1 //===- CSE.cpp - Common Sub-expression Elimination ------------------------===// 2 // 3 // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation pass performs a simple common sub-expression elimination 10 // algorithm on operations within a function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Analysis/Dominance.h" 15 #include "mlir/IR/Attributes.h" 16 #include "mlir/IR/Builders.h" 17 #include "mlir/IR/Function.h" 18 #include "mlir/Pass/Pass.h" 19 #include "mlir/Support/Functional.h" 20 #include "mlir/Transforms/Passes.h" 21 #include "mlir/Transforms/Utils.h" 22 #include "llvm/ADT/DenseMapInfo.h" 23 #include "llvm/ADT/Hashing.h" 24 #include "llvm/ADT/ScopedHashTable.h" 25 #include "llvm/Support/Allocator.h" 26 #include "llvm/Support/RecyclingAllocator.h" 27 #include <deque> 28 using namespace mlir; 29 30 namespace { 31 // TODO(riverriddle) Handle commutative operations. 32 struct SimpleOperationInfo : public llvm::DenseMapInfo<Operation *> { 33 static unsigned getHashValue(const Operation *opC) { 34 auto *op = const_cast<Operation *>(opC); 35 // Hash the operations based upon their: 36 // - Operation Name 37 // - Attributes 38 // - Result Types 39 // - Operands 40 return hash_combine( 41 op->getName(), op->getAttrList().getDictionary(), 42 hash_combine_range(op->result_type_begin(), op->result_type_end()), 43 hash_combine_range(op->operand_begin(), op->operand_end())); 44 } 45 static bool isEqual(const Operation *lhsC, const Operation *rhsC) { 46 auto *lhs = const_cast<Operation *>(lhsC); 47 auto *rhs = const_cast<Operation *>(rhsC); 48 if (lhs == rhs) 49 return true; 50 if (lhs == getTombstoneKey() || lhs == getEmptyKey() || 51 rhs == getTombstoneKey() || rhs == getEmptyKey()) 52 return false; 53 54 // Compare the operation name. 55 if (lhs->getName() != rhs->getName()) 56 return false; 57 // Check operand and result type counts. 58 if (lhs->getNumOperands() != rhs->getNumOperands() || 59 lhs->getNumResults() != rhs->getNumResults()) 60 return false; 61 // Compare attributes. 62 if (lhs->getAttrList() != rhs->getAttrList()) 63 return false; 64 // Compare operands. 65 if (!std::equal(lhs->operand_begin(), lhs->operand_end(), 66 rhs->operand_begin())) 67 return false; 68 // Compare result types. 69 return std::equal(lhs->result_type_begin(), lhs->result_type_end(), 70 rhs->result_type_begin()); 71 } 72 }; 73 } // end anonymous namespace 74 75 namespace { 76 /// Simple common sub-expression elimination. 77 struct CSE : public OperationPass<CSE> { 78 CSE() = default; 79 CSE(const CSE &) {} 80 81 /// Shared implementation of operation elimination and scoped map definitions. 82 using AllocatorTy = llvm::RecyclingAllocator< 83 llvm::BumpPtrAllocator, 84 llvm::ScopedHashTableVal<Operation *, Operation *>>; 85 using ScopedMapTy = llvm::ScopedHashTable<Operation *, Operation *, 86 SimpleOperationInfo, AllocatorTy>; 87 88 /// Represents a single entry in the depth first traversal of a CFG. 89 struct CFGStackNode { 90 CFGStackNode(ScopedMapTy &knownValues, DominanceInfoNode *node) 91 : scope(knownValues), node(node), childIterator(node->begin()), 92 processed(false) {} 93 94 /// Scope for the known values. 95 ScopedMapTy::ScopeTy scope; 96 97 DominanceInfoNode *node; 98 DominanceInfoNode::iterator childIterator; 99 100 /// If this node has been fully processed yet or not. 101 bool processed; 102 }; 103 104 /// Attempt to eliminate a redundant operation. Returns success if the 105 /// operation was marked for removal, failure otherwise. 106 LogicalResult simplifyOperation(ScopedMapTy &knownValues, Operation *op); 107 108 void simplifyBlock(ScopedMapTy &knownValues, DominanceInfo &domInfo, 109 Block *bb); 110 void simplifyRegion(ScopedMapTy &knownValues, DominanceInfo &domInfo, 111 Region ®ion); 112 113 void runOnOperation() override; 114 115 private: 116 /// Operations marked as dead and to be erased. 117 std::vector<Operation *> opsToErase; 118 119 /// Statistics for CSE. 120 Statistic numCSE{this, "num-cse'd", "Number of operations CSE'd"}; 121 Statistic numDCE{this, "num-dce'd", "Number of operations trivially DCE'd"}; 122 }; 123 } // end anonymous namespace 124 125 /// Attempt to eliminate a redundant operation. 126 LogicalResult CSE::simplifyOperation(ScopedMapTy &knownValues, Operation *op) { 127 // Don't simplify operations with nested blocks. We don't currently model 128 // equality comparisons correctly among other things. It is also unclear 129 // whether we would want to CSE such operations. 130 if (op->getNumRegions() != 0) 131 return failure(); 132 133 // TODO(riverriddle) We currently only eliminate non side-effecting 134 // operations. 135 if (!op->hasNoSideEffect()) 136 return failure(); 137 138 // If the operation is already trivially dead just add it to the erase list. 139 if (op->use_empty()) { 140 opsToErase.push_back(op); 141 ++numDCE; 142 return success(); 143 } 144 145 // Look for an existing definition for the operation. 146 if (auto *existing = knownValues.lookup(op)) { 147 // If we find one then replace all uses of the current operation with the 148 // existing one and mark it for deletion. 149 op->replaceAllUsesWith(existing); 150 opsToErase.push_back(op); 151 152 // If the existing operation has an unknown location and the current 153 // operation doesn't, then set the existing op's location to that of the 154 // current op. 155 if (existing->getLoc().isa<UnknownLoc>() && 156 !op->getLoc().isa<UnknownLoc>()) { 157 existing->setLoc(op->getLoc()); 158 } 159 160 ++numCSE; 161 return success(); 162 } 163 164 // Otherwise, we add this operation to the known values map. 165 knownValues.insert(op, op); 166 return failure(); 167 } 168 169 void CSE::simplifyBlock(ScopedMapTy &knownValues, DominanceInfo &domInfo, 170 Block *bb) { 171 for (auto &inst : *bb) { 172 // If the operation is simplified, we don't process any held regions. 173 if (succeeded(simplifyOperation(knownValues, &inst))) 174 continue; 175 176 // If this operation is isolated above, we can't process nested regions with 177 // the given 'knownValues' map. This would cause the insertion of implicit 178 // captures in explicit capture only regions. 179 if (!inst.isRegistered() || inst.isKnownIsolatedFromAbove()) { 180 ScopedMapTy nestedKnownValues; 181 for (auto ®ion : inst.getRegions()) 182 simplifyRegion(nestedKnownValues, domInfo, region); 183 continue; 184 } 185 186 // Otherwise, process nested regions normally. 187 for (auto ®ion : inst.getRegions()) 188 simplifyRegion(knownValues, domInfo, region); 189 } 190 } 191 192 void CSE::simplifyRegion(ScopedMapTy &knownValues, DominanceInfo &domInfo, 193 Region ®ion) { 194 // If the region is empty there is nothing to do. 195 if (region.empty()) 196 return; 197 198 // If the region only contains one block, then simplify it directly. 199 if (std::next(region.begin()) == region.end()) { 200 ScopedMapTy::ScopeTy scope(knownValues); 201 simplifyBlock(knownValues, domInfo, ®ion.front()); 202 return; 203 } 204 205 // Note, deque is being used here because there was significant performance 206 // gains over vector when the container becomes very large due to the 207 // specific access patterns. If/when these performance issues are no 208 // longer a problem we can change this to vector. For more information see 209 // the llvm mailing list discussion on this: 210 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 211 std::deque<std::unique_ptr<CFGStackNode>> stack; 212 213 // Process the nodes of the dom tree for this region. 214 stack.emplace_back(std::make_unique<CFGStackNode>( 215 knownValues, domInfo.getRootNode(®ion))); 216 217 while (!stack.empty()) { 218 auto ¤tNode = stack.back(); 219 220 // Check to see if we need to process this node. 221 if (!currentNode->processed) { 222 currentNode->processed = true; 223 simplifyBlock(knownValues, domInfo, currentNode->node->getBlock()); 224 } 225 226 // Otherwise, check to see if we need to process a child node. 227 if (currentNode->childIterator != currentNode->node->end()) { 228 auto *childNode = *(currentNode->childIterator++); 229 stack.emplace_back( 230 std::make_unique<CFGStackNode>(knownValues, childNode)); 231 } else { 232 // Finally, if the node and all of its children have been processed 233 // then we delete the node. 234 stack.pop_back(); 235 } 236 } 237 } 238 239 void CSE::runOnOperation() { 240 /// A scoped hash table of defining operations within a region. 241 ScopedMapTy knownValues; 242 243 DominanceInfo &domInfo = getAnalysis<DominanceInfo>(); 244 for (Region ®ion : getOperation()->getRegions()) 245 simplifyRegion(knownValues, domInfo, region); 246 247 // If no operations were erased, then we mark all analyses as preserved. 248 if (opsToErase.empty()) 249 return markAllAnalysesPreserved(); 250 251 /// Erase any operations that were marked as dead during simplification. 252 for (auto *op : opsToErase) 253 op->erase(); 254 opsToErase.clear(); 255 256 // We currently don't remove region operations, so mark dominance as 257 // preserved. 258 markAnalysesPreserved<DominanceInfo, PostDominanceInfo>(); 259 } 260 261 std::unique_ptr<Pass> mlir::createCSEPass() { return std::make_unique<CSE>(); } 262 263 static PassRegistration<CSE> pass("cse", "Eliminate common sub-expressions"); 264