1 //===- CSE.cpp - Common Sub-expression Elimination ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation pass performs a simple common sub-expression elimination 10 // algorithm on operations within a region. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PassDetail.h" 15 #include "mlir/IR/Dominance.h" 16 #include "mlir/Interfaces/SideEffectInterfaces.h" 17 #include "mlir/Pass/Pass.h" 18 #include "mlir/Transforms/Passes.h" 19 #include "llvm/ADT/DenseMapInfo.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/ScopedHashTable.h" 22 #include "llvm/Support/Allocator.h" 23 #include "llvm/Support/RecyclingAllocator.h" 24 #include <deque> 25 26 using namespace mlir; 27 28 namespace { 29 struct SimpleOperationInfo : public llvm::DenseMapInfo<Operation *> { 30 static unsigned getHashValue(const Operation *opC) { 31 return OperationEquivalence::computeHash( 32 const_cast<Operation *>(opC), 33 /*hashOperands=*/OperationEquivalence::directHashValue, 34 /*hashResults=*/OperationEquivalence::ignoreHashValue, 35 OperationEquivalence::IgnoreLocations); 36 } 37 static bool isEqual(const Operation *lhsC, const Operation *rhsC) { 38 auto *lhs = const_cast<Operation *>(lhsC); 39 auto *rhs = const_cast<Operation *>(rhsC); 40 if (lhs == rhs) 41 return true; 42 if (lhs == getTombstoneKey() || lhs == getEmptyKey() || 43 rhs == getTombstoneKey() || rhs == getEmptyKey()) 44 return false; 45 return OperationEquivalence::isEquivalentTo( 46 const_cast<Operation *>(lhsC), const_cast<Operation *>(rhsC), 47 /*mapOperands=*/OperationEquivalence::exactValueMatch, 48 /*mapResults=*/OperationEquivalence::ignoreValueEquivalence, 49 OperationEquivalence::IgnoreLocations); 50 } 51 }; 52 } // namespace 53 54 namespace { 55 /// Simple common sub-expression elimination. 56 struct CSE : public CSEBase<CSE> { 57 /// Shared implementation of operation elimination and scoped map definitions. 58 using AllocatorTy = llvm::RecyclingAllocator< 59 llvm::BumpPtrAllocator, 60 llvm::ScopedHashTableVal<Operation *, Operation *>>; 61 using ScopedMapTy = llvm::ScopedHashTable<Operation *, Operation *, 62 SimpleOperationInfo, AllocatorTy>; 63 64 /// Cache holding MemoryEffects information between two operations. The first 65 /// operation is stored has the key. The second operation is stored inside a 66 /// pair in the value. The pair also hold the MemoryEffects between those 67 /// two operations. If the MemoryEffects is nullptr then we assume there is 68 /// no operation with MemoryEffects::Write between the two operations. 69 using MemEffectsCache = 70 DenseMap<Operation *, std::pair<Operation *, MemoryEffects::Effect *>>; 71 72 /// Represents a single entry in the depth first traversal of a CFG. 73 struct CFGStackNode { 74 CFGStackNode(ScopedMapTy &knownValues, DominanceInfoNode *node) 75 : scope(knownValues), node(node), childIterator(node->begin()) {} 76 77 /// Scope for the known values. 78 ScopedMapTy::ScopeTy scope; 79 80 DominanceInfoNode *node; 81 DominanceInfoNode::const_iterator childIterator; 82 83 /// If this node has been fully processed yet or not. 84 bool processed = false; 85 }; 86 87 /// Attempt to eliminate a redundant operation. Returns success if the 88 /// operation was marked for removal, failure otherwise. 89 LogicalResult simplifyOperation(ScopedMapTy &knownValues, Operation *op, 90 bool hasSSADominance); 91 void simplifyBlock(ScopedMapTy &knownValues, Block *bb, bool hasSSADominance); 92 void simplifyRegion(ScopedMapTy &knownValues, Region ®ion); 93 94 void runOnOperation() override; 95 96 private: 97 void replaceUsesAndDelete(ScopedMapTy &knownValues, Operation *op, 98 Operation *existing, bool hasSSADominance); 99 100 /// Check if there is side-effecting operations other than the given effect 101 /// between the two operations. 102 bool hasOtherSideEffectingOpInBetween(Operation *fromOp, Operation *toOp); 103 104 /// Operations marked as dead and to be erased. 105 std::vector<Operation *> opsToErase; 106 DominanceInfo *domInfo = nullptr; 107 MemEffectsCache memEffectsCache; 108 }; 109 } // namespace 110 111 void CSE::replaceUsesAndDelete(ScopedMapTy &knownValues, Operation *op, 112 Operation *existing, bool hasSSADominance) { 113 // If we find one then replace all uses of the current operation with the 114 // existing one and mark it for deletion. We can only replace an operand in 115 // an operation if it has not been visited yet. 116 if (hasSSADominance) { 117 // If the region has SSA dominance, then we are guaranteed to have not 118 // visited any use of the current operation. 119 op->replaceAllUsesWith(existing); 120 opsToErase.push_back(op); 121 } else { 122 // When the region does not have SSA dominance, we need to check if we 123 // have visited a use before replacing any use. 124 for (auto it : llvm::zip(op->getResults(), existing->getResults())) { 125 std::get<0>(it).replaceUsesWithIf( 126 std::get<1>(it), [&](OpOperand &operand) { 127 return !knownValues.count(operand.getOwner()); 128 }); 129 } 130 131 // There may be some remaining uses of the operation. 132 if (op->use_empty()) 133 opsToErase.push_back(op); 134 } 135 136 // If the existing operation has an unknown location and the current 137 // operation doesn't, then set the existing op's location to that of the 138 // current op. 139 if (existing->getLoc().isa<UnknownLoc>() && !op->getLoc().isa<UnknownLoc>()) 140 existing->setLoc(op->getLoc()); 141 142 ++numCSE; 143 } 144 145 bool CSE::hasOtherSideEffectingOpInBetween(Operation *fromOp, Operation *toOp) { 146 assert(fromOp->getBlock() == toOp->getBlock()); 147 assert( 148 isa<MemoryEffectOpInterface>(fromOp) && 149 cast<MemoryEffectOpInterface>(fromOp).hasEffect<MemoryEffects::Read>() && 150 isa<MemoryEffectOpInterface>(toOp) && 151 cast<MemoryEffectOpInterface>(toOp).hasEffect<MemoryEffects::Read>()); 152 Operation *nextOp = fromOp->getNextNode(); 153 auto result = 154 memEffectsCache.try_emplace(fromOp, std::make_pair(fromOp, nullptr)); 155 if (result.second) { 156 auto memEffectsCachePair = result.first->second; 157 if (memEffectsCachePair.second == nullptr) { 158 // No MemoryEffects::Write has been detected until the cached operation. 159 // Continue looking from the cached operation to toOp. 160 nextOp = memEffectsCachePair.first; 161 } else { 162 // MemoryEffects::Write has been detected before so there is no need to 163 // check further. 164 return true; 165 } 166 } 167 while (nextOp && nextOp != toOp) { 168 auto nextOpMemEffects = dyn_cast<MemoryEffectOpInterface>(nextOp); 169 // TODO: Do we need to handle other effects generically? 170 // If the operation does not implement the MemoryEffectOpInterface we 171 // conservatively assumes it writes. 172 if ((nextOpMemEffects && 173 nextOpMemEffects.hasEffect<MemoryEffects::Write>()) || 174 !nextOpMemEffects) { 175 result.first->second = 176 std::make_pair(nextOp, MemoryEffects::Write::get()); 177 return true; 178 } 179 nextOp = nextOp->getNextNode(); 180 } 181 result.first->second = std::make_pair(toOp, nullptr); 182 return false; 183 } 184 185 /// Attempt to eliminate a redundant operation. 186 LogicalResult CSE::simplifyOperation(ScopedMapTy &knownValues, Operation *op, 187 bool hasSSADominance) { 188 // Don't simplify terminator operations. 189 if (op->hasTrait<OpTrait::IsTerminator>()) 190 return failure(); 191 192 // If the operation is already trivially dead just add it to the erase list. 193 if (isOpTriviallyDead(op)) { 194 opsToErase.push_back(op); 195 ++numDCE; 196 return success(); 197 } 198 199 // Don't simplify operations with nested blocks. We don't currently model 200 // equality comparisons correctly among other things. It is also unclear 201 // whether we would want to CSE such operations. 202 if (op->getNumRegions() != 0) 203 return failure(); 204 205 // Some simple use case of operation with memory side-effect are dealt with 206 // here. Operations with no side-effect are done after. 207 if (!MemoryEffectOpInterface::hasNoEffect(op)) { 208 auto memEffects = dyn_cast<MemoryEffectOpInterface>(op); 209 // TODO: Only basic use case for operations with MemoryEffects::Read can be 210 // eleminated now. More work needs to be done for more complicated patterns 211 // and other side-effects. 212 if (!memEffects || !memEffects.onlyHasEffect<MemoryEffects::Read>()) 213 return failure(); 214 215 // Look for an existing definition for the operation. 216 if (auto *existing = knownValues.lookup(op)) { 217 if (existing->getBlock() == op->getBlock() && 218 !hasOtherSideEffectingOpInBetween(existing, op)) { 219 // The operation that can be deleted has been reach with no 220 // side-effecting operations in between the existing operation and 221 // this one so we can remove the duplicate. 222 replaceUsesAndDelete(knownValues, op, existing, hasSSADominance); 223 return success(); 224 } 225 } 226 knownValues.insert(op, op); 227 return failure(); 228 } 229 230 // Look for an existing definition for the operation. 231 if (auto *existing = knownValues.lookup(op)) { 232 replaceUsesAndDelete(knownValues, op, existing, hasSSADominance); 233 ++numCSE; 234 return success(); 235 } 236 237 // Otherwise, we add this operation to the known values map. 238 knownValues.insert(op, op); 239 return failure(); 240 } 241 242 void CSE::simplifyBlock(ScopedMapTy &knownValues, Block *bb, 243 bool hasSSADominance) { 244 for (auto &op : *bb) { 245 // If the operation is simplified, we don't process any held regions. 246 if (succeeded(simplifyOperation(knownValues, &op, hasSSADominance))) 247 continue; 248 249 // Most operations don't have regions, so fast path that case. 250 if (op.getNumRegions() == 0) 251 continue; 252 253 // If this operation is isolated above, we can't process nested regions with 254 // the given 'knownValues' map. This would cause the insertion of implicit 255 // captures in explicit capture only regions. 256 if (op.mightHaveTrait<OpTrait::IsIsolatedFromAbove>()) { 257 ScopedMapTy nestedKnownValues; 258 for (auto ®ion : op.getRegions()) 259 simplifyRegion(nestedKnownValues, region); 260 continue; 261 } 262 263 // Otherwise, process nested regions normally. 264 for (auto ®ion : op.getRegions()) 265 simplifyRegion(knownValues, region); 266 } 267 // Clear the MemoryEffects cache since its usage is by block only. 268 memEffectsCache.clear(); 269 } 270 271 void CSE::simplifyRegion(ScopedMapTy &knownValues, Region ®ion) { 272 // If the region is empty there is nothing to do. 273 if (region.empty()) 274 return; 275 276 bool hasSSADominance = domInfo->hasSSADominance(®ion); 277 278 // If the region only contains one block, then simplify it directly. 279 if (region.hasOneBlock()) { 280 ScopedMapTy::ScopeTy scope(knownValues); 281 simplifyBlock(knownValues, ®ion.front(), hasSSADominance); 282 return; 283 } 284 285 // If the region does not have dominanceInfo, then skip it. 286 // TODO: Regions without SSA dominance should define a different 287 // traversal order which is appropriate and can be used here. 288 if (!hasSSADominance) 289 return; 290 291 // Note, deque is being used here because there was significant performance 292 // gains over vector when the container becomes very large due to the 293 // specific access patterns. If/when these performance issues are no 294 // longer a problem we can change this to vector. For more information see 295 // the llvm mailing list discussion on this: 296 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 297 std::deque<std::unique_ptr<CFGStackNode>> stack; 298 299 // Process the nodes of the dom tree for this region. 300 stack.emplace_back(std::make_unique<CFGStackNode>( 301 knownValues, domInfo->getRootNode(®ion))); 302 303 while (!stack.empty()) { 304 auto ¤tNode = stack.back(); 305 306 // Check to see if we need to process this node. 307 if (!currentNode->processed) { 308 currentNode->processed = true; 309 simplifyBlock(knownValues, currentNode->node->getBlock(), 310 hasSSADominance); 311 } 312 313 // Otherwise, check to see if we need to process a child node. 314 if (currentNode->childIterator != currentNode->node->end()) { 315 auto *childNode = *(currentNode->childIterator++); 316 stack.emplace_back( 317 std::make_unique<CFGStackNode>(knownValues, childNode)); 318 } else { 319 // Finally, if the node and all of its children have been processed 320 // then we delete the node. 321 stack.pop_back(); 322 } 323 } 324 } 325 326 void CSE::runOnOperation() { 327 /// A scoped hash table of defining operations within a region. 328 ScopedMapTy knownValues; 329 330 domInfo = &getAnalysis<DominanceInfo>(); 331 Operation *rootOp = getOperation(); 332 333 for (auto ®ion : rootOp->getRegions()) 334 simplifyRegion(knownValues, region); 335 336 // If no operations were erased, then we mark all analyses as preserved. 337 if (opsToErase.empty()) 338 return markAllAnalysesPreserved(); 339 340 /// Erase any operations that were marked as dead during simplification. 341 for (auto *op : opsToErase) 342 op->erase(); 343 opsToErase.clear(); 344 345 // We currently don't remove region operations, so mark dominance as 346 // preserved. 347 markAnalysesPreserved<DominanceInfo, PostDominanceInfo>(); 348 domInfo = nullptr; 349 } 350 351 std::unique_ptr<Pass> mlir::createCSEPass() { return std::make_unique<CSE>(); } 352