1 //===- CSE.cpp - Common Sub-expression Elimination ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation pass performs a simple common sub-expression elimination
10 // algorithm on operations within a region.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PassDetail.h"
15 #include "mlir/IR/Dominance.h"
16 #include "mlir/Interfaces/SideEffectInterfaces.h"
17 #include "mlir/Pass/Pass.h"
18 #include "mlir/Transforms/Passes.h"
19 #include "llvm/ADT/DenseMapInfo.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/ScopedHashTable.h"
22 #include "llvm/Support/Allocator.h"
23 #include "llvm/Support/RecyclingAllocator.h"
24 #include <deque>
25 
26 using namespace mlir;
27 
28 namespace {
29 struct SimpleOperationInfo : public llvm::DenseMapInfo<Operation *> {
getHashValue__anond18698720111::SimpleOperationInfo30   static unsigned getHashValue(const Operation *opC) {
31     return OperationEquivalence::computeHash(
32         const_cast<Operation *>(opC),
33         /*hashOperands=*/OperationEquivalence::directHashValue,
34         /*hashResults=*/OperationEquivalence::ignoreHashValue,
35         OperationEquivalence::IgnoreLocations);
36   }
isEqual__anond18698720111::SimpleOperationInfo37   static bool isEqual(const Operation *lhsC, const Operation *rhsC) {
38     auto *lhs = const_cast<Operation *>(lhsC);
39     auto *rhs = const_cast<Operation *>(rhsC);
40     if (lhs == rhs)
41       return true;
42     if (lhs == getTombstoneKey() || lhs == getEmptyKey() ||
43         rhs == getTombstoneKey() || rhs == getEmptyKey())
44       return false;
45     return OperationEquivalence::isEquivalentTo(
46         const_cast<Operation *>(lhsC), const_cast<Operation *>(rhsC),
47         /*mapOperands=*/OperationEquivalence::exactValueMatch,
48         /*mapResults=*/OperationEquivalence::ignoreValueEquivalence,
49         OperationEquivalence::IgnoreLocations);
50   }
51 };
52 } // namespace
53 
54 namespace {
55 /// Simple common sub-expression elimination.
56 struct CSE : public CSEBase<CSE> {
57   /// Shared implementation of operation elimination and scoped map definitions.
58   using AllocatorTy = llvm::RecyclingAllocator<
59       llvm::BumpPtrAllocator,
60       llvm::ScopedHashTableVal<Operation *, Operation *>>;
61   using ScopedMapTy = llvm::ScopedHashTable<Operation *, Operation *,
62                                             SimpleOperationInfo, AllocatorTy>;
63 
64   /// Cache holding MemoryEffects information between two operations. The first
65   /// operation is stored has the key. The second operation is stored inside a
66   /// pair in the value. The pair also hold the MemoryEffects between those
67   /// two operations. If the MemoryEffects is nullptr then we assume there is
68   /// no operation with MemoryEffects::Write between the two operations.
69   using MemEffectsCache =
70       DenseMap<Operation *, std::pair<Operation *, MemoryEffects::Effect *>>;
71 
72   /// Represents a single entry in the depth first traversal of a CFG.
73   struct CFGStackNode {
CFGStackNode__anond18698720211::CSE::CFGStackNode74     CFGStackNode(ScopedMapTy &knownValues, DominanceInfoNode *node)
75         : scope(knownValues), node(node), childIterator(node->begin()) {}
76 
77     /// Scope for the known values.
78     ScopedMapTy::ScopeTy scope;
79 
80     DominanceInfoNode *node;
81     DominanceInfoNode::const_iterator childIterator;
82 
83     /// If this node has been fully processed yet or not.
84     bool processed = false;
85   };
86 
87   /// Attempt to eliminate a redundant operation. Returns success if the
88   /// operation was marked for removal, failure otherwise.
89   LogicalResult simplifyOperation(ScopedMapTy &knownValues, Operation *op,
90                                   bool hasSSADominance);
91   void simplifyBlock(ScopedMapTy &knownValues, Block *bb, bool hasSSADominance);
92   void simplifyRegion(ScopedMapTy &knownValues, Region &region);
93 
94   void runOnOperation() override;
95 
96 private:
97   void replaceUsesAndDelete(ScopedMapTy &knownValues, Operation *op,
98                             Operation *existing, bool hasSSADominance);
99 
100   /// Check if there is side-effecting operations other than the given effect
101   /// between the two operations.
102   bool hasOtherSideEffectingOpInBetween(Operation *fromOp, Operation *toOp);
103 
104   /// Operations marked as dead and to be erased.
105   std::vector<Operation *> opsToErase;
106   DominanceInfo *domInfo = nullptr;
107   MemEffectsCache memEffectsCache;
108 };
109 } // namespace
110 
replaceUsesAndDelete(ScopedMapTy & knownValues,Operation * op,Operation * existing,bool hasSSADominance)111 void CSE::replaceUsesAndDelete(ScopedMapTy &knownValues, Operation *op,
112                                Operation *existing, bool hasSSADominance) {
113   // If we find one then replace all uses of the current operation with the
114   // existing one and mark it for deletion. We can only replace an operand in
115   // an operation if it has not been visited yet.
116   if (hasSSADominance) {
117     // If the region has SSA dominance, then we are guaranteed to have not
118     // visited any use of the current operation.
119     op->replaceAllUsesWith(existing);
120     opsToErase.push_back(op);
121   } else {
122     // When the region does not have SSA dominance, we need to check if we
123     // have visited a use before replacing any use.
124     for (auto it : llvm::zip(op->getResults(), existing->getResults())) {
125       std::get<0>(it).replaceUsesWithIf(
126           std::get<1>(it), [&](OpOperand &operand) {
127             return !knownValues.count(operand.getOwner());
128           });
129     }
130 
131     // There may be some remaining uses of the operation.
132     if (op->use_empty())
133       opsToErase.push_back(op);
134   }
135 
136   // If the existing operation has an unknown location and the current
137   // operation doesn't, then set the existing op's location to that of the
138   // current op.
139   if (existing->getLoc().isa<UnknownLoc>() && !op->getLoc().isa<UnknownLoc>())
140     existing->setLoc(op->getLoc());
141 
142   ++numCSE;
143 }
144 
hasOtherSideEffectingOpInBetween(Operation * fromOp,Operation * toOp)145 bool CSE::hasOtherSideEffectingOpInBetween(Operation *fromOp, Operation *toOp) {
146   assert(fromOp->getBlock() == toOp->getBlock());
147   assert(
148       isa<MemoryEffectOpInterface>(fromOp) &&
149       cast<MemoryEffectOpInterface>(fromOp).hasEffect<MemoryEffects::Read>() &&
150       isa<MemoryEffectOpInterface>(toOp) &&
151       cast<MemoryEffectOpInterface>(toOp).hasEffect<MemoryEffects::Read>());
152   Operation *nextOp = fromOp->getNextNode();
153   auto result =
154       memEffectsCache.try_emplace(fromOp, std::make_pair(fromOp, nullptr));
155   if (result.second) {
156     auto memEffectsCachePair = result.first->second;
157     if (memEffectsCachePair.second == nullptr) {
158       // No MemoryEffects::Write has been detected until the cached operation.
159       // Continue looking from the cached operation to toOp.
160       nextOp = memEffectsCachePair.first;
161     } else {
162       // MemoryEffects::Write has been detected before so there is no need to
163       // check further.
164       return true;
165     }
166   }
167   while (nextOp && nextOp != toOp) {
168     auto nextOpMemEffects = dyn_cast<MemoryEffectOpInterface>(nextOp);
169     // TODO: Do we need to handle other effects generically?
170     // If the operation does not implement the MemoryEffectOpInterface we
171     // conservatively assumes it writes.
172     if ((nextOpMemEffects &&
173          nextOpMemEffects.hasEffect<MemoryEffects::Write>()) ||
174         !nextOpMemEffects) {
175       result.first->second =
176           std::make_pair(nextOp, MemoryEffects::Write::get());
177       return true;
178     }
179     nextOp = nextOp->getNextNode();
180   }
181   result.first->second = std::make_pair(toOp, nullptr);
182   return false;
183 }
184 
185 /// Attempt to eliminate a redundant operation.
simplifyOperation(ScopedMapTy & knownValues,Operation * op,bool hasSSADominance)186 LogicalResult CSE::simplifyOperation(ScopedMapTy &knownValues, Operation *op,
187                                      bool hasSSADominance) {
188   // Don't simplify terminator operations.
189   if (op->hasTrait<OpTrait::IsTerminator>())
190     return failure();
191 
192   // If the operation is already trivially dead just add it to the erase list.
193   if (isOpTriviallyDead(op)) {
194     opsToErase.push_back(op);
195     ++numDCE;
196     return success();
197   }
198 
199   // Don't simplify operations with nested blocks. We don't currently model
200   // equality comparisons correctly among other things. It is also unclear
201   // whether we would want to CSE such operations.
202   if (op->getNumRegions() != 0)
203     return failure();
204 
205   // Some simple use case of operation with memory side-effect are dealt with
206   // here. Operations with no side-effect are done after.
207   if (!MemoryEffectOpInterface::hasNoEffect(op)) {
208     auto memEffects = dyn_cast<MemoryEffectOpInterface>(op);
209     // TODO: Only basic use case for operations with MemoryEffects::Read can be
210     // eleminated now. More work needs to be done for more complicated patterns
211     // and other side-effects.
212     if (!memEffects || !memEffects.onlyHasEffect<MemoryEffects::Read>())
213       return failure();
214 
215     // Look for an existing definition for the operation.
216     if (auto *existing = knownValues.lookup(op)) {
217       if (existing->getBlock() == op->getBlock() &&
218           !hasOtherSideEffectingOpInBetween(existing, op)) {
219         // The operation that can be deleted has been reach with no
220         // side-effecting operations in between the existing operation and
221         // this one so we can remove the duplicate.
222         replaceUsesAndDelete(knownValues, op, existing, hasSSADominance);
223         return success();
224       }
225     }
226     knownValues.insert(op, op);
227     return failure();
228   }
229 
230   // Look for an existing definition for the operation.
231   if (auto *existing = knownValues.lookup(op)) {
232     replaceUsesAndDelete(knownValues, op, existing, hasSSADominance);
233     ++numCSE;
234     return success();
235   }
236 
237   // Otherwise, we add this operation to the known values map.
238   knownValues.insert(op, op);
239   return failure();
240 }
241 
simplifyBlock(ScopedMapTy & knownValues,Block * bb,bool hasSSADominance)242 void CSE::simplifyBlock(ScopedMapTy &knownValues, Block *bb,
243                         bool hasSSADominance) {
244   for (auto &op : *bb) {
245     // If the operation is simplified, we don't process any held regions.
246     if (succeeded(simplifyOperation(knownValues, &op, hasSSADominance)))
247       continue;
248 
249     // Most operations don't have regions, so fast path that case.
250     if (op.getNumRegions() == 0)
251       continue;
252 
253     // If this operation is isolated above, we can't process nested regions with
254     // the given 'knownValues' map. This would cause the insertion of implicit
255     // captures in explicit capture only regions.
256     if (op.mightHaveTrait<OpTrait::IsIsolatedFromAbove>()) {
257       ScopedMapTy nestedKnownValues;
258       for (auto &region : op.getRegions())
259         simplifyRegion(nestedKnownValues, region);
260       continue;
261     }
262 
263     // Otherwise, process nested regions normally.
264     for (auto &region : op.getRegions())
265       simplifyRegion(knownValues, region);
266   }
267   // Clear the MemoryEffects cache since its usage is by block only.
268   memEffectsCache.clear();
269 }
270 
simplifyRegion(ScopedMapTy & knownValues,Region & region)271 void CSE::simplifyRegion(ScopedMapTy &knownValues, Region &region) {
272   // If the region is empty there is nothing to do.
273   if (region.empty())
274     return;
275 
276   bool hasSSADominance = domInfo->hasSSADominance(&region);
277 
278   // If the region only contains one block, then simplify it directly.
279   if (region.hasOneBlock()) {
280     ScopedMapTy::ScopeTy scope(knownValues);
281     simplifyBlock(knownValues, &region.front(), hasSSADominance);
282     return;
283   }
284 
285   // If the region does not have dominanceInfo, then skip it.
286   // TODO: Regions without SSA dominance should define a different
287   // traversal order which is appropriate and can be used here.
288   if (!hasSSADominance)
289     return;
290 
291   // Note, deque is being used here because there was significant performance
292   // gains over vector when the container becomes very large due to the
293   // specific access patterns. If/when these performance issues are no
294   // longer a problem we can change this to vector. For more information see
295   // the llvm mailing list discussion on this:
296   // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
297   std::deque<std::unique_ptr<CFGStackNode>> stack;
298 
299   // Process the nodes of the dom tree for this region.
300   stack.emplace_back(std::make_unique<CFGStackNode>(
301       knownValues, domInfo->getRootNode(&region)));
302 
303   while (!stack.empty()) {
304     auto &currentNode = stack.back();
305 
306     // Check to see if we need to process this node.
307     if (!currentNode->processed) {
308       currentNode->processed = true;
309       simplifyBlock(knownValues, currentNode->node->getBlock(),
310                     hasSSADominance);
311     }
312 
313     // Otherwise, check to see if we need to process a child node.
314     if (currentNode->childIterator != currentNode->node->end()) {
315       auto *childNode = *(currentNode->childIterator++);
316       stack.emplace_back(
317           std::make_unique<CFGStackNode>(knownValues, childNode));
318     } else {
319       // Finally, if the node and all of its children have been processed
320       // then we delete the node.
321       stack.pop_back();
322     }
323   }
324 }
325 
runOnOperation()326 void CSE::runOnOperation() {
327   /// A scoped hash table of defining operations within a region.
328   ScopedMapTy knownValues;
329 
330   domInfo = &getAnalysis<DominanceInfo>();
331   Operation *rootOp = getOperation();
332 
333   for (auto &region : rootOp->getRegions())
334     simplifyRegion(knownValues, region);
335 
336   // If no operations were erased, then we mark all analyses as preserved.
337   if (opsToErase.empty())
338     return markAllAnalysesPreserved();
339 
340   /// Erase any operations that were marked as dead during simplification.
341   for (auto *op : opsToErase)
342     op->erase();
343   opsToErase.clear();
344 
345   // We currently don't remove region operations, so mark dominance as
346   // preserved.
347   markAnalysesPreserved<DominanceInfo, PostDominanceInfo>();
348   domInfo = nullptr;
349 }
350 
createCSEPass()351 std::unique_ptr<Pass> mlir::createCSEPass() { return std::make_unique<CSE>(); }
352