1 //===- CSE.cpp - Common Sub-expression Elimination ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation pass performs a simple common sub-expression elimination 10 // algorithm on operations within a region. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PassDetail.h" 15 #include "mlir/IR/Dominance.h" 16 #include "mlir/Pass/Pass.h" 17 #include "mlir/Transforms/Passes.h" 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/ScopedHashTable.h" 21 #include "llvm/Support/Allocator.h" 22 #include "llvm/Support/RecyclingAllocator.h" 23 #include <deque> 24 25 using namespace mlir; 26 27 namespace { 28 struct SimpleOperationInfo : public llvm::DenseMapInfo<Operation *> { 29 static unsigned getHashValue(const Operation *opC) { 30 return OperationEquivalence::computeHash( 31 const_cast<Operation *>(opC), 32 /*hashOperands=*/OperationEquivalence::directHashValue, 33 /*hashResults=*/OperationEquivalence::ignoreHashValue, 34 OperationEquivalence::IgnoreLocations); 35 } 36 static bool isEqual(const Operation *lhsC, const Operation *rhsC) { 37 auto *lhs = const_cast<Operation *>(lhsC); 38 auto *rhs = const_cast<Operation *>(rhsC); 39 if (lhs == rhs) 40 return true; 41 if (lhs == getTombstoneKey() || lhs == getEmptyKey() || 42 rhs == getTombstoneKey() || rhs == getEmptyKey()) 43 return false; 44 return OperationEquivalence::isEquivalentTo( 45 const_cast<Operation *>(lhsC), const_cast<Operation *>(rhsC), 46 /*mapOperands=*/OperationEquivalence::exactValueMatch, 47 /*mapResults=*/OperationEquivalence::ignoreValueEquivalence, 48 OperationEquivalence::IgnoreLocations); 49 } 50 }; 51 } // namespace 52 53 namespace { 54 /// Simple common sub-expression elimination. 55 struct CSE : public CSEBase<CSE> { 56 /// Shared implementation of operation elimination and scoped map definitions. 57 using AllocatorTy = llvm::RecyclingAllocator< 58 llvm::BumpPtrAllocator, 59 llvm::ScopedHashTableVal<Operation *, Operation *>>; 60 using ScopedMapTy = llvm::ScopedHashTable<Operation *, Operation *, 61 SimpleOperationInfo, AllocatorTy>; 62 63 /// Cache holding MemoryEffects information between two operations. The first 64 /// operation is stored has the key. The second operation is stored inside a 65 /// pair in the value. The pair also hold the MemoryEffects between those 66 /// two operations. If the MemoryEffects is nullptr then we assume there is 67 /// no operation with MemoryEffects::Write between the two operations. 68 using MemEffectsCache = 69 DenseMap<Operation *, std::pair<Operation *, MemoryEffects::Effect *>>; 70 71 /// Represents a single entry in the depth first traversal of a CFG. 72 struct CFGStackNode { 73 CFGStackNode(ScopedMapTy &knownValues, DominanceInfoNode *node) 74 : scope(knownValues), node(node), childIterator(node->begin()) {} 75 76 /// Scope for the known values. 77 ScopedMapTy::ScopeTy scope; 78 79 DominanceInfoNode *node; 80 DominanceInfoNode::const_iterator childIterator; 81 82 /// If this node has been fully processed yet or not. 83 bool processed = false; 84 }; 85 86 /// Attempt to eliminate a redundant operation. Returns success if the 87 /// operation was marked for removal, failure otherwise. 88 LogicalResult simplifyOperation(ScopedMapTy &knownValues, Operation *op, 89 bool hasSSADominance); 90 void simplifyBlock(ScopedMapTy &knownValues, Block *bb, bool hasSSADominance); 91 void simplifyRegion(ScopedMapTy &knownValues, Region ®ion); 92 93 void runOnOperation() override; 94 95 private: 96 void replaceUsesAndDelete(ScopedMapTy &knownValues, Operation *op, 97 Operation *existing, bool hasSSADominance); 98 99 /// Check if there is side-effecting operations other than the given effect 100 /// between the two operations. 101 bool hasOtherSideEffectingOpInBetween(Operation *fromOp, Operation *toOp); 102 103 /// Operations marked as dead and to be erased. 104 std::vector<Operation *> opsToErase; 105 DominanceInfo *domInfo = nullptr; 106 MemEffectsCache memEffectsCache; 107 }; 108 } // namespace 109 110 void CSE::replaceUsesAndDelete(ScopedMapTy &knownValues, Operation *op, 111 Operation *existing, bool hasSSADominance) { 112 // If we find one then replace all uses of the current operation with the 113 // existing one and mark it for deletion. We can only replace an operand in 114 // an operation if it has not been visited yet. 115 if (hasSSADominance) { 116 // If the region has SSA dominance, then we are guaranteed to have not 117 // visited any use of the current operation. 118 op->replaceAllUsesWith(existing); 119 opsToErase.push_back(op); 120 } else { 121 // When the region does not have SSA dominance, we need to check if we 122 // have visited a use before replacing any use. 123 for (auto it : llvm::zip(op->getResults(), existing->getResults())) { 124 std::get<0>(it).replaceUsesWithIf( 125 std::get<1>(it), [&](OpOperand &operand) { 126 return !knownValues.count(operand.getOwner()); 127 }); 128 } 129 130 // There may be some remaining uses of the operation. 131 if (op->use_empty()) 132 opsToErase.push_back(op); 133 } 134 135 // If the existing operation has an unknown location and the current 136 // operation doesn't, then set the existing op's location to that of the 137 // current op. 138 if (existing->getLoc().isa<UnknownLoc>() && !op->getLoc().isa<UnknownLoc>()) 139 existing->setLoc(op->getLoc()); 140 141 ++numCSE; 142 } 143 144 bool CSE::hasOtherSideEffectingOpInBetween(Operation *fromOp, Operation *toOp) { 145 assert(fromOp->getBlock() == toOp->getBlock()); 146 assert( 147 isa<MemoryEffectOpInterface>(fromOp) && 148 cast<MemoryEffectOpInterface>(fromOp).hasEffect<MemoryEffects::Read>() && 149 isa<MemoryEffectOpInterface>(toOp) && 150 cast<MemoryEffectOpInterface>(toOp).hasEffect<MemoryEffects::Read>()); 151 Operation *nextOp = fromOp->getNextNode(); 152 auto result = 153 memEffectsCache.try_emplace(fromOp, std::make_pair(fromOp, nullptr)); 154 if (result.second) { 155 auto memEffectsCachePair = result.first->second; 156 if (memEffectsCachePair.second == nullptr) { 157 // No MemoryEffects::Write has been detected until the cached operation. 158 // Continue looking from the cached operation to toOp. 159 nextOp = memEffectsCachePair.first; 160 } else { 161 // MemoryEffects::Write has been detected before so there is no need to 162 // check further. 163 return true; 164 } 165 } 166 while (nextOp && nextOp != toOp) { 167 auto nextOpMemEffects = dyn_cast<MemoryEffectOpInterface>(nextOp); 168 // TODO: Do we need to handle other effects generically? 169 // If the operation does not implement the MemoryEffectOpInterface we 170 // conservatively assumes it writes. 171 if ((nextOpMemEffects && 172 nextOpMemEffects.hasEffect<MemoryEffects::Write>()) || 173 !nextOpMemEffects) { 174 result.first->second = 175 std::make_pair(nextOp, MemoryEffects::Write::get()); 176 return true; 177 } 178 nextOp = nextOp->getNextNode(); 179 } 180 result.first->second = std::make_pair(toOp, nullptr); 181 return false; 182 } 183 184 /// Attempt to eliminate a redundant operation. 185 LogicalResult CSE::simplifyOperation(ScopedMapTy &knownValues, Operation *op, 186 bool hasSSADominance) { 187 // Don't simplify terminator operations. 188 if (op->hasTrait<OpTrait::IsTerminator>()) 189 return failure(); 190 191 // If the operation is already trivially dead just add it to the erase list. 192 if (isOpTriviallyDead(op)) { 193 opsToErase.push_back(op); 194 ++numDCE; 195 return success(); 196 } 197 198 // Don't simplify operations with nested blocks. We don't currently model 199 // equality comparisons correctly among other things. It is also unclear 200 // whether we would want to CSE such operations. 201 if (op->getNumRegions() != 0) 202 return failure(); 203 204 // Some simple use case of operation with memory side-effect are dealt with 205 // here. Operations with no side-effect are done after. 206 if (!MemoryEffectOpInterface::hasNoEffect(op)) { 207 auto memEffects = dyn_cast<MemoryEffectOpInterface>(op); 208 // TODO: Only basic use case for operations with MemoryEffects::Read can be 209 // eleminated now. More work needs to be done for more complicated patterns 210 // and other side-effects. 211 if (!memEffects || !memEffects.onlyHasEffect<MemoryEffects::Read>()) 212 return failure(); 213 214 // Look for an existing definition for the operation. 215 if (auto *existing = knownValues.lookup(op)) { 216 if (existing->getBlock() == op->getBlock() && 217 !hasOtherSideEffectingOpInBetween(existing, op)) { 218 // The operation that can be deleted has been reach with no 219 // side-effecting operations in between the existing operation and 220 // this one so we can remove the duplicate. 221 replaceUsesAndDelete(knownValues, op, existing, hasSSADominance); 222 return success(); 223 } 224 } 225 knownValues.insert(op, op); 226 return failure(); 227 } 228 229 // Look for an existing definition for the operation. 230 if (auto *existing = knownValues.lookup(op)) { 231 replaceUsesAndDelete(knownValues, op, existing, hasSSADominance); 232 ++numCSE; 233 return success(); 234 } 235 236 // Otherwise, we add this operation to the known values map. 237 knownValues.insert(op, op); 238 return failure(); 239 } 240 241 void CSE::simplifyBlock(ScopedMapTy &knownValues, Block *bb, 242 bool hasSSADominance) { 243 for (auto &op : *bb) { 244 // If the operation is simplified, we don't process any held regions. 245 if (succeeded(simplifyOperation(knownValues, &op, hasSSADominance))) 246 continue; 247 248 // Most operations don't have regions, so fast path that case. 249 if (op.getNumRegions() == 0) 250 continue; 251 252 // If this operation is isolated above, we can't process nested regions with 253 // the given 'knownValues' map. This would cause the insertion of implicit 254 // captures in explicit capture only regions. 255 if (op.mightHaveTrait<OpTrait::IsIsolatedFromAbove>()) { 256 ScopedMapTy nestedKnownValues; 257 for (auto ®ion : op.getRegions()) 258 simplifyRegion(nestedKnownValues, region); 259 continue; 260 } 261 262 // Otherwise, process nested regions normally. 263 for (auto ®ion : op.getRegions()) 264 simplifyRegion(knownValues, region); 265 } 266 // Clear the MemoryEffects cache since its usage is by block only. 267 memEffectsCache.clear(); 268 } 269 270 void CSE::simplifyRegion(ScopedMapTy &knownValues, Region ®ion) { 271 // If the region is empty there is nothing to do. 272 if (region.empty()) 273 return; 274 275 bool hasSSADominance = domInfo->hasSSADominance(®ion); 276 277 // If the region only contains one block, then simplify it directly. 278 if (region.hasOneBlock()) { 279 ScopedMapTy::ScopeTy scope(knownValues); 280 simplifyBlock(knownValues, ®ion.front(), hasSSADominance); 281 return; 282 } 283 284 // If the region does not have dominanceInfo, then skip it. 285 // TODO: Regions without SSA dominance should define a different 286 // traversal order which is appropriate and can be used here. 287 if (!hasSSADominance) 288 return; 289 290 // Note, deque is being used here because there was significant performance 291 // gains over vector when the container becomes very large due to the 292 // specific access patterns. If/when these performance issues are no 293 // longer a problem we can change this to vector. For more information see 294 // the llvm mailing list discussion on this: 295 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 296 std::deque<std::unique_ptr<CFGStackNode>> stack; 297 298 // Process the nodes of the dom tree for this region. 299 stack.emplace_back(std::make_unique<CFGStackNode>( 300 knownValues, domInfo->getRootNode(®ion))); 301 302 while (!stack.empty()) { 303 auto ¤tNode = stack.back(); 304 305 // Check to see if we need to process this node. 306 if (!currentNode->processed) { 307 currentNode->processed = true; 308 simplifyBlock(knownValues, currentNode->node->getBlock(), 309 hasSSADominance); 310 } 311 312 // Otherwise, check to see if we need to process a child node. 313 if (currentNode->childIterator != currentNode->node->end()) { 314 auto *childNode = *(currentNode->childIterator++); 315 stack.emplace_back( 316 std::make_unique<CFGStackNode>(knownValues, childNode)); 317 } else { 318 // Finally, if the node and all of its children have been processed 319 // then we delete the node. 320 stack.pop_back(); 321 } 322 } 323 } 324 325 void CSE::runOnOperation() { 326 /// A scoped hash table of defining operations within a region. 327 ScopedMapTy knownValues; 328 329 domInfo = &getAnalysis<DominanceInfo>(); 330 Operation *rootOp = getOperation(); 331 332 for (auto ®ion : rootOp->getRegions()) 333 simplifyRegion(knownValues, region); 334 335 // If no operations were erased, then we mark all analyses as preserved. 336 if (opsToErase.empty()) 337 return markAllAnalysesPreserved(); 338 339 /// Erase any operations that were marked as dead during simplification. 340 for (auto *op : opsToErase) 341 op->erase(); 342 opsToErase.clear(); 343 344 // We currently don't remove region operations, so mark dominance as 345 // preserved. 346 markAnalysesPreserved<DominanceInfo, PostDominanceInfo>(); 347 domInfo = nullptr; 348 } 349 350 std::unique_ptr<Pass> mlir::createCSEPass() { return std::make_unique<CSE>(); } 351