1 //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Transforms/DialectConversion.h" 10 #include "mlir/IR/Block.h" 11 #include "mlir/IR/BlockAndValueMapping.h" 12 #include "mlir/IR/Builders.h" 13 #include "mlir/IR/Function.h" 14 #include "mlir/IR/Module.h" 15 #include "mlir/Rewrite/PatternApplicator.h" 16 #include "mlir/Transforms/Utils.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/FormatVariadic.h" 21 #include "llvm/Support/SaveAndRestore.h" 22 #include "llvm/Support/ScopedPrinter.h" 23 24 using namespace mlir; 25 using namespace mlir::detail; 26 27 #define DEBUG_TYPE "dialect-conversion" 28 29 /// Recursively collect all of the operations to convert from within 'region'. 30 /// If 'target' is nonnull, operations that are recursively legal have their 31 /// regions pre-filtered to avoid considering them for legalization. 32 static LogicalResult 33 computeConversionSet(iterator_range<Region::iterator> region, 34 Location regionLoc, std::vector<Operation *> &toConvert, 35 ConversionTarget *target = nullptr) { 36 if (llvm::empty(region)) 37 return success(); 38 39 // Traverse starting from the entry block. 40 SmallVector<Block *, 16> worklist(1, &*region.begin()); 41 DenseSet<Block *> visitedBlocks; 42 visitedBlocks.insert(worklist.front()); 43 while (!worklist.empty()) { 44 Block *block = worklist.pop_back_val(); 45 46 // Compute the conversion set of each of the nested operations. 47 for (Operation &op : *block) { 48 toConvert.emplace_back(&op); 49 50 // Don't check this operation's children for conversion if the operation 51 // is recursively legal. 52 auto legalityInfo = target ? target->isLegal(&op) 53 : Optional<ConversionTarget::LegalOpDetails>(); 54 if (legalityInfo && legalityInfo->isRecursivelyLegal) 55 continue; 56 for (auto ®ion : op.getRegions()) { 57 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 58 toConvert, target))) 59 return failure(); 60 } 61 } 62 63 // Recurse to children that haven't been visited. 64 for (Block *succ : block->getSuccessors()) 65 if (visitedBlocks.insert(succ).second) 66 worklist.push_back(succ); 67 } 68 69 // Check that all blocks in the region were visited. 70 if (llvm::any_of(llvm::drop_begin(region, 1), 71 [&](Block &block) { return !visitedBlocks.count(&block); })) 72 return emitError(regionLoc, "unreachable blocks were not converted"); 73 return success(); 74 } 75 76 /// A utility function to log a successful result for the given reason. 77 template <typename... Args> 78 static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { 79 LLVM_DEBUG({ 80 os.unindent(); 81 os.startLine() << "} -> SUCCESS"; 82 if (!fmt.empty()) 83 os.getOStream() << " : " 84 << llvm::formatv(fmt.data(), std::forward<Args>(args)...); 85 os.getOStream() << "\n"; 86 }); 87 } 88 89 /// A utility function to log a failure result for the given reason. 90 template <typename... Args> 91 static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { 92 LLVM_DEBUG({ 93 os.unindent(); 94 os.startLine() << "} -> FAILURE : " 95 << llvm::formatv(fmt.data(), std::forward<Args>(args)...) 96 << "\n"; 97 }); 98 } 99 100 //===----------------------------------------------------------------------===// 101 // ConversionValueMapping 102 //===----------------------------------------------------------------------===// 103 104 namespace { 105 /// This class wraps a BlockAndValueMapping to provide recursive lookup 106 /// functionality, i.e. we will traverse if the mapped value also has a mapping. 107 struct ConversionValueMapping { 108 /// Lookup a mapped value within the map. If a mapping for the provided value 109 /// does not exist then return the provided value. If `desiredType` is 110 /// non-null, returns the most recently mapped value with that type. If an 111 /// operand of that type does not exist, defaults to normal behavior. 112 Value lookupOrDefault(Value from, Type desiredType = nullptr) const; 113 114 /// Lookup a mapped value within the map, or return null if a mapping does not 115 /// exist. If a mapping exists, this follows the same behavior of 116 /// `lookupOrDefault`. 117 Value lookupOrNull(Value from) const; 118 119 /// Map a value to the one provided. 120 void map(Value oldVal, Value newVal) { mapping.map(oldVal, newVal); } 121 122 /// Drop the last mapping for the given value. 123 void erase(Value value) { mapping.erase(value); } 124 125 private: 126 /// Current value mappings. 127 BlockAndValueMapping mapping; 128 }; 129 } // end anonymous namespace 130 131 Value ConversionValueMapping::lookupOrDefault(Value from, 132 Type desiredType) const { 133 // If there was no desired type, simply find the leaf value. 134 if (!desiredType) { 135 // If this value had a valid mapping, unmap that value as well in the case 136 // that it was also replaced. 137 while (auto mappedValue = mapping.lookupOrNull(from)) 138 from = mappedValue; 139 return from; 140 } 141 142 // Otherwise, try to find the deepest value that has the desired type. 143 Value desiredValue; 144 do { 145 if (from.getType() == desiredType) 146 desiredValue = from; 147 148 Value mappedValue = mapping.lookupOrNull(from); 149 if (!mappedValue) 150 break; 151 from = mappedValue; 152 } while (true); 153 154 // If the desired value was found use it, otherwise default to the leaf value. 155 return desiredValue ? desiredValue : from; 156 } 157 158 Value ConversionValueMapping::lookupOrNull(Value from) const { 159 Value result = lookupOrDefault(from); 160 return result == from ? nullptr : result; 161 } 162 163 //===----------------------------------------------------------------------===// 164 // ArgConverter 165 //===----------------------------------------------------------------------===// 166 namespace { 167 /// This class provides a simple interface for converting the types of block 168 /// arguments. This is done by creating a new block that contains the new legal 169 /// types and extracting the block that contains the old illegal types to allow 170 /// for undoing pending rewrites in the case of failure. 171 struct ArgConverter { 172 ArgConverter(PatternRewriter &rewriter) : rewriter(rewriter) {} 173 174 /// This structure contains the information pertaining to an argument that has 175 /// been converted. 176 struct ConvertedArgInfo { 177 ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize, 178 Value castValue = nullptr) 179 : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {} 180 181 /// The start index of in the new argument list that contains arguments that 182 /// replace the original. 183 unsigned newArgIdx; 184 185 /// The number of arguments that replaced the original argument. 186 unsigned newArgSize; 187 188 /// The cast value that was created to cast from the new arguments to the 189 /// old. This only used if 'newArgSize' > 1. 190 Value castValue; 191 }; 192 193 /// This structure contains information pertaining to a block that has had its 194 /// signature converted. 195 struct ConvertedBlockInfo { 196 ConvertedBlockInfo(Block *origBlock, TypeConverter &converter) 197 : origBlock(origBlock), converter(&converter) {} 198 199 /// The original block that was requested to have its signature converted. 200 Block *origBlock; 201 202 /// The conversion information for each of the arguments. The information is 203 /// None if the argument was dropped during conversion. 204 SmallVector<Optional<ConvertedArgInfo>, 1> argInfo; 205 206 /// The type converter used to convert the arguments. 207 TypeConverter *converter; 208 }; 209 210 /// Return if the signature of the given block has already been converted. 211 bool hasBeenConverted(Block *block) const { 212 return conversionInfo.count(block) || convertedBlocks.count(block); 213 } 214 215 /// Set the type converter to use for the given region. 216 void setConverter(Region *region, TypeConverter *typeConverter) { 217 assert(typeConverter && "expected valid type converter"); 218 regionToConverter[region] = typeConverter; 219 } 220 221 /// Return the type converter to use for the given region, or null if there 222 /// isn't one. 223 TypeConverter *getConverter(Region *region) { 224 return regionToConverter.lookup(region); 225 } 226 227 //===--------------------------------------------------------------------===// 228 // Rewrite Application 229 //===--------------------------------------------------------------------===// 230 231 /// Erase any rewrites registered for the blocks within the given operation 232 /// which is about to be removed. This merely drops the rewrites without 233 /// undoing them. 234 void notifyOpRemoved(Operation *op); 235 236 /// Cleanup and undo any generated conversions for the arguments of block. 237 /// This method replaces the new block with the original, reverting the IR to 238 /// its original state. 239 void discardRewrites(Block *block); 240 241 /// Fully replace uses of the old arguments with the new. 242 void applyRewrites(ConversionValueMapping &mapping); 243 244 /// Materialize any necessary conversions for converted arguments that have 245 /// live users, using the provided `findLiveUser` to search for a user that 246 /// survives the conversion process. 247 LogicalResult 248 materializeLiveConversions(ConversionValueMapping &mapping, 249 OpBuilder &builder, 250 function_ref<Operation *(Value)> findLiveUser); 251 252 //===--------------------------------------------------------------------===// 253 // Conversion 254 //===--------------------------------------------------------------------===// 255 256 /// Attempt to convert the signature of the given block, if successful a new 257 /// block is returned containing the new arguments. Returns `block` if it did 258 /// not require conversion. 259 FailureOr<Block *> convertSignature(Block *block, TypeConverter &converter, 260 ConversionValueMapping &mapping); 261 262 /// Apply the given signature conversion on the given block. The new block 263 /// containing the updated signature is returned. If no conversions were 264 /// necessary, e.g. if the block has no arguments, `block` is returned. 265 /// `converter` is used to generate any necessary cast operations that 266 /// translate between the origin argument types and those specified in the 267 /// signature conversion. 268 Block *applySignatureConversion( 269 Block *block, TypeConverter &converter, 270 TypeConverter::SignatureConversion &signatureConversion, 271 ConversionValueMapping &mapping); 272 273 /// Insert a new conversion into the cache. 274 void insertConversion(Block *newBlock, ConvertedBlockInfo &&info); 275 276 /// A collection of blocks that have had their arguments converted. This is a 277 /// map from the new replacement block, back to the original block. 278 llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo; 279 280 /// The set of original blocks that were converted. 281 DenseSet<Block *> convertedBlocks; 282 283 /// A mapping from valid regions, to those containing the original blocks of a 284 /// conversion. 285 DenseMap<Region *, std::unique_ptr<Region>> regionMapping; 286 287 /// A mapping of regions to type converters that should be used when 288 /// converting the arguments of blocks within that region. 289 DenseMap<Region *, TypeConverter *> regionToConverter; 290 291 /// The pattern rewriter to use when materializing conversions. 292 PatternRewriter &rewriter; 293 }; 294 } // end anonymous namespace 295 296 //===----------------------------------------------------------------------===// 297 // Rewrite Application 298 299 void ArgConverter::notifyOpRemoved(Operation *op) { 300 if (conversionInfo.empty()) 301 return; 302 303 for (Region ®ion : op->getRegions()) { 304 for (Block &block : region) { 305 // Drop any rewrites from within. 306 for (Operation &nestedOp : block) 307 if (nestedOp.getNumRegions()) 308 notifyOpRemoved(&nestedOp); 309 310 // Check if this block was converted. 311 auto it = conversionInfo.find(&block); 312 if (it == conversionInfo.end()) 313 continue; 314 315 // Drop all uses of the original arguments and delete the original block. 316 Block *origBlock = it->second.origBlock; 317 for (BlockArgument arg : origBlock->getArguments()) 318 arg.dropAllUses(); 319 conversionInfo.erase(it); 320 } 321 } 322 } 323 324 void ArgConverter::discardRewrites(Block *block) { 325 auto it = conversionInfo.find(block); 326 if (it == conversionInfo.end()) 327 return; 328 Block *origBlock = it->second.origBlock; 329 330 // Drop all uses of the new block arguments and replace uses of the new block. 331 for (int i = block->getNumArguments() - 1; i >= 0; --i) 332 block->getArgument(i).dropAllUses(); 333 block->replaceAllUsesWith(origBlock); 334 335 // Move the operations back the original block and the delete the new block. 336 origBlock->getOperations().splice(origBlock->end(), block->getOperations()); 337 origBlock->moveBefore(block); 338 block->erase(); 339 340 convertedBlocks.erase(origBlock); 341 conversionInfo.erase(it); 342 } 343 344 void ArgConverter::applyRewrites(ConversionValueMapping &mapping) { 345 for (auto &info : conversionInfo) { 346 ConvertedBlockInfo &blockInfo = info.second; 347 Block *origBlock = blockInfo.origBlock; 348 349 // Process the remapping for each of the original arguments. 350 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 351 Optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i]; 352 BlockArgument origArg = origBlock->getArgument(i); 353 354 // Handle the case of a 1->0 value mapping. 355 if (!argInfo) { 356 if (Value newArg = mapping.lookupOrNull(origArg)) 357 origArg.replaceAllUsesWith(newArg); 358 continue; 359 } 360 361 // Otherwise this is a 1->1+ value mapping. 362 Value castValue = argInfo->castValue; 363 assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping"); 364 365 // If the argument is still used, replace it with the generated cast. 366 if (!origArg.use_empty()) 367 origArg.replaceAllUsesWith(mapping.lookupOrDefault(castValue)); 368 369 // If all users of the cast were removed, we can drop it. Otherwise, keep 370 // the operation alive and let the user handle any remaining usages. 371 if (castValue.use_empty() && castValue.getDefiningOp()) 372 castValue.getDefiningOp()->erase(); 373 } 374 } 375 } 376 377 LogicalResult ArgConverter::materializeLiveConversions( 378 ConversionValueMapping &mapping, OpBuilder &builder, 379 function_ref<Operation *(Value)> findLiveUser) { 380 for (auto &info : conversionInfo) { 381 Block *newBlock = info.first; 382 ConvertedBlockInfo &blockInfo = info.second; 383 Block *origBlock = blockInfo.origBlock; 384 385 // Process the remapping for each of the original arguments. 386 for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { 387 // FIXME: We should run the below checks even if the type conversion was 388 // 1->N, but a lot of existing lowering rely on the block argument being 389 // blindly replaced. Those usages should be updated, and this if should be 390 // removed. 391 if (blockInfo.argInfo[i]) 392 continue; 393 394 // If the type of this argument changed and the argument is still live, we 395 // need to materialize a conversion. 396 BlockArgument origArg = origBlock->getArgument(i); 397 auto argReplacementValue = mapping.lookupOrDefault(origArg); 398 bool isDroppedArg = argReplacementValue == origArg; 399 if (argReplacementValue.getType() == origArg.getType() && !isDroppedArg) 400 continue; 401 Operation *liveUser = findLiveUser(origArg); 402 if (!liveUser) 403 continue; 404 405 if (OpResult result = argReplacementValue.dyn_cast<OpResult>()) 406 rewriter.setInsertionPointAfter(result.getOwner()); 407 else 408 rewriter.setInsertionPointToStart(newBlock); 409 Value newArg = blockInfo.converter->materializeSourceConversion( 410 rewriter, origArg.getLoc(), origArg.getType(), 411 isDroppedArg ? ValueRange() : ValueRange(argReplacementValue)); 412 if (!newArg) { 413 InFlightDiagnostic diag = 414 emitError(origArg.getLoc()) 415 << "failed to materialize conversion for block argument #" << i 416 << " that remained live after conversion, type was " 417 << origArg.getType(); 418 if (!isDroppedArg) 419 diag << ", with target type " << argReplacementValue.getType(); 420 diag.attachNote(liveUser->getLoc()) 421 << "see existing live user here: " << *liveUser; 422 return failure(); 423 } 424 mapping.map(origArg, newArg); 425 } 426 } 427 return success(); 428 } 429 430 //===----------------------------------------------------------------------===// 431 // Conversion 432 433 FailureOr<Block *> 434 ArgConverter::convertSignature(Block *block, TypeConverter &converter, 435 ConversionValueMapping &mapping) { 436 // Check if the block was already converted. If the block is detached, 437 // conservatively assume it is going to be deleted. 438 if (hasBeenConverted(block) || !block->getParent()) 439 return block; 440 441 // Try to convert the signature for the block with the provided converter. 442 if (auto conversion = converter.convertBlockSignature(block)) 443 return applySignatureConversion(block, converter, *conversion, mapping); 444 return failure(); 445 } 446 447 Block *ArgConverter::applySignatureConversion( 448 Block *block, TypeConverter &converter, 449 TypeConverter::SignatureConversion &signatureConversion, 450 ConversionValueMapping &mapping) { 451 // If no arguments are being changed or added, there is nothing to do. 452 unsigned origArgCount = block->getNumArguments(); 453 auto convertedTypes = signatureConversion.getConvertedTypes(); 454 if (origArgCount == 0 && convertedTypes.empty()) 455 return block; 456 457 // Split the block at the beginning to get a new block to use for the updated 458 // signature. 459 Block *newBlock = block->splitBlock(block->begin()); 460 block->replaceAllUsesWith(newBlock); 461 462 SmallVector<Value, 4> newArgRange(newBlock->addArguments(convertedTypes)); 463 ArrayRef<Value> newArgs(newArgRange); 464 465 // Remap each of the original arguments as determined by the signature 466 // conversion. 467 ConvertedBlockInfo info(block, converter); 468 info.argInfo.resize(origArgCount); 469 470 OpBuilder::InsertionGuard guard(rewriter); 471 rewriter.setInsertionPointToStart(newBlock); 472 for (unsigned i = 0; i != origArgCount; ++i) { 473 auto inputMap = signatureConversion.getInputMapping(i); 474 if (!inputMap) 475 continue; 476 BlockArgument origArg = block->getArgument(i); 477 478 // If inputMap->replacementValue is not nullptr, then the argument is 479 // dropped and a replacement value is provided to be the remappedValue. 480 if (inputMap->replacementValue) { 481 assert(inputMap->size == 0 && 482 "invalid to provide a replacement value when the argument isn't " 483 "dropped"); 484 mapping.map(origArg, inputMap->replacementValue); 485 continue; 486 } 487 488 // Otherwise, this is a 1->1+ mapping. Call into the provided type converter 489 // to pack the new values. For 1->1 mappings, if there is no materialization 490 // provided, use the argument directly instead. 491 auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size); 492 Value newArg = converter.materializeArgumentConversion( 493 rewriter, origArg.getLoc(), origArg.getType(), replArgs); 494 if (!newArg) { 495 assert(replArgs.size() == 1 && 496 "couldn't materialize the result of 1->N conversion"); 497 newArg = replArgs.front(); 498 } 499 mapping.map(origArg, newArg); 500 info.argInfo[i] = 501 ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg); 502 } 503 504 // Remove the original block from the region and return the new one. 505 insertConversion(newBlock, std::move(info)); 506 return newBlock; 507 } 508 509 void ArgConverter::insertConversion(Block *newBlock, 510 ConvertedBlockInfo &&info) { 511 // Get a region to insert the old block. 512 Region *region = newBlock->getParent(); 513 std::unique_ptr<Region> &mappedRegion = regionMapping[region]; 514 if (!mappedRegion) 515 mappedRegion = std::make_unique<Region>(region->getParentOp()); 516 517 // Move the original block to the mapped region and emplace the conversion. 518 mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(), 519 info.origBlock->getIterator()); 520 convertedBlocks.insert(info.origBlock); 521 conversionInfo.insert({newBlock, std::move(info)}); 522 } 523 524 //===----------------------------------------------------------------------===// 525 // Rewriter and Translation State 526 //===----------------------------------------------------------------------===// 527 namespace { 528 /// This class contains a snapshot of the current conversion rewriter state. 529 /// This is useful when saving and undoing a set of rewrites. 530 struct RewriterState { 531 RewriterState(unsigned numCreatedOps, unsigned numReplacements, 532 unsigned numArgReplacements, unsigned numBlockActions, 533 unsigned numIgnoredOperations, unsigned numRootUpdates) 534 : numCreatedOps(numCreatedOps), numReplacements(numReplacements), 535 numArgReplacements(numArgReplacements), 536 numBlockActions(numBlockActions), 537 numIgnoredOperations(numIgnoredOperations), 538 numRootUpdates(numRootUpdates) {} 539 540 /// The current number of created operations. 541 unsigned numCreatedOps; 542 543 /// The current number of replacements queued. 544 unsigned numReplacements; 545 546 /// The current number of argument replacements queued. 547 unsigned numArgReplacements; 548 549 /// The current number of block actions performed. 550 unsigned numBlockActions; 551 552 /// The current number of ignored operations. 553 unsigned numIgnoredOperations; 554 555 /// The current number of operations that were updated in place. 556 unsigned numRootUpdates; 557 }; 558 559 /// The state of an operation that was updated by a pattern in-place. This 560 /// contains all of the necessary information to reconstruct an operation that 561 /// was updated in place. 562 class OperationTransactionState { 563 public: 564 OperationTransactionState() = default; 565 OperationTransactionState(Operation *op) 566 : op(op), loc(op->getLoc()), attrs(op->getMutableAttrDict()), 567 operands(op->operand_begin(), op->operand_end()), 568 successors(op->successor_begin(), op->successor_end()) {} 569 570 /// Discard the transaction state and reset the state of the original 571 /// operation. 572 void resetOperation() const { 573 op->setLoc(loc); 574 op->setAttrs(attrs); 575 op->setOperands(operands); 576 for (auto it : llvm::enumerate(successors)) 577 op->setSuccessor(it.value(), it.index()); 578 } 579 580 /// Return the original operation of this state. 581 Operation *getOperation() const { return op; } 582 583 private: 584 Operation *op; 585 LocationAttr loc; 586 MutableDictionaryAttr attrs; 587 SmallVector<Value, 8> operands; 588 SmallVector<Block *, 2> successors; 589 }; 590 591 /// This class represents one requested operation replacement via 'replaceOp' or 592 /// 'eraseOp`. 593 struct OpReplacement { 594 OpReplacement() = default; 595 OpReplacement(TypeConverter *converter) : converter(converter) {} 596 597 /// An optional type converter that can be used to materialize conversions 598 /// between the new and old values if necessary. 599 TypeConverter *converter = nullptr; 600 }; 601 602 /// The kind of the block action performed during the rewrite. Actions can be 603 /// undone if the conversion fails. 604 enum class BlockActionKind { 605 Create, 606 Erase, 607 Merge, 608 Move, 609 Split, 610 TypeConversion 611 }; 612 613 /// Original position of the given block in its parent region. During undo 614 /// actions, the block needs to be placed after `insertAfterBlock`. 615 struct BlockPosition { 616 Region *region; 617 Block *insertAfterBlock; 618 }; 619 620 /// Information needed to undo the merge actions. 621 /// - the source block, and 622 /// - the Operation that was the last operation in the dest block before the 623 /// merge (could be null if the dest block was empty). 624 struct MergeInfo { 625 Block *sourceBlock; 626 Operation *destBlockLastInst; 627 }; 628 629 /// The storage class for an undoable block action (one of BlockActionKind), 630 /// contains the information necessary to undo this action. 631 struct BlockAction { 632 static BlockAction getCreate(Block *block) { 633 return {BlockActionKind::Create, block, {}}; 634 } 635 static BlockAction getErase(Block *block, BlockPosition originalPosition) { 636 return {BlockActionKind::Erase, block, {originalPosition}}; 637 } 638 static BlockAction getMerge(Block *block, Block *sourceBlock) { 639 BlockAction action{BlockActionKind::Merge, block, {}}; 640 action.mergeInfo = {sourceBlock, block->empty() ? nullptr : &block->back()}; 641 return action; 642 } 643 static BlockAction getMove(Block *block, BlockPosition originalPosition) { 644 return {BlockActionKind::Move, block, {originalPosition}}; 645 } 646 static BlockAction getSplit(Block *block, Block *originalBlock) { 647 BlockAction action{BlockActionKind::Split, block, {}}; 648 action.originalBlock = originalBlock; 649 return action; 650 } 651 static BlockAction getTypeConversion(Block *block) { 652 return BlockAction{BlockActionKind::TypeConversion, block, {}}; 653 } 654 655 // The action kind. 656 BlockActionKind kind; 657 658 // A pointer to the block that was created by the action. 659 Block *block; 660 661 union { 662 // In use if kind == BlockActionKind::Move or BlockActionKind::Erase, and 663 // contains a pointer to the region that originally contained the block as 664 // well as the position of the block in that region. 665 BlockPosition originalPosition; 666 // In use if kind == BlockActionKind::Split and contains a pointer to the 667 // block that was split into two parts. 668 Block *originalBlock; 669 // In use if kind == BlockActionKind::Merge, and contains the information 670 // needed to undo the merge. 671 MergeInfo mergeInfo; 672 }; 673 }; 674 } // end anonymous namespace 675 676 //===----------------------------------------------------------------------===// 677 // ConversionPatternRewriterImpl 678 //===----------------------------------------------------------------------===// 679 namespace mlir { 680 namespace detail { 681 struct ConversionPatternRewriterImpl { 682 ConversionPatternRewriterImpl(PatternRewriter &rewriter) 683 : argConverter(rewriter) {} 684 685 /// Cleanup and destroy any generated rewrite operations. This method is 686 /// invoked when the conversion process fails. 687 void discardRewrites(); 688 689 /// Apply all requested operation rewrites. This method is invoked when the 690 /// conversion process succeeds. 691 void applyRewrites(); 692 693 //===--------------------------------------------------------------------===// 694 // State Management 695 //===--------------------------------------------------------------------===// 696 697 /// Return the current state of the rewriter. 698 RewriterState getCurrentState(); 699 700 /// Reset the state of the rewriter to a previously saved point. 701 void resetState(RewriterState state); 702 703 /// Erase any blocks that were unlinked from their regions and stored in block 704 /// actions. 705 void eraseDanglingBlocks(); 706 707 /// Undo the block actions (motions, splits) one by one in reverse order until 708 /// "numActionsToKeep" actions remains. 709 void undoBlockActions(unsigned numActionsToKeep = 0); 710 711 /// Remap the given operands to those with potentially different types. The 712 /// provided type converter is used to ensure that the remapped types are 713 /// legal. Returns success if the operands could be remapped, failure 714 /// otherwise. 715 LogicalResult remapValues(Location loc, PatternRewriter &rewriter, 716 TypeConverter *converter, 717 Operation::operand_range operands, 718 SmallVectorImpl<Value> &remapped); 719 720 /// Returns true if the given operation is ignored, and does not need to be 721 /// converted. 722 bool isOpIgnored(Operation *op) const; 723 724 /// Recursively marks the nested operations under 'op' as ignored. This 725 /// removes them from being considered for legalization. 726 void markNestedOpsIgnored(Operation *op); 727 728 //===--------------------------------------------------------------------===// 729 // Type Conversion 730 //===--------------------------------------------------------------------===// 731 732 /// Convert the signature of the given block. 733 FailureOr<Block *> convertBlockSignature( 734 Block *block, TypeConverter &converter, 735 TypeConverter::SignatureConversion *conversion = nullptr); 736 737 /// Apply a signature conversion on the given region. 738 Block * 739 applySignatureConversion(Region *region, 740 TypeConverter::SignatureConversion &conversion); 741 742 /// Convert the types of block arguments within the given region. 743 FailureOr<Block *> 744 convertRegionTypes(Region *region, TypeConverter &converter, 745 TypeConverter::SignatureConversion *entryConversion); 746 747 //===--------------------------------------------------------------------===// 748 // Rewriter Notification Hooks 749 //===--------------------------------------------------------------------===// 750 751 /// PatternRewriter hook for replacing the results of an operation. 752 void notifyOpReplaced(Operation *op, ValueRange newValues); 753 754 /// Notifies that a block is about to be erased. 755 void notifyBlockIsBeingErased(Block *block); 756 757 /// Notifies that a block was created. 758 void notifyCreatedBlock(Block *block); 759 760 /// Notifies that a block was split. 761 void notifySplitBlock(Block *block, Block *continuation); 762 763 /// Notifies that `block` is being merged with `srcBlock`. 764 void notifyBlocksBeingMerged(Block *block, Block *srcBlock); 765 766 /// Notifies that the blocks of a region are about to be moved. 767 void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent, 768 Region::iterator before); 769 770 /// Notifies that the blocks of a region were cloned into another. 771 void notifyRegionWasClonedBefore(iterator_range<Region::iterator> &blocks, 772 Location origRegionLoc); 773 774 /// Notifies that a pattern match failed for the given reason. 775 LogicalResult 776 notifyMatchFailure(Location loc, 777 function_ref<void(Diagnostic &)> reasonCallback); 778 779 //===--------------------------------------------------------------------===// 780 // State 781 //===--------------------------------------------------------------------===// 782 783 // Mapping between replaced values that differ in type. This happens when 784 // replacing a value with one of a different type. 785 ConversionValueMapping mapping; 786 787 /// Utility used to convert block arguments. 788 ArgConverter argConverter; 789 790 /// Ordered vector of all of the newly created operations during conversion. 791 std::vector<Operation *> createdOps; 792 793 /// Ordered map of requested operation replacements. 794 llvm::MapVector<Operation *, OpReplacement> replacements; 795 796 /// Ordered vector of any requested block argument replacements. 797 SmallVector<BlockArgument, 4> argReplacements; 798 799 /// Ordered list of block operations (creations, splits, motions). 800 SmallVector<BlockAction, 4> blockActions; 801 802 /// A set of operations that should no longer be considered for legalization, 803 /// but were not directly replace/erased/etc. by a pattern. These are 804 /// generally child operations of other operations who were 805 /// replaced/erased/etc. This is not meant to be an exhaustive list of all 806 /// operations, but the minimal set that can be used to detect if a given 807 /// operation should be `ignored`. For example, we may add the operations that 808 /// define non-empty regions to the set, but not any of the others. This 809 /// simplifies the amount of memory needed as we can query if the parent 810 /// operation was ignored. 811 llvm::SetVector<Operation *> ignoredOps; 812 813 /// A transaction state for each of operations that were updated in-place. 814 SmallVector<OperationTransactionState, 4> rootUpdates; 815 816 /// A vector of indices into `replacements` of operations that were replaced 817 /// with values with different result types than the original operation, e.g. 818 /// 1->N conversion of some kind. 819 SmallVector<unsigned, 4> operationsWithChangedResults; 820 821 /// A default type converter, used when block conversions do not have one 822 /// explicitly provided. 823 TypeConverter defaultTypeConverter; 824 825 /// The current conversion pattern that is being rewritten, or nullptr if 826 /// called from outside of a conversion pattern rewrite. 827 const ConversionPattern *currentConversionPattern = nullptr; 828 829 #ifndef NDEBUG 830 /// A set of operations that have pending updates. This tracking isn't 831 /// strictly necessary, and is thus only active during debug builds for extra 832 /// verification. 833 SmallPtrSet<Operation *, 1> pendingRootUpdates; 834 835 /// A logger used to emit diagnostics during the conversion process. 836 llvm::ScopedPrinter logger{llvm::dbgs()}; 837 #endif 838 }; 839 } // end namespace detail 840 } // end namespace mlir 841 842 /// Detach any operations nested in the given operation from their parent 843 /// blocks, and erase the given operation. This can be used when the nested 844 /// operations are scheduled for erasure themselves, so deleting the regions of 845 /// the given operation together with their content would result in double-free. 846 /// This happens, for example, when rolling back op creation in the reverse 847 /// order and if the nested ops were created before the parent op. This function 848 /// does not need to collect nested ops recursively because it is expected to 849 /// also be called for each nested op when it is about to be deleted. 850 static void detachNestedAndErase(Operation *op) { 851 for (Region ®ion : op->getRegions()) { 852 for (Block &block : region.getBlocks()) { 853 while (!block.getOperations().empty()) 854 block.getOperations().remove(block.getOperations().begin()); 855 block.dropAllDefinedValueUses(); 856 } 857 } 858 op->erase(); 859 } 860 861 void ConversionPatternRewriterImpl::discardRewrites() { 862 // Reset any operations that were updated in place. 863 for (auto &state : rootUpdates) 864 state.resetOperation(); 865 866 undoBlockActions(); 867 868 // Remove any newly created ops. 869 for (auto *op : llvm::reverse(createdOps)) 870 detachNestedAndErase(op); 871 } 872 873 void ConversionPatternRewriterImpl::applyRewrites() { 874 // Apply all of the rewrites replacements requested during conversion. 875 for (auto &repl : replacements) { 876 for (OpResult result : repl.first->getResults()) 877 if (Value newValue = mapping.lookupOrNull(result)) 878 result.replaceAllUsesWith(newValue); 879 880 // If this operation defines any regions, drop any pending argument 881 // rewrites. 882 if (repl.first->getNumRegions()) 883 argConverter.notifyOpRemoved(repl.first); 884 } 885 886 // Apply all of the requested argument replacements. 887 for (BlockArgument arg : argReplacements) { 888 Value repl = mapping.lookupOrDefault(arg); 889 if (repl.isa<BlockArgument>()) { 890 arg.replaceAllUsesWith(repl); 891 continue; 892 } 893 894 // If the replacement value is an operation, we check to make sure that we 895 // don't replace uses that are within the parent operation of the 896 // replacement value. 897 Operation *replOp = repl.cast<OpResult>().getOwner(); 898 Block *replBlock = replOp->getBlock(); 899 arg.replaceUsesWithIf(repl, [&](OpOperand &operand) { 900 Operation *user = operand.getOwner(); 901 return user->getBlock() != replBlock || replOp->isBeforeInBlock(user); 902 }); 903 } 904 905 // In a second pass, erase all of the replaced operations in reverse. This 906 // allows processing nested operations before their parent region is 907 // destroyed. 908 for (auto &repl : llvm::reverse(replacements)) 909 repl.first->erase(); 910 911 argConverter.applyRewrites(mapping); 912 913 // Now that the ops have been erased, also erase dangling blocks. 914 eraseDanglingBlocks(); 915 } 916 917 //===----------------------------------------------------------------------===// 918 // State Management 919 920 RewriterState ConversionPatternRewriterImpl::getCurrentState() { 921 return RewriterState(createdOps.size(), replacements.size(), 922 argReplacements.size(), blockActions.size(), 923 ignoredOps.size(), rootUpdates.size()); 924 } 925 926 void ConversionPatternRewriterImpl::resetState(RewriterState state) { 927 // Reset any operations that were updated in place. 928 for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i) 929 rootUpdates[i].resetOperation(); 930 rootUpdates.resize(state.numRootUpdates); 931 932 // Reset any replaced arguments. 933 for (BlockArgument replacedArg : 934 llvm::drop_begin(argReplacements, state.numArgReplacements)) 935 mapping.erase(replacedArg); 936 argReplacements.resize(state.numArgReplacements); 937 938 // Undo any block actions. 939 undoBlockActions(state.numBlockActions); 940 941 // Reset any replaced operations and undo any saved mappings. 942 for (auto &repl : llvm::drop_begin(replacements, state.numReplacements)) 943 for (auto result : repl.first->getResults()) 944 mapping.erase(result); 945 while (replacements.size() != state.numReplacements) 946 replacements.pop_back(); 947 948 // Pop all of the newly created operations. 949 while (createdOps.size() != state.numCreatedOps) { 950 detachNestedAndErase(createdOps.back()); 951 createdOps.pop_back(); 952 } 953 954 // Pop all of the recorded ignored operations that are no longer valid. 955 while (ignoredOps.size() != state.numIgnoredOperations) 956 ignoredOps.pop_back(); 957 958 // Reset operations with changed results. 959 while (!operationsWithChangedResults.empty() && 960 operationsWithChangedResults.back() >= state.numReplacements) 961 operationsWithChangedResults.pop_back(); 962 } 963 964 void ConversionPatternRewriterImpl::eraseDanglingBlocks() { 965 for (auto &action : blockActions) 966 if (action.kind == BlockActionKind::Erase) 967 delete action.block; 968 } 969 970 void ConversionPatternRewriterImpl::undoBlockActions( 971 unsigned numActionsToKeep) { 972 for (auto &action : 973 llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) { 974 switch (action.kind) { 975 // Delete the created block. 976 case BlockActionKind::Create: { 977 // Unlink all of the operations within this block, they will be deleted 978 // separately. 979 auto &blockOps = action.block->getOperations(); 980 while (!blockOps.empty()) 981 blockOps.remove(blockOps.begin()); 982 action.block->dropAllDefinedValueUses(); 983 action.block->erase(); 984 break; 985 } 986 // Put the block (owned by action) back into its original position. 987 case BlockActionKind::Erase: { 988 auto &blockList = action.originalPosition.region->getBlocks(); 989 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 990 blockList.insert((insertAfterBlock 991 ? std::next(Region::iterator(insertAfterBlock)) 992 : blockList.end()), 993 action.block); 994 break; 995 } 996 // Split the block at the position which was originally the end of the 997 // destination block (owned by action), and put the instructions back into 998 // the block used before the merge. 999 case BlockActionKind::Merge: { 1000 Block *sourceBlock = action.mergeInfo.sourceBlock; 1001 Block::iterator splitPoint = 1002 (action.mergeInfo.destBlockLastInst 1003 ? ++Block::iterator(action.mergeInfo.destBlockLastInst) 1004 : action.block->begin()); 1005 sourceBlock->getOperations().splice(sourceBlock->begin(), 1006 action.block->getOperations(), 1007 splitPoint, action.block->end()); 1008 break; 1009 } 1010 // Move the block back to its original position. 1011 case BlockActionKind::Move: { 1012 Region *originalRegion = action.originalPosition.region; 1013 Block *insertAfterBlock = action.originalPosition.insertAfterBlock; 1014 originalRegion->getBlocks().splice( 1015 (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock)) 1016 : originalRegion->end()), 1017 action.block->getParent()->getBlocks(), action.block); 1018 break; 1019 } 1020 // Merge back the block that was split out. 1021 case BlockActionKind::Split: { 1022 action.originalBlock->getOperations().splice( 1023 action.originalBlock->end(), action.block->getOperations()); 1024 action.block->dropAllDefinedValueUses(); 1025 action.block->erase(); 1026 break; 1027 } 1028 // Undo the type conversion. 1029 case BlockActionKind::TypeConversion: { 1030 argConverter.discardRewrites(action.block); 1031 break; 1032 } 1033 } 1034 } 1035 blockActions.resize(numActionsToKeep); 1036 } 1037 1038 LogicalResult ConversionPatternRewriterImpl::remapValues( 1039 Location loc, PatternRewriter &rewriter, TypeConverter *converter, 1040 Operation::operand_range operands, SmallVectorImpl<Value> &remapped) { 1041 remapped.reserve(llvm::size(operands)); 1042 1043 SmallVector<Type, 1> legalTypes; 1044 for (auto it : llvm::enumerate(operands)) { 1045 Value operand = it.value(); 1046 Type origType = operand.getType(); 1047 1048 // If a converter was provided, get the desired legal types for this 1049 // operand. 1050 Type desiredType; 1051 if (converter) { 1052 // If there is no legal conversion, fail to match this pattern. 1053 legalTypes.clear(); 1054 if (failed(converter->convertType(origType, legalTypes))) { 1055 return notifyMatchFailure(loc, [=](Diagnostic &diag) { 1056 diag << "unable to convert type for operand #" << it.index() 1057 << ", type was " << origType; 1058 }); 1059 } 1060 // TODO: There currently isn't any mechanism to do 1->N type conversion 1061 // via the PatternRewriter replacement API, so for now we just ignore it. 1062 if (legalTypes.size() == 1) 1063 desiredType = legalTypes.front(); 1064 } else { 1065 // TODO: What we should do here is just set `desiredType` to `origType` 1066 // and then handle the necessary type conversions after the conversion 1067 // process has finished. Unfortunately a lot of patterns currently rely on 1068 // receiving the new operands even if the types change, so we keep the 1069 // original behavior here for now until all of the patterns relying on 1070 // this get updated. 1071 } 1072 Value newOperand = mapping.lookupOrDefault(operand, desiredType); 1073 1074 // Handle the case where the conversion was 1->1 and the new operand type 1075 // isn't legal. 1076 Type newOperandType = newOperand.getType(); 1077 if (converter && desiredType && newOperandType != desiredType) { 1078 // Attempt to materialize a conversion for this new value. 1079 newOperand = converter->materializeTargetConversion( 1080 rewriter, loc, desiredType, newOperand); 1081 if (!newOperand) { 1082 return notifyMatchFailure(loc, [=](Diagnostic &diag) { 1083 diag << "unable to materialize a conversion for " 1084 "operand #" 1085 << it.index() << ", from " << newOperandType << " to " 1086 << desiredType; 1087 }); 1088 } 1089 } 1090 remapped.push_back(newOperand); 1091 } 1092 return success(); 1093 } 1094 1095 bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const { 1096 // Check to see if this operation was replaced or its parent ignored. 1097 return replacements.count(op) || ignoredOps.count(op->getParentOp()); 1098 } 1099 1100 void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) { 1101 // Walk this operation and collect nested operations that define non-empty 1102 // regions. We mark such operations as 'ignored' so that we know we don't have 1103 // to convert them, or their nested ops. 1104 if (op->getNumRegions() == 0) 1105 return; 1106 op->walk([&](Operation *op) { 1107 if (llvm::any_of(op->getRegions(), 1108 [](Region ®ion) { return !region.empty(); })) 1109 ignoredOps.insert(op); 1110 }); 1111 } 1112 1113 //===----------------------------------------------------------------------===// 1114 // Type Conversion 1115 1116 FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature( 1117 Block *block, TypeConverter &converter, 1118 TypeConverter::SignatureConversion *conversion) { 1119 FailureOr<Block *> result = 1120 conversion ? argConverter.applySignatureConversion(block, converter, 1121 *conversion, mapping) 1122 : argConverter.convertSignature(block, converter, mapping); 1123 if (Block *newBlock = result.getValue()) { 1124 if (newBlock != block) 1125 blockActions.push_back(BlockAction::getTypeConversion(newBlock)); 1126 } 1127 return result; 1128 } 1129 1130 Block *ConversionPatternRewriterImpl::applySignatureConversion( 1131 Region *region, TypeConverter::SignatureConversion &conversion) { 1132 if (!region->empty()) { 1133 return *convertBlockSignature(®ion->front(), defaultTypeConverter, 1134 &conversion); 1135 } 1136 return nullptr; 1137 } 1138 1139 FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes( 1140 Region *region, TypeConverter &converter, 1141 TypeConverter::SignatureConversion *entryConversion) { 1142 argConverter.setConverter(region, &converter); 1143 if (region->empty()) 1144 return nullptr; 1145 1146 // Convert the arguments of each block within the region. 1147 FailureOr<Block *> newEntry = 1148 convertBlockSignature(®ion->front(), converter, entryConversion); 1149 for (Block &block : llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) 1150 if (failed(convertBlockSignature(&block, converter))) 1151 return failure(); 1152 return newEntry; 1153 } 1154 1155 //===----------------------------------------------------------------------===// 1156 // Rewriter Notification Hooks 1157 1158 void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op, 1159 ValueRange newValues) { 1160 assert(newValues.size() == op->getNumResults()); 1161 assert(!replacements.count(op) && "operation was already replaced"); 1162 1163 // Track if any of the results changed, e.g. erased and replaced with null. 1164 bool resultChanged = false; 1165 1166 // Create mappings for each of the new result values. 1167 Value newValue, result; 1168 for (auto it : llvm::zip(newValues, op->getResults())) { 1169 std::tie(newValue, result) = it; 1170 if (!newValue) { 1171 resultChanged = true; 1172 continue; 1173 } 1174 // Remap, and check for any result type changes. 1175 mapping.map(result, newValue); 1176 resultChanged |= (newValue.getType() != result.getType()); 1177 } 1178 if (resultChanged) 1179 operationsWithChangedResults.push_back(replacements.size()); 1180 1181 // Record the requested operation replacement. 1182 TypeConverter *converter = nullptr; 1183 if (currentConversionPattern) 1184 converter = currentConversionPattern->getTypeConverter(); 1185 replacements.insert(std::make_pair(op, OpReplacement(converter))); 1186 1187 // Mark this operation as recursively ignored so that we don't need to 1188 // convert any nested operations. 1189 markNestedOpsIgnored(op); 1190 } 1191 1192 void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) { 1193 Region *region = block->getParent(); 1194 Block *origPrevBlock = block->getPrevNode(); 1195 blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock})); 1196 } 1197 1198 void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) { 1199 blockActions.push_back(BlockAction::getCreate(block)); 1200 } 1201 1202 void ConversionPatternRewriterImpl::notifySplitBlock(Block *block, 1203 Block *continuation) { 1204 blockActions.push_back(BlockAction::getSplit(continuation, block)); 1205 } 1206 1207 void ConversionPatternRewriterImpl::notifyBlocksBeingMerged(Block *block, 1208 Block *srcBlock) { 1209 blockActions.push_back(BlockAction::getMerge(block, srcBlock)); 1210 } 1211 1212 void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore( 1213 Region ®ion, Region &parent, Region::iterator before) { 1214 Block *origPrevBlock = nullptr; 1215 for (auto &pair : llvm::enumerate(region)) { 1216 Block &block = pair.value(); 1217 blockActions.push_back( 1218 BlockAction::getMove(&block, {®ion, origPrevBlock})); 1219 origPrevBlock = █ 1220 } 1221 } 1222 1223 void ConversionPatternRewriterImpl::notifyRegionWasClonedBefore( 1224 iterator_range<Region::iterator> &blocks, Location origRegionLoc) { 1225 for (Block &block : blocks) 1226 blockActions.push_back(BlockAction::getCreate(&block)); 1227 1228 // Compute the conversion set for the inlined region. 1229 auto result = computeConversionSet(blocks, origRegionLoc, createdOps); 1230 1231 // This original region has already had its conversion set computed, so there 1232 // shouldn't be any new failures. 1233 (void)result; 1234 assert(succeeded(result) && "expected region to have no unreachable blocks"); 1235 } 1236 1237 LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure( 1238 Location loc, function_ref<void(Diagnostic &)> reasonCallback) { 1239 LLVM_DEBUG({ 1240 Diagnostic diag(loc, DiagnosticSeverity::Remark); 1241 reasonCallback(diag); 1242 logger.startLine() << "** Failure : " << diag.str() << "\n"; 1243 }); 1244 return failure(); 1245 } 1246 1247 //===----------------------------------------------------------------------===// 1248 // ConversionPatternRewriter 1249 //===----------------------------------------------------------------------===// 1250 1251 ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx) 1252 : PatternRewriter(ctx), 1253 impl(new detail::ConversionPatternRewriterImpl(*this)) {} 1254 ConversionPatternRewriter::~ConversionPatternRewriter() {} 1255 1256 /// PatternRewriter hook for replacing the results of an operation. 1257 void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) { 1258 LLVM_DEBUG({ 1259 impl->logger.startLine() 1260 << "** Replace : '" << op->getName() << "'(" << op << ")\n"; 1261 }); 1262 impl->notifyOpReplaced(op, newValues); 1263 } 1264 1265 /// PatternRewriter hook for erasing a dead operation. The uses of this 1266 /// operation *must* be made dead by the end of the conversion process, 1267 /// otherwise an assert will be issued. 1268 void ConversionPatternRewriter::eraseOp(Operation *op) { 1269 LLVM_DEBUG({ 1270 impl->logger.startLine() 1271 << "** Erase : '" << op->getName() << "'(" << op << ")\n"; 1272 }); 1273 SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr); 1274 impl->notifyOpReplaced(op, nullRepls); 1275 } 1276 1277 void ConversionPatternRewriter::eraseBlock(Block *block) { 1278 impl->notifyBlockIsBeingErased(block); 1279 1280 // Mark all ops for erasure. 1281 for (Operation &op : *block) 1282 eraseOp(&op); 1283 1284 // Unlink the block from its parent region. The block is kept in the block 1285 // action and will be actually destroyed when rewrites are applied. This 1286 // allows us to keep the operations in the block live and undo the removal by 1287 // re-inserting the block. 1288 block->getParent()->getBlocks().remove(block); 1289 } 1290 1291 Block *ConversionPatternRewriter::applySignatureConversion( 1292 Region *region, TypeConverter::SignatureConversion &conversion) { 1293 return impl->applySignatureConversion(region, conversion); 1294 } 1295 1296 FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes( 1297 Region *region, TypeConverter &converter, 1298 TypeConverter::SignatureConversion *entryConversion) { 1299 return impl->convertRegionTypes(region, converter, entryConversion); 1300 } 1301 1302 void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from, 1303 Value to) { 1304 LLVM_DEBUG({ 1305 Operation *parentOp = from.getOwner()->getParentOp(); 1306 impl->logger.startLine() << "** Replace Argument : '" << from 1307 << "'(in region of '" << parentOp->getName() 1308 << "'(" << from.getOwner()->getParentOp() << ")\n"; 1309 }); 1310 impl->argReplacements.push_back(from); 1311 impl->mapping.map(impl->mapping.lookupOrDefault(from), to); 1312 } 1313 1314 /// Return the converted value that replaces 'key'. Return 'key' if there is 1315 /// no such a converted value. 1316 Value ConversionPatternRewriter::getRemappedValue(Value key) { 1317 return impl->mapping.lookupOrDefault(key); 1318 } 1319 1320 /// PatternRewriter hook for creating a new block with the given arguments. 1321 void ConversionPatternRewriter::notifyBlockCreated(Block *block) { 1322 impl->notifyCreatedBlock(block); 1323 } 1324 1325 /// PatternRewriter hook for splitting a block into two parts. 1326 Block *ConversionPatternRewriter::splitBlock(Block *block, 1327 Block::iterator before) { 1328 auto *continuation = PatternRewriter::splitBlock(block, before); 1329 impl->notifySplitBlock(block, continuation); 1330 return continuation; 1331 } 1332 1333 /// PatternRewriter hook for merging a block into another. 1334 void ConversionPatternRewriter::mergeBlocks(Block *source, Block *dest, 1335 ValueRange argValues) { 1336 impl->notifyBlocksBeingMerged(dest, source); 1337 assert(llvm::all_of(source->getPredecessors(), 1338 [dest](Block *succ) { return succ == dest; }) && 1339 "expected 'source' to have no predecessors or only 'dest'"); 1340 assert(argValues.size() == source->getNumArguments() && 1341 "incorrect # of argument replacement values"); 1342 for (auto it : llvm::zip(source->getArguments(), argValues)) 1343 replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it)); 1344 dest->getOperations().splice(dest->end(), source->getOperations()); 1345 eraseBlock(source); 1346 } 1347 1348 /// PatternRewriter hook for moving blocks out of a region. 1349 void ConversionPatternRewriter::inlineRegionBefore(Region ®ion, 1350 Region &parent, 1351 Region::iterator before) { 1352 impl->notifyRegionIsBeingInlinedBefore(region, parent, before); 1353 PatternRewriter::inlineRegionBefore(region, parent, before); 1354 } 1355 1356 /// PatternRewriter hook for cloning blocks of one region into another. 1357 void ConversionPatternRewriter::cloneRegionBefore( 1358 Region ®ion, Region &parent, Region::iterator before, 1359 BlockAndValueMapping &mapping) { 1360 if (region.empty()) 1361 return; 1362 PatternRewriter::cloneRegionBefore(region, parent, before, mapping); 1363 1364 // Collect the range of the cloned blocks. 1365 auto clonedBeginIt = mapping.lookup(®ion.front())->getIterator(); 1366 auto clonedBlocks = llvm::make_range(clonedBeginIt, before); 1367 impl->notifyRegionWasClonedBefore(clonedBlocks, region.getLoc()); 1368 } 1369 1370 /// PatternRewriter hook for creating a new operation. 1371 void ConversionPatternRewriter::notifyOperationInserted(Operation *op) { 1372 LLVM_DEBUG({ 1373 impl->logger.startLine() 1374 << "** Insert : '" << op->getName() << "'(" << op << ")\n"; 1375 }); 1376 impl->createdOps.push_back(op); 1377 } 1378 1379 /// PatternRewriter hook for updating the root operation in-place. 1380 void ConversionPatternRewriter::startRootUpdate(Operation *op) { 1381 #ifndef NDEBUG 1382 impl->pendingRootUpdates.insert(op); 1383 #endif 1384 impl->rootUpdates.emplace_back(op); 1385 } 1386 1387 /// PatternRewriter hook for updating the root operation in-place. 1388 void ConversionPatternRewriter::finalizeRootUpdate(Operation *op) { 1389 // There is nothing to do here, we only need to track the operation at the 1390 // start of the update. 1391 #ifndef NDEBUG 1392 assert(impl->pendingRootUpdates.erase(op) && 1393 "operation did not have a pending in-place update"); 1394 #endif 1395 } 1396 1397 /// PatternRewriter hook for updating the root operation in-place. 1398 void ConversionPatternRewriter::cancelRootUpdate(Operation *op) { 1399 #ifndef NDEBUG 1400 assert(impl->pendingRootUpdates.erase(op) && 1401 "operation did not have a pending in-place update"); 1402 #endif 1403 // Erase the last update for this operation. 1404 auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; }; 1405 auto &rootUpdates = impl->rootUpdates; 1406 auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp); 1407 rootUpdates.erase(rootUpdates.begin() + (rootUpdates.rend() - it)); 1408 } 1409 1410 /// PatternRewriter hook for notifying match failure reasons. 1411 LogicalResult ConversionPatternRewriter::notifyMatchFailure( 1412 Operation *op, function_ref<void(Diagnostic &)> reasonCallback) { 1413 return impl->notifyMatchFailure(op->getLoc(), reasonCallback); 1414 } 1415 1416 /// Return a reference to the internal implementation. 1417 detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() { 1418 return *impl; 1419 } 1420 1421 //===----------------------------------------------------------------------===// 1422 // ConversionPattern 1423 //===----------------------------------------------------------------------===// 1424 1425 /// Attempt to match and rewrite the IR root at the specified operation. 1426 LogicalResult 1427 ConversionPattern::matchAndRewrite(Operation *op, 1428 PatternRewriter &rewriter) const { 1429 auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter); 1430 auto &rewriterImpl = dialectRewriter.getImpl(); 1431 1432 // Track the current conversion pattern in the rewriter. 1433 assert(!rewriterImpl.currentConversionPattern && 1434 "already inside of a pattern rewrite"); 1435 llvm::SaveAndRestore<const ConversionPattern *> currentPatternGuard( 1436 rewriterImpl.currentConversionPattern, this); 1437 1438 // Remap the operands of the operation. 1439 SmallVector<Value, 4> operands; 1440 if (failed(rewriterImpl.remapValues(op->getLoc(), rewriter, 1441 getTypeConverter(), op->getOperands(), 1442 operands))) { 1443 return failure(); 1444 } 1445 return matchAndRewrite(op, operands, dialectRewriter); 1446 } 1447 1448 //===----------------------------------------------------------------------===// 1449 // OperationLegalizer 1450 //===----------------------------------------------------------------------===// 1451 1452 namespace { 1453 /// A set of rewrite patterns that can be used to legalize a given operation. 1454 using LegalizationPatterns = SmallVector<const Pattern *, 1>; 1455 1456 /// This class defines a recursive operation legalizer. 1457 class OperationLegalizer { 1458 public: 1459 using LegalizationAction = ConversionTarget::LegalizationAction; 1460 1461 OperationLegalizer(ConversionTarget &targetInfo, 1462 const FrozenRewritePatternList &patterns); 1463 1464 /// Returns true if the given operation is known to be illegal on the target. 1465 bool isIllegal(Operation *op) const; 1466 1467 /// Attempt to legalize the given operation. Returns success if the operation 1468 /// was legalized, failure otherwise. 1469 LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter); 1470 1471 /// Returns the conversion target in use by the legalizer. 1472 ConversionTarget &getTarget() { return target; } 1473 1474 private: 1475 /// Attempt to legalize the given operation by folding it. 1476 LogicalResult legalizeWithFold(Operation *op, 1477 ConversionPatternRewriter &rewriter); 1478 1479 /// Attempt to legalize the given operation by applying a pattern. Returns 1480 /// success if the operation was legalized, failure otherwise. 1481 LogicalResult legalizeWithPattern(Operation *op, 1482 ConversionPatternRewriter &rewriter); 1483 1484 /// Return true if the given pattern may be applied to the given operation, 1485 /// false otherwise. 1486 bool canApplyPattern(Operation *op, const Pattern &pattern, 1487 ConversionPatternRewriter &rewriter); 1488 1489 /// Legalize the resultant IR after successfully applying the given pattern. 1490 LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern, 1491 ConversionPatternRewriter &rewriter, 1492 RewriterState &curState); 1493 1494 /// Legalizes the actions registered during the execution of a pattern. 1495 LogicalResult legalizePatternBlockActions(Operation *op, 1496 ConversionPatternRewriter &rewriter, 1497 ConversionPatternRewriterImpl &impl, 1498 RewriterState &state, 1499 RewriterState &newState); 1500 LogicalResult legalizePatternCreatedOperations( 1501 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1502 RewriterState &state, RewriterState &newState); 1503 LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter, 1504 ConversionPatternRewriterImpl &impl, 1505 RewriterState &state, 1506 RewriterState &newState); 1507 1508 //===--------------------------------------------------------------------===// 1509 // Cost Model 1510 //===--------------------------------------------------------------------===// 1511 1512 /// Build an optimistic legalization graph given the provided patterns. This 1513 /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with 1514 /// patterns for operations that are not directly legal, but may be 1515 /// transitively legal for the current target given the provided patterns. 1516 void buildLegalizationGraph( 1517 LegalizationPatterns &anyOpLegalizerPatterns, 1518 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1519 1520 /// Compute the benefit of each node within the computed legalization graph. 1521 /// This orders the patterns within 'legalizerPatterns' based upon two 1522 /// criteria: 1523 /// 1) Prefer patterns that have the lowest legalization depth, i.e. 1524 /// represent the more direct mapping to the target. 1525 /// 2) When comparing patterns with the same legalization depth, prefer the 1526 /// pattern with the highest PatternBenefit. This allows for users to 1527 /// prefer specific legalizations over others. 1528 void computeLegalizationGraphBenefit( 1529 LegalizationPatterns &anyOpLegalizerPatterns, 1530 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1531 1532 /// Compute the legalization depth when legalizing an operation of the given 1533 /// type. 1534 unsigned computeOpLegalizationDepth( 1535 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 1536 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1537 1538 /// Apply the conversion cost model to the given set of patterns, and return 1539 /// the smallest legalization depth of any of the patterns. See 1540 /// `computeLegalizationGraphBenefit` for the breakdown of the cost model. 1541 unsigned applyCostModelToPatterns( 1542 LegalizationPatterns &patterns, 1543 DenseMap<OperationName, unsigned> &minOpPatternDepth, 1544 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); 1545 1546 /// The current set of patterns that have been applied. 1547 SmallPtrSet<const Pattern *, 8> appliedPatterns; 1548 1549 /// The legalization information provided by the target. 1550 ConversionTarget ⌖ 1551 1552 /// The pattern applicator to use for conversions. 1553 PatternApplicator applicator; 1554 }; 1555 } // namespace 1556 1557 OperationLegalizer::OperationLegalizer(ConversionTarget &targetInfo, 1558 const FrozenRewritePatternList &patterns) 1559 : target(targetInfo), applicator(patterns) { 1560 // The set of patterns that can be applied to illegal operations to transform 1561 // them into legal ones. 1562 DenseMap<OperationName, LegalizationPatterns> legalizerPatterns; 1563 LegalizationPatterns anyOpLegalizerPatterns; 1564 1565 buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns); 1566 computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns); 1567 } 1568 1569 bool OperationLegalizer::isIllegal(Operation *op) const { 1570 // Check if the target explicitly marked this operation as illegal. 1571 return target.getOpAction(op->getName()) == LegalizationAction::Illegal; 1572 } 1573 1574 LogicalResult 1575 OperationLegalizer::legalize(Operation *op, 1576 ConversionPatternRewriter &rewriter) { 1577 #ifndef NDEBUG 1578 const char *logLineComment = 1579 "//===-------------------------------------------===//\n"; 1580 1581 auto &rewriterImpl = rewriter.getImpl(); 1582 #endif 1583 LLVM_DEBUG({ 1584 auto &os = rewriterImpl.logger; 1585 os.getOStream() << "\n"; 1586 os.startLine() << logLineComment; 1587 os.startLine() << "Legalizing operation : '" << op->getName() << "'(" << op 1588 << ") {\n"; 1589 os.indent(); 1590 1591 // If the operation has no regions, just print it here. 1592 if (op->getNumRegions() == 0) { 1593 op->print(os.startLine(), OpPrintingFlags().printGenericOpForm()); 1594 os.getOStream() << "\n\n"; 1595 } 1596 }); 1597 1598 // Check if this operation is legal on the target. 1599 if (auto legalityInfo = target.isLegal(op)) { 1600 LLVM_DEBUG({ 1601 logSuccess( 1602 rewriterImpl.logger, "operation marked legal by the target{0}", 1603 legalityInfo->isRecursivelyLegal 1604 ? "; NOTE: operation is recursively legal; skipping internals" 1605 : ""); 1606 rewriterImpl.logger.startLine() << logLineComment; 1607 }); 1608 1609 // If this operation is recursively legal, mark its children as ignored so 1610 // that we don't consider them for legalization. 1611 if (legalityInfo->isRecursivelyLegal) 1612 rewriter.getImpl().markNestedOpsIgnored(op); 1613 return success(); 1614 } 1615 1616 // Check to see if the operation is ignored and doesn't need to be converted. 1617 if (rewriter.getImpl().isOpIgnored(op)) { 1618 LLVM_DEBUG({ 1619 logSuccess(rewriterImpl.logger, 1620 "operation marked 'ignored' during conversion"); 1621 rewriterImpl.logger.startLine() << logLineComment; 1622 }); 1623 return success(); 1624 } 1625 1626 // If the operation isn't legal, try to fold it in-place. 1627 // TODO: Should we always try to do this, even if the op is 1628 // already legal? 1629 if (succeeded(legalizeWithFold(op, rewriter))) { 1630 LLVM_DEBUG({ 1631 logSuccess(rewriterImpl.logger, "operation was folded"); 1632 rewriterImpl.logger.startLine() << logLineComment; 1633 }); 1634 return success(); 1635 } 1636 1637 // Otherwise, we need to apply a legalization pattern to this operation. 1638 if (succeeded(legalizeWithPattern(op, rewriter))) { 1639 LLVM_DEBUG({ 1640 logSuccess(rewriterImpl.logger, ""); 1641 rewriterImpl.logger.startLine() << logLineComment; 1642 }); 1643 return success(); 1644 } 1645 1646 LLVM_DEBUG({ 1647 logFailure(rewriterImpl.logger, "no matched legalization pattern"); 1648 rewriterImpl.logger.startLine() << logLineComment; 1649 }); 1650 return failure(); 1651 } 1652 1653 LogicalResult 1654 OperationLegalizer::legalizeWithFold(Operation *op, 1655 ConversionPatternRewriter &rewriter) { 1656 auto &rewriterImpl = rewriter.getImpl(); 1657 RewriterState curState = rewriterImpl.getCurrentState(); 1658 1659 LLVM_DEBUG({ 1660 rewriterImpl.logger.startLine() << "* Fold {\n"; 1661 rewriterImpl.logger.indent(); 1662 }); 1663 1664 // Try to fold the operation. 1665 SmallVector<Value, 2> replacementValues; 1666 rewriter.setInsertionPoint(op); 1667 if (failed(rewriter.tryFold(op, replacementValues))) { 1668 LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold")); 1669 return failure(); 1670 } 1671 1672 // Insert a replacement for 'op' with the folded replacement values. 1673 rewriter.replaceOp(op, replacementValues); 1674 1675 // Recursively legalize any new constant operations. 1676 for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size(); 1677 i != e; ++i) { 1678 Operation *cstOp = rewriterImpl.createdOps[i]; 1679 if (failed(legalize(cstOp, rewriter))) { 1680 LLVM_DEBUG(logFailure(rewriterImpl.logger, 1681 "generated constant '{0}' was illegal", 1682 cstOp->getName())); 1683 rewriterImpl.resetState(curState); 1684 return failure(); 1685 } 1686 } 1687 1688 LLVM_DEBUG(logSuccess(rewriterImpl.logger, "")); 1689 return success(); 1690 } 1691 1692 LogicalResult 1693 OperationLegalizer::legalizeWithPattern(Operation *op, 1694 ConversionPatternRewriter &rewriter) { 1695 auto &rewriterImpl = rewriter.getImpl(); 1696 1697 // Functor that returns if the given pattern may be applied. 1698 auto canApply = [&](const Pattern &pattern) { 1699 return canApplyPattern(op, pattern, rewriter); 1700 }; 1701 1702 // Functor that cleans up the rewriter state after a pattern failed to match. 1703 RewriterState curState = rewriterImpl.getCurrentState(); 1704 auto onFailure = [&](const Pattern &pattern) { 1705 LLVM_DEBUG(logFailure(rewriterImpl.logger, "pattern failed to match")); 1706 rewriterImpl.resetState(curState); 1707 appliedPatterns.erase(&pattern); 1708 }; 1709 1710 // Functor that performs additional legalization when a pattern is 1711 // successfully applied. 1712 auto onSuccess = [&](const Pattern &pattern) { 1713 auto result = legalizePatternResult(op, pattern, rewriter, curState); 1714 appliedPatterns.erase(&pattern); 1715 if (failed(result)) 1716 rewriterImpl.resetState(curState); 1717 return result; 1718 }; 1719 1720 // Try to match and rewrite a pattern on this operation. 1721 return applicator.matchAndRewrite(op, rewriter, canApply, onFailure, 1722 onSuccess); 1723 } 1724 1725 bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern, 1726 ConversionPatternRewriter &rewriter) { 1727 LLVM_DEBUG({ 1728 auto &os = rewriter.getImpl().logger; 1729 os.getOStream() << "\n"; 1730 os.startLine() << "* Pattern : '" << op->getName() << " -> ("; 1731 llvm::interleaveComma(pattern.getGeneratedOps(), llvm::dbgs()); 1732 os.getOStream() << ")' {\n"; 1733 os.indent(); 1734 }); 1735 1736 // Ensure that we don't cycle by not allowing the same pattern to be 1737 // applied twice in the same recursion stack if it is not known to be safe. 1738 if (!pattern.hasBoundedRewriteRecursion() && 1739 !appliedPatterns.insert(&pattern).second) { 1740 LLVM_DEBUG( 1741 logFailure(rewriter.getImpl().logger, "pattern was already applied")); 1742 return false; 1743 } 1744 return true; 1745 } 1746 1747 LogicalResult 1748 OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern, 1749 ConversionPatternRewriter &rewriter, 1750 RewriterState &curState) { 1751 auto &impl = rewriter.getImpl(); 1752 1753 #ifndef NDEBUG 1754 assert(impl.pendingRootUpdates.empty() && "dangling root updates"); 1755 #endif 1756 1757 // Check that the root was either replaced or updated in place. 1758 auto replacedRoot = [&] { 1759 return llvm::any_of( 1760 llvm::drop_begin(impl.replacements, curState.numReplacements), 1761 [op](auto &it) { return it.first == op; }); 1762 }; 1763 auto updatedRootInPlace = [&] { 1764 return llvm::any_of( 1765 llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates), 1766 [op](auto &state) { return state.getOperation() == op; }); 1767 }; 1768 (void)replacedRoot; 1769 (void)updatedRootInPlace; 1770 assert((replacedRoot() || updatedRootInPlace()) && 1771 "expected pattern to replace the root operation"); 1772 1773 // Legalize each of the actions registered during application. 1774 RewriterState newState = impl.getCurrentState(); 1775 if (failed(legalizePatternBlockActions(op, rewriter, impl, curState, 1776 newState)) || 1777 failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) || 1778 failed(legalizePatternCreatedOperations(rewriter, impl, curState, 1779 newState))) { 1780 return failure(); 1781 } 1782 1783 LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully")); 1784 return success(); 1785 } 1786 1787 LogicalResult OperationLegalizer::legalizePatternBlockActions( 1788 Operation *op, ConversionPatternRewriter &rewriter, 1789 ConversionPatternRewriterImpl &impl, RewriterState &state, 1790 RewriterState &newState) { 1791 SmallPtrSet<Operation *, 16> operationsToIgnore; 1792 1793 // If the pattern moved or created any blocks, make sure the types of block 1794 // arguments get legalized. 1795 for (int i = state.numBlockActions, e = newState.numBlockActions; i != e; 1796 ++i) { 1797 auto &action = impl.blockActions[i]; 1798 if (action.kind == BlockActionKind::TypeConversion || 1799 action.kind == BlockActionKind::Erase) 1800 continue; 1801 // Only check blocks outside of the current operation. 1802 Operation *parentOp = action.block->getParentOp(); 1803 if (!parentOp || parentOp == op || action.block->getNumArguments() == 0) 1804 continue; 1805 1806 // If the region of the block has a type converter, try to convert the block 1807 // directly. 1808 if (auto *converter = 1809 impl.argConverter.getConverter(action.block->getParent())) { 1810 if (failed(impl.convertBlockSignature(action.block, *converter))) { 1811 LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved " 1812 "block")); 1813 return failure(); 1814 } 1815 continue; 1816 } 1817 1818 // Otherwise, check that this operation isn't one generated by this pattern. 1819 // This is because we will attempt to legalize the parent operation, and 1820 // blocks in regions created by this pattern will already be legalized later 1821 // on. If we haven't built the set yet, build it now. 1822 if (operationsToIgnore.empty()) { 1823 auto createdOps = ArrayRef<Operation *>(impl.createdOps) 1824 .drop_front(state.numCreatedOps); 1825 operationsToIgnore.insert(createdOps.begin(), createdOps.end()); 1826 } 1827 1828 // If this operation should be considered for re-legalization, try it. 1829 if (operationsToIgnore.insert(parentOp).second && 1830 failed(legalize(parentOp, rewriter))) { 1831 LLVM_DEBUG(logFailure( 1832 impl.logger, "operation '{0}'({1}) became illegal after block action", 1833 parentOp->getName(), parentOp)); 1834 return failure(); 1835 } 1836 } 1837 return success(); 1838 } 1839 LogicalResult OperationLegalizer::legalizePatternCreatedOperations( 1840 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1841 RewriterState &state, RewriterState &newState) { 1842 for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) { 1843 Operation *op = impl.createdOps[i]; 1844 if (failed(legalize(op, rewriter))) { 1845 LLVM_DEBUG(logFailure(impl.logger, 1846 "generated operation '{0}'({1}) was illegal", 1847 op->getName(), op)); 1848 return failure(); 1849 } 1850 } 1851 return success(); 1852 } 1853 LogicalResult OperationLegalizer::legalizePatternRootUpdates( 1854 ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, 1855 RewriterState &state, RewriterState &newState) { 1856 for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) { 1857 Operation *op = impl.rootUpdates[i].getOperation(); 1858 if (failed(legalize(op, rewriter))) { 1859 LLVM_DEBUG(logFailure(impl.logger, 1860 "operation updated in-place '{0}' was illegal", 1861 op->getName())); 1862 return failure(); 1863 } 1864 } 1865 return success(); 1866 } 1867 1868 //===----------------------------------------------------------------------===// 1869 // Cost Model 1870 1871 void OperationLegalizer::buildLegalizationGraph( 1872 LegalizationPatterns &anyOpLegalizerPatterns, 1873 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 1874 // A mapping between an operation and a set of operations that can be used to 1875 // generate it. 1876 DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps; 1877 // A mapping between an operation and any currently invalid patterns it has. 1878 DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns; 1879 // A worklist of patterns to consider for legality. 1880 llvm::SetVector<const Pattern *> patternWorklist; 1881 1882 // Build the mapping from operations to the parent ops that may generate them. 1883 applicator.walkAllPatterns([&](const Pattern &pattern) { 1884 Optional<OperationName> root = pattern.getRootKind(); 1885 1886 // If the pattern has no specific root, we can't analyze the relationship 1887 // between the root op and generated operations. Given that, add all such 1888 // patterns to the legalization set. 1889 if (!root) { 1890 anyOpLegalizerPatterns.push_back(&pattern); 1891 return; 1892 } 1893 1894 // Skip operations that are always known to be legal. 1895 if (target.getOpAction(*root) == LegalizationAction::Legal) 1896 return; 1897 1898 // Add this pattern to the invalid set for the root op and record this root 1899 // as a parent for any generated operations. 1900 invalidPatterns[*root].insert(&pattern); 1901 for (auto op : pattern.getGeneratedOps()) 1902 parentOps[op].insert(*root); 1903 1904 // Add this pattern to the worklist. 1905 patternWorklist.insert(&pattern); 1906 }); 1907 1908 // If there are any patterns that don't have a specific root kind, we can't 1909 // make direct assumptions about what operations will never be legalized. 1910 // Note: Technically we could, but it would require an analysis that may 1911 // recurse into itself. It would be better to perform this kind of filtering 1912 // at a higher level than here anyways. 1913 if (!anyOpLegalizerPatterns.empty()) { 1914 for (const Pattern *pattern : patternWorklist) 1915 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 1916 return; 1917 } 1918 1919 while (!patternWorklist.empty()) { 1920 auto *pattern = patternWorklist.pop_back_val(); 1921 1922 // Check to see if any of the generated operations are invalid. 1923 if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) { 1924 Optional<LegalizationAction> action = target.getOpAction(op); 1925 return !legalizerPatterns.count(op) && 1926 (!action || action == LegalizationAction::Illegal); 1927 })) 1928 continue; 1929 1930 // Otherwise, if all of the generated operation are valid, this op is now 1931 // legal so add all of the child patterns to the worklist. 1932 legalizerPatterns[*pattern->getRootKind()].push_back(pattern); 1933 invalidPatterns[*pattern->getRootKind()].erase(pattern); 1934 1935 // Add any invalid patterns of the parent operations to see if they have now 1936 // become legal. 1937 for (auto op : parentOps[*pattern->getRootKind()]) 1938 patternWorklist.set_union(invalidPatterns[op]); 1939 } 1940 } 1941 1942 void OperationLegalizer::computeLegalizationGraphBenefit( 1943 LegalizationPatterns &anyOpLegalizerPatterns, 1944 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 1945 // The smallest pattern depth, when legalizing an operation. 1946 DenseMap<OperationName, unsigned> minOpPatternDepth; 1947 1948 // For each operation that is transitively legal, compute a cost for it. 1949 for (auto &opIt : legalizerPatterns) 1950 if (!minOpPatternDepth.count(opIt.first)) 1951 computeOpLegalizationDepth(opIt.first, minOpPatternDepth, 1952 legalizerPatterns); 1953 1954 // Apply the cost model to the patterns that can match any operation. Those 1955 // with a specific operation type are already resolved when computing the op 1956 // legalization depth. 1957 if (!anyOpLegalizerPatterns.empty()) 1958 applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth, 1959 legalizerPatterns); 1960 1961 // Apply a cost model to the pattern applicator. We order patterns first by 1962 // depth then benefit. `legalizerPatterns` contains per-op patterns by 1963 // decreasing benefit. 1964 applicator.applyCostModel([&](const Pattern &pattern) { 1965 ArrayRef<const Pattern *> orderedPatternList; 1966 if (Optional<OperationName> rootName = pattern.getRootKind()) 1967 orderedPatternList = legalizerPatterns[*rootName]; 1968 else 1969 orderedPatternList = anyOpLegalizerPatterns; 1970 1971 // If the pattern is not found, then it was removed and cannot be matched. 1972 auto it = llvm::find(orderedPatternList, &pattern); 1973 if (it == orderedPatternList.end()) 1974 return PatternBenefit::impossibleToMatch(); 1975 1976 // Patterns found earlier in the list have higher benefit. 1977 return PatternBenefit(std::distance(it, orderedPatternList.end())); 1978 }); 1979 } 1980 1981 unsigned OperationLegalizer::computeOpLegalizationDepth( 1982 OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, 1983 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 1984 // Check for existing depth. 1985 auto depthIt = minOpPatternDepth.find(op); 1986 if (depthIt != minOpPatternDepth.end()) 1987 return depthIt->second; 1988 1989 // If a mapping for this operation does not exist, then this operation 1990 // is always legal. Return 0 as the depth for a directly legal operation. 1991 auto opPatternsIt = legalizerPatterns.find(op); 1992 if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty()) 1993 return 0u; 1994 1995 // Record this initial depth in case we encounter this op again when 1996 // recursively computing the depth. 1997 minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max()); 1998 1999 // Apply the cost model to the operation patterns, and update the minimum 2000 // depth. 2001 unsigned minDepth = applyCostModelToPatterns( 2002 opPatternsIt->second, minOpPatternDepth, legalizerPatterns); 2003 minOpPatternDepth[op] = minDepth; 2004 return minDepth; 2005 } 2006 2007 unsigned OperationLegalizer::applyCostModelToPatterns( 2008 LegalizationPatterns &patterns, 2009 DenseMap<OperationName, unsigned> &minOpPatternDepth, 2010 DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { 2011 unsigned minDepth = std::numeric_limits<unsigned>::max(); 2012 2013 // Compute the depth for each pattern within the set. 2014 SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth; 2015 patternsByDepth.reserve(patterns.size()); 2016 for (const Pattern *pattern : patterns) { 2017 unsigned depth = 0; 2018 for (auto generatedOp : pattern->getGeneratedOps()) { 2019 unsigned generatedOpDepth = computeOpLegalizationDepth( 2020 generatedOp, minOpPatternDepth, legalizerPatterns); 2021 depth = std::max(depth, generatedOpDepth + 1); 2022 } 2023 patternsByDepth.emplace_back(pattern, depth); 2024 2025 // Update the minimum depth of the pattern list. 2026 minDepth = std::min(minDepth, depth); 2027 } 2028 2029 // If the operation only has one legalization pattern, there is no need to 2030 // sort them. 2031 if (patternsByDepth.size() == 1) 2032 return minDepth; 2033 2034 // Sort the patterns by those likely to be the most beneficial. 2035 llvm::array_pod_sort(patternsByDepth.begin(), patternsByDepth.end(), 2036 [](const std::pair<const Pattern *, unsigned> *lhs, 2037 const std::pair<const Pattern *, unsigned> *rhs) { 2038 // First sort by the smaller pattern legalization 2039 // depth. 2040 if (lhs->second != rhs->second) 2041 return llvm::array_pod_sort_comparator<unsigned>( 2042 &lhs->second, &rhs->second); 2043 2044 // Then sort by the larger pattern benefit. 2045 auto lhsBenefit = lhs->first->getBenefit(); 2046 auto rhsBenefit = rhs->first->getBenefit(); 2047 return llvm::array_pod_sort_comparator<PatternBenefit>( 2048 &rhsBenefit, &lhsBenefit); 2049 }); 2050 2051 // Update the legalization pattern to use the new sorted list. 2052 patterns.clear(); 2053 for (auto &patternIt : patternsByDepth) 2054 patterns.push_back(patternIt.first); 2055 return minDepth; 2056 } 2057 2058 //===----------------------------------------------------------------------===// 2059 // OperationConverter 2060 //===----------------------------------------------------------------------===// 2061 namespace { 2062 enum OpConversionMode { 2063 // In this mode, the conversion will ignore failed conversions to allow 2064 // illegal operations to co-exist in the IR. 2065 Partial, 2066 2067 // In this mode, all operations must be legal for the given target for the 2068 // conversion to succeed. 2069 Full, 2070 2071 // In this mode, operations are analyzed for legality. No actual rewrites are 2072 // applied to the operations on success. 2073 Analysis, 2074 }; 2075 2076 // This class converts operations to a given conversion target via a set of 2077 // rewrite patterns. The conversion behaves differently depending on the 2078 // conversion mode. 2079 struct OperationConverter { 2080 explicit OperationConverter(ConversionTarget &target, 2081 const FrozenRewritePatternList &patterns, 2082 OpConversionMode mode, 2083 DenseSet<Operation *> *trackedOps = nullptr) 2084 : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {} 2085 2086 /// Converts the given operations to the conversion target. 2087 LogicalResult convertOperations(ArrayRef<Operation *> ops); 2088 2089 private: 2090 /// Converts an operation with the given rewriter. 2091 LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op); 2092 2093 /// This method is called after the conversion process to legalize any 2094 /// remaining artifacts and complete the conversion. 2095 LogicalResult finalize(ConversionPatternRewriter &rewriter); 2096 2097 /// Legalize the types of converted block arguments. 2098 LogicalResult 2099 legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter, 2100 ConversionPatternRewriterImpl &rewriterImpl); 2101 2102 /// Legalize an operation result that was marked as "erased". 2103 LogicalResult 2104 legalizeErasedResult(Operation *op, OpResult result, 2105 ConversionPatternRewriterImpl &rewriterImpl); 2106 2107 /// Legalize an operation result that was replaced with a value of a different 2108 /// type. 2109 LogicalResult 2110 legalizeChangedResultType(Operation *op, OpResult result, Value newValue, 2111 TypeConverter *replConverter, 2112 ConversionPatternRewriter &rewriter, 2113 ConversionPatternRewriterImpl &rewriterImpl); 2114 2115 /// The legalizer to use when converting operations. 2116 OperationLegalizer opLegalizer; 2117 2118 /// The conversion mode to use when legalizing operations. 2119 OpConversionMode mode; 2120 2121 /// A set of pre-existing operations. When mode == OpConversionMode::Analysis, 2122 /// this is populated with ops found to be legalizable to the target. 2123 /// When mode == OpConversionMode::Partial, this is populated with ops found 2124 /// *not* to be legalizable to the target. 2125 DenseSet<Operation *> *trackedOps; 2126 }; 2127 } // end anonymous namespace 2128 2129 LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter, 2130 Operation *op) { 2131 // Legalize the given operation. 2132 if (failed(opLegalizer.legalize(op, rewriter))) { 2133 // Handle the case of a failed conversion for each of the different modes. 2134 // Full conversions expect all operations to be converted. 2135 if (mode == OpConversionMode::Full) 2136 return op->emitError() 2137 << "failed to legalize operation '" << op->getName() << "'"; 2138 // Partial conversions allow conversions to fail iff the operation was not 2139 // explicitly marked as illegal. If the user provided a nonlegalizableOps 2140 // set, non-legalizable ops are included. 2141 if (mode == OpConversionMode::Partial) { 2142 if (opLegalizer.isIllegal(op)) 2143 return op->emitError() 2144 << "failed to legalize operation '" << op->getName() 2145 << "' that was explicitly marked illegal"; 2146 if (trackedOps) 2147 trackedOps->insert(op); 2148 } 2149 } else if (mode == OpConversionMode::Analysis) { 2150 // Analysis conversions don't fail if any operations fail to legalize, 2151 // they are only interested in the operations that were successfully 2152 // legalized. 2153 trackedOps->insert(op); 2154 } 2155 return success(); 2156 } 2157 2158 LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) { 2159 if (ops.empty()) 2160 return success(); 2161 ConversionTarget &target = opLegalizer.getTarget(); 2162 2163 // Compute the set of operations and blocks to convert. 2164 std::vector<Operation *> toConvert; 2165 for (auto *op : ops) { 2166 toConvert.emplace_back(op); 2167 for (auto ®ion : op->getRegions()) 2168 if (failed(computeConversionSet(region.getBlocks(), region.getLoc(), 2169 toConvert, &target))) 2170 return failure(); 2171 } 2172 2173 // Convert each operation and discard rewrites on failure. 2174 ConversionPatternRewriter rewriter(ops.front()->getContext()); 2175 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2176 for (auto *op : toConvert) 2177 if (failed(convert(rewriter, op))) 2178 return rewriterImpl.discardRewrites(), failure(); 2179 2180 // Now that all of the operations have been converted, finalize the conversion 2181 // process to ensure any lingering conversion artifacts are cleaned up and 2182 // legalized. 2183 if (failed(finalize(rewriter))) 2184 return rewriterImpl.discardRewrites(), failure(); 2185 2186 // After a successful conversion, apply rewrites if this is not an analysis 2187 // conversion. 2188 if (mode == OpConversionMode::Analysis) 2189 rewriterImpl.discardRewrites(); 2190 else 2191 rewriterImpl.applyRewrites(); 2192 return success(); 2193 } 2194 2195 LogicalResult 2196 OperationConverter::finalize(ConversionPatternRewriter &rewriter) { 2197 ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); 2198 2199 // Legalize converted block arguments. 2200 if (failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl))) 2201 return failure(); 2202 2203 // Process requested operation replacements. 2204 for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size(); 2205 i != e; ++i) { 2206 unsigned replIdx = rewriterImpl.operationsWithChangedResults[i]; 2207 auto &repl = *(rewriterImpl.replacements.begin() + replIdx); 2208 for (OpResult result : repl.first->getResults()) { 2209 Value newValue = rewriterImpl.mapping.lookupOrNull(result); 2210 2211 // If the operation result was replaced with null, all of the uses of this 2212 // value should be replaced. 2213 if (!newValue) { 2214 if (failed(legalizeErasedResult(repl.first, result, rewriterImpl))) 2215 return failure(); 2216 continue; 2217 } 2218 2219 // Otherwise, check to see if the type of the result changed. 2220 if (result.getType() == newValue.getType()) 2221 continue; 2222 2223 // Legalize this result. 2224 rewriter.setInsertionPoint(repl.first); 2225 if (failed(legalizeChangedResultType(repl.first, result, newValue, 2226 repl.second.converter, rewriter, 2227 rewriterImpl))) 2228 return failure(); 2229 2230 // Update the end iterator for this loop in the case it was updated 2231 // when legalizing generated conversion operations. 2232 e = rewriterImpl.operationsWithChangedResults.size(); 2233 } 2234 } 2235 return success(); 2236 } 2237 2238 LogicalResult OperationConverter::legalizeConvertedArgumentTypes( 2239 ConversionPatternRewriter &rewriter, 2240 ConversionPatternRewriterImpl &rewriterImpl) { 2241 // Functor used to check if all users of a value will be dead after 2242 // conversion. 2243 auto findLiveUser = [&](Value val) { 2244 auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) { 2245 return rewriterImpl.isOpIgnored(user); 2246 }); 2247 return liveUserIt == val.user_end() ? nullptr : *liveUserIt; 2248 }; 2249 2250 // Materialize any necessary conversions for converted block arguments that 2251 // are still live. 2252 size_t numCreatedOps = rewriterImpl.createdOps.size(); 2253 if (failed(rewriterImpl.argConverter.materializeLiveConversions( 2254 rewriterImpl.mapping, rewriter, findLiveUser))) 2255 return failure(); 2256 2257 // Legalize any newly created operations during argument materialization. 2258 for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) { 2259 if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) { 2260 return rewriterImpl.createdOps[i]->emitError() 2261 << "failed to legalize conversion operation generated for block " 2262 "argument that remained live after conversion"; 2263 } 2264 } 2265 return success(); 2266 } 2267 2268 LogicalResult OperationConverter::legalizeErasedResult( 2269 Operation *op, OpResult result, 2270 ConversionPatternRewriterImpl &rewriterImpl) { 2271 // If the operation result was replaced with null, all of the uses of this 2272 // value should be replaced. 2273 auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) { 2274 return rewriterImpl.isOpIgnored(user); 2275 }); 2276 if (liveUserIt != result.user_end()) { 2277 InFlightDiagnostic diag = op->emitError("failed to legalize operation '") 2278 << op->getName() << "' marked as erased"; 2279 diag.attachNote(liveUserIt->getLoc()) 2280 << "found live user of result #" << result.getResultNumber() << ": " 2281 << *liveUserIt; 2282 return failure(); 2283 } 2284 return success(); 2285 } 2286 2287 LogicalResult OperationConverter::legalizeChangedResultType( 2288 Operation *op, OpResult result, Value newValue, 2289 TypeConverter *replConverter, ConversionPatternRewriter &rewriter, 2290 ConversionPatternRewriterImpl &rewriterImpl) { 2291 // Walk the users of this value to see if there are any live users that 2292 // weren't replaced during conversion. 2293 auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) { 2294 return rewriterImpl.isOpIgnored(user); 2295 }); 2296 if (liveUserIt == result.user_end()) 2297 return success(); 2298 2299 // If the replacement has a type converter, attempt to materialize a 2300 // conversion back to the original type. 2301 if (!replConverter) { 2302 // TODO: We should emit an error here, similarly to the case where the 2303 // result is replaced with null. Unfortunately a lot of existing 2304 // patterns rely on this behavior, so until those patterns are updated 2305 // we keep the legacy behavior here of just forwarding the new value. 2306 return success(); 2307 } 2308 2309 // Track the number of created operations so that new ones can be legalized. 2310 size_t numCreatedOps = rewriterImpl.createdOps.size(); 2311 2312 // Materialize a conversion for this live result value. 2313 Type resultType = result.getType(); 2314 Value convertedValue = replConverter->materializeSourceConversion( 2315 rewriter, op->getLoc(), resultType, newValue); 2316 if (!convertedValue) { 2317 InFlightDiagnostic diag = op->emitError() 2318 << "failed to materialize conversion for result #" 2319 << result.getResultNumber() << " of operation '" 2320 << op->getName() 2321 << "' that remained live after conversion"; 2322 diag.attachNote(liveUserIt->getLoc()) 2323 << "see existing live user here: " << *liveUserIt; 2324 return failure(); 2325 } 2326 2327 // Legalize all of the newly created conversion operations. 2328 for (int i : llvm::seq<int>(numCreatedOps, rewriterImpl.createdOps.size())) { 2329 if (failed(opLegalizer.legalize(rewriterImpl.createdOps[i], rewriter))) { 2330 return op->emitError("failed to legalize conversion operation generated ") 2331 << "for result #" << result.getResultNumber() << " of operation '" 2332 << op->getName() << "' that remained live after conversion"; 2333 } 2334 } 2335 2336 rewriterImpl.mapping.map(result, convertedValue); 2337 return success(); 2338 } 2339 2340 //===----------------------------------------------------------------------===// 2341 // Type Conversion 2342 //===----------------------------------------------------------------------===// 2343 2344 /// Remap an input of the original signature with a new set of types. The 2345 /// new types are appended to the new signature conversion. 2346 void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo, 2347 ArrayRef<Type> types) { 2348 assert(!types.empty() && "expected valid types"); 2349 remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size()); 2350 addInputs(types); 2351 } 2352 2353 /// Append new input types to the signature conversion, this should only be 2354 /// used if the new types are not intended to remap an existing input. 2355 void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) { 2356 assert(!types.empty() && 2357 "1->0 type remappings don't need to be added explicitly"); 2358 argTypes.append(types.begin(), types.end()); 2359 } 2360 2361 /// Remap an input of the original signature with a range of types in the 2362 /// new signature. 2363 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2364 unsigned newInputNo, 2365 unsigned newInputCount) { 2366 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2367 assert(newInputCount != 0 && "expected valid input count"); 2368 remappedInputs[origInputNo] = 2369 InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr}; 2370 } 2371 2372 /// Remap an input of the original signature to another `replacementValue` 2373 /// value. This would make the signature converter drop this argument. 2374 void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, 2375 Value replacementValue) { 2376 assert(!remappedInputs[origInputNo] && "input has already been remapped"); 2377 remappedInputs[origInputNo] = 2378 InputMapping{origInputNo, /*size=*/0, replacementValue}; 2379 } 2380 2381 /// This hooks allows for converting a type. 2382 LogicalResult TypeConverter::convertType(Type t, 2383 SmallVectorImpl<Type> &results) { 2384 auto existingIt = cachedDirectConversions.find(t); 2385 if (existingIt != cachedDirectConversions.end()) { 2386 if (existingIt->second) 2387 results.push_back(existingIt->second); 2388 return success(existingIt->second != nullptr); 2389 } 2390 auto multiIt = cachedMultiConversions.find(t); 2391 if (multiIt != cachedMultiConversions.end()) { 2392 results.append(multiIt->second.begin(), multiIt->second.end()); 2393 return success(); 2394 } 2395 2396 // Walk the added converters in reverse order to apply the most recently 2397 // registered first. 2398 size_t currentCount = results.size(); 2399 for (ConversionCallbackFn &converter : llvm::reverse(conversions)) { 2400 if (Optional<LogicalResult> result = converter(t, results)) { 2401 if (!succeeded(*result)) { 2402 cachedDirectConversions.try_emplace(t, nullptr); 2403 return failure(); 2404 } 2405 auto newTypes = ArrayRef<Type>(results).drop_front(currentCount); 2406 if (newTypes.size() == 1) 2407 cachedDirectConversions.try_emplace(t, newTypes.front()); 2408 else 2409 cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes)); 2410 return success(); 2411 } 2412 } 2413 return failure(); 2414 } 2415 2416 /// This hook simplifies defining 1-1 type conversions. This function returns 2417 /// the type to convert to on success, and a null type on failure. 2418 Type TypeConverter::convertType(Type t) { 2419 // Use the multi-type result version to convert the type. 2420 SmallVector<Type, 1> results; 2421 if (failed(convertType(t, results))) 2422 return nullptr; 2423 2424 // Check to ensure that only one type was produced. 2425 return results.size() == 1 ? results.front() : nullptr; 2426 } 2427 2428 /// Convert the given set of types, filling 'results' as necessary. This 2429 /// returns failure if the conversion of any of the types fails, success 2430 /// otherwise. 2431 LogicalResult TypeConverter::convertTypes(ArrayRef<Type> types, 2432 SmallVectorImpl<Type> &results) { 2433 for (auto type : types) 2434 if (failed(convertType(type, results))) 2435 return failure(); 2436 return success(); 2437 } 2438 2439 /// Return true if the given type is legal for this type converter, i.e. the 2440 /// type converts to itself. 2441 bool TypeConverter::isLegal(Type type) { return convertType(type) == type; } 2442 /// Return true if the given operation has legal operand and result types. 2443 bool TypeConverter::isLegal(Operation *op) { 2444 return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes()); 2445 } 2446 2447 /// Return true if the types of block arguments within the region are legal. 2448 bool TypeConverter::isLegal(Region *region) { 2449 return llvm::all_of(*region, [this](Block &block) { 2450 return isLegal(block.getArgumentTypes()); 2451 }); 2452 } 2453 2454 /// Return true if the inputs and outputs of the given function type are 2455 /// legal. 2456 bool TypeConverter::isSignatureLegal(FunctionType ty) { 2457 return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults())); 2458 } 2459 2460 /// This hook allows for converting a specific argument of a signature. 2461 LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type, 2462 SignatureConversion &result) { 2463 // Try to convert the given input type. 2464 SmallVector<Type, 1> convertedTypes; 2465 if (failed(convertType(type, convertedTypes))) 2466 return failure(); 2467 2468 // If this argument is being dropped, there is nothing left to do. 2469 if (convertedTypes.empty()) 2470 return success(); 2471 2472 // Otherwise, add the new inputs. 2473 result.addInputs(inputNo, convertedTypes); 2474 return success(); 2475 } 2476 LogicalResult TypeConverter::convertSignatureArgs(TypeRange types, 2477 SignatureConversion &result, 2478 unsigned origInputOffset) { 2479 for (unsigned i = 0, e = types.size(); i != e; ++i) 2480 if (failed(convertSignatureArg(origInputOffset + i, types[i], result))) 2481 return failure(); 2482 return success(); 2483 } 2484 2485 Value TypeConverter::materializeConversion( 2486 MutableArrayRef<MaterializationCallbackFn> materializations, 2487 OpBuilder &builder, Location loc, Type resultType, ValueRange inputs) { 2488 for (MaterializationCallbackFn &fn : llvm::reverse(materializations)) 2489 if (Optional<Value> result = fn(builder, resultType, inputs, loc)) 2490 return result.getValue(); 2491 return nullptr; 2492 } 2493 2494 /// This function converts the type signature of the given block, by invoking 2495 /// 'convertSignatureArg' for each argument. This function should return a valid 2496 /// conversion for the signature on success, None otherwise. 2497 auto TypeConverter::convertBlockSignature(Block *block) 2498 -> Optional<SignatureConversion> { 2499 SignatureConversion conversion(block->getNumArguments()); 2500 if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion))) 2501 return llvm::None; 2502 return conversion; 2503 } 2504 2505 /// Create a default conversion pattern that rewrites the type signature of a 2506 /// FuncOp. 2507 namespace { 2508 struct FuncOpSignatureConversion : public OpConversionPattern<FuncOp> { 2509 FuncOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter) 2510 : OpConversionPattern(converter, ctx) {} 2511 2512 /// Hook for derived classes to implement combined matching and rewriting. 2513 LogicalResult 2514 matchAndRewrite(FuncOp funcOp, ArrayRef<Value> operands, 2515 ConversionPatternRewriter &rewriter) const override { 2516 FunctionType type = funcOp.getType(); 2517 2518 // Convert the original function types. 2519 TypeConverter::SignatureConversion result(type.getNumInputs()); 2520 SmallVector<Type, 1> newResults; 2521 if (failed(typeConverter->convertSignatureArgs(type.getInputs(), result)) || 2522 failed(typeConverter->convertTypes(type.getResults(), newResults)) || 2523 failed(rewriter.convertRegionTypes(&funcOp.getBody(), *typeConverter, 2524 &result))) 2525 return failure(); 2526 2527 // Update the function signature in-place. 2528 rewriter.updateRootInPlace(funcOp, [&] { 2529 funcOp.setType(FunctionType::get(result.getConvertedTypes(), newResults, 2530 funcOp.getContext())); 2531 }); 2532 return success(); 2533 } 2534 }; 2535 } // end anonymous namespace 2536 2537 void mlir::populateFuncOpTypeConversionPattern( 2538 OwningRewritePatternList &patterns, MLIRContext *ctx, 2539 TypeConverter &converter) { 2540 patterns.insert<FuncOpSignatureConversion>(ctx, converter); 2541 } 2542 2543 //===----------------------------------------------------------------------===// 2544 // ConversionTarget 2545 //===----------------------------------------------------------------------===// 2546 2547 /// Register a legality action for the given operation. 2548 void ConversionTarget::setOpAction(OperationName op, 2549 LegalizationAction action) { 2550 legalOperations[op] = {action, /*isRecursivelyLegal=*/false, llvm::None}; 2551 } 2552 2553 /// Register a legality action for the given dialects. 2554 void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames, 2555 LegalizationAction action) { 2556 for (StringRef dialect : dialectNames) 2557 legalDialects[dialect] = action; 2558 } 2559 2560 /// Get the legality action for the given operation. 2561 auto ConversionTarget::getOpAction(OperationName op) const 2562 -> Optional<LegalizationAction> { 2563 Optional<LegalizationInfo> info = getOpInfo(op); 2564 return info ? info->action : Optional<LegalizationAction>(); 2565 } 2566 2567 /// If the given operation instance is legal on this target, a structure 2568 /// containing legality information is returned. If the operation is not legal, 2569 /// None is returned. 2570 auto ConversionTarget::isLegal(Operation *op) const 2571 -> Optional<LegalOpDetails> { 2572 Optional<LegalizationInfo> info = getOpInfo(op->getName()); 2573 if (!info) 2574 return llvm::None; 2575 2576 // Returns true if this operation instance is known to be legal. 2577 auto isOpLegal = [&] { 2578 // Handle dynamic legality either with the provided legality function, or 2579 // the default hook on the derived instance. 2580 if (info->action == LegalizationAction::Dynamic) 2581 return info->legalityFn ? (*info->legalityFn)(op) 2582 : isDynamicallyLegal(op); 2583 2584 // Otherwise, the operation is only legal if it was marked 'Legal'. 2585 return info->action == LegalizationAction::Legal; 2586 }; 2587 if (!isOpLegal()) 2588 return llvm::None; 2589 2590 // This operation is legal, compute any additional legality information. 2591 LegalOpDetails legalityDetails; 2592 if (info->isRecursivelyLegal) { 2593 auto legalityFnIt = opRecursiveLegalityFns.find(op->getName()); 2594 if (legalityFnIt != opRecursiveLegalityFns.end()) 2595 legalityDetails.isRecursivelyLegal = legalityFnIt->second(op); 2596 else 2597 legalityDetails.isRecursivelyLegal = true; 2598 } 2599 return legalityDetails; 2600 } 2601 2602 /// Set the dynamic legality callback for the given operation. 2603 void ConversionTarget::setLegalityCallback( 2604 OperationName name, const DynamicLegalityCallbackFn &callback) { 2605 assert(callback && "expected valid legality callback"); 2606 auto infoIt = legalOperations.find(name); 2607 assert(infoIt != legalOperations.end() && 2608 infoIt->second.action == LegalizationAction::Dynamic && 2609 "expected operation to already be marked as dynamically legal"); 2610 infoIt->second.legalityFn = callback; 2611 } 2612 2613 /// Set the recursive legality callback for the given operation and mark the 2614 /// operation as recursively legal. 2615 void ConversionTarget::markOpRecursivelyLegal( 2616 OperationName name, const DynamicLegalityCallbackFn &callback) { 2617 auto infoIt = legalOperations.find(name); 2618 assert(infoIt != legalOperations.end() && 2619 infoIt->second.action != LegalizationAction::Illegal && 2620 "expected operation to already be marked as legal"); 2621 infoIt->second.isRecursivelyLegal = true; 2622 if (callback) 2623 opRecursiveLegalityFns[name] = callback; 2624 else 2625 opRecursiveLegalityFns.erase(name); 2626 } 2627 2628 /// Set the dynamic legality callback for the given dialects. 2629 void ConversionTarget::setLegalityCallback( 2630 ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) { 2631 assert(callback && "expected valid legality callback"); 2632 for (StringRef dialect : dialects) 2633 dialectLegalityFns[dialect] = callback; 2634 } 2635 2636 /// Get the legalization information for the given operation. 2637 auto ConversionTarget::getOpInfo(OperationName op) const 2638 -> Optional<LegalizationInfo> { 2639 // Check for info for this specific operation. 2640 auto it = legalOperations.find(op); 2641 if (it != legalOperations.end()) 2642 return it->second; 2643 // Check for info for the parent dialect. 2644 auto dialectIt = legalDialects.find(op.getDialect()); 2645 if (dialectIt != legalDialects.end()) { 2646 Optional<DynamicLegalityCallbackFn> callback; 2647 auto dialectFn = dialectLegalityFns.find(op.getDialect()); 2648 if (dialectFn != dialectLegalityFns.end()) 2649 callback = dialectFn->second; 2650 return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false, 2651 callback}; 2652 } 2653 // Otherwise, check if we mark unknown operations as dynamic. 2654 if (unknownOpsDynamicallyLegal) 2655 return LegalizationInfo{LegalizationAction::Dynamic, 2656 /*isRecursivelyLegal=*/false, unknownLegalityFn}; 2657 return llvm::None; 2658 } 2659 2660 //===----------------------------------------------------------------------===// 2661 // Op Conversion Entry Points 2662 //===----------------------------------------------------------------------===// 2663 2664 /// Apply a partial conversion on the given operations and all nested 2665 /// operations. This method converts as many operations to the target as 2666 /// possible, ignoring operations that failed to legalize. This method only 2667 /// returns failure if there ops explicitly marked as illegal. 2668 /// If an `unconvertedOps` set is provided, all operations that are found not 2669 /// to be legalizable to the given `target` are placed within that set. (Note 2670 /// that if there is an op explicitly marked as illegal, the conversion 2671 /// terminates and the `unconvertedOps` set will not necessarily be complete.) 2672 LogicalResult 2673 mlir::applyPartialConversion(ArrayRef<Operation *> ops, 2674 ConversionTarget &target, 2675 const FrozenRewritePatternList &patterns, 2676 DenseSet<Operation *> *unconvertedOps) { 2677 OperationConverter opConverter(target, patterns, OpConversionMode::Partial, 2678 unconvertedOps); 2679 return opConverter.convertOperations(ops); 2680 } 2681 LogicalResult 2682 mlir::applyPartialConversion(Operation *op, ConversionTarget &target, 2683 const FrozenRewritePatternList &patterns, 2684 DenseSet<Operation *> *unconvertedOps) { 2685 return applyPartialConversion(llvm::makeArrayRef(op), target, patterns, 2686 unconvertedOps); 2687 } 2688 2689 /// Apply a complete conversion on the given operations, and all nested 2690 /// operations. This method will return failure if the conversion of any 2691 /// operation fails. 2692 LogicalResult 2693 mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target, 2694 const FrozenRewritePatternList &patterns) { 2695 OperationConverter opConverter(target, patterns, OpConversionMode::Full); 2696 return opConverter.convertOperations(ops); 2697 } 2698 LogicalResult 2699 mlir::applyFullConversion(Operation *op, ConversionTarget &target, 2700 const FrozenRewritePatternList &patterns) { 2701 return applyFullConversion(llvm::makeArrayRef(op), target, patterns); 2702 } 2703 2704 /// Apply an analysis conversion on the given operations, and all nested 2705 /// operations. This method analyzes which operations would be successfully 2706 /// converted to the target if a conversion was applied. All operations that 2707 /// were found to be legalizable to the given 'target' are placed within the 2708 /// provided 'convertedOps' set; note that no actual rewrites are applied to the 2709 /// operations on success and only pre-existing operations are added to the set. 2710 LogicalResult 2711 mlir::applyAnalysisConversion(ArrayRef<Operation *> ops, 2712 ConversionTarget &target, 2713 const FrozenRewritePatternList &patterns, 2714 DenseSet<Operation *> &convertedOps) { 2715 OperationConverter opConverter(target, patterns, OpConversionMode::Analysis, 2716 &convertedOps); 2717 return opConverter.convertOperations(ops); 2718 } 2719 LogicalResult 2720 mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target, 2721 const FrozenRewritePatternList &patterns, 2722 DenseSet<Operation *> &convertedOps) { 2723 return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns, 2724 convertedOps); 2725 } 2726