1 //===- OpenMPToLLVMIRTranslation.cpp - Translate OpenMP dialect to LLVM IR-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a translation between the MLIR OpenMP dialect and LLVM
10 // IR.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "mlir/Target/LLVMIR/Dialect/OpenMP/OpenMPToLLVMIRTranslation.h"
14 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
15 #include "mlir/IR/BlockAndValueMapping.h"
16 #include "mlir/IR/Operation.h"
17 #include "mlir/Support/LLVM.h"
18 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
19
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/TypeSwitch.h"
22 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
23 #include "llvm/IR/DebugInfoMetadata.h"
24 #include "llvm/IR/IRBuilder.h"
25
26 using namespace mlir;
27
28 namespace {
29 static llvm::omp::ScheduleKind
convertToScheduleKind(Optional<omp::ClauseScheduleKind> schedKind)30 convertToScheduleKind(Optional<omp::ClauseScheduleKind> schedKind) {
31 if (!schedKind.has_value())
32 return llvm::omp::OMP_SCHEDULE_Default;
33 switch (schedKind.value()) {
34 case omp::ClauseScheduleKind::Static:
35 return llvm::omp::OMP_SCHEDULE_Static;
36 case omp::ClauseScheduleKind::Dynamic:
37 return llvm::omp::OMP_SCHEDULE_Dynamic;
38 case omp::ClauseScheduleKind::Guided:
39 return llvm::omp::OMP_SCHEDULE_Guided;
40 case omp::ClauseScheduleKind::Auto:
41 return llvm::omp::OMP_SCHEDULE_Auto;
42 case omp::ClauseScheduleKind::Runtime:
43 return llvm::omp::OMP_SCHEDULE_Runtime;
44 }
45 llvm_unreachable("unhandled schedule clause argument");
46 }
47
48 /// ModuleTranslation stack frame for OpenMP operations. This keeps track of the
49 /// insertion points for allocas.
50 class OpenMPAllocaStackFrame
51 : public LLVM::ModuleTranslation::StackFrameBase<OpenMPAllocaStackFrame> {
52 public:
53 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(OpenMPAllocaStackFrame)
54
OpenMPAllocaStackFrame(llvm::OpenMPIRBuilder::InsertPointTy allocaIP)55 explicit OpenMPAllocaStackFrame(llvm::OpenMPIRBuilder::InsertPointTy allocaIP)
56 : allocaInsertPoint(allocaIP) {}
57 llvm::OpenMPIRBuilder::InsertPointTy allocaInsertPoint;
58 };
59
60 /// ModuleTranslation stack frame containing the partial mapping between MLIR
61 /// values and their LLVM IR equivalents.
62 class OpenMPVarMappingStackFrame
63 : public LLVM::ModuleTranslation::StackFrameBase<
64 OpenMPVarMappingStackFrame> {
65 public:
66 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(OpenMPVarMappingStackFrame)
67
OpenMPVarMappingStackFrame(const DenseMap<Value,llvm::Value * > & mapping)68 explicit OpenMPVarMappingStackFrame(
69 const DenseMap<Value, llvm::Value *> &mapping)
70 : mapping(mapping) {}
71
72 DenseMap<Value, llvm::Value *> mapping;
73 };
74 } // namespace
75
76 /// Find the insertion point for allocas given the current insertion point for
77 /// normal operations in the builder.
78 static llvm::OpenMPIRBuilder::InsertPointTy
findAllocaInsertPoint(llvm::IRBuilderBase & builder,const LLVM::ModuleTranslation & moduleTranslation)79 findAllocaInsertPoint(llvm::IRBuilderBase &builder,
80 const LLVM::ModuleTranslation &moduleTranslation) {
81 // If there is an alloca insertion point on stack, i.e. we are in a nested
82 // operation and a specific point was provided by some surrounding operation,
83 // use it.
84 llvm::OpenMPIRBuilder::InsertPointTy allocaInsertPoint;
85 WalkResult walkResult = moduleTranslation.stackWalk<OpenMPAllocaStackFrame>(
86 [&](const OpenMPAllocaStackFrame &frame) {
87 allocaInsertPoint = frame.allocaInsertPoint;
88 return WalkResult::interrupt();
89 });
90 if (walkResult.wasInterrupted())
91 return allocaInsertPoint;
92
93 // Otherwise, insert to the entry block of the surrounding function.
94 // If the current IRBuilder InsertPoint is the function's entry, it cannot
95 // also be used for alloca insertion which would result in insertion order
96 // confusion. Create a new BasicBlock for the Builder and use the entry block
97 // for the allocs.
98 // TODO: Create a dedicated alloca BasicBlock at function creation such that
99 // we do not need to move the current InertPoint here.
100 if (builder.GetInsertBlock() ==
101 &builder.GetInsertBlock()->getParent()->getEntryBlock()) {
102 assert(builder.GetInsertPoint() == builder.GetInsertBlock()->end() &&
103 "Assuming end of basic block");
104 llvm::BasicBlock *entryBB = llvm::BasicBlock::Create(
105 builder.getContext(), "entry", builder.GetInsertBlock()->getParent(),
106 builder.GetInsertBlock()->getNextNode());
107 builder.CreateBr(entryBB);
108 builder.SetInsertPoint(entryBB);
109 }
110
111 llvm::BasicBlock &funcEntryBlock =
112 builder.GetInsertBlock()->getParent()->getEntryBlock();
113 return llvm::OpenMPIRBuilder::InsertPointTy(
114 &funcEntryBlock, funcEntryBlock.getFirstInsertionPt());
115 }
116
117 /// Converts the given region that appears within an OpenMP dialect operation to
118 /// LLVM IR, creating a branch from the `sourceBlock` to the entry block of the
119 /// region, and a branch from any block with an successor-less OpenMP terminator
120 /// to `continuationBlock`. Populates `continuationBlockPHIs` with the PHI nodes
121 /// of the continuation block if provided.
convertOmpOpRegions(Region & region,StringRef blockName,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation,LogicalResult & bodyGenStatus,SmallVectorImpl<llvm::PHINode * > * continuationBlockPHIs=nullptr)122 static llvm::BasicBlock *convertOmpOpRegions(
123 Region ®ion, StringRef blockName, llvm::IRBuilderBase &builder,
124 LLVM::ModuleTranslation &moduleTranslation, LogicalResult &bodyGenStatus,
125 SmallVectorImpl<llvm::PHINode *> *continuationBlockPHIs = nullptr) {
126 llvm::BasicBlock *continuationBlock =
127 splitBB(builder, true, "omp.region.cont");
128 llvm::BasicBlock *sourceBlock = builder.GetInsertBlock();
129
130 llvm::LLVMContext &llvmContext = builder.getContext();
131 for (Block &bb : region) {
132 llvm::BasicBlock *llvmBB = llvm::BasicBlock::Create(
133 llvmContext, blockName, builder.GetInsertBlock()->getParent(),
134 builder.GetInsertBlock()->getNextNode());
135 moduleTranslation.mapBlock(&bb, llvmBB);
136 }
137
138 llvm::Instruction *sourceTerminator = sourceBlock->getTerminator();
139
140 // Terminators (namely YieldOp) may be forwarding values to the region that
141 // need to be available in the continuation block. Collect the types of these
142 // operands in preparation of creating PHI nodes.
143 SmallVector<llvm::Type *> continuationBlockPHITypes;
144 bool operandsProcessed = false;
145 unsigned numYields = 0;
146 for (Block &bb : region.getBlocks()) {
147 if (omp::YieldOp yield = dyn_cast<omp::YieldOp>(bb.getTerminator())) {
148 if (!operandsProcessed) {
149 for (unsigned i = 0, e = yield->getNumOperands(); i < e; ++i) {
150 continuationBlockPHITypes.push_back(
151 moduleTranslation.convertType(yield->getOperand(i).getType()));
152 }
153 operandsProcessed = true;
154 } else {
155 assert(continuationBlockPHITypes.size() == yield->getNumOperands() &&
156 "mismatching number of values yielded from the region");
157 for (unsigned i = 0, e = yield->getNumOperands(); i < e; ++i) {
158 llvm::Type *operandType =
159 moduleTranslation.convertType(yield->getOperand(i).getType());
160 (void)operandType;
161 assert(continuationBlockPHITypes[i] == operandType &&
162 "values of mismatching types yielded from the region");
163 }
164 }
165 numYields++;
166 }
167 }
168
169 // Insert PHI nodes in the continuation block for any values forwarded by the
170 // terminators in this region.
171 if (!continuationBlockPHITypes.empty())
172 assert(
173 continuationBlockPHIs &&
174 "expected continuation block PHIs if converted regions yield values");
175 if (continuationBlockPHIs) {
176 llvm::IRBuilderBase::InsertPointGuard guard(builder);
177 continuationBlockPHIs->reserve(continuationBlockPHITypes.size());
178 builder.SetInsertPoint(continuationBlock, continuationBlock->begin());
179 for (llvm::Type *ty : continuationBlockPHITypes)
180 continuationBlockPHIs->push_back(builder.CreatePHI(ty, numYields));
181 }
182
183 // Convert blocks one by one in topological order to ensure
184 // defs are converted before uses.
185 SetVector<Block *> blocks =
186 LLVM::detail::getTopologicallySortedBlocks(region);
187 for (Block *bb : blocks) {
188 llvm::BasicBlock *llvmBB = moduleTranslation.lookupBlock(bb);
189 // Retarget the branch of the entry block to the entry block of the
190 // converted region (regions are single-entry).
191 if (bb->isEntryBlock()) {
192 assert(sourceTerminator->getNumSuccessors() == 1 &&
193 "provided entry block has multiple successors");
194 assert(sourceTerminator->getSuccessor(0) == continuationBlock &&
195 "ContinuationBlock is not the successor of the entry block");
196 sourceTerminator->setSuccessor(0, llvmBB);
197 }
198
199 llvm::IRBuilderBase::InsertPointGuard guard(builder);
200 if (failed(
201 moduleTranslation.convertBlock(*bb, bb->isEntryBlock(), builder))) {
202 bodyGenStatus = failure();
203 return continuationBlock;
204 }
205
206 // Special handling for `omp.yield` and `omp.terminator` (we may have more
207 // than one): they return the control to the parent OpenMP dialect operation
208 // so replace them with the branch to the continuation block. We handle this
209 // here to avoid relying inter-function communication through the
210 // ModuleTranslation class to set up the correct insertion point. This is
211 // also consistent with MLIR's idiom of handling special region terminators
212 // in the same code that handles the region-owning operation.
213 Operation *terminator = bb->getTerminator();
214 if (isa<omp::TerminatorOp, omp::YieldOp>(terminator)) {
215 builder.CreateBr(continuationBlock);
216
217 for (unsigned i = 0, e = terminator->getNumOperands(); i < e; ++i)
218 (*continuationBlockPHIs)[i]->addIncoming(
219 moduleTranslation.lookupValue(terminator->getOperand(i)), llvmBB);
220 }
221 }
222 // After all blocks have been traversed and values mapped, connect the PHI
223 // nodes to the results of preceding blocks.
224 LLVM::detail::connectPHINodes(region, moduleTranslation);
225
226 // Remove the blocks and values defined in this region from the mapping since
227 // they are not visible outside of this region. This allows the same region to
228 // be converted several times, that is cloned, without clashes, and slightly
229 // speeds up the lookups.
230 moduleTranslation.forgetMapping(region);
231
232 return continuationBlock;
233 }
234
235 /// Convert ProcBindKind from MLIR-generated enum to LLVM enum.
getProcBindKind(omp::ClauseProcBindKind kind)236 static llvm::omp::ProcBindKind getProcBindKind(omp::ClauseProcBindKind kind) {
237 switch (kind) {
238 case omp::ClauseProcBindKind::Close:
239 return llvm::omp::ProcBindKind::OMP_PROC_BIND_close;
240 case omp::ClauseProcBindKind::Master:
241 return llvm::omp::ProcBindKind::OMP_PROC_BIND_master;
242 case omp::ClauseProcBindKind::Primary:
243 return llvm::omp::ProcBindKind::OMP_PROC_BIND_primary;
244 case omp::ClauseProcBindKind::Spread:
245 return llvm::omp::ProcBindKind::OMP_PROC_BIND_spread;
246 }
247 llvm_unreachable("Unknown ClauseProcBindKind kind");
248 }
249
250 /// Converts the OpenMP parallel operation to LLVM IR.
251 static LogicalResult
convertOmpParallel(omp::ParallelOp opInst,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)252 convertOmpParallel(omp::ParallelOp opInst, llvm::IRBuilderBase &builder,
253 LLVM::ModuleTranslation &moduleTranslation) {
254 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
255 // TODO: support error propagation in OpenMPIRBuilder and use it instead of
256 // relying on captured variables.
257 LogicalResult bodyGenStatus = success();
258
259 auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
260 // Save the alloca insertion point on ModuleTranslation stack for use in
261 // nested regions.
262 LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
263 moduleTranslation, allocaIP);
264
265 // ParallelOp has only one region associated with it.
266 builder.restoreIP(codeGenIP);
267 convertOmpOpRegions(opInst.getRegion(), "omp.par.region", builder,
268 moduleTranslation, bodyGenStatus);
269 };
270
271 // TODO: Perform appropriate actions according to the data-sharing
272 // attribute (shared, private, firstprivate, ...) of variables.
273 // Currently defaults to shared.
274 auto privCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
275 llvm::Value &, llvm::Value &vPtr,
276 llvm::Value *&replacementValue) -> InsertPointTy {
277 replacementValue = &vPtr;
278
279 return codeGenIP;
280 };
281
282 // TODO: Perform finalization actions for variables. This has to be
283 // called for variables which have destructors/finalizers.
284 auto finiCB = [&](InsertPointTy codeGenIP) {};
285
286 llvm::Value *ifCond = nullptr;
287 if (auto ifExprVar = opInst.if_expr_var())
288 ifCond = moduleTranslation.lookupValue(ifExprVar);
289 llvm::Value *numThreads = nullptr;
290 if (auto numThreadsVar = opInst.num_threads_var())
291 numThreads = moduleTranslation.lookupValue(numThreadsVar);
292 auto pbKind = llvm::omp::OMP_PROC_BIND_default;
293 if (auto bind = opInst.proc_bind_val())
294 pbKind = getProcBindKind(*bind);
295 // TODO: Is the Parallel construct cancellable?
296 bool isCancellable = false;
297
298 llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
299 findAllocaInsertPoint(builder, moduleTranslation);
300 llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
301 builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createParallel(
302 ompLoc, allocaIP, bodyGenCB, privCB, finiCB, ifCond, numThreads, pbKind,
303 isCancellable));
304
305 return bodyGenStatus;
306 }
307
308 /// Converts an OpenMP 'master' operation into LLVM IR using OpenMPIRBuilder.
309 static LogicalResult
convertOmpMaster(Operation & opInst,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)310 convertOmpMaster(Operation &opInst, llvm::IRBuilderBase &builder,
311 LLVM::ModuleTranslation &moduleTranslation) {
312 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
313 // TODO: support error propagation in OpenMPIRBuilder and use it instead of
314 // relying on captured variables.
315 LogicalResult bodyGenStatus = success();
316
317 auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
318 // MasterOp has only one region associated with it.
319 auto ®ion = cast<omp::MasterOp>(opInst).getRegion();
320 builder.restoreIP(codeGenIP);
321 convertOmpOpRegions(region, "omp.master.region", builder, moduleTranslation,
322 bodyGenStatus);
323 };
324
325 // TODO: Perform finalization actions for variables. This has to be
326 // called for variables which have destructors/finalizers.
327 auto finiCB = [&](InsertPointTy codeGenIP) {};
328
329 llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
330 builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createMaster(
331 ompLoc, bodyGenCB, finiCB));
332 return success();
333 }
334
335 /// Converts an OpenMP 'critical' operation into LLVM IR using OpenMPIRBuilder.
336 static LogicalResult
convertOmpCritical(Operation & opInst,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)337 convertOmpCritical(Operation &opInst, llvm::IRBuilderBase &builder,
338 LLVM::ModuleTranslation &moduleTranslation) {
339 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
340 auto criticalOp = cast<omp::CriticalOp>(opInst);
341 // TODO: support error propagation in OpenMPIRBuilder and use it instead of
342 // relying on captured variables.
343 LogicalResult bodyGenStatus = success();
344
345 auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
346 // CriticalOp has only one region associated with it.
347 auto ®ion = cast<omp::CriticalOp>(opInst).getRegion();
348 builder.restoreIP(codeGenIP);
349 convertOmpOpRegions(region, "omp.critical.region", builder,
350 moduleTranslation, bodyGenStatus);
351 };
352
353 // TODO: Perform finalization actions for variables. This has to be
354 // called for variables which have destructors/finalizers.
355 auto finiCB = [&](InsertPointTy codeGenIP) {};
356
357 llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
358 llvm::LLVMContext &llvmContext = moduleTranslation.getLLVMContext();
359 llvm::Constant *hint = nullptr;
360
361 // If it has a name, it probably has a hint too.
362 if (criticalOp.nameAttr()) {
363 // The verifiers in OpenMP Dialect guarentee that all the pointers are
364 // non-null
365 auto symbolRef = criticalOp.nameAttr().cast<SymbolRefAttr>();
366 auto criticalDeclareOp =
367 SymbolTable::lookupNearestSymbolFrom<omp::CriticalDeclareOp>(criticalOp,
368 symbolRef);
369 hint =
370 llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvmContext),
371 static_cast<int>(criticalDeclareOp.hint_val()));
372 }
373 builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createCritical(
374 ompLoc, bodyGenCB, finiCB, criticalOp.name().value_or(""), hint));
375 return success();
376 }
377
378 /// Returns a reduction declaration that corresponds to the given reduction
379 /// operation in the given container. Currently only supports reductions inside
380 /// WsLoopOp but can be easily extended.
findReductionDecl(omp::WsLoopOp container,omp::ReductionOp reduction)381 static omp::ReductionDeclareOp findReductionDecl(omp::WsLoopOp container,
382 omp::ReductionOp reduction) {
383 SymbolRefAttr reductionSymbol;
384 for (unsigned i = 0, e = container.getNumReductionVars(); i < e; ++i) {
385 if (container.reduction_vars()[i] != reduction.accumulator())
386 continue;
387 reductionSymbol = (*container.reductions())[i].cast<SymbolRefAttr>();
388 break;
389 }
390 assert(reductionSymbol &&
391 "reduction operation must be associated with a declaration");
392
393 return SymbolTable::lookupNearestSymbolFrom<omp::ReductionDeclareOp>(
394 container, reductionSymbol);
395 }
396
397 /// Populates `reductions` with reduction declarations used in the given loop.
398 static void
collectReductionDecls(omp::WsLoopOp loop,SmallVectorImpl<omp::ReductionDeclareOp> & reductions)399 collectReductionDecls(omp::WsLoopOp loop,
400 SmallVectorImpl<omp::ReductionDeclareOp> &reductions) {
401 Optional<ArrayAttr> attr = loop.reductions();
402 if (!attr)
403 return;
404
405 reductions.reserve(reductions.size() + loop.getNumReductionVars());
406 for (auto symbolRef : attr->getAsRange<SymbolRefAttr>()) {
407 reductions.push_back(
408 SymbolTable::lookupNearestSymbolFrom<omp::ReductionDeclareOp>(
409 loop, symbolRef));
410 }
411 }
412
413 /// Translates the blocks contained in the given region and appends them to at
414 /// the current insertion point of `builder`. The operations of the entry block
415 /// are appended to the current insertion block, which is not expected to have a
416 /// terminator. If set, `continuationBlockArgs` is populated with translated
417 /// values that correspond to the values omp.yield'ed from the region.
inlineConvertOmpRegions(Region & region,StringRef blockName,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation,SmallVectorImpl<llvm::Value * > * continuationBlockArgs=nullptr)418 static LogicalResult inlineConvertOmpRegions(
419 Region ®ion, StringRef blockName, llvm::IRBuilderBase &builder,
420 LLVM::ModuleTranslation &moduleTranslation,
421 SmallVectorImpl<llvm::Value *> *continuationBlockArgs = nullptr) {
422 if (region.empty())
423 return success();
424
425 // Special case for single-block regions that don't create additional blocks:
426 // insert operations without creating additional blocks.
427 if (llvm::hasSingleElement(region)) {
428 moduleTranslation.mapBlock(®ion.front(), builder.GetInsertBlock());
429 if (failed(moduleTranslation.convertBlock(
430 region.front(), /*ignoreArguments=*/true, builder)))
431 return failure();
432
433 // The continuation arguments are simply the translated terminator operands.
434 if (continuationBlockArgs)
435 llvm::append_range(
436 *continuationBlockArgs,
437 moduleTranslation.lookupValues(region.front().back().getOperands()));
438
439 // Drop the mapping that is no longer necessary so that the same region can
440 // be processed multiple times.
441 moduleTranslation.forgetMapping(region);
442 return success();
443 }
444
445 LogicalResult bodyGenStatus = success();
446 SmallVector<llvm::PHINode *> phis;
447 llvm::BasicBlock *continuationBlock = convertOmpOpRegions(
448 region, blockName, builder, moduleTranslation, bodyGenStatus, &phis);
449 if (failed(bodyGenStatus))
450 return failure();
451 if (continuationBlockArgs)
452 llvm::append_range(*continuationBlockArgs, phis);
453 builder.SetInsertPoint(continuationBlock,
454 continuationBlock->getFirstInsertionPt());
455 return success();
456 }
457
458 namespace {
459 /// Owning equivalents of OpenMPIRBuilder::(Atomic)ReductionGen that are used to
460 /// store lambdas with capture.
461 using OwningReductionGen = std::function<llvm::OpenMPIRBuilder::InsertPointTy(
462 llvm::OpenMPIRBuilder::InsertPointTy, llvm::Value *, llvm::Value *,
463 llvm::Value *&)>;
464 using OwningAtomicReductionGen =
465 std::function<llvm::OpenMPIRBuilder::InsertPointTy(
466 llvm::OpenMPIRBuilder::InsertPointTy, llvm::Type *, llvm::Value *,
467 llvm::Value *)>;
468 } // namespace
469
470 /// Create an OpenMPIRBuilder-compatible reduction generator for the given
471 /// reduction declaration. The generator uses `builder` but ignores its
472 /// insertion point.
473 static OwningReductionGen
makeReductionGen(omp::ReductionDeclareOp decl,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)474 makeReductionGen(omp::ReductionDeclareOp decl, llvm::IRBuilderBase &builder,
475 LLVM::ModuleTranslation &moduleTranslation) {
476 // The lambda is mutable because we need access to non-const methods of decl
477 // (which aren't actually mutating it), and we must capture decl by-value to
478 // avoid the dangling reference after the parent function returns.
479 OwningReductionGen gen =
480 [&, decl](llvm::OpenMPIRBuilder::InsertPointTy insertPoint,
481 llvm::Value *lhs, llvm::Value *rhs,
482 llvm::Value *&result) mutable {
483 Region &reductionRegion = decl.reductionRegion();
484 moduleTranslation.mapValue(reductionRegion.front().getArgument(0), lhs);
485 moduleTranslation.mapValue(reductionRegion.front().getArgument(1), rhs);
486 builder.restoreIP(insertPoint);
487 SmallVector<llvm::Value *> phis;
488 if (failed(inlineConvertOmpRegions(reductionRegion,
489 "omp.reduction.nonatomic.body",
490 builder, moduleTranslation, &phis)))
491 return llvm::OpenMPIRBuilder::InsertPointTy();
492 assert(phis.size() == 1);
493 result = phis[0];
494 return builder.saveIP();
495 };
496 return gen;
497 }
498
499 /// Create an OpenMPIRBuilder-compatible atomic reduction generator for the
500 /// given reduction declaration. The generator uses `builder` but ignores its
501 /// insertion point. Returns null if there is no atomic region available in the
502 /// reduction declaration.
503 static OwningAtomicReductionGen
makeAtomicReductionGen(omp::ReductionDeclareOp decl,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)504 makeAtomicReductionGen(omp::ReductionDeclareOp decl,
505 llvm::IRBuilderBase &builder,
506 LLVM::ModuleTranslation &moduleTranslation) {
507 if (decl.atomicReductionRegion().empty())
508 return OwningAtomicReductionGen();
509
510 // The lambda is mutable because we need access to non-const methods of decl
511 // (which aren't actually mutating it), and we must capture decl by-value to
512 // avoid the dangling reference after the parent function returns.
513 OwningAtomicReductionGen atomicGen =
514 [&, decl](llvm::OpenMPIRBuilder::InsertPointTy insertPoint, llvm::Type *,
515 llvm::Value *lhs, llvm::Value *rhs) mutable {
516 Region &atomicRegion = decl.atomicReductionRegion();
517 moduleTranslation.mapValue(atomicRegion.front().getArgument(0), lhs);
518 moduleTranslation.mapValue(atomicRegion.front().getArgument(1), rhs);
519 builder.restoreIP(insertPoint);
520 SmallVector<llvm::Value *> phis;
521 if (failed(inlineConvertOmpRegions(atomicRegion,
522 "omp.reduction.atomic.body", builder,
523 moduleTranslation, &phis)))
524 return llvm::OpenMPIRBuilder::InsertPointTy();
525 assert(phis.empty());
526 return builder.saveIP();
527 };
528 return atomicGen;
529 }
530
531 /// Converts an OpenMP 'ordered' operation into LLVM IR using OpenMPIRBuilder.
532 static LogicalResult
convertOmpOrdered(Operation & opInst,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)533 convertOmpOrdered(Operation &opInst, llvm::IRBuilderBase &builder,
534 LLVM::ModuleTranslation &moduleTranslation) {
535 auto orderedOp = cast<omp::OrderedOp>(opInst);
536
537 omp::ClauseDepend dependType = *orderedOp.depend_type_val();
538 bool isDependSource = dependType == omp::ClauseDepend::dependsource;
539 unsigned numLoops = *orderedOp.num_loops_val();
540 SmallVector<llvm::Value *> vecValues =
541 moduleTranslation.lookupValues(orderedOp.depend_vec_vars());
542
543 size_t indexVecValues = 0;
544 while (indexVecValues < vecValues.size()) {
545 SmallVector<llvm::Value *> storeValues;
546 storeValues.reserve(numLoops);
547 for (unsigned i = 0; i < numLoops; i++) {
548 storeValues.push_back(vecValues[indexVecValues]);
549 indexVecValues++;
550 }
551 llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
552 findAllocaInsertPoint(builder, moduleTranslation);
553 llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
554 builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createOrderedDepend(
555 ompLoc, allocaIP, numLoops, storeValues, ".cnt.addr", isDependSource));
556 }
557 return success();
558 }
559
560 /// Converts an OpenMP 'ordered_region' operation into LLVM IR using
561 /// OpenMPIRBuilder.
562 static LogicalResult
convertOmpOrderedRegion(Operation & opInst,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)563 convertOmpOrderedRegion(Operation &opInst, llvm::IRBuilderBase &builder,
564 LLVM::ModuleTranslation &moduleTranslation) {
565 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
566 auto orderedRegionOp = cast<omp::OrderedRegionOp>(opInst);
567
568 // TODO: The code generation for ordered simd directive is not supported yet.
569 if (orderedRegionOp.simd())
570 return failure();
571
572 // TODO: support error propagation in OpenMPIRBuilder and use it instead of
573 // relying on captured variables.
574 LogicalResult bodyGenStatus = success();
575
576 auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
577 // OrderedOp has only one region associated with it.
578 auto ®ion = cast<omp::OrderedRegionOp>(opInst).getRegion();
579 builder.restoreIP(codeGenIP);
580 convertOmpOpRegions(region, "omp.ordered.region", builder,
581 moduleTranslation, bodyGenStatus);
582 };
583
584 // TODO: Perform finalization actions for variables. This has to be
585 // called for variables which have destructors/finalizers.
586 auto finiCB = [&](InsertPointTy codeGenIP) {};
587
588 llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
589 builder.restoreIP(
590 moduleTranslation.getOpenMPBuilder()->createOrderedThreadsSimd(
591 ompLoc, bodyGenCB, finiCB, !orderedRegionOp.simd()));
592 return bodyGenStatus;
593 }
594
595 static LogicalResult
convertOmpSections(Operation & opInst,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)596 convertOmpSections(Operation &opInst, llvm::IRBuilderBase &builder,
597 LLVM::ModuleTranslation &moduleTranslation) {
598 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
599 using StorableBodyGenCallbackTy =
600 llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy;
601
602 auto sectionsOp = cast<omp::SectionsOp>(opInst);
603
604 // TODO: Support the following clauses: private, firstprivate, lastprivate,
605 // reduction, allocate
606 if (!sectionsOp.reduction_vars().empty() || sectionsOp.reductions() ||
607 !sectionsOp.allocate_vars().empty() ||
608 !sectionsOp.allocators_vars().empty())
609 return emitError(sectionsOp.getLoc())
610 << "reduction and allocate clauses are not supported for sections "
611 "construct";
612
613 LogicalResult bodyGenStatus = success();
614 SmallVector<StorableBodyGenCallbackTy> sectionCBs;
615
616 for (Operation &op : *sectionsOp.region().begin()) {
617 auto sectionOp = dyn_cast<omp::SectionOp>(op);
618 if (!sectionOp) // omp.terminator
619 continue;
620
621 Region ®ion = sectionOp.region();
622 auto sectionCB = [®ion, &builder, &moduleTranslation, &bodyGenStatus](
623 InsertPointTy allocaIP, InsertPointTy codeGenIP) {
624 builder.restoreIP(codeGenIP);
625 convertOmpOpRegions(region, "omp.section.region", builder,
626 moduleTranslation, bodyGenStatus);
627 };
628 sectionCBs.push_back(sectionCB);
629 }
630
631 // No sections within omp.sections operation - skip generation. This situation
632 // is only possible if there is only a terminator operation inside the
633 // sections operation
634 if (sectionCBs.empty())
635 return success();
636
637 assert(isa<omp::SectionOp>(*sectionsOp.region().op_begin()));
638
639 // TODO: Perform appropriate actions according to the data-sharing
640 // attribute (shared, private, firstprivate, ...) of variables.
641 // Currently defaults to shared.
642 auto privCB = [&](InsertPointTy, InsertPointTy codeGenIP, llvm::Value &,
643 llvm::Value &vPtr,
644 llvm::Value *&replacementValue) -> InsertPointTy {
645 replacementValue = &vPtr;
646 return codeGenIP;
647 };
648
649 // TODO: Perform finalization actions for variables. This has to be
650 // called for variables which have destructors/finalizers.
651 auto finiCB = [&](InsertPointTy codeGenIP) {};
652
653 llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
654 findAllocaInsertPoint(builder, moduleTranslation);
655 llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
656 builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createSections(
657 ompLoc, allocaIP, sectionCBs, privCB, finiCB, false,
658 sectionsOp.nowait()));
659 return bodyGenStatus;
660 }
661
662 /// Converts an OpenMP single construct into LLVM IR using OpenMPIRBuilder.
663 static LogicalResult
convertOmpSingle(omp::SingleOp & singleOp,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)664 convertOmpSingle(omp::SingleOp &singleOp, llvm::IRBuilderBase &builder,
665 LLVM::ModuleTranslation &moduleTranslation) {
666 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
667 llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
668 LogicalResult bodyGenStatus = success();
669 auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
670 builder.restoreIP(codegenIP);
671 convertOmpOpRegions(singleOp.region(), "omp.single.region", builder,
672 moduleTranslation, bodyGenStatus);
673 };
674 auto finiCB = [&](InsertPointTy codeGenIP) {};
675 builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createSingle(
676 ompLoc, bodyCB, finiCB, singleOp.nowait(), /*DidIt=*/nullptr));
677 return bodyGenStatus;
678 }
679
680 /// Converts an OpenMP task construct into LLVM IR using OpenMPIRBuilder.
681 static LogicalResult
convertOmpTaskOp(omp::TaskOp taskOp,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)682 convertOmpTaskOp(omp::TaskOp taskOp, llvm::IRBuilderBase &builder,
683 LLVM::ModuleTranslation &moduleTranslation) {
684 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
685 LogicalResult bodyGenStatus = success();
686 if (taskOp.if_expr() || taskOp.final_expr() || taskOp.untiedAttr() ||
687 taskOp.mergeableAttr() || taskOp.in_reductions() || taskOp.priority() ||
688 !taskOp.allocate_vars().empty()) {
689 return taskOp.emitError("unhandled clauses for translation to LLVM IR");
690 }
691 auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
692 builder.restoreIP(codegenIP);
693 convertOmpOpRegions(taskOp.region(), "omp.task.region", builder,
694 moduleTranslation, bodyGenStatus);
695 };
696 llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
697 findAllocaInsertPoint(builder, moduleTranslation);
698 llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
699 builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createTask(
700 ompLoc, allocaIP, bodyCB, !taskOp.untied()));
701 return bodyGenStatus;
702 }
703
704 /// Converts an OpenMP workshare loop into LLVM IR using OpenMPIRBuilder.
705 static LogicalResult
convertOmpWsLoop(Operation & opInst,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)706 convertOmpWsLoop(Operation &opInst, llvm::IRBuilderBase &builder,
707 LLVM::ModuleTranslation &moduleTranslation) {
708 auto loop = cast<omp::WsLoopOp>(opInst);
709 // TODO: this should be in the op verifier instead.
710 if (loop.lowerBound().empty())
711 return failure();
712
713 // Static is the default.
714 auto schedule = loop.schedule_val().value_or(omp::ClauseScheduleKind::Static);
715
716 // Find the loop configuration.
717 llvm::Value *step = moduleTranslation.lookupValue(loop.step()[0]);
718 llvm::Type *ivType = step->getType();
719 llvm::Value *chunk = nullptr;
720 if (loop.schedule_chunk_var()) {
721 llvm::Value *chunkVar =
722 moduleTranslation.lookupValue(loop.schedule_chunk_var());
723 chunk = builder.CreateSExtOrTrunc(chunkVar, ivType);
724 }
725
726 SmallVector<omp::ReductionDeclareOp> reductionDecls;
727 collectReductionDecls(loop, reductionDecls);
728 llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
729 findAllocaInsertPoint(builder, moduleTranslation);
730
731 // Allocate space for privatized reduction variables.
732 SmallVector<llvm::Value *> privateReductionVariables;
733 DenseMap<Value, llvm::Value *> reductionVariableMap;
734 unsigned numReductions = loop.getNumReductionVars();
735 privateReductionVariables.reserve(numReductions);
736 if (numReductions != 0) {
737 llvm::IRBuilderBase::InsertPointGuard guard(builder);
738 builder.restoreIP(allocaIP);
739 for (unsigned i = 0; i < numReductions; ++i) {
740 auto reductionType =
741 loop.reduction_vars()[i].getType().cast<LLVM::LLVMPointerType>();
742 llvm::Value *var = builder.CreateAlloca(
743 moduleTranslation.convertType(reductionType.getElementType()));
744 privateReductionVariables.push_back(var);
745 reductionVariableMap.try_emplace(loop.reduction_vars()[i], var);
746 }
747 }
748
749 // Store the mapping between reduction variables and their private copies on
750 // ModuleTranslation stack. It can be then recovered when translating
751 // omp.reduce operations in a separate call.
752 LLVM::ModuleTranslation::SaveStack<OpenMPVarMappingStackFrame> mappingGuard(
753 moduleTranslation, reductionVariableMap);
754
755 // Before the loop, store the initial values of reductions into reduction
756 // variables. Although this could be done after allocas, we don't want to mess
757 // up with the alloca insertion point.
758 for (unsigned i = 0; i < numReductions; ++i) {
759 SmallVector<llvm::Value *> phis;
760 if (failed(inlineConvertOmpRegions(reductionDecls[i].initializerRegion(),
761 "omp.reduction.neutral", builder,
762 moduleTranslation, &phis)))
763 return failure();
764 assert(phis.size() == 1 && "expected one value to be yielded from the "
765 "reduction neutral element declaration region");
766 builder.CreateStore(phis[0], privateReductionVariables[i]);
767 }
768
769 // Set up the source location value for OpenMP runtime.
770 llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
771
772 // Generator of the canonical loop body.
773 // TODO: support error propagation in OpenMPIRBuilder and use it instead of
774 // relying on captured variables.
775 SmallVector<llvm::CanonicalLoopInfo *> loopInfos;
776 SmallVector<llvm::OpenMPIRBuilder::InsertPointTy> bodyInsertPoints;
777 LogicalResult bodyGenStatus = success();
778 auto bodyGen = [&](llvm::OpenMPIRBuilder::InsertPointTy ip, llvm::Value *iv) {
779 // Make sure further conversions know about the induction variable.
780 moduleTranslation.mapValue(
781 loop.getRegion().front().getArgument(loopInfos.size()), iv);
782
783 // Capture the body insertion point for use in nested loops. BodyIP of the
784 // CanonicalLoopInfo always points to the beginning of the entry block of
785 // the body.
786 bodyInsertPoints.push_back(ip);
787
788 if (loopInfos.size() != loop.getNumLoops() - 1)
789 return;
790
791 // Convert the body of the loop.
792 builder.restoreIP(ip);
793 convertOmpOpRegions(loop.region(), "omp.wsloop.region", builder,
794 moduleTranslation, bodyGenStatus);
795 };
796
797 // Delegate actual loop construction to the OpenMP IRBuilder.
798 // TODO: this currently assumes WsLoop is semantically similar to SCF loop,
799 // i.e. it has a positive step, uses signed integer semantics. Reconsider
800 // this code when WsLoop clearly supports more cases.
801 llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
802 for (unsigned i = 0, e = loop.getNumLoops(); i < e; ++i) {
803 llvm::Value *lowerBound =
804 moduleTranslation.lookupValue(loop.lowerBound()[i]);
805 llvm::Value *upperBound =
806 moduleTranslation.lookupValue(loop.upperBound()[i]);
807 llvm::Value *step = moduleTranslation.lookupValue(loop.step()[i]);
808
809 // Make sure loop trip count are emitted in the preheader of the outermost
810 // loop at the latest so that they are all available for the new collapsed
811 // loop will be created below.
812 llvm::OpenMPIRBuilder::LocationDescription loc = ompLoc;
813 llvm::OpenMPIRBuilder::InsertPointTy computeIP = ompLoc.IP;
814 if (i != 0) {
815 loc = llvm::OpenMPIRBuilder::LocationDescription(bodyInsertPoints.back());
816 computeIP = loopInfos.front()->getPreheaderIP();
817 }
818 loopInfos.push_back(ompBuilder->createCanonicalLoop(
819 loc, bodyGen, lowerBound, upperBound, step,
820 /*IsSigned=*/true, loop.inclusive(), computeIP));
821
822 if (failed(bodyGenStatus))
823 return failure();
824 }
825
826 // Collapse loops. Store the insertion point because LoopInfos may get
827 // invalidated.
828 llvm::IRBuilderBase::InsertPoint afterIP = loopInfos.front()->getAfterIP();
829 llvm::CanonicalLoopInfo *loopInfo =
830 ompBuilder->collapseLoops(ompLoc.DL, loopInfos, {});
831
832 allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
833
834 // TODO: Handle doacross loops when the ordered clause has a parameter.
835 bool isOrdered = loop.ordered_val().has_value();
836 Optional<omp::ScheduleModifier> scheduleModifier = loop.schedule_modifier();
837 bool isSimd = loop.simd_modifier();
838
839 ompBuilder->applyWorkshareLoop(
840 ompLoc.DL, loopInfo, allocaIP, !loop.nowait(),
841 convertToScheduleKind(schedule), chunk, isSimd,
842 scheduleModifier == omp::ScheduleModifier::monotonic,
843 scheduleModifier == omp::ScheduleModifier::nonmonotonic, isOrdered);
844
845 // Continue building IR after the loop. Note that the LoopInfo returned by
846 // `collapseLoops` points inside the outermost loop and is intended for
847 // potential further loop transformations. Use the insertion point stored
848 // before collapsing loops instead.
849 builder.restoreIP(afterIP);
850
851 // Process the reductions if required.
852 if (numReductions == 0)
853 return success();
854
855 // Create the reduction generators. We need to own them here because
856 // ReductionInfo only accepts references to the generators.
857 SmallVector<OwningReductionGen> owningReductionGens;
858 SmallVector<OwningAtomicReductionGen> owningAtomicReductionGens;
859 for (unsigned i = 0; i < numReductions; ++i) {
860 owningReductionGens.push_back(
861 makeReductionGen(reductionDecls[i], builder, moduleTranslation));
862 owningAtomicReductionGens.push_back(
863 makeAtomicReductionGen(reductionDecls[i], builder, moduleTranslation));
864 }
865
866 // Collect the reduction information.
867 SmallVector<llvm::OpenMPIRBuilder::ReductionInfo> reductionInfos;
868 reductionInfos.reserve(numReductions);
869 for (unsigned i = 0; i < numReductions; ++i) {
870 llvm::OpenMPIRBuilder::AtomicReductionGenTy atomicGen = nullptr;
871 if (owningAtomicReductionGens[i])
872 atomicGen = owningAtomicReductionGens[i];
873 auto reductionType =
874 loop.reduction_vars()[i].getType().cast<LLVM::LLVMPointerType>();
875 llvm::Value *variable =
876 moduleTranslation.lookupValue(loop.reduction_vars()[i]);
877 reductionInfos.push_back(
878 {moduleTranslation.convertType(reductionType.getElementType()),
879 variable, privateReductionVariables[i], owningReductionGens[i],
880 atomicGen});
881 }
882
883 // The call to createReductions below expects the block to have a
884 // terminator. Create an unreachable instruction to serve as terminator
885 // and remove it later.
886 llvm::UnreachableInst *tempTerminator = builder.CreateUnreachable();
887 builder.SetInsertPoint(tempTerminator);
888 llvm::OpenMPIRBuilder::InsertPointTy contInsertPoint =
889 ompBuilder->createReductions(builder.saveIP(), allocaIP, reductionInfos,
890 loop.nowait());
891 if (!contInsertPoint.getBlock())
892 return loop->emitOpError() << "failed to convert reductions";
893 auto nextInsertionPoint =
894 ompBuilder->createBarrier(contInsertPoint, llvm::omp::OMPD_for);
895 tempTerminator->eraseFromParent();
896 builder.restoreIP(nextInsertionPoint);
897
898 return success();
899 }
900
901 /// Converts an OpenMP simd loop into LLVM IR using OpenMPIRBuilder.
902 static LogicalResult
convertOmpSimdLoop(Operation & opInst,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)903 convertOmpSimdLoop(Operation &opInst, llvm::IRBuilderBase &builder,
904 LLVM::ModuleTranslation &moduleTranslation) {
905 auto loop = cast<omp::SimdLoopOp>(opInst);
906
907 llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
908
909 // Generator of the canonical loop body.
910 // TODO: support error propagation in OpenMPIRBuilder and use it instead of
911 // relying on captured variables.
912 SmallVector<llvm::CanonicalLoopInfo *> loopInfos;
913 SmallVector<llvm::OpenMPIRBuilder::InsertPointTy> bodyInsertPoints;
914 LogicalResult bodyGenStatus = success();
915
916 // TODO: The code generation for if clause is not supported yet.
917 if (loop.if_expr())
918 return failure();
919
920 auto bodyGen = [&](llvm::OpenMPIRBuilder::InsertPointTy ip, llvm::Value *iv) {
921 // Make sure further conversions know about the induction variable.
922 moduleTranslation.mapValue(
923 loop.getRegion().front().getArgument(loopInfos.size()), iv);
924
925 // Capture the body insertion point for use in nested loops. BodyIP of the
926 // CanonicalLoopInfo always points to the beginning of the entry block of
927 // the body.
928 bodyInsertPoints.push_back(ip);
929
930 if (loopInfos.size() != loop.getNumLoops() - 1)
931 return;
932
933 // Convert the body of the loop.
934 builder.restoreIP(ip);
935 convertOmpOpRegions(loop.region(), "omp.simdloop.region", builder,
936 moduleTranslation, bodyGenStatus);
937 };
938
939 // Delegate actual loop construction to the OpenMP IRBuilder.
940 // TODO: this currently assumes SimdLoop is semantically similar to SCF loop,
941 // i.e. it has a positive step, uses signed integer semantics. Reconsider
942 // this code when SimdLoop clearly supports more cases.
943 llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
944 for (unsigned i = 0, e = loop.getNumLoops(); i < e; ++i) {
945 llvm::Value *lowerBound =
946 moduleTranslation.lookupValue(loop.lowerBound()[i]);
947 llvm::Value *upperBound =
948 moduleTranslation.lookupValue(loop.upperBound()[i]);
949 llvm::Value *step = moduleTranslation.lookupValue(loop.step()[i]);
950
951 // Make sure loop trip count are emitted in the preheader of the outermost
952 // loop at the latest so that they are all available for the new collapsed
953 // loop will be created below.
954 llvm::OpenMPIRBuilder::LocationDescription loc = ompLoc;
955 llvm::OpenMPIRBuilder::InsertPointTy computeIP = ompLoc.IP;
956 if (i != 0) {
957 loc = llvm::OpenMPIRBuilder::LocationDescription(bodyInsertPoints.back(),
958 ompLoc.DL);
959 computeIP = loopInfos.front()->getPreheaderIP();
960 }
961 loopInfos.push_back(ompBuilder->createCanonicalLoop(
962 loc, bodyGen, lowerBound, upperBound, step,
963 /*IsSigned=*/true, /*Inclusive=*/true, computeIP));
964
965 if (failed(bodyGenStatus))
966 return failure();
967 }
968
969 // Collapse loops.
970 llvm::IRBuilderBase::InsertPoint afterIP = loopInfos.front()->getAfterIP();
971 llvm::CanonicalLoopInfo *loopInfo =
972 ompBuilder->collapseLoops(ompLoc.DL, loopInfos, {});
973
974 ompBuilder->applySimd(loopInfo, nullptr);
975
976 builder.restoreIP(afterIP);
977 return success();
978 }
979
980 /// Convert an Atomic Ordering attribute to llvm::AtomicOrdering.
981 llvm::AtomicOrdering
convertAtomicOrdering(Optional<omp::ClauseMemoryOrderKind> ao)982 convertAtomicOrdering(Optional<omp::ClauseMemoryOrderKind> ao) {
983 if (!ao)
984 return llvm::AtomicOrdering::Monotonic; // Default Memory Ordering
985
986 switch (*ao) {
987 case omp::ClauseMemoryOrderKind::Seq_cst:
988 return llvm::AtomicOrdering::SequentiallyConsistent;
989 case omp::ClauseMemoryOrderKind::Acq_rel:
990 return llvm::AtomicOrdering::AcquireRelease;
991 case omp::ClauseMemoryOrderKind::Acquire:
992 return llvm::AtomicOrdering::Acquire;
993 case omp::ClauseMemoryOrderKind::Release:
994 return llvm::AtomicOrdering::Release;
995 case omp::ClauseMemoryOrderKind::Relaxed:
996 return llvm::AtomicOrdering::Monotonic;
997 }
998 llvm_unreachable("Unknown ClauseMemoryOrderKind kind");
999 }
1000
1001 /// Convert omp.atomic.read operation to LLVM IR.
1002 static LogicalResult
convertOmpAtomicRead(Operation & opInst,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)1003 convertOmpAtomicRead(Operation &opInst, llvm::IRBuilderBase &builder,
1004 LLVM::ModuleTranslation &moduleTranslation) {
1005
1006 auto readOp = cast<omp::AtomicReadOp>(opInst);
1007 llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
1008
1009 llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
1010
1011 llvm::AtomicOrdering AO = convertAtomicOrdering(readOp.memory_order_val());
1012 llvm::Value *x = moduleTranslation.lookupValue(readOp.x());
1013 Type xTy = readOp.x().getType().cast<omp::PointerLikeType>().getElementType();
1014 llvm::Value *v = moduleTranslation.lookupValue(readOp.v());
1015 Type vTy = readOp.v().getType().cast<omp::PointerLikeType>().getElementType();
1016 llvm::OpenMPIRBuilder::AtomicOpValue V = {
1017 v, moduleTranslation.convertType(vTy), false, false};
1018 llvm::OpenMPIRBuilder::AtomicOpValue X = {
1019 x, moduleTranslation.convertType(xTy), false, false};
1020 builder.restoreIP(ompBuilder->createAtomicRead(ompLoc, X, V, AO));
1021 return success();
1022 }
1023
1024 /// Converts an omp.atomic.write operation to LLVM IR.
1025 static LogicalResult
convertOmpAtomicWrite(Operation & opInst,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)1026 convertOmpAtomicWrite(Operation &opInst, llvm::IRBuilderBase &builder,
1027 LLVM::ModuleTranslation &moduleTranslation) {
1028 auto writeOp = cast<omp::AtomicWriteOp>(opInst);
1029 llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
1030
1031 llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
1032 llvm::AtomicOrdering ao = convertAtomicOrdering(writeOp.memory_order_val());
1033 llvm::Value *expr = moduleTranslation.lookupValue(writeOp.value());
1034 llvm::Value *dest = moduleTranslation.lookupValue(writeOp.address());
1035 llvm::Type *ty = moduleTranslation.convertType(writeOp.value().getType());
1036 llvm::OpenMPIRBuilder::AtomicOpValue x = {dest, ty, /*isSigned=*/false,
1037 /*isVolatile=*/false};
1038 builder.restoreIP(ompBuilder->createAtomicWrite(ompLoc, x, expr, ao));
1039 return success();
1040 }
1041
1042 /// Converts an LLVM dialect binary operation to the corresponding enum value
1043 /// for `atomicrmw` supported binary operation.
convertBinOpToAtomic(Operation & op)1044 llvm::AtomicRMWInst::BinOp convertBinOpToAtomic(Operation &op) {
1045 return llvm::TypeSwitch<Operation *, llvm::AtomicRMWInst::BinOp>(&op)
1046 .Case([&](LLVM::AddOp) { return llvm::AtomicRMWInst::BinOp::Add; })
1047 .Case([&](LLVM::SubOp) { return llvm::AtomicRMWInst::BinOp::Sub; })
1048 .Case([&](LLVM::AndOp) { return llvm::AtomicRMWInst::BinOp::And; })
1049 .Case([&](LLVM::OrOp) { return llvm::AtomicRMWInst::BinOp::Or; })
1050 .Case([&](LLVM::XOrOp) { return llvm::AtomicRMWInst::BinOp::Xor; })
1051 .Case([&](LLVM::UMaxOp) { return llvm::AtomicRMWInst::BinOp::UMax; })
1052 .Case([&](LLVM::UMinOp) { return llvm::AtomicRMWInst::BinOp::UMin; })
1053 .Case([&](LLVM::FAddOp) { return llvm::AtomicRMWInst::BinOp::FAdd; })
1054 .Case([&](LLVM::FSubOp) { return llvm::AtomicRMWInst::BinOp::FSub; })
1055 .Default(llvm::AtomicRMWInst::BinOp::BAD_BINOP);
1056 }
1057
1058 /// Converts an OpenMP atomic update operation using OpenMPIRBuilder.
1059 static LogicalResult
convertOmpAtomicUpdate(omp::AtomicUpdateOp & opInst,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)1060 convertOmpAtomicUpdate(omp::AtomicUpdateOp &opInst,
1061 llvm::IRBuilderBase &builder,
1062 LLVM::ModuleTranslation &moduleTranslation) {
1063 llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
1064
1065 // Convert values and types.
1066 auto &innerOpList = opInst.region().front().getOperations();
1067 if (innerOpList.size() != 2)
1068 return opInst.emitError("exactly two operations are allowed inside an "
1069 "atomic update region while lowering to LLVM IR");
1070
1071 Operation &innerUpdateOp = innerOpList.front();
1072
1073 if (innerUpdateOp.getNumOperands() != 2 ||
1074 !llvm::is_contained(innerUpdateOp.getOperands(),
1075 opInst.getRegion().getArgument(0)))
1076 return opInst.emitError(
1077 "the update operation inside the region must be a binary operation and "
1078 "that update operation must have the region argument as an operand");
1079
1080 llvm::AtomicRMWInst::BinOp binop = convertBinOpToAtomic(innerUpdateOp);
1081
1082 bool isXBinopExpr =
1083 innerUpdateOp.getNumOperands() > 0 &&
1084 innerUpdateOp.getOperand(0) == opInst.getRegion().getArgument(0);
1085
1086 mlir::Value mlirExpr = (isXBinopExpr ? innerUpdateOp.getOperand(1)
1087 : innerUpdateOp.getOperand(0));
1088 llvm::Value *llvmExpr = moduleTranslation.lookupValue(mlirExpr);
1089 llvm::Value *llvmX = moduleTranslation.lookupValue(opInst.x());
1090 LLVM::LLVMPointerType mlirXType =
1091 opInst.x().getType().cast<LLVM::LLVMPointerType>();
1092 llvm::Type *llvmXElementType =
1093 moduleTranslation.convertType(mlirXType.getElementType());
1094 llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicX = {llvmX, llvmXElementType,
1095 /*isSigned=*/false,
1096 /*isVolatile=*/false};
1097
1098 llvm::AtomicOrdering atomicOrdering =
1099 convertAtomicOrdering(opInst.memory_order_val());
1100
1101 // Generate update code.
1102 LogicalResult updateGenStatus = success();
1103 auto updateFn = [&opInst, &moduleTranslation, &updateGenStatus](
1104 llvm::Value *atomicx,
1105 llvm::IRBuilder<> &builder) -> llvm::Value * {
1106 Block &bb = *opInst.region().begin();
1107 moduleTranslation.mapValue(*opInst.region().args_begin(), atomicx);
1108 moduleTranslation.mapBlock(&bb, builder.GetInsertBlock());
1109 if (failed(moduleTranslation.convertBlock(bb, true, builder))) {
1110 updateGenStatus = (opInst.emitError()
1111 << "unable to convert update operation to llvm IR");
1112 return nullptr;
1113 }
1114 omp::YieldOp yieldop = dyn_cast<omp::YieldOp>(bb.getTerminator());
1115 assert(yieldop && yieldop.results().size() == 1 &&
1116 "terminator must be omp.yield op and it must have exactly one "
1117 "argument");
1118 return moduleTranslation.lookupValue(yieldop.results()[0]);
1119 };
1120
1121 // Handle ambiguous alloca, if any.
1122 auto allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
1123 llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
1124 builder.restoreIP(ompBuilder->createAtomicUpdate(
1125 ompLoc, allocaIP, llvmAtomicX, llvmExpr, atomicOrdering, binop, updateFn,
1126 isXBinopExpr));
1127 return updateGenStatus;
1128 }
1129
1130 static LogicalResult
convertOmpAtomicCapture(omp::AtomicCaptureOp atomicCaptureOp,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)1131 convertOmpAtomicCapture(omp::AtomicCaptureOp atomicCaptureOp,
1132 llvm::IRBuilderBase &builder,
1133 LLVM::ModuleTranslation &moduleTranslation) {
1134 llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
1135 mlir::Value mlirExpr;
1136 bool isXBinopExpr = false, isPostfixUpdate = false;
1137 llvm::AtomicRMWInst::BinOp binop = llvm::AtomicRMWInst::BinOp::BAD_BINOP;
1138
1139 omp::AtomicUpdateOp atomicUpdateOp = atomicCaptureOp.getAtomicUpdateOp();
1140 omp::AtomicWriteOp atomicWriteOp = atomicCaptureOp.getAtomicWriteOp();
1141
1142 assert((atomicUpdateOp || atomicWriteOp) &&
1143 "internal op must be an atomic.update or atomic.write op");
1144
1145 if (atomicWriteOp) {
1146 isPostfixUpdate = true;
1147 mlirExpr = atomicWriteOp.value();
1148 } else {
1149 isPostfixUpdate = atomicCaptureOp.getSecondOp() ==
1150 atomicCaptureOp.getAtomicUpdateOp().getOperation();
1151 auto &innerOpList = atomicUpdateOp.region().front().getOperations();
1152 if (innerOpList.size() != 2)
1153 return atomicUpdateOp.emitError(
1154 "exactly two operations are allowed inside an "
1155 "atomic update region while lowering to LLVM IR");
1156 Operation *innerUpdateOp = atomicUpdateOp.getFirstOp();
1157 if (innerUpdateOp->getNumOperands() != 2 ||
1158 !llvm::is_contained(innerUpdateOp->getOperands(),
1159 atomicUpdateOp.getRegion().getArgument(0)))
1160 return atomicUpdateOp.emitError(
1161 "the update operation inside the region must be a binary operation "
1162 "and that update operation must have the region argument as an "
1163 "operand");
1164 binop = convertBinOpToAtomic(*innerUpdateOp);
1165
1166 isXBinopExpr = innerUpdateOp->getOperand(0) ==
1167 atomicUpdateOp.getRegion().getArgument(0);
1168
1169 mlirExpr = (isXBinopExpr ? innerUpdateOp->getOperand(1)
1170 : innerUpdateOp->getOperand(0));
1171 }
1172
1173 llvm::Value *llvmExpr = moduleTranslation.lookupValue(mlirExpr);
1174 llvm::Value *llvmX =
1175 moduleTranslation.lookupValue(atomicCaptureOp.getAtomicReadOp().x());
1176 llvm::Value *llvmV =
1177 moduleTranslation.lookupValue(atomicCaptureOp.getAtomicReadOp().v());
1178 auto mlirXType = atomicCaptureOp.getAtomicReadOp()
1179 .x()
1180 .getType()
1181 .cast<LLVM::LLVMPointerType>();
1182 llvm::Type *llvmXElementType =
1183 moduleTranslation.convertType(mlirXType.getElementType());
1184 llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicX = {llvmX, llvmXElementType,
1185 /*isSigned=*/false,
1186 /*isVolatile=*/false};
1187 llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicV = {llvmV, llvmXElementType,
1188 /*isSigned=*/false,
1189 /*isVolatile=*/false};
1190
1191 llvm::AtomicOrdering atomicOrdering =
1192 convertAtomicOrdering(atomicCaptureOp.memory_order_val());
1193
1194 LogicalResult updateGenStatus = success();
1195 auto updateFn = [&](llvm::Value *atomicx,
1196 llvm::IRBuilder<> &builder) -> llvm::Value * {
1197 if (atomicWriteOp)
1198 return moduleTranslation.lookupValue(atomicWriteOp.value());
1199 Block &bb = *atomicUpdateOp.region().begin();
1200 moduleTranslation.mapValue(*atomicUpdateOp.region().args_begin(), atomicx);
1201 moduleTranslation.mapBlock(&bb, builder.GetInsertBlock());
1202 if (failed(moduleTranslation.convertBlock(bb, true, builder))) {
1203 updateGenStatus = (atomicUpdateOp.emitError()
1204 << "unable to convert update operation to llvm IR");
1205 return nullptr;
1206 }
1207 omp::YieldOp yieldop = dyn_cast<omp::YieldOp>(bb.getTerminator());
1208 assert(yieldop && yieldop.results().size() == 1 &&
1209 "terminator must be omp.yield op and it must have exactly one "
1210 "argument");
1211 return moduleTranslation.lookupValue(yieldop.results()[0]);
1212 };
1213
1214 // Handle ambiguous alloca, if any.
1215 auto allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
1216 llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
1217 builder.restoreIP(ompBuilder->createAtomicCapture(
1218 ompLoc, allocaIP, llvmAtomicX, llvmAtomicV, llvmExpr, atomicOrdering,
1219 binop, updateFn, atomicUpdateOp, isPostfixUpdate, isXBinopExpr));
1220 return updateGenStatus;
1221 }
1222
1223 /// Converts an OpenMP reduction operation using OpenMPIRBuilder. Expects the
1224 /// mapping between reduction variables and their private equivalents to have
1225 /// been stored on the ModuleTranslation stack. Currently only supports
1226 /// reduction within WsLoopOp, but can be easily extended.
1227 static LogicalResult
convertOmpReductionOp(omp::ReductionOp reductionOp,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)1228 convertOmpReductionOp(omp::ReductionOp reductionOp,
1229 llvm::IRBuilderBase &builder,
1230 LLVM::ModuleTranslation &moduleTranslation) {
1231 // Find the declaration that corresponds to the reduction op.
1232 auto reductionContainer = reductionOp->getParentOfType<omp::WsLoopOp>();
1233 omp::ReductionDeclareOp declaration =
1234 findReductionDecl(reductionContainer, reductionOp);
1235 assert(declaration && "could not find reduction declaration");
1236
1237 // Retrieve the mapping between reduction variables and their private
1238 // equivalents.
1239 const DenseMap<Value, llvm::Value *> *reductionVariableMap = nullptr;
1240 moduleTranslation.stackWalk<OpenMPVarMappingStackFrame>(
1241 [&](const OpenMPVarMappingStackFrame &frame) {
1242 reductionVariableMap = &frame.mapping;
1243 return WalkResult::interrupt();
1244 });
1245 assert(reductionVariableMap && "couldn't find private reduction variables");
1246
1247 // Translate the reduction operation by emitting the body of the corresponding
1248 // reduction declaration.
1249 Region &reductionRegion = declaration.reductionRegion();
1250 llvm::Value *privateReductionVar =
1251 reductionVariableMap->lookup(reductionOp.accumulator());
1252 llvm::Value *reductionVal = builder.CreateLoad(
1253 moduleTranslation.convertType(reductionOp.operand().getType()),
1254 privateReductionVar);
1255
1256 moduleTranslation.mapValue(reductionRegion.front().getArgument(0),
1257 reductionVal);
1258 moduleTranslation.mapValue(
1259 reductionRegion.front().getArgument(1),
1260 moduleTranslation.lookupValue(reductionOp.operand()));
1261
1262 SmallVector<llvm::Value *> phis;
1263 if (failed(inlineConvertOmpRegions(reductionRegion, "omp.reduction.body",
1264 builder, moduleTranslation, &phis)))
1265 return failure();
1266 assert(phis.size() == 1 && "expected one value to be yielded from "
1267 "the reduction body declaration region");
1268 builder.CreateStore(phis[0], privateReductionVar);
1269 return success();
1270 }
1271
1272 /// Converts an OpenMP Threadprivate operation into LLVM IR using
1273 /// OpenMPIRBuilder.
1274 static LogicalResult
convertOmpThreadprivate(Operation & opInst,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation)1275 convertOmpThreadprivate(Operation &opInst, llvm::IRBuilderBase &builder,
1276 LLVM::ModuleTranslation &moduleTranslation) {
1277 llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
1278 auto threadprivateOp = cast<omp::ThreadprivateOp>(opInst);
1279
1280 Value symAddr = threadprivateOp.sym_addr();
1281 auto *symOp = symAddr.getDefiningOp();
1282 if (!isa<LLVM::AddressOfOp>(symOp))
1283 return opInst.emitError("Addressing symbol not found");
1284 LLVM::AddressOfOp addressOfOp = dyn_cast<LLVM::AddressOfOp>(symOp);
1285
1286 LLVM::GlobalOp global = addressOfOp.getGlobal();
1287 llvm::GlobalValue *globalValue = moduleTranslation.lookupGlobal(global);
1288 llvm::Value *data =
1289 builder.CreateBitCast(globalValue, builder.getInt8PtrTy());
1290 llvm::Type *type = globalValue->getValueType();
1291 llvm::TypeSize typeSize =
1292 builder.GetInsertBlock()->getModule()->getDataLayout().getTypeStoreSize(
1293 type);
1294 llvm::ConstantInt *size = builder.getInt64(typeSize.getFixedSize());
1295 llvm::StringRef suffix = llvm::StringRef(".cache", 6);
1296 std::string cacheName = (Twine(global.getSymName()).concat(suffix)).str();
1297 // Emit runtime function and bitcast its type (i8*) to real data type.
1298 llvm::Value *callInst =
1299 moduleTranslation.getOpenMPBuilder()->createCachedThreadPrivate(
1300 ompLoc, data, size, cacheName);
1301 llvm::Value *result = builder.CreateBitCast(callInst, globalValue->getType());
1302 moduleTranslation.mapValue(opInst.getResult(0), result);
1303 return success();
1304 }
1305
1306 namespace {
1307
1308 /// Implementation of the dialect interface that converts operations belonging
1309 /// to the OpenMP dialect to LLVM IR.
1310 class OpenMPDialectLLVMIRTranslationInterface
1311 : public LLVMTranslationDialectInterface {
1312 public:
1313 using LLVMTranslationDialectInterface::LLVMTranslationDialectInterface;
1314
1315 /// Translates the given operation to LLVM IR using the provided IR builder
1316 /// and saving the state in `moduleTranslation`.
1317 LogicalResult
1318 convertOperation(Operation *op, llvm::IRBuilderBase &builder,
1319 LLVM::ModuleTranslation &moduleTranslation) const final;
1320 };
1321
1322 } // namespace
1323
1324 /// Given an OpenMP MLIR operation, create the corresponding LLVM IR
1325 /// (including OpenMP runtime calls).
convertOperation(Operation * op,llvm::IRBuilderBase & builder,LLVM::ModuleTranslation & moduleTranslation) const1326 LogicalResult OpenMPDialectLLVMIRTranslationInterface::convertOperation(
1327 Operation *op, llvm::IRBuilderBase &builder,
1328 LLVM::ModuleTranslation &moduleTranslation) const {
1329
1330 llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
1331
1332 return llvm::TypeSwitch<Operation *, LogicalResult>(op)
1333 .Case([&](omp::BarrierOp) {
1334 ompBuilder->createBarrier(builder.saveIP(), llvm::omp::OMPD_barrier);
1335 return success();
1336 })
1337 .Case([&](omp::TaskwaitOp) {
1338 ompBuilder->createTaskwait(builder.saveIP());
1339 return success();
1340 })
1341 .Case([&](omp::TaskyieldOp) {
1342 ompBuilder->createTaskyield(builder.saveIP());
1343 return success();
1344 })
1345 .Case([&](omp::FlushOp) {
1346 // No support in Openmp runtime function (__kmpc_flush) to accept
1347 // the argument list.
1348 // OpenMP standard states the following:
1349 // "An implementation may implement a flush with a list by ignoring
1350 // the list, and treating it the same as a flush without a list."
1351 //
1352 // The argument list is discarded so that, flush with a list is treated
1353 // same as a flush without a list.
1354 ompBuilder->createFlush(builder.saveIP());
1355 return success();
1356 })
1357 .Case([&](omp::ParallelOp op) {
1358 return convertOmpParallel(op, builder, moduleTranslation);
1359 })
1360 .Case([&](omp::ReductionOp reductionOp) {
1361 return convertOmpReductionOp(reductionOp, builder, moduleTranslation);
1362 })
1363 .Case([&](omp::MasterOp) {
1364 return convertOmpMaster(*op, builder, moduleTranslation);
1365 })
1366 .Case([&](omp::CriticalOp) {
1367 return convertOmpCritical(*op, builder, moduleTranslation);
1368 })
1369 .Case([&](omp::OrderedRegionOp) {
1370 return convertOmpOrderedRegion(*op, builder, moduleTranslation);
1371 })
1372 .Case([&](omp::OrderedOp) {
1373 return convertOmpOrdered(*op, builder, moduleTranslation);
1374 })
1375 .Case([&](omp::WsLoopOp) {
1376 return convertOmpWsLoop(*op, builder, moduleTranslation);
1377 })
1378 .Case([&](omp::SimdLoopOp) {
1379 return convertOmpSimdLoop(*op, builder, moduleTranslation);
1380 })
1381 .Case([&](omp::AtomicReadOp) {
1382 return convertOmpAtomicRead(*op, builder, moduleTranslation);
1383 })
1384 .Case([&](omp::AtomicWriteOp) {
1385 return convertOmpAtomicWrite(*op, builder, moduleTranslation);
1386 })
1387 .Case([&](omp::AtomicUpdateOp op) {
1388 return convertOmpAtomicUpdate(op, builder, moduleTranslation);
1389 })
1390 .Case([&](omp::AtomicCaptureOp op) {
1391 return convertOmpAtomicCapture(op, builder, moduleTranslation);
1392 })
1393 .Case([&](omp::SectionsOp) {
1394 return convertOmpSections(*op, builder, moduleTranslation);
1395 })
1396 .Case([&](omp::SingleOp op) {
1397 return convertOmpSingle(op, builder, moduleTranslation);
1398 })
1399 .Case([&](omp::TaskOp op) {
1400 return convertOmpTaskOp(op, builder, moduleTranslation);
1401 })
1402 .Case<omp::YieldOp, omp::TerminatorOp, omp::ReductionDeclareOp,
1403 omp::CriticalDeclareOp>([](auto op) {
1404 // `yield` and `terminator` can be just omitted. The block structure
1405 // was created in the region that handles their parent operation.
1406 // `reduction.declare` will be used by reductions and is not
1407 // converted directly, skip it.
1408 // `critical.declare` is only used to declare names of critical
1409 // sections which will be used by `critical` ops and hence can be
1410 // ignored for lowering. The OpenMP IRBuilder will create unique
1411 // name for critical section names.
1412 return success();
1413 })
1414 .Case([&](omp::ThreadprivateOp) {
1415 return convertOmpThreadprivate(*op, builder, moduleTranslation);
1416 })
1417 .Default([&](Operation *inst) {
1418 return inst->emitError("unsupported OpenMP operation: ")
1419 << inst->getName();
1420 });
1421 }
1422
registerOpenMPDialectTranslation(DialectRegistry & registry)1423 void mlir::registerOpenMPDialectTranslation(DialectRegistry ®istry) {
1424 registry.insert<omp::OpenMPDialect>();
1425 registry.addExtension(+[](MLIRContext *ctx, omp::OpenMPDialect *dialect) {
1426 dialect->addInterfaces<OpenMPDialectLLVMIRTranslationInterface>();
1427 });
1428 }
1429
registerOpenMPDialectTranslation(MLIRContext & context)1430 void mlir::registerOpenMPDialectTranslation(MLIRContext &context) {
1431 DialectRegistry registry;
1432 registerOpenMPDialectTranslation(registry);
1433 context.appendDialectRegistry(registry);
1434 }
1435