1 //===- CSE.cpp - Common Sub-expression Elimination ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation pass performs a simple common sub-expression elimination 10 // algorithm on operations within a function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Analysis/Dominance.h" 15 #include "mlir/IR/Attributes.h" 16 #include "mlir/IR/Builders.h" 17 #include "mlir/IR/Function.h" 18 #include "mlir/Pass/Pass.h" 19 #include "mlir/Support/Functional.h" 20 #include "mlir/Transforms/Passes.h" 21 #include "mlir/Transforms/Utils.h" 22 #include "llvm/ADT/DenseMapInfo.h" 23 #include "llvm/ADT/Hashing.h" 24 #include "llvm/ADT/ScopedHashTable.h" 25 #include "llvm/Support/Allocator.h" 26 #include "llvm/Support/RecyclingAllocator.h" 27 #include <deque> 28 using namespace mlir; 29 30 namespace { 31 // TODO(riverriddle) Handle commutative operations. 32 struct SimpleOperationInfo : public llvm::DenseMapInfo<Operation *> { 33 static unsigned getHashValue(const Operation *opC) { 34 auto *op = const_cast<Operation *>(opC); 35 // Hash the operations based upon their: 36 // - Operation Name 37 // - Attributes 38 // - Result Types 39 // - Operands 40 return llvm::hash_combine( 41 op->getName(), op->getAttrList().getDictionary(), op->getResultTypes(), 42 llvm::hash_combine_range(op->operand_begin(), op->operand_end())); 43 } 44 static bool isEqual(const Operation *lhsC, const Operation *rhsC) { 45 auto *lhs = const_cast<Operation *>(lhsC); 46 auto *rhs = const_cast<Operation *>(rhsC); 47 if (lhs == rhs) 48 return true; 49 if (lhs == getTombstoneKey() || lhs == getEmptyKey() || 50 rhs == getTombstoneKey() || rhs == getEmptyKey()) 51 return false; 52 53 // Compare the operation name. 54 if (lhs->getName() != rhs->getName()) 55 return false; 56 // Check operand and result type counts. 57 if (lhs->getNumOperands() != rhs->getNumOperands() || 58 lhs->getNumResults() != rhs->getNumResults()) 59 return false; 60 // Compare attributes. 61 if (lhs->getAttrList() != rhs->getAttrList()) 62 return false; 63 // Compare operands. 64 if (!std::equal(lhs->operand_begin(), lhs->operand_end(), 65 rhs->operand_begin())) 66 return false; 67 // Compare result types. 68 return std::equal(lhs->result_type_begin(), lhs->result_type_end(), 69 rhs->result_type_begin()); 70 } 71 }; 72 } // end anonymous namespace 73 74 namespace { 75 /// Simple common sub-expression elimination. 76 struct CSE : public OperationPass<CSE> { 77 CSE() = default; 78 CSE(const CSE &) {} 79 80 /// Shared implementation of operation elimination and scoped map definitions. 81 using AllocatorTy = llvm::RecyclingAllocator< 82 llvm::BumpPtrAllocator, 83 llvm::ScopedHashTableVal<Operation *, Operation *>>; 84 using ScopedMapTy = llvm::ScopedHashTable<Operation *, Operation *, 85 SimpleOperationInfo, AllocatorTy>; 86 87 /// Represents a single entry in the depth first traversal of a CFG. 88 struct CFGStackNode { 89 CFGStackNode(ScopedMapTy &knownValues, DominanceInfoNode *node) 90 : scope(knownValues), node(node), childIterator(node->begin()), 91 processed(false) {} 92 93 /// Scope for the known values. 94 ScopedMapTy::ScopeTy scope; 95 96 DominanceInfoNode *node; 97 DominanceInfoNode::iterator childIterator; 98 99 /// If this node has been fully processed yet or not. 100 bool processed; 101 }; 102 103 /// Attempt to eliminate a redundant operation. Returns success if the 104 /// operation was marked for removal, failure otherwise. 105 LogicalResult simplifyOperation(ScopedMapTy &knownValues, Operation *op); 106 107 void simplifyBlock(ScopedMapTy &knownValues, DominanceInfo &domInfo, 108 Block *bb); 109 void simplifyRegion(ScopedMapTy &knownValues, DominanceInfo &domInfo, 110 Region ®ion); 111 112 void runOnOperation() override; 113 114 private: 115 /// Operations marked as dead and to be erased. 116 std::vector<Operation *> opsToErase; 117 118 /// Statistics for CSE. 119 Statistic numCSE{this, "num-cse'd", "Number of operations CSE'd"}; 120 Statistic numDCE{this, "num-dce'd", "Number of operations trivially DCE'd"}; 121 }; 122 } // end anonymous namespace 123 124 /// Attempt to eliminate a redundant operation. 125 LogicalResult CSE::simplifyOperation(ScopedMapTy &knownValues, Operation *op) { 126 // Don't simplify operations with nested blocks. We don't currently model 127 // equality comparisons correctly among other things. It is also unclear 128 // whether we would want to CSE such operations. 129 if (op->getNumRegions() != 0) 130 return failure(); 131 132 // TODO(riverriddle) We currently only eliminate non side-effecting 133 // operations. 134 if (!op->hasNoSideEffect()) 135 return failure(); 136 137 // If the operation is already trivially dead just add it to the erase list. 138 if (op->use_empty()) { 139 opsToErase.push_back(op); 140 ++numDCE; 141 return success(); 142 } 143 144 // Look for an existing definition for the operation. 145 if (auto *existing = knownValues.lookup(op)) { 146 // If we find one then replace all uses of the current operation with the 147 // existing one and mark it for deletion. 148 op->replaceAllUsesWith(existing); 149 opsToErase.push_back(op); 150 151 // If the existing operation has an unknown location and the current 152 // operation doesn't, then set the existing op's location to that of the 153 // current op. 154 if (existing->getLoc().isa<UnknownLoc>() && 155 !op->getLoc().isa<UnknownLoc>()) { 156 existing->setLoc(op->getLoc()); 157 } 158 159 ++numCSE; 160 return success(); 161 } 162 163 // Otherwise, we add this operation to the known values map. 164 knownValues.insert(op, op); 165 return failure(); 166 } 167 168 void CSE::simplifyBlock(ScopedMapTy &knownValues, DominanceInfo &domInfo, 169 Block *bb) { 170 for (auto &inst : *bb) { 171 // If the operation is simplified, we don't process any held regions. 172 if (succeeded(simplifyOperation(knownValues, &inst))) 173 continue; 174 175 // If this operation is isolated above, we can't process nested regions with 176 // the given 'knownValues' map. This would cause the insertion of implicit 177 // captures in explicit capture only regions. 178 if (!inst.isRegistered() || inst.isKnownIsolatedFromAbove()) { 179 ScopedMapTy nestedKnownValues; 180 for (auto ®ion : inst.getRegions()) 181 simplifyRegion(nestedKnownValues, domInfo, region); 182 continue; 183 } 184 185 // Otherwise, process nested regions normally. 186 for (auto ®ion : inst.getRegions()) 187 simplifyRegion(knownValues, domInfo, region); 188 } 189 } 190 191 void CSE::simplifyRegion(ScopedMapTy &knownValues, DominanceInfo &domInfo, 192 Region ®ion) { 193 // If the region is empty there is nothing to do. 194 if (region.empty()) 195 return; 196 197 // If the region only contains one block, then simplify it directly. 198 if (std::next(region.begin()) == region.end()) { 199 ScopedMapTy::ScopeTy scope(knownValues); 200 simplifyBlock(knownValues, domInfo, ®ion.front()); 201 return; 202 } 203 204 // Note, deque is being used here because there was significant performance 205 // gains over vector when the container becomes very large due to the 206 // specific access patterns. If/when these performance issues are no 207 // longer a problem we can change this to vector. For more information see 208 // the llvm mailing list discussion on this: 209 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 210 std::deque<std::unique_ptr<CFGStackNode>> stack; 211 212 // Process the nodes of the dom tree for this region. 213 stack.emplace_back(std::make_unique<CFGStackNode>( 214 knownValues, domInfo.getRootNode(®ion))); 215 216 while (!stack.empty()) { 217 auto ¤tNode = stack.back(); 218 219 // Check to see if we need to process this node. 220 if (!currentNode->processed) { 221 currentNode->processed = true; 222 simplifyBlock(knownValues, domInfo, currentNode->node->getBlock()); 223 } 224 225 // Otherwise, check to see if we need to process a child node. 226 if (currentNode->childIterator != currentNode->node->end()) { 227 auto *childNode = *(currentNode->childIterator++); 228 stack.emplace_back( 229 std::make_unique<CFGStackNode>(knownValues, childNode)); 230 } else { 231 // Finally, if the node and all of its children have been processed 232 // then we delete the node. 233 stack.pop_back(); 234 } 235 } 236 } 237 238 void CSE::runOnOperation() { 239 /// A scoped hash table of defining operations within a region. 240 ScopedMapTy knownValues; 241 242 DominanceInfo &domInfo = getAnalysis<DominanceInfo>(); 243 for (Region ®ion : getOperation()->getRegions()) 244 simplifyRegion(knownValues, domInfo, region); 245 246 // If no operations were erased, then we mark all analyses as preserved. 247 if (opsToErase.empty()) 248 return markAllAnalysesPreserved(); 249 250 /// Erase any operations that were marked as dead during simplification. 251 for (auto *op : opsToErase) 252 op->erase(); 253 opsToErase.clear(); 254 255 // We currently don't remove region operations, so mark dominance as 256 // preserved. 257 markAnalysesPreserved<DominanceInfo, PostDominanceInfo>(); 258 } 259 260 std::unique_ptr<Pass> mlir::createCSEPass() { return std::make_unique<CSE>(); } 261 262 static PassRegistration<CSE> pass("cse", "Eliminate common sub-expressions"); 263