 1312 } 1313 1314 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) { 1315 // Walk this operation and collect nested operations that define non-empty 1316 // regions. We mark such operations as 'ignored' so that we know we don't have 1317 // to convert them, or their nested ops. 1318 if (op->getNumRegions() == 0) 1319 return; 1320 op->walk([&](Operation *op) { 1321 if (llvm::any_of(op->getRegions(), 1322 [](Region ®ion) { return !region.empty(); })) 1323 ignoredOps.insert(op); 1324 }); 1325 } 1326 1327 //===----------------------------------------------------------------------===// 1328 // Type Conversion 1329 1330 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature( 1331 Block *block, TypeConverter *converter, 1332 TypeConverter::SignatureConversion *conversion) { 1333 FailureOr<Block *> result = 1334 conversion ? argConverter.applySignatureConversion( 1335 block, converter, *conversion, mapping, argReplacements) 1336 : argConverter.convertSignature(block, converter, mapping, 1337 argReplacements); 1338 if (failed(result)) 1339 return failure(); 1340 if (Block *newBlock = result.getValue()) { 1341 if (newBlock != block) 1342 blockActions.push_back(BlockAction::getTypeConversion(newBlock)); 1343 } 1344 return result; 1345 } 1346 1347 Block *ConversionPatternRewriterImpl::applySignatureConversion( 1348 Region *region, TypeConverter::SignatureConversion &conversion, 1349 TypeConverter *converter) { 1350 if (!region->empty()) 1351 return *convertBlockSignature(®ion->front(), converter, &conversion); 1352 return nullptr; 1353 } 1354 1355 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes( 1356 Region *region, TypeConverter &converter, 1357 TypeConverter::SignatureConversion *entryConversion) { 1358 argConverter.setConverter(region, &converter); 1359 if (region->empty()) 1360 return nullptr; 1361 1362 if (failed(convertNonEntryRegionTypes(region, converter))) 1363 return failure(); 1364 1365 FailureOr<Block *> newEntry = 1366 convertBlockSignature(®ion->front(), &converter, entryConversion); 1367 return newEntry; 1368 } 1369 1370 LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes( 1371 Region *region, TypeConverter &converter, 1372 ArrayRef<TypeConverter::SignatureConversion> blockConversions) { 1373 argConverter.setConverter(region, &converter); 1374 if (region->empty()) 1375 return success(); 1376 1377 // Convert the arguments of each block within the region. 1378 int blockIdx = 0; 1379 assert((blockConversions.empty() || 1380 blockConversions.size() == region->getBlocks().size() - 1) && 1381 "expected either to provide no SignatureConversions at all or to " 1382 "provide a SignatureConversion for each non-entry block"); 1383 1384 for (Block &block : 1385 llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) { 1386 TypeConverter::SignatureConversion *blockConversion = 1387 blockConversions.empty() 1388 ? nullptr 1389 : const_cast<TypeConverter::SignatureConversion *>( 1390 &blockConversions[blockIdx++]); 1391 1392 if (failed(convertBlockSignature(&block, &converter, blockConversion))) 1393 return failure(); 1394 } 1395 return success(); 1396 } 1397 1398 //===----------------------------------------------------------------------===// 1399 // Rewriter Notification Hooks 1400 1401 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op, 1402 ValueRange newValues) { 1403 assert(newValues.size() == op->getNumResults()); 1404 assert(!replacements.count(op) && "operation was already replaced"); 1405 1406 // Track if any of the results changed, e.g. erased and replaced with null. 1407 bool resultChanged = false; 1408 1409 // Create mappings for each of the new result values. 1410 Value newValue, result; 1411 for (auto it : llvm::zip(newValues, op->getResults())) { 1412 std::tie(newValue, result) = it; 1413 if (!newValue) { 1414 resultChanged = true; 1415 continue; 1416 } 1417 // Remap, and check for any result type changes. 1418 mapping.map(result, newValue); 1419 resultChanged |= (newValue.getType() != result.getType()); 1420 } 1421 if (resultChanged) 1422 operationsWithChangedResults.push_back(replacements.size()); 1423 1424 // Record the requested operation replacement. 1425 replacements.insert(std::make_pair(op, OpReplacement(currentTypeConverter))); 1426 1427 // Mark this operation as recursively ignored so that we don't need to 1428 // convert any nested operations. 1429 markNestedOpsIgnored(op); 1430 } 1431 1432 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) { 1433 Region *region = block->getParent(); 1434 Block *origPrevBlock = block->getPrevNode(); 1435 blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock})); 1436 } 1437 1438 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) { 1439 blockActions.push_back(BlockAction::getCreate(block)); 1440 } 1441 1442 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block, 1443 Block *continuation) { 1444 blockActions.push_back(BlockAction::getSplit(continuation, block)); 1445 } 1446 1447 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block, 1448 Block *srcBlock) { 1449 blockActions.push_back(BlockAction::getMerge(block, srcBlock)); 1450 } 1451 1452 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore( 1453 Region ®ion, Region &parent, Region::iterator before) { 1454 if (region.empty()) 1455 return; 1456 Block *laterBlock = ®ion.back(); 1457 for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) { 1458 blockActions.push_back( 1459 BlockAction::getMove(laterBlock, {®ion, &earlierBlock})); 1460 laterBlock = &earlierBlock; 1461 } 1462 blockActions.push_back(BlockAction::getMove(laterBlock, {®ion, nullptr})); 1463 } 1464 1465 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore( 1466 iterator_range<Region::iterator> &blocks, Location origRegionLoc) { 1467 for (Block &block : blocks) 1468 blockActions.push_back(BlockAction::getCreate(&block)); 1469 1470 // Compute the conversion set for the inlined region. 1471 auto result = computeConversionSet(blocks, origRegionLoc, createdOps); 1472 1473 // This original region has already had its conversion set computed, so there 1474 // shouldn't be any new failures. 1475 (void)result; 1476 assert(succeeded(result) && "expected region to have no unreachable blocks"); 1477 } 1478 1479 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure( 1480 Location loc, function_ref<void(Diagnostic &)> reasonCallback) { 1481 LLVM_DEBUG({ 1482 Diagnostic diag(loc, DiagnosticSeverity::Remark); 1483 reasonCallback(diag); 1484 logger.startLine() << "** Failure : " << diag.str() << "\n"; 1485 }); 1486 return failure(); 1487 } 1488 1489 //===----------------------------------------------------------------------===// 1490 // ConversionPatternRewriter 1491 //===----------------------------------------------------------------------===// 1492 1493 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx) 1494 : PatternRewriter(ctx), 1495 impl(new detail::ConversionPatternRewriterImpl(*this)) {} 1496 ConversionPatternRewriter::~ConversionPatternRewriter() {} 1497 1498 void ConversionPatternRewriter::replaceOpWithIf( 1499 Operation *op, ValueRange newValues, bool *allUsesReplaced, 1500 llvm::unique_function<bool(OpOperand &) const> functor) { 1501 // TODO: To support this we will need to rework a bit of how replacements are 1502 // tracked, given that this isn't guranteed to replace all of the uses of an 1503 // operation. The main change is that now an operation can be replaced 1504 // multiple times, in parts. The current "set" based tracking is mainly useful 1505 // for tracking if a replaced operation should be ignored, i.e. if all of the 1506 // uses will be replaced. 1507 llvm_unreachable( 1508 "replaceOpWithIf is currently not supported by DialectConversion"); 1509 } 1510 1511 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) { 1512 LLVM_DEBUG({ 1513 impl->logger.startLine() 1514 << "** Replace : '" << op->getName() << "'(" << op << ")\n"; 1515 }); 1516 impl->notifyOpReplaced(op, newValues); 1517 } 1518 1519 void ConversionPatternRewriter::eraseOp(Operation *op) { 1520 LLVM_DEBUG({ 1521 impl->logger.startLine() 1522 << "** Erase : '" << op->getName() << "'(" << op << ")\n"; 1523 }); 1524 SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr); 1525 impl->notifyOpReplaced(op, nullRepls); 1526 } 1527 1528 void ConversionPatternRewriter::eraseBlock(Block *block) { 1529 impl->notifyBlockIsBeingErased(block); 1530 1531 // Mark all ops for erasure. 1532 for (Operation &op : *block) 1533 eraseOp(&op); 1534 1535 // Unlink the block from its parent region. The block is kept in the block 1536 // action and will be actually destroyed when rewrites are applied. This 1537 // allows us to keep the operations in the block live and undo the removal by 1538 // re-inserting the block. 1539 block->getParent()->getBlocks().remove(block); 1540 } 1541 1542 Block *ConversionPatternRewriter::applySignatureConversion( 1543 Region *region, TypeConverter::SignatureConversion &conversion, 1544 TypeConverter *converter) { 1545 return impl->applySignatureConversion(region, conversion, converter); 1546 } 1547 1548 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes( 1549 Region *region, TypeConverter &converter, 1550 TypeConverter::SignatureConversion *entryConversion) { 1551 return impl->convertRegionTypes(region, converter, entryConversion); 1552 } 1553 1554 LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes( 1555 Region *region, TypeConverter &converter, 1556 ArrayRef<TypeConverter::SignatureConversion> blockConversions) { 1557 return impl->convertNonEntryRegionTypes(region, converter, blockConversions); 1558 } 1559 1560 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from, 1561 Value to) { 1562 LLVM_DEBUG({ 1563 Operation *parentOp = from.getOwner()->getParentOp(); 1564 impl->logger.startLine() << "** Replace Argument : '" << from 1565 << "'(in region of '" << parentOp->getName() 1566 << "'(" << from.getOwner()->getParentOp() << ")\n"; 1567 }); 1568 impl->argReplacements.push_back(from); 1569 impl->mapping.map(impl->mapping.lookupOrDefault(from), to); 1570 } 1571 1572 Value ConversionPatternRewriter::getRemappedValue(Value key) { 1573 SmallVector<Value> remappedValues; 1574 if (failed(impl->remapValues("value", /*inputLoc=*/llvm::None, *this, key, 1575 remappedValues))) 1576 return nullptr; 1577 return remappedValues.front(); 1578 } 1579 1580 LogicalResult 1581 ConversionPatternRewriter::getRemappedValues(ValueRange keys, 1582 SmallVectorImpl<Value> &results) { 1583 if (keys.empty()) 1584 return success(); 1585 return impl->remapValues("value", /*inputLoc=*/llvm::None, *this, keys, 1586 results); 1587 } 1588 1589 void ConversionPatternRewriter::notifyBlockCreated(Block *block) { 1590 impl->notifyCreatedBlock(block); 1591 } 1592 1593 Block *ConversionPatternRewriter::splitBlock(Block *block, 1594 Block::iterator before) { 1595 auto *continuation = PatternRewriter::splitBlock(block, before); 1596 impl->notifySplitBlock(block, continuation); 1597 return continuation; 1598 } 1599 1600 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest, 1601 ValueRange argValues) { 1602 impl->notifyBlocksBeingMerged(dest, source); 1603 assert(llvm::all_of(source->getPredecessors(), 1604 [dest](Block *succ) { return succ == dest; }) && 1605 "expected 'source' to have no predecessors or only 'dest'"); 1606 assert(argValues.size() == source->getNumArguments() && 1607 "incorrect # of argument replacement values"); 1608 for (auto it : llvm::zip(source->getArguments(), argValues)) 1609 replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it)); 1610 dest->getOperations().splice(dest->end(), source->getOperations()); 1611 eraseBlock(source); 1612 } 1613 1614 void ConversionPatternRewriter::inlineRegionBefore(Region ®ion, 1615 Region &parent, 1616 Region::iterator before) { 1617 impl->notifyRegionIsBeingInlinedBefore(region, parent, before); 1618 PatternRewriter::inlineRegionBefore(region, parent, before); 1619 } 1620 1621 void ConversionPatternRewriter::cloneRegionBefore( 1622 Region ®ion, Region &parent, Region::iterator before, 1623 BlockAndValueMapping &mapping) { 1624 if (region.empty()) 1625 return; 1626 PatternRewriter::cloneRegionBefore(region, parent, before, mapping); 1627 1628 // Collect the range of the cloned blocks. 1629 auto clonedBeginIt = mapping.lookup(®ion.front())->getIterator(); 1630 auto clonedBlocks = llvm::make_range(clonedBeginIt, before); 1631 impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc()); 1632 } 1633 1634 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) { 1635 LLVM_DEBUG({ 1636 impl->logger.startLine() 1637 << "** Insert : '" << op->getName() << "'(" << op << ")\n"; 1638 }); 1639 impl->createdOps.push_back(op); 1640 } 1641 1642 void ConversionPatternRewriter::startRootUpdate(Operation *op) { 1643 #ifndef NDEBUG 1644 impl->pendingRootUpdates.insert(op); 1645 #endif 1646 impl->rootUpdates.emplace_back(op); 1647 } 1648 1649 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) { 1650 // There is nothing to do here, we only need to track the operation at the 1651 // start of the update. 1652 #ifndef NDEBUG 1653 assert(impl->pendingRootUpdates.erase(op) && 1654 "operation did not have a pending in-place update"); 1655 #endif 1656 } 1657 1658 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) { 1659 #ifndef NDEBUG 1660 assert(impl->pendingRootUpdates.erase(op) && 1661 "operation did not have a pending in-place update"); 1662 #endif 1663 // Erase the last update for this operation. 1664 auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; }; 1665 auto &rootUpdates = impl->rootUpdates; 1666 auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp); 1667 assert(it != rootUpdates.rend() && "no root update started on op"); 1668 (*it).resetOperation(); 1669 int updateIdx = std::prev(rootUpdates.rend()) - it; 1670 rootUpdates.erase(rootUpdates.begin() + updateIdx); 1671 } 1672 1673 LogicalResult ConversionPatternRewriter::notifyMatchFailure( 1674 Operation *op, function_ref<void(Diagnostic &)> reasonCallback) { 1675 return impl->notifyMatchFailure(op->getLoc(), reasonCallback); 1676 } 1677 1678 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() { 1679 return *impl; 1680 } 1681 1682 //===----------------------------------------------------------------------===// 1683 // ConversionPattern 1684 //===----------------------------------------------------------------------===// 1685 1686 LogicalResult 1687 ConversionPattern::matchAndRewrite(Operation *op, 1688 PatternRewriter &rewriter) const { 1689 auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter); 1690 auto &rewriterImpl = dialectRewriter.getImpl(); 1691 1692 // Track the current conversion pattern type converter in the rewriter. 1693 llvm::SaveAndRestore<TypeConverter *> currentConverterGuard( 1694 rewriterImpl.currentTypeConverter, getTypeConverter()); 1695 1696 // Remap the operands of the operation. 1697 SmallVector<Value, 4> operands; 1698 if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter, 1699 op->getOperands(), operands))) { 1700 return failure(); 1701 } 1702 return matchAndRewrite(op, operands, dialectRewriter); 1703 } 1704 1705 //===----------------------------------------------------------------------===// 1706 // OperationLegalizer 1707 //===----------------------------------------------------------------------===// 1708 1709 namespace { 1710 /// A set of rewrite patterns that can be used to legalize a given operation. 1711 using LegalizationPatterns = SmallVector<const Pattern *, 1>; 1712 1713 /// This class defines a recursive operation legalizer. 1714 class OperationLegalizer { 1715 public: 1716 using LegalizationAction = ConversionTarget::LegalizationAction; 1717 1718 OperationLegalizer(ConversionTarget &targetInfo, 1719 const FrozenRewritePatternSet &patterns); 1720 1721 /// Returns true if the given operation is known to be illegal on the target. 1722 bool isIllegal(Operation *op) const; 1723 1724 /// Attempt to legalize the given operation. Returns success if the operation 1725 /// was legalized, failure otherwise. 1726 LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter); 1727 1728 /// Returns the conversion target in use by the legalizer. 1729 ConversionTarget &getTarget() { return target; } 1730 1731 private: 1732 /// Attempt to legalize the given operation by folding it. 1733 LogicalResult legalizeWithFold(Operation *op, 1734 ConversionPatternRewriter &rewriter); 1735 1736 /// Attempt to legalize the given operation by applying a pattern. Returns 1737 /// success if the operation was legalized, failure otherwise. 1738 LogicalResult legalizeWithPattern(Operation *op, 1739 ConversionPatternRewriter &rewriter); 1740 1741 /// Return true if the given pattern may be applied to the given operation, 1742 /// false otherwise. 1743 bool canApplyPattern(Operation *op, const Pattern &pattern, 1744 ConversionPatternRewriter &rewriter); 1745 1746 /// Legalize the resultant IR after successfully applying the given pattern. 1747 LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern, 1748 ConversionPatternRewriter &rewriter, 1749 RewriterState &curState); 1750 1751 /// Legalizes the actions registered during the execution of a pattern. 1752 LogicalResult legalizePatternBlockActions(Operation *op, 1753 ConversionPatternRewriter &rewriter, 1754 ConversionPatternRewriterImpl &impl, 1755 RewriterState &state, 1756 RewriterState &newState); 1757 LogicalResult legalizePatternCreatedOperations( 1758 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1759 RewriterState &state, RewriterState &newState); 1760 LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter, 1761 ConversionPatternRewriterImpl &impl, 1762 RewriterState &state, 1763 RewriterState &newState); 1764 1765 //===--------------------------------------------------------------------===// 1766 // Cost Model 1767 //===--------------------------------------------------------------------===// 1768 1769 /// Build an optimistic legalization graph given the provided patterns. This 1770 /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with 1771 /// patterns for operations that are not directly legal, but may be 1772 /// transitively legal for the current target given the provided patterns. 1773 void buildLegalizationGraph( 1774 LegalizationPatterns &anyOpLegalizerPatterns, 1775 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1776 1777 /// Compute the benefit of each node within the computed legalization graph. 1778 /// This orders the patterns within 'legalizerPatterns' based upon two 1779 /// criteria: 1780 /// 1) Prefer patterns that have the lowest legalization depth, i.e. 1781 /// represent the more direct mapping to the target. 1782 /// 2) When comparing patterns with the same legalization depth, prefer the 1783 /// pattern with the highest PatternBenefit. This allows for users to 1784 /// prefer specific legalizations over others. 1785 void computeLegalizationGraphBenefit( 1786 LegalizationPatterns &anyOpLegalizerPatterns, 1787 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1788 1789 /// Compute the legalization depth when legalizing an operation of the given 1790 /// type. 1791 unsigned computeOpLegalizationDepth( 1792 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 1793 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1794 1795 /// Apply the conversion cost model to the given set of patterns, and return 1796 /// the smallest legalization depth of any of the patterns. See 1797 /// `computeLegalizationGraphBenefit` for the breakdown of the cost model. 1798 unsigned applyCostModelToPatterns( 1799 LegalizationPatterns &patterns, 1800 DenseMap<OperationName, unsigned> &minOpPatternDepth, 1801 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1802 1803 /// The current set of patterns that have been applied. 1804 SmallPtrSet<const Pattern *, 8> appliedPatterns; 1805 1806 /// The legalization information provided by the target. 1807 ConversionTarget ⌖ 1808 1809 /// The pattern applicator to use for conversions. 1810 PatternApplicator applicator; 1811 }; 1812 } // namespace 1813 1814 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo, 1815 const FrozenRewritePatternSet &patterns) 1816 : target(targetInfo), applicator(patterns) { 1817 // The set of patterns that can be applied to illegal operations to transform 1818 // them into legal ones. 1819 DenseMap<OperationName, LegalizationPatterns> legalizerPatterns; 1820 LegalizationPatterns anyOpLegalizerPatterns; 1821 1822 buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns); 1823 computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns); 1824 } 1825 1826 bool OperationLegalizer::isIllegal(Operation *op) const { 1827 // Check if the target explicitly marked this operation as illegal. 1828 if (auto info = target.getOpAction(op->getName())) { 1829 if (*info == LegalizationAction::Dynamic) 1830 return !target.isLegal(op); 1831 return *info == LegalizationAction::Illegal; 1832 } 1833 1834 return false; 1835 } 1836 1837 LogicalResult 1838 OperationLegalizer::legalize(Operation *op, 1839 ConversionPatternRewriter &rewriter) { 1840 #ifndef NDEBUG 1841 const char *logLineComment = 1842 "//===-------------------------------------------===//\n"; 1843 1844 auto &logger = rewriter.getImpl().logger; 1845 #endif 1846 LLVM_DEBUG({ 1847 logger.getOStream() << "\n"; 1848 logger.startLine() << logLineComment; 1849 logger.startLine() << "Legalizing operation : '" << op->getName() << "'(" 1850 << op << ") {\n"; 1851 logger.indent(); 1852 1853 // If the operation has no regions, just print it here. 1854 if (op->getNumRegions() == 0) { 1855 op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm()); 1856 logger.getOStream() << "\n\n"; 1857 } 1858 }); 1859 1860 // Check if this operation is legal on the target. 1861 if (auto legalityInfo = target.isLegal(op)) { 1862 LLVM_DEBUG({ 1863 logSuccess( 1864 logger, "operation marked legal by the target{0}", 1865 legalityInfo->isRecursivelyLegal 1866 ? "; NOTE: operation is recursively legal; skipping internals" 1867 : ""); 1868 logger.startLine() << logLineComment; 1869 }); 1870 1871 // If this operation is recursively legal, mark its children as ignored so 1872 // that we don't consider them for legalization. 1873 if (legalityInfo->isRecursivelyLegal) 1874 rewriter.getImpl().markNestedOpsIgnored(op); 1875 return success(); 1876 } 1877 1878 // Check to see if the operation is ignored and doesn't need to be converted. 1879 if (rewriter.getImpl().isOpIgnored(op)) { 1880 LLVM_DEBUG({ 1881 logSuccess(logger, "operation marked 'ignored' during conversion"); 1882 logger.startLine() << logLineComment; 1883 }); 1884 return success(); 1885 } 1886 1887 // If the operation isn't legal, try to fold it in-place. 1888 // TODO: Should we always try to do this, even if the op is 1889 // already legal? 1890 if (succeeded(legalizeWithFold(op, rewriter))) { 1891 LLVM_DEBUG({ 1892 logSuccess(logger, "operation was folded"); 1893 logger.startLine() << logLineComment; 1894 }); 1895 return success(); 1896 } 1897 1898 // Otherwise, we need to apply a legalization pattern to this operation. 1899 if (succeeded(legalizeWithPattern(op, rewriter))) { 1900 LLVM_DEBUG({ 1901 logSuccess(logger, ""); 1902 logger.startLine() << logLineComment; 1903 }); 1904 return success(); 1905 } 1906 1907 LLVM_DEBUG({ 1908 logFailure(logger, "no matched legalization pattern"); 1909 logger.startLine() << logLineComment; 1910 }); 1911 return failure(); 1912 } 1913 1914 LogicalResult 1915 OperationLegalizer::legalizeWithFold(Operation *op, 1916 ConversionPatternRewriter &rewriter) { 1917 auto &rewriterImpl = rewriter.getImpl(); 1918 RewriterState curState = rewriterImpl.getCurrentState(); 1919 1920 LLVM_DEBUG({ 1921 rewriterImpl.logger.startLine() << "* Fold {\n"; 1922 rewriterImpl.logger.indent(); 1923 }); 1924 1925 // Try to fold the operation. 1926 SmallVector<Value, 2> replacementValues; 1927 rewriter.setInsertionPoint(op); 1928 if (failed(rewriter.tryFold(op, replacementValues))) { 1929 LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold")); 1930 return failure(); 1931 } 1932 1933 // Insert a replacement for 'op' with the folded replacement values. 1934 rewriter.replaceOp(op, replacementValues); 1935 1936 // Recursively legalize any new constant operations. 1937 for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size(); 1938 i != e; ++i) { 1939 Operation *cstOp = rewriterImpl.createdOps[i]; 1940 if (failed(legalize(cstOp, rewriter))) { 1941 LLVM_DEBUG(logFailure(rewriterImpl.logger, 1942 "generated constant '{0}' was illegal", 1943 cstOp->getName())); 1944 rewriterImpl.resetState(curState); 1945 return failure(); 1946 } 1947 } 1948 1949 LLVM_DEBUG(logSuccess(rewriterImpl.logger, "")); 1950 return success(); 1951 } 1952 1953 LogicalResult 1954 OperationLegalizer::legalizeWithPattern(Operation *op, 1955 ConversionPatternRewriter &rewriter) { 1956 auto &rewriterImpl = rewriter.getImpl(); 1957 1958 // Functor that returns if the given pattern may be applied. 1959 auto canApply = [&](const Pattern &pattern) { 1960 return canApplyPattern(op, pattern, rewriter); 1961 }; 1962 1963 // Functor that cleans up the rewriter state after a pattern failed to match. 1964 RewriterState curState = rewriterImpl.getCurrentState(); 1965 auto onFailure = [&](const Pattern &pattern) { 1966 LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match")); 1967 rewriterImpl.resetState(curState); 1968 appliedPatterns.erase(&pattern); 1969 }; 1970 1971 // Functor that performs additional legalization when a pattern is 1972 // successfully applied. 1973 auto onSuccess = [&](const Pattern &pattern) { 1974 auto result = legalizePatternResult(op, pattern, rewriter, curState); 1975 appliedPatterns.erase(&pattern); 1976 if (failed(result)) 1977 rewriterImpl.resetState(curState); 1978 return result; 1979 }; 1980 1981 // Try to match and rewrite a pattern on this operation. 1982 return applicator.matchAndRewrite(op, rewriter, canApply, onFailure, 1983 onSuccess); 1984 } 1985 1986 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern, 1987 ConversionPatternRewriter &rewriter) { 1988 LLVM_DEBUG({ 1989 auto &os = rewriter.getImpl().logger; 1990 os.getOStream() << "\n"; 1991 os.startLine() << "* Pattern : '" << op->getName() << " -> ("; 1992 llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream()); 1993 os.getOStream() << ")' {\n"; 1994 os.indent(); 1995 }); 1996 1997 // Ensure that we don't cycle by not allowing the same pattern to be 1998 // applied twice in the same recursion stack if it is not known to be safe. 1999 if (!pattern.hasBoundedRewriteRecursion() && 2000 !appliedPatterns.insert(&pattern).second) { 2001 LLVM_DEBUG( 2002 logFailure(rewriter.getImpl().logger, "pattern was already applied")); 2003 return false; 2004 } 2005 return true; 2006 } 2007 2008 LogicalResult 2009 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern, 2010 ConversionPatternRewriter &rewriter, 2011 RewriterState &curState) { 2012 auto &impl = rewriter.getImpl(); 2013 2014 #ifndef NDEBUG 2015 assert(impl.pendingRootUpdates.empty() && "dangling root updates"); 2016 #endif 2017 2018 // Check that the root was either replaced or updated in place. 2019 auto replacedRoot = [&] { 2020 return llvm::any_of( 2021 llvm::drop_begin(impl.replacements, curState.numReplacements), 2022 [op](auto &it) { return it.first == op; }); 2023 }; 2024 auto updatedRootInPlace = [&] { 2025 return llvm::any_of( 2026 llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates), 2027 [op](auto &state) { return state.getOperation() == op; }); 2028 }; 2029 (void)replacedRoot; 2030 (void)updatedRootInPlace; 2031 assert((replacedRoot() || updatedRootInPlace()) && 2032 "expected pattern to replace the root operation"); 2033 2034 // Legalize each of the actions registered during application. 2035 RewriterState newState = impl.getCurrentState(); 2036 if (failed(legalizePatternBlockActions(op, rewriter, impl, curState, 2037 newState)) || 2038 failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) || 2039 failed(legalizePatternCreatedOperations(rewriter, impl, curState, 2040 newState))) { 2041 return failure(); 2042 } 2043 2044 LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully")); 2045 return success(); 2046 } 2047 2048 LogicalResult OperationLegalizer::legalizePatternBlockActions( 2049 Operation *op, ConversionPatternRewriter &rewriter, 2050 ConversionPatternRewriterImpl &impl, RewriterState &state, 2051 RewriterState &newState) { 2052 SmallPtrSet<Operation *, 16> operationsToIgnore; 2053 2054 // If the pattern moved or created any blocks, make sure the types of block 2055 // arguments get legalized. 2056 for (int i = state.numBlockActions, e = newState.numBlockActions; i != e; 2057 ++i) { 2058 auto &action = impl.blockActions[i]; 2059 if (action.kind == BlockActionKind::TypeConversion || 2060 action.kind == BlockActionKind::Erase) 2061 continue; 2062 // Only check blocks outside of the current operation. 2063 Operation *parentOp = action.block->getParentOp(); 2064 if (!parentOp || parentOp == op || action.block->getNumArguments() == 0) 2065 continue; 2066 2067 // If the region of the block has a type converter, try to convert the block 2068 // directly. 2069 if (auto *converter = 2070 impl.argConverter.getConverter(action.block->getParent())) { 2071 if (failed(impl.convertBlockSignature(action.block, converter))) { 2072 LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved " 2073 "block")); 2074 return failure(); 2075 } 2076 continue; 2077 } 2078 2079 // Otherwise, check that this operation isn't one generated by this pattern. 2080 // This is because we will attempt to legalize the parent operation, and 2081 // blocks in regions created by this pattern will already be legalized later 2082 // on. If we haven't built the set yet, build it now. 2083 if (operationsToIgnore.empty()) { 2084 auto createdOps = ArrayRef<Operation *>(impl.createdOps) 2085 .drop_front(state.numCreatedOps); 2086 operationsToIgnore.insert(createdOps.begin(), createdOps.end()); 2087 } 2088 2089 // If this operation should be considered for re-legalization, try it. 2090 if (operationsToIgnore.insert(parentOp).second && 2091 failed(legalize(parentOp, rewriter))) { 2092 LLVM_DEBUG(logFailure( 2093 impl.logger, "operation '{0}'({1}) became illegal after block action", 2094 parentOp->getName(), parentOp)); 2095 return failure(); 2096 } 2097 } 2098 return success(); 2099 } 2100 2101 LogicalResult OperationLegalizer::legalizePatternCreatedOperations( 2102 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 2103 RewriterState &state, RewriterState &newState) { 2104 for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) { 2105 Operation *op = impl.createdOps[i]; 2106 if (failed(legalize(op, rewriter))) { 2107 LLVM_DEBUG(logFailure(impl.logger, 2108 "generated operation '{0}'({1}) was illegal", 2109 op->getName(), op)); 2110 return failure(); 2111 } 2112 } 2113 return success(); 2114 } 2115 2116 LogicalResult OperationLegalizer::legalizePatternRootUpdates( 2117 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 2118 RewriterState &state, RewriterState &newState) { 2119 for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) { 2120 Operation *op = impl.rootUpdates[i].getOperation(); 2121 if (failed(legalize(op, rewriter))) { 2122 LLVM_DEBUG(logFailure(impl.logger, 2123 "operation updated in-place '{0}' was illegal", 2124 op->getName())); 2125 return failure(); 2126 } 2127 } 2128 return success(); 2129 } 2130 2131 //===----------------------------------------------------------------------===// 2132 // Cost Model 2133 2134 void OperationLegalizer::buildLegalizationGraph( 2135 LegalizationPatterns &anyOpLegalizerPatterns, 2136 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2137 // A mapping between an operation and a set of operations that can be used to 2138 // generate it. 2139 DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps; 2140 // A mapping between an operation and any currently invalid patterns it has. 2141 DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns; 2142 // A worklist of patterns to consider for legality. 2143 SetVector<const Pattern *> patternWorklist; 2144 2145 // Build the mapping from operations to the parent ops that may generate them. 2146 applicator.walkAllPatterns([&](const Pattern &pattern) { 2147 Optional<OperationName> root = pattern.getRootKind(); 2148 2149 // If the pattern has no specific root, we can't analyze the relationship 2150 // between the root op and generated operations. Given that, add all such 2151 // patterns to the legalization set. 2152 if (!root) { 2153 anyOpLegalizerPatterns.push_back(&pattern); 2154 return; 2155 } 2156 2157 // Skip operations that are always known to be legal. 2158 if (target.getOpAction(*root) == LegalizationAction::Legal) 2159 return; 2160 2161 // Add this pattern to the invalid set for the root op and record this root 2162 // as a parent for any generated operations. 2163 invalidPatterns[*root].insert(&pattern); 2164 for (auto op : pattern.getGeneratedOps()) 2165 parentOps[op].insert(*root); 2166 2167 // Add this pattern to the worklist. 2168 patternWorklist.insert(&pattern); 2169 }); 2170 2171 // If there are any patterns that don't have a specific root kind, we can't 2172 // make direct assumptions about what operations will never be legalized. 2173 // Note: Technically we could, but it would require an analysis that may 2174 // recurse into itself. It would be better to perform this kind of filtering 2175 // at a higher level than here anyways. 2176 if (!anyOpLegalizerPatterns.empty()) { 2177 for (const Pattern *pattern : patternWorklist) 2178 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 2179 return; 2180 } 2181 2182 while (!patternWorklist.empty()) { 2183 auto *pattern = patternWorklist.pop_back_val(); 2184 2185 // Check to see if any of the generated operations are invalid. 2186 if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) { 2187 Optional<LegalizationAction> action = target.getOpAction(op); 2188 return !legalizerPatterns.count(op) && 2189 (!action || action == LegalizationAction::Illegal); 2190 })) 2191 continue; 2192 2193 // Otherwise, if all of the generated operation are valid, this op is now 2194 // legal so add all of the child patterns to the worklist. 2195 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 2196 invalidPatterns[*pattern->getRootKind()].erase(pattern); 2197 2198 // Add any invalid patterns of the parent operations to see if they have now 2199 // become legal. 2200 for (auto op : parentOps[*pattern->getRootKind()]) 2201 patternWorklist.set_union(invalidPatterns[op]); 2202 } 2203 } 2204 2205 void OperationLegalizer::computeLegalizationGraphBenefit( 2206 LegalizationPatterns &anyOpLegalizerPatterns, 2207 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2208 // The smallest pattern depth, when legalizing an operation. 2209 DenseMap<OperationName, unsigned> minOpPatternDepth; 2210 2211 // For each operation that is transitively legal, compute a cost for it. 2212 for (auto &opIt : legalizerPatterns) 2213 if (!minOpPatternDepth.count(opIt.first)) 2214 computeOpLegalizationDepth(opIt.first, minOpPatternDepth, 2215 legalizerPatterns); 2216 2217 // Apply the cost model to the patterns that can match any operation. Those 2218 // with a specific operation type are already resolved when computing the op 2219 // legalization depth. 2220 if (!anyOpLegalizerPatterns.empty()) 2221 applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth, 2222 legalizerPatterns); 2223 2224 // Apply a cost model to the pattern applicator. We order patterns first by 2225 // depth then benefit. `legalizerPatterns` contains per-op patterns by 2226 // decreasing benefit. 2227 applicator.applyCostModel([&](const Pattern &pattern) { 2228 ArrayRef<const Pattern *> orderedPatternList; 2229 if (Optional<OperationName> rootName = pattern.getRootKind()) 2230 orderedPatternList = legalizerPatterns[*rootName]; 2231 else 2232 orderedPatternList = anyOpLegalizerPatterns; 2233 2234 // If the pattern is not found, then it was removed and cannot be matched. 2235 auto *it = llvm::find(orderedPatternList, &pattern); 2236 if (it == orderedPatternList.end()) 2237 return PatternBenefit::impossibleToMatch(); 2238 2239 // Patterns found earlier in the list have higher benefit. 2240 return PatternBenefit(std::distance(it, orderedPatternList.end())); 2241 }); 2242 } 2243 2244 unsigned OperationLegalizer::computeOpLegalizationDepth( 2245 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 2246 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2247 // Check for existing depth. 2248 auto depthIt = minOpPatternDepth.find(op); 2249 if (depthIt != minOpPatternDepth.end()) 2250 return depthIt->second; 2251 2252 // If a mapping for this operation does not exist, then this operation 2253 // is always legal. Return 0 as the depth for a directly legal operation. 2254 auto opPatternsIt = legalizerPatterns.find(op); 2255 if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty()) 2256 return 0u; 2257 2258 // Record this initial depth in case we encounter this op again when 2259 // recursively computing the depth. 2260 minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max()); 2261 2262 // Apply the cost model to the operation patterns, and update the minimum 2263 // depth. 2264 unsigned minDepth = applyCostModelToPatterns( 2265 opPatternsIt->second, minOpPatternDepth, legalizerPatterns); 2266 minOpPatternDepth[op] = minDepth; 2267 return minDepth; 2268 } 2269 2270 unsigned OperationLegalizer::applyCostModelToPatterns( 2271 LegalizationPatterns &patterns, 2272 DenseMap<OperationName, unsigned> &minOpPatternDepth, 2273 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2274 unsigned minDepth = std::numeric_limits<unsigned>::max(); 2275 2276 // Compute the depth for each pattern within the set. 2277 SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth; 2278 patternsByDepth.reserve(patterns.size()); 2279 for (const Pattern *pattern : patterns) { 2280 unsigned depth = 1; 2281 for (auto generatedOp : pattern->getGeneratedOps()) { 2282 unsigned generatedOpDepth = computeOpLegalizationDepth( 2283 generatedOp, minOpPatternDepth, legalizerPatterns); 2284 depth = std::max(depth, generatedOpDepth + 1); 2285 } 2286 patternsByDepth.emplace_back(pattern, depth); 2287 2288 // Update the minimum depth of the pattern list. 2289 minDepth = std::min(minDepth, depth); 2290 } 2291 2292 // If the operation only has one legalization pattern, there is no need to 2293 // sort them. 2294 if (patternsByDepth.size() == 1) 2295 return minDepth; 2296 2297 // Sort the patterns by those likely to be the most beneficial. 2298 llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(), 2299 [](const std::pair<const Pattern *, unsigned> *lhs, 2300 const std::pair<const Pattern *, unsigned> *rhs) { 2301 // First sort by the smaller pattern legalization 2302 // depth. 2303 if (lhs->second != rhs->second) 2304 return llvm::array_pod_sort_comparator<unsigned>( 2305 &lhs->second, &rhs->second); 2306 2307 // Then sort by the larger pattern benefit. 2308 auto lhsBenefit = lhs->first->getBenefit(); 2309 auto rhsBenefit = rhs->first->getBenefit(); 2310 return llvm::array_pod_sort_comparator<PatternBenefit>( 2311 &rhsBenefit, &lhsBenefit); 2312 }); 2313 2314 // Update the legalization pattern to use the new sorted list. 2315 patterns.clear(); 2316 for (auto &patternIt : patternsByDepth) 2317 patterns.push_back(patternIt.first); 2318 return minDepth; 2319 } 2320 2321 //===----------------------------------------------------------------------===// 2322 // OperationConverter 2323 //===----------------------------------------------------------------------===// 2324 namespace { 2325 enum OpConversionMode { 2326 /// In this mode, the conversion will ignore failed conversions to allow 2327 /// illegal operations to co-exist in the IR. 2328 Partial, 2329 2330 /// In this mode, all operations must be legal for the given target for the 2331 /// conversion to succeed. 2332 Full, 2333 2334 /// In this mode, operations are analyzed for legality. No actual rewrites are 2335 /// applied to the operations on success. 2336 Analysis, 2337 }; 2338 2339 // This class converts operations to a given conversion target via a set of 2340 // rewrite patterns. The conversion behaves differently depending on the 2341 // conversion mode. 2342 struct OperationConverter { 2343 explicit OperationConverter(ConversionTarget &target, 2344 const FrozenRewritePatternSet &patterns, 2345 OpConversionMode mode, 2346 DenseSet<Operation *> *trackedOps = nullptr) 2347 : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {} 2348 2349 /// Converts the given operations to the conversion target. 2350 LogicalResult convertOperations(ArrayRef<Operation *> ops); 2351 2352 private: 2353 /// Converts an operation with the given rewriter. 2354 LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op); 2355 2356 /// This method is called after the conversion process to legalize any 2357 /// remaining artifacts and complete the conversion. 2358 LogicalResult finalize(ConversionPatternRewriter &rewriter); 2359 2360 /// Legalize the types of converted block arguments. 2361 LogicalResult 2362 legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter, 2363 ConversionPatternRewriterImpl &rewriterImpl); 2364 2365 /// Legalize any unresolved type materializations. 2366 LogicalResult legalizeUnresolvedMaterializations( 2367 ConversionPatternRewriter &rewriter, 2368 ConversionPatternRewriterImpl &rewriterImpl, 2369 Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping); 2370 2371 /// Legalize an operation result that was marked as "erased". 2372 LogicalResult 2373 legalizeErasedResult(Operation *op, OpResult result, 2374 ConversionPatternRewriterImpl &rewriterImpl); 2375 2376 /// Legalize an operation result that was replaced with a value of a different 2377 /// type. 2378 LogicalResult legalizeChangedResultType( 2379 Operation *op, OpResult result, Value newValue, 2380 TypeConverter *replConverter, ConversionPatternRewriter &rewriter, 2381 ConversionPatternRewriterImpl &rewriterImpl, 2382 const DenseMap<Value, SmallVector<Value>> &inverseMapping); 2383 2384 /// The legalizer to use when converting operations. 2385 OperationLegalizer opLegalizer; 2386 2387 /// The conversion mode to use when legalizing operations. 2388 OpConversionMode mode; 2389 2390 /// A set of pre-existing operations. When mode == OpConversionMode::Analysis, 2391 /// this is populated with ops found to be legalizable to the target. 2392 /// When mode == OpConversionMode::Partial, this is populated with ops found 2393 /// *not* to be legalizable to the target. 2394 DenseSet<Operation *> *trackedOps; 2395 }; 2396 } // end anonymous namespace 2397 2398 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter, 2399 Operation *op) { 2400 // Legalize the given operation. 2401 if (failed(opLegalizer.legalize(op, rewriter))) { 2402 // Handle the case of a failed conversion for each of the different modes. 2403 // Full conversions expect all operations to be converted. 2404 if (mode == OpConversionMode::Full) 2405 return op->emitError() 2406 << "failed to legalize operation '" << op->getName() << "'"; 2407 // Partial conversions allow conversions to fail iff the operation was not 2408 // explicitly marked as illegal. If the user provided a nonlegalizableOps 2409 // set, non-legalizable ops are included. 2410 if (mode == OpConversionMode::Partial) { 2411 if (opLegalizer.isIllegal(op)) 2412 return op->emitError() 2413 << "failed to legalize operation '" << op->getName() 2414 << "' that was explicitly marked illegal"; 2415 if (trackedOps) 2416 trackedOps->insert(op); 2417 } 2418 } else if (mode == OpConversionMode::Analysis) { 2419 // Analysis conversions don't fail if any operations fail to legalize, 2420 // they are only interested in the operations that were successfully 2421 // legalized. 2422 trackedOps->insert(op); 2423 } 2424 return success(); 2425 } 2426 2427 LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) { 2428 if (ops.empty()) 2429 return success(); 2430 ConversionTarget &target = opLegalizer.getTarget(); 2431 2432 // Compute the set of operations and blocks to convert. 2433 SmallVector<Operation *> toConvert; 2434 for (auto *op : ops) { 2435 toConvert.emplace_back(op); 2436 for (auto ®ion : op->getRegions()) 2437 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 2438 toConvert, &target))) 2439 return failure(); 2440 } 2441 2442 // Convert each operation and discard rewrites on failure. 2443 ConversionPatternRewriter rewriter(ops.front()->getContext()); 2444 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2445 for (auto *op : toConvert) 2446 if (failed(convert(rewriter, op))) 2447 return rewriterImpl.discardRewrites(), failure(); 2448 2449 // Now that all of the operations have been converted, finalize the conversion 2450 // process to ensure any lingering conversion artifacts are cleaned up and 2451 // legalized. 2452 if (failed(finalize(rewriter))) 2453 return rewriterImpl.discardRewrites(), failure(); 2454 2455 // After a successful conversion, apply rewrites if this is not an analysis 2456 // conversion. 2457 if (mode == OpConversionMode::Analysis) { 2458 rewriterImpl.discardRewrites(); 2459 } else { 2460 rewriterImpl.applyRewrites(); 2461 2462 // It is possible for a later pattern to erase an op that was originally 2463 // identified as illegal and added to the trackedOps, remove it now after 2464 // replacements have been computed. 2465 if (trackedOps) 2466 for (auto &repl : rewriterImpl.replacements) 2467 trackedOps->erase(repl.first); 2468 } 2469 return success(); 2470 } 2471 2472 LogicalResult 2473 OperationConverter::finalize(ConversionPatternRewriter &rewriter) { 2474 Optional<DenseMap<Value, SmallVector<Value>>> inverseMapping; 2475 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2476 if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl, 2477 inverseMapping)) || 2478 failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl))) 2479 return failure(); 2480 2481 if (rewriterImpl.operationsWithChangedResults.empty()) 2482 return success(); 2483 2484 // Process requested operation replacements. 2485 for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size(); 2486 i != e; ++i) { 2487 unsigned replIdx = rewriterImpl.operationsWithChangedResults[i]; 2488 auto &repl = *(rewriterImpl.replacements.begin() + replIdx); 2489 for (OpResult result : repl.first->getResults()) { 2490 Value newValue = rewriterImpl.mapping.lookupOrNull(result); 2491 2492 // If the operation result was replaced with null, all of the uses of this 2493 // value should be replaced. 2494 if (!newValue) { 2495 if (failed(legalizeErasedResult(repl.first, result, rewriterImpl))) 2496 return failure(); 2497 continue; 2498 } 2499 2500 // Otherwise, check to see if the type of the result changed. 2501 if (result.getType() == newValue.getType()) 2502 continue; 2503 2504 // Compute the inverse mapping only if it is really needed. 2505 if (!inverseMapping) 2506 inverseMapping = rewriterImpl.mapping.getInverse(); 2507 2508 // Legalize this result. 2509 rewriter.setInsertionPoint(repl.first); 2510 if (failed(legalizeChangedResultType(repl.first, result, newValue, 2511 repl.second.converter, rewriter, 2512 rewriterImpl, *inverseMapping))) 2513 return failure(); 2514 2515 // Update the end iterator for this loop in the case it was updated 2516 // when legalizing generated conversion operations. 2517 e = rewriterImpl.operationsWithChangedResults.size(); 2518 } 2519 } 2520 return success(); 2521 } 2522 2523 LogicalResult OperationConverter::legalizeConvertedArgumentTypes( 2524 ConversionPatternRewriter &rewriter, 2525 ConversionPatternRewriterImpl &rewriterImpl) { 2526 // Functor used to check if all users of a value will be dead after 2527 // conversion. 2528 auto findLiveUser = [&](Value val) { 2529 auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) { 2530 return rewriterImpl.isOpIgnored(user); 2531 }); 2532 return liveUserIt == val.user_end() ? nullptr : *liveUserIt; 2533 }; 2534 return rewriterImpl.argConverter.materializeLiveConversions( 2535 rewriterImpl.mapping, rewriter, findLiveUser); 2536 } 2537 2538 /// Replace the results of a materialization operation with the given values. 2539 static void 2540 replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl, 2541 ResultRange matResults, ValueRange values, 2542 DenseMap<Value, SmallVector<Value>> &inverseMapping) { 2543 matResults.replaceAllUsesWith(values); 2544 2545 // For each of the materialization results, update the inverse mappings to 2546 // point to the replacement values. 2547 for (auto it : llvm::zip(matResults, values)) { 2548 Value matResult, newValue; 2549 std::tie(matResult, newValue) = it; 2550 auto inverseMapIt = inverseMapping.find(matResult); 2551 if (inverseMapIt == inverseMapping.end()) 2552 continue; 2553 2554 // Update the reverse mapping, or remove the mapping if we couldn't update 2555 // it. Not being able to update signals that the mapping would have become 2556 // circular (i.e. %foo -> newValue -> %foo), which may occur as values are 2557 // propagated through temporary materializations. We simply drop the 2558 // mapping, and let the post-conversion replacement logic handle updating 2559 // uses. 2560 for (Value inverseMapVal : inverseMapIt->second) 2561 if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue)) 2562 rewriterImpl.mapping.erase(inverseMapVal); 2563 } 2564 } 2565 2566 /// Compute all of the unresolved materializations that will persist beyond the 2567 /// conversion process, and require inserting a proper user materialization for. 2568 static void computeNecessaryMaterializations( 2569 DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps, 2570 ConversionPatternRewriter &rewriter, 2571 ConversionPatternRewriterImpl &rewriterImpl, 2572 DenseMap<Value, SmallVector<Value>> &inverseMapping, 2573 SetVector<UnresolvedMaterialization *> &necessaryMaterializations) { 2574 auto isLive = [&](Value value) { 2575 auto findFn = [&](Operation *user) { 2576 auto matIt = materializationOps.find(user); 2577 if (matIt != materializationOps.end()) 2578 return !necessaryMaterializations.count(matIt->second); 2579 return rewriterImpl.isOpIgnored(user); 2580 }; 2581 return llvm::find_if_not(value.getUsers(), findFn) != value.user_end(); 2582 }; 2583 2584 llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue = 2585 [&](Value invalidRoot, Value value, Type type) { 2586 // Check to see if the input operation was remapped to a variant of the 2587 // output. 2588 Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type); 2589 if (remappedValue.getType() == type && remappedValue != invalidRoot) 2590 return remappedValue; 2591 2592 // Check to see if the input is a materialization operation that 2593 // provides an inverse conversion. We just check blindly for 2594 // UnrealizedConversionCastOp here, but it has no effect on correctness. 2595 auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>(); 2596 if (inputCastOp && inputCastOp->getNumOperands() == 1) 2597 return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0), 2598 type); 2599 2600 return Value(); 2601 }; 2602 2603 SetVector<UnresolvedMaterialization *> worklist; 2604 for (auto &mat : rewriterImpl.unresolvedMaterializations) { 2605 materializationOps.try_emplace(mat.getOp(), &mat); 2606 worklist.insert(&mat); 2607 } 2608 while (!worklist.empty()) { 2609 UnresolvedMaterialization *mat = worklist.pop_back_val(); 2610 UnrealizedConversionCastOp op = mat->getOp(); 2611 2612 // We currently only handle target materializations here. 2613 assert(op->getNumResults() == 1 && "unexpected materialization type"); 2614 OpResult opResult = op->getOpResult(0); 2615 Type outputType = opResult.getType(); 2616 Operation::operand_range inputOperands = op.getOperands(); 2617 2618 // Try to forward propagate operands for user conversion casts that result 2619 // in the input types of the current cast. 2620 for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) { 2621 auto castOp = dyn_cast<UnrealizedConversionCastOp>(user); 2622 if (!castOp) 2623 continue; 2624 if (castOp->getResultTypes() == inputOperands.getTypes()) { 2625 replaceMaterialization(rewriterImpl, opResult, inputOperands, 2626 inverseMapping); 2627 necessaryMaterializations.remove(materializationOps.lookup(user)); 2628 } 2629 } 2630 2631 // Try to avoid materializing a resolved materialization if possible. 2632 // Handle the case of a 1-1 materialization. 2633 if (inputOperands.size() == 1) { 2634 // Check to see if the input operation was remapped to a variant of the 2635 // output. 2636 Value remappedValue = 2637 lookupRemappedValue(opResult, inputOperands[0], outputType); 2638 if (remappedValue && remappedValue != opResult) { 2639 replaceMaterialization(rewriterImpl, opResult, remappedValue, 2640 inverseMapping); 2641 necessaryMaterializations.remove(mat); 2642 continue; 2643 } 2644 } else { 2645 // TODO: Avoid materializing other types of conversions here. 2646 } 2647 2648 // Check to see if this is an argument materialization. 2649 auto isBlockArg = [](Value v) { return v.isa<BlockArgument>(); }; 2650 if (llvm::any_of(op->getOperands(), isBlockArg) || 2651 llvm::any_of(inverseMapping[op->getResult(0)], isBlockArg)) { 2652 mat->setKind(UnresolvedMaterialization::Argument); 2653 } 2654 2655 // If the materialization does not have any live users, we don't need to 2656 // generate a user materialization for it. 2657 // FIXME: For argument materializations, we currently need to check if any 2658 // of the inverse mapped values are used because some patterns expect blind 2659 // value replacement even if the types differ in some cases. When those 2660 // patterns are fixed, we can drop the argument special case here. 2661 bool isMaterializationLive = isLive(opResult); 2662 if (mat->getKind() == UnresolvedMaterialization::Argument) 2663 isMaterializationLive |= llvm::any_of(inverseMapping[opResult], isLive); 2664 if (!isMaterializationLive) 2665 continue; 2666 if (!necessaryMaterializations.insert(mat)) 2667 continue; 2668 2669 // Reprocess input materializations to see if they have an updated status. 2670 for (Value input : inputOperands) { 2671 if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) { 2672 if (auto *mat = materializationOps.lookup(parentOp)) 2673 worklist.insert(mat); 2674 } 2675 } 2676 } 2677 } 2678 2679 /// Legalize the given unresolved materialization. Returns success if the 2680 /// materialization was legalized, failure otherise. 2681 static LogicalResult legalizeUnresolvedMaterialization( 2682 UnresolvedMaterialization &mat, 2683 DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps, 2684 ConversionPatternRewriter &rewriter, 2685 ConversionPatternRewriterImpl &rewriterImpl, 2686 DenseMap<Value, SmallVector<Value>> &inverseMapping) { 2687 auto findLiveUser = [&](auto &&users) { 2688 auto liveUserIt = llvm::find_if_not( 2689 users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); }); 2690 return liveUserIt == users.end() ? nullptr : *liveUserIt; 2691 }; 2692 2693 llvm::unique_function<Value(Value, Type)> lookupRemappedValue = 2694 [&](Value value, Type type) { 2695 // Check to see if the input operation was remapped to a variant of the 2696 // output. 2697 Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type); 2698 if (remappedValue.getType() == type) 2699 return remappedValue; 2700 return Value(); 2701 }; 2702 2703 UnrealizedConversionCastOp op = mat.getOp(); 2704 if (!rewriterImpl.ignoredOps.insert(op)) 2705 return success(); 2706 2707 // We currently only handle target materializations here. 2708 OpResult opResult = op->getOpResult(0); 2709 Operation::operand_range inputOperands = op.getOperands(); 2710 Type outputType = opResult.getType(); 2711 2712 // If any input to this materialization is another materialization, resolve 2713 // the input first. 2714 for (Value value : op->getOperands()) { 2715 auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>(); 2716 if (!valueCast) 2717 continue; 2718 2719 auto matIt = materializationOps.find(valueCast); 2720 if (matIt != materializationOps.end()) 2721 if (failed(legalizeUnresolvedMaterialization( 2722 *matIt->second, materializationOps, rewriter, rewriterImpl, 2723 inverseMapping))) 2724 return failure(); 2725 } 2726 2727 // Perform a last ditch attempt to avoid materializing a resolved 2728 // materialization if possible. 2729 // Handle the case of a 1-1 materialization. 2730 if (inputOperands.size() == 1) { 2731 // Check to see if the input operation was remapped to a variant of the 2732 // output. 2733 Value remappedValue = lookupRemappedValue(inputOperands[0], outputType); 2734 if (remappedValue && remappedValue != opResult) { 2735 replaceMaterialization(rewriterImpl, opResult, remappedValue, 2736 inverseMapping); 2737 return success(); 2738 } 2739 } else { 2740 // TODO: Avoid materializing other types of conversions here. 2741 } 2742 2743 // Try to materialize the conversion. 2744 if (TypeConverter *converter = mat.getConverter()) { 2745 // FIXME: Determine a suitable insertion location when there are multiple 2746 // inputs. 2747 if (inputOperands.size() == 1) 2748 rewriter.setInsertionPointAfterValue(inputOperands.front()); 2749 else 2750 rewriter.setInsertionPoint(op); 2751 2752 Value newMaterialization; 2753 switch (mat.getKind()) { 2754 case UnresolvedMaterialization::Argument: 2755 // Try to materialize an argument conversion. 2756 // FIXME: The current argument materialization hook expects the original 2757 // output type, even though it doesn't use that as the actual output type 2758 // of the generated IR. The output type is just used as an indicator of 2759 // the type of materialization to do. This behavior is really awkward in 2760 // that it diverges from the behavior of the other hooks, and can be 2761 // easily misunderstood. We should clean up the argument hooks to better 2762 // represent the desired invariants we actually care about. 2763 newMaterialization = converter->materializeArgumentConversion( 2764 rewriter, op->getLoc(), mat.getOrigOutputType(), inputOperands); 2765 if (newMaterialization) 2766 break; 2767 2768 // If an argument materialization failed, fallback to trying a target 2769 // materialization. 2770 LLVM_FALLTHROUGH; 2771 case UnresolvedMaterialization::Target: 2772 newMaterialization = converter->materializeTargetConversion( 2773 rewriter, op->getLoc(), outputType, inputOperands); 2774 break; 2775 } 2776 if (newMaterialization) { 2777 replaceMaterialization(rewriterImpl, opResult, newMaterialization, 2778 inverseMapping); 2779 return success(); 2780 } 2781 } 2782 2783 InFlightDiagnostic diag = op->emitError() 2784 << "failed to legalize unresolved materialization " 2785 "from " 2786 << inputOperands.getTypes() << " to " << outputType 2787 << " that remained live after conversion"; 2788 if (Operation *liveUser = findLiveUser(op->getUsers())) { 2789 diag.attachNote(liveUser->getLoc()) 2790 << "see existing live user here: " << *liveUser; 2791 } 2792 return failure(); 2793 } 2794 2795 LogicalResult OperationConverter::legalizeUnresolvedMaterializations( 2796 ConversionPatternRewriter &rewriter, 2797 ConversionPatternRewriterImpl &rewriterImpl, 2798 Optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) { 2799 if (rewriterImpl.unresolvedMaterializations.empty()) 2800 return success(); 2801 inverseMapping = rewriterImpl.mapping.getInverse(); 2802 2803 // As an initial step, compute all of the inserted materializations that we 2804 // expect to persist beyond the conversion process. 2805 DenseMap<Operation *, UnresolvedMaterialization *> materializationOps; 2806 SetVector<UnresolvedMaterialization *> necessaryMaterializations; 2807 computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl, 2808 *inverseMapping, necessaryMaterializations); 2809 2810 // Once computed, legalize any necessary materializations. 2811 for (auto *mat : necessaryMaterializations) { 2812 if (failed(legalizeUnresolvedMaterialization( 2813 *mat, materializationOps, rewriter, rewriterImpl, *inverseMapping))) 2814 return failure(); 2815 } 2816 return success(); 2817 } 2818 2819 LogicalResult OperationConverter::legalizeErasedResult( 2820 Operation *op, OpResult result, 2821 ConversionPatternRewriterImpl &rewriterImpl) { 2822 // If the operation result was replaced with null, all of the uses of this 2823 // value should be replaced. 2824 auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) { 2825 return rewriterImpl.isOpIgnored(user); 2826 }); 2827 if (liveUserIt != result.user_end()) { 2828 InFlightDiagnostic diag = op->emitError("failed to legalize operation '") 2829 << op->getName() << "' marked as erased"; 2830 diag.attachNote(liveUserIt->getLoc()) 2831 << "found live user of result #" << result.getResultNumber() << ": " 2832 << *liveUserIt; 2833 return failure(); 2834 } 2835 return success(); 2836 } 2837 2838 /// Finds a user of the given value, or of any other value that the given value 2839 /// replaced, that was not replaced in the conversion process. 2840 static Operation *findLiveUserOfReplaced( 2841 Value initialValue, ConversionPatternRewriterImpl &rewriterImpl, 2842 const DenseMap<Value, SmallVector<Value>> &inverseMapping) { 2843 SmallVector<Value> worklist(1, initialValue); 2844 while (!worklist.empty()) { 2845 Value value = worklist.pop_back_val(); 2846 2847 // Walk the users of this value to see if there are any live users that 2848 // weren't replaced during conversion. 2849 auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) { 2850 return rewriterImpl.isOpIgnored(user); 2851 }); 2852 if (liveUserIt != value.user_end()) 2853 return *liveUserIt; 2854 auto mapIt = inverseMapping.find(value); 2855 if (mapIt != inverseMapping.end()) 2856 worklist.append(mapIt->second); 2857 } 2858 return nullptr; 2859 } 2860 2861 LogicalResult OperationConverter::legalizeChangedResultType( 2862 Operation *op, OpResult result, Value newValue, 2863 TypeConverter *replConverter, ConversionPatternRewriter &rewriter, 2864 ConversionPatternRewriterImpl &rewriterImpl, 2865 const DenseMap<Value, SmallVector<Value>> &inverseMapping) { 2866 Operation *liveUser = 2867 findLiveUserOfReplaced(result, rewriterImpl, inverseMapping); 2868 if (!liveUser) 2869 return success(); 2870 2871 // Functor used to emit a conversion error for a failed materialization. 2872 auto emitConversionError = [&] { 2873 InFlightDiagnostic diag = op->emitError() 2874 << "failed to materialize conversion for result #" 2875 << result.getResultNumber() << " of operation '" 2876 << op->getName() 2877 << "' that remained live after conversion"; 2878 diag.attachNote(liveUser->getLoc()) 2879 << "see existing live user here: " << *liveUser; 2880 return failure(); 2881 }; 2882 2883 // If the replacement has a type converter, attempt to materialize a 2884 // conversion back to the original type. 2885 if (!replConverter) 2886 return emitConversionError(); 2887 2888 // Materialize a conversion for this live result value. 2889 Type resultType = result.getType(); 2890 Value convertedValue = replConverter->materializeSourceConversion( 2891 rewriter, op->getLoc(), resultType, newValue); 2892 if (!convertedValue) 2893 return emitConversionError(); 2894 2895 rewriterImpl.mapping.map(result, convertedValue); 2896 return success(); 2897 } 2898 2899 //===----------------------------------------------------------------------===// 2900 // Type Conversion 2901 //===----------------------------------------------------------------------===// 2902 2903 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo, 2904 ArrayRef<Type> types) { 2905 assert(!types.empty() && "expected valid types"); 2906 remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size()); 2907 addInputs(types); 2908 } 2909 2910 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) { 2911 assert(!types.empty() && 2912 "1->0 type remappings don't need to be added explicitly"); 2913 argTypes.append(types.begin(), types.end()); 2914 } 2915 2916 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2917 unsigned newInputNo, 2918 unsigned newInputCount) { 2919 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2920 assert(newInputCount != 0 && "expected valid input count"); 2921 remappedInputs[origInputNo] = 2922 InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr}; 2923 } 2924 2925 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2926 Value replacementValue) { 2927 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2928 remappedInputs[origInputNo] = 2929 InputMapping{origInputNo, /*size=*/0, replacementValue}; 2930 } 2931 2932 LogicalResult TypeConverter::convertType(Type t, 2933 SmallVectorImpl<Type> &results) { 2934 auto existingIt = cachedDirectConversions.find(t); 2935 if (existingIt != cachedDirectConversions.end()) { 2936 if (existingIt->second) 2937 results.push_back(existingIt->second); 2938 return success(existingIt->second != nullptr); 2939 } 2940 auto multiIt = cachedMultiConversions.find(t); 2941 if (multiIt != cachedMultiConversions.end()) { 2942 results.append(multiIt->second.begin(), multiIt->second.end()); 2943 return success(); 2944 } 2945 2946 // Walk the added converters in reverse order to apply the most recently 2947 // registered first. 2948 size_t currentCount = results.size(); 2949 for (ConversionCallbackFn &converter : llvm::reverse(conversions)) { 2950 if (Optional<LogicalResult> result = converter(t, results)) { 2951 if (!succeeded(*result)) { 2952 cachedDirectConversions.try_emplace(t, nullptr); 2953 return failure(); 2954 } 2955 auto newTypes = ArrayRef<Type>(results).drop_front(currentCount); 2956 if (newTypes.size() == 1) 2957 cachedDirectConversions.try_emplace(t, newTypes.front()); 2958 else 2959 cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes)); 2960 return success(); 2961 } 2962 } 2963 return failure(); 2964 } 2965 2966 Type TypeConverter::convertType(Type t) { 2967 // Use the multi-type result version to convert the type. 2968 SmallVector<Type, 1> results; 2969 if (failed(convertType(t, results))) 2970 return nullptr; 2971 2972 // Check to ensure that only one type was produced. 2973 return results.size() == 1 ? results.front() : nullptr; 2974 } 2975 2976 LogicalResult TypeConverter::convertTypes(TypeRange types, 2977 SmallVectorImpl<Type> &results) { 2978 for (Type type : types) 2979 if (failed(convertType(type, results))) 2980 return failure(); 2981 return success(); 2982 } 2983 2984 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; } 2985 bool TypeConverter::isLegal(Operation *op) { 2986 return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes()); 2987 } 2988 2989 bool TypeConverter::isLegal(Region *region) { 2990 return llvm::all_of(*region, [this](Block &block) { 2991 return isLegal(block.getArgumentTypes()); 2992 }); 2993 } 2994 2995 bool TypeConverter::isSignatureLegal(FunctionType ty) { 2996 return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults())); 2997 } 2998 2999 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type, 3000 SignatureConversion &result) { 3001 // Try to convert the given input type. 3002 SmallVector<Type, 1> convertedTypes; 3003 if (failed(convertType(type, convertedTypes))) 3004 return failure(); 3005 3006 // If this argument is being dropped, there is nothing left to do. 3007 if (convertedTypes.empty()) 3008 return success(); 3009 3010 // Otherwise, add the new inputs. 3011 result.addInputs(inputNo, convertedTypes); 3012 return success(); 3013 } 3014 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types, 3015 SignatureConversion &result, 3016 unsigned origInputOffset) { 3017 for (unsigned i = 0, e = types.size(); i != e; ++i) 3018 if (failed(convertSignatureArg(origInputOffset + i, types[i], result))) 3019 return failure(); 3020 return success(); 3021 } 3022 3023 Value TypeConverter::materializeConversion( 3024 MutableArrayRef<MaterializationCallbackFn> materializations, 3025 OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) { 3026 for (MaterializationCallbackFn &fn : llvm::reverse(materializations)) 3027 if (Optional<Value> result = fn(builder, resultType, inputs, loc)) 3028 return result.getValue(); 3029 return nullptr; 3030 } 3031 3032 auto TypeConverter::convertBlockSignature(Block *block) 3033 -> Optional<SignatureConversion> { 3034 SignatureConversion conversion(block->getNumArguments()); 3035 if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion))) 3036 return llvm::None; 3037 return conversion; 3038 } 3039 3040 //===----------------------------------------------------------------------===// 3041 // FunctionLikeSignatureConversion 3042 //===----------------------------------------------------------------------===// 3043 3044 /// Create a default conversion pattern that rewrites the type signature of a 3045 /// FunctionLike op. This only supports FunctionLike ops which use FunctionType 3046 /// to represent their type. 3047 namespace { 3048 struct FunctionLikeSignatureConversion : public ConversionPattern { 3049 FunctionLikeSignatureConversion(StringRef functionLikeOpName, 3050 MLIRContext *ctx, TypeConverter &converter) 3051 : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {} 3052 3053 /// Hook to implement combined matching and rewriting for FunctionLike ops. 3054 LogicalResult 3055 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 3056 ConversionPatternRewriter &rewriter) const override { 3057 FunctionType type = function_like_impl::getFunctionType(op); 3058 3059 // Convert the original function types. 3060 TypeConverter::SignatureConversion result(type.getNumInputs()); 3061 SmallVector<Type, 1> newResults; 3062 if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) || 3063 failed(typeConverter->convertTypes(type.getResults(), newResults)) || 3064 failed(rewriter.convertRegionTypes( 3065 &function_like_impl::getFunctionBody(op), *typeConverter, &result))) 3066 return failure(); 3067 3068 // Update the function signature in-place. 3069 auto newType = FunctionType::get(rewriter.getContext(), 3070 result.getConvertedTypes(), newResults); 3071 3072 rewriter.updateRootInPlace( 3073 op, [&] { function_like_impl::setFunctionType(op, newType); }); 3074 3075 return success(); 3076 } 3077 }; 3078 } // end anonymous namespace 3079 3080 void mlir::populateFunctionLikeTypeConversionPattern( 3081 StringRef functionLikeOpName, RewritePatternSet &patterns, 3082 TypeConverter &converter) { 3083 patterns.add<FunctionLikeSignatureConversion>( 3084 functionLikeOpName, patterns.getContext(), converter); 3085 } 3086 3087 void mlir::populateFuncOpTypeConversionPattern(RewritePatternSet &patterns, 3088 TypeConverter &converter) { 3089 populateFunctionLikeTypeConversionPattern<FuncOp>(patterns, converter); 3090 } 3091 3092 //===----------------------------------------------------------------------===// 3093 // ConversionTarget 3094 //===----------------------------------------------------------------------===// 3095 3096 void ConversionTarget::setOpAction(OperationName op, 3097 LegalizationAction action) { 3098 legalOperations[op].action = action; 3099 } 3100 3101 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames, 3102 LegalizationAction action) { 3103 for (StringRef dialect : dialectNames) 3104 legalDialects[dialect] = action; 3105 } 3106 3107 auto ConversionTarget::getOpAction(OperationName op) const 3108 -> Optional<LegalizationAction> { 3109 Optional<LegalizationInfo> info = getOpInfo(op); 3110 return info ? info->action : Optional<LegalizationAction>(); 3111 } 3112 3113 auto ConversionTarget::isLegal(Operation *op) const 3114 -> Optional<LegalOpDetails> { 3115 Optional<LegalizationInfo> info = getOpInfo(op->getName()); 3116 if (!info) 3117 return llvm::None; 3118 3119 // Returns true if this operation instance is known to be legal. 3120 auto isOpLegal = [&] { 3121 // Handle dynamic legality either with the provided legality function. 3122 if (info->action == LegalizationAction::Dynamic) { 3123 Optional<bool> result = info->legalityFn(op); 3124 if (result) 3125 return *result; 3126 } 3127 3128 // Otherwise, the operation is only legal if it was marked 'Legal'. 3129 return info->action == LegalizationAction::Legal; 3130 }; 3131 if (!isOpLegal()) 3132 return llvm::None; 3133 3134 // This operation is legal, compute any additional legality information. 3135 LegalOpDetails legalityDetails; 3136 if (info->isRecursivelyLegal) { 3137 auto legalityFnIt = opRecursiveLegalityFns.find(op->getName()); 3138 if (legalityFnIt != opRecursiveLegalityFns.end()) { 3139 legalityDetails.isRecursivelyLegal = 3140 legalityFnIt->second(op).getValueOr(true); 3141 } else { 3142 legalityDetails.isRecursivelyLegal = true; 3143 } 3144 } 3145 return legalityDetails; 3146 } 3147 3148 static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks( 3149 ConversionTarget::DynamicLegalityCallbackFn oldCallback, 3150 ConversionTarget::DynamicLegalityCallbackFn newCallback) { 3151 if (!oldCallback) 3152 return newCallback; 3153 3154 auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)]( 3155 Operation *op) -> Optional<bool> { 3156 if (Optional<bool> result = newCl(op)) 3157 return *result; 3158 3159 return oldCl(op); 3160 }; 3161 return chain; 3162 } 3163 3164 void ConversionTarget::setLegalityCallback( 3165 OperationName name, const DynamicLegalityCallbackFn &callback) { 3166 assert(callback && "expected valid legality callback"); 3167 auto infoIt = legalOperations.find(name); 3168 assert(infoIt != legalOperations.end() && 3169 infoIt->second.action == LegalizationAction::Dynamic && 3170 "expected operation to already be marked as dynamically legal"); 3171 infoIt->second.legalityFn = 3172 composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback); 3173 } 3174 3175 void ConversionTarget::markOpRecursivelyLegal( 3176 OperationName name, const DynamicLegalityCallbackFn &callback) { 3177 auto infoIt = legalOperations.find(name); 3178 assert(infoIt != legalOperations.end() && 3179 infoIt->second.action != LegalizationAction::Illegal && 3180 "expected operation to already be marked as legal"); 3181 infoIt->second.isRecursivelyLegal = true; 3182 if (callback) 3183 opRecursiveLegalityFns[name] = composeLegalityCallbacks( 3184 std::move(opRecursiveLegalityFns[name]), callback); 3185 else 3186 opRecursiveLegalityFns.erase(name); 3187 } 3188 3189 void ConversionTarget::setLegalityCallback( 3190 ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) { 3191 assert(callback && "expected valid legality callback"); 3192 for (StringRef dialect : dialects) 3193 dialectLegalityFns[dialect] = composeLegalityCallbacks( 3194 std::move(dialectLegalityFns[dialect]), callback); 3195 } 3196 3197 void ConversionTarget::setLegalityCallback( 3198 const DynamicLegalityCallbackFn &callback) { 3199 assert(callback && "expected valid legality callback"); 3200 unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback); 3201 } 3202 3203 auto ConversionTarget::getOpInfo(OperationName op) const 3204 -> Optional<LegalizationInfo> { 3205 // Check for info for this specific operation. 3206 auto it = legalOperations.find(op); 3207 if (it != legalOperations.end()) 3208 return it->second; 3209 // Check for info for the parent dialect. 3210 auto dialectIt = legalDialects.find(op.getDialectNamespace()); 3211 if (dialectIt != legalDialects.end()) { 3212 DynamicLegalityCallbackFn callback; 3213 auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace()); 3214 if (dialectFn != dialectLegalityFns.end()) 3215 callback = dialectFn->second; 3216 return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false, 3217 callback}; 3218 } 3219 // Otherwise, check if we mark unknown operations as dynamic. 3220 if (unknownLegalityFn) 3221 return LegalizationInfo{LegalizationAction::Dynamic, 3222 /*isRecursivelyLegal=*/false, unknownLegalityFn}; 3223 return llvm::None; 3224 } 3225 3226 //===----------------------------------------------------------------------===// 3227 // Op Conversion Entry Points 3228 //===----------------------------------------------------------------------===// 3229 3230 //===----------------------------------------------------------------------===// 3231 // Partial Conversion 3232 3233 LogicalResult 3234 mlir::applyPartialConversion(ArrayRef<Operation *> ops, 3235 ConversionTarget &target, 3236 const FrozenRewritePatternSet &patterns, 3237 DenseSet<Operation *> *unconvertedOps) { 3238 OperationConverter opConverter(target, patterns, OpConversionMode::Partial, 3239 unconvertedOps); 3240 return opConverter.convertOperations(ops); 3241 } 3242 LogicalResult 3243 mlir::applyPartialConversion(Operation *op, ConversionTarget &target, 3244 const FrozenRewritePatternSet &patterns, 3245 DenseSet<Operation *> *unconvertedOps) { 3246 return applyPartialConversion(llvm::makeArrayRef(op), target, patterns, 3247 unconvertedOps); 3248 } 3249 3250 //===----------------------------------------------------------------------===// 3251 // Full Conversion 3252 3253 LogicalResult 3254 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target, 3255 const FrozenRewritePatternSet &patterns) { 3256 OperationConverter opConverter(target, patterns, OpConversionMode::Full); 3257 return opConverter.convertOperations(ops); 3258 } 3259 LogicalResult 3260 mlir::applyFullConversion(Operation *op, ConversionTarget &target, 3261 const FrozenRewritePatternSet &patterns) { 3262 return applyFullConversion(llvm::makeArrayRef(op), target, patterns); 3263 } 3264 3265 //===----------------------------------------------------------------------===// 3266 // Analysis Conversion 3267 3268 LogicalResult 3269 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops, 3270 ConversionTarget &target, 3271 const FrozenRewritePatternSet &patterns, 3272 DenseSet<Operation *> &convertedOps) { 3273 OperationConverter opConverter(target, patterns, OpConversionMode::Analysis, 3274 &convertedOps); 3275 return opConverter.convertOperations(ops); 3276 } 3277 LogicalResult 3278 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target, 3279 const FrozenRewritePatternSet &patterns, 3280 DenseSet<Operation *> &convertedOps) { 3281 return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns, 3282 convertedOps); 3283 } 3284