1 //===- Operator.cpp - Operator class --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Operator wrapper to simplify using TableGen Record defining a MLIR Op. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/TableGen/Operator.h" 14 #include "mlir/TableGen/OpTrait.h" 15 #include "mlir/TableGen/Predicate.h" 16 #include "mlir/TableGen/Type.h" 17 #include "llvm/ADT/EquivalenceClasses.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Sequence.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/TypeSwitch.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/FormatVariadic.h" 24 #include "llvm/TableGen/Error.h" 25 #include "llvm/TableGen/Record.h" 26 27 #define DEBUG_TYPE "mlir-tblgen-operator" 28 29 using namespace mlir; 30 using namespace mlir::tblgen; 31 32 using llvm::DagInit; 33 using llvm::DefInit; 34 using llvm::Record; 35 36 Operator::Operator(const llvm::Record &def) 37 : dialect(def.getValueAsDef("opDialect")), def(def) { 38 // The first `_` in the op's TableGen def name is treated as separating the 39 // dialect prefix and the op class name. The dialect prefix will be ignored if 40 // not empty. Otherwise, if def name starts with a `_`, the `_` is considered 41 // as part of the class name. 42 StringRef prefix; 43 std::tie(prefix, cppClassName) = def.getName().split('_'); 44 if (prefix.empty()) { 45 // Class name with a leading underscore and without dialect prefix 46 cppClassName = def.getName(); 47 } else if (cppClassName.empty()) { 48 // Class name without dialect prefix 49 cppClassName = prefix; 50 } 51 52 populateOpStructure(); 53 } 54 55 std::string Operator::getOperationName() const { 56 auto prefix = dialect.getName(); 57 auto opName = def.getValueAsString("opName"); 58 if (prefix.empty()) 59 return std::string(opName); 60 return std::string(llvm::formatv("{0}.{1}", prefix, opName)); 61 } 62 63 std::string Operator::getAdaptorName() const { 64 return std::string(llvm::formatv("{0}Adaptor", getCppClassName())); 65 } 66 67 StringRef Operator::getDialectName() const { return dialect.getName(); } 68 69 StringRef Operator::getCppClassName() const { return cppClassName; } 70 71 std::string Operator::getQualCppClassName() const { 72 auto prefix = dialect.getCppNamespace(); 73 if (prefix.empty()) 74 return std::string(cppClassName); 75 return std::string(llvm::formatv("{0}::{1}", prefix, cppClassName)); 76 } 77 78 int Operator::getNumResults() const { 79 DagInit *results = def.getValueAsDag("results"); 80 return results->getNumArgs(); 81 } 82 83 StringRef Operator::getExtraClassDeclaration() const { 84 constexpr auto attr = "extraClassDeclaration"; 85 if (def.isValueUnset(attr)) 86 return {}; 87 return def.getValueAsString(attr); 88 } 89 90 const llvm::Record &Operator::getDef() const { return def; } 91 92 bool Operator::skipDefaultBuilders() const { 93 return def.getValueAsBit("skipDefaultBuilders"); 94 } 95 96 auto Operator::result_begin() -> value_iterator { return results.begin(); } 97 98 auto Operator::result_end() -> value_iterator { return results.end(); } 99 100 auto Operator::getResults() -> value_range { 101 return {result_begin(), result_end()}; 102 } 103 104 TypeConstraint Operator::getResultTypeConstraint(int index) const { 105 DagInit *results = def.getValueAsDag("results"); 106 return TypeConstraint(cast<DefInit>(results->getArg(index))); 107 } 108 109 StringRef Operator::getResultName(int index) const { 110 DagInit *results = def.getValueAsDag("results"); 111 return results->getArgNameStr(index); 112 } 113 114 auto Operator::getResultDecorators(int index) const -> var_decorator_range { 115 Record *result = 116 cast<DefInit>(def.getValueAsDag("results")->getArg(index))->getDef(); 117 if (!result->isSubClassOf("OpVariable")) 118 return var_decorator_range(nullptr, nullptr); 119 return *result->getValueAsListInit("decorators"); 120 } 121 122 unsigned Operator::getNumVariableLengthResults() const { 123 return llvm::count_if(results, [](const NamedTypeConstraint &c) { 124 return c.constraint.isVariableLength(); 125 }); 126 } 127 128 unsigned Operator::getNumVariableLengthOperands() const { 129 return llvm::count_if(operands, [](const NamedTypeConstraint &c) { 130 return c.constraint.isVariableLength(); 131 }); 132 } 133 134 bool Operator::hasSingleVariadicArg() const { 135 return getNumArgs() == 1 && getArg(0).is<NamedTypeConstraint *>() && 136 getOperand(0).isVariadic(); 137 } 138 139 Operator::arg_iterator Operator::arg_begin() const { return arguments.begin(); } 140 141 Operator::arg_iterator Operator::arg_end() const { return arguments.end(); } 142 143 Operator::arg_range Operator::getArgs() const { 144 return {arg_begin(), arg_end()}; 145 } 146 147 StringRef Operator::getArgName(int index) const { 148 DagInit *argumentValues = def.getValueAsDag("arguments"); 149 return argumentValues->getArgName(index)->getValue(); 150 } 151 152 auto Operator::getArgDecorators(int index) const -> var_decorator_range { 153 Record *arg = 154 cast<DefInit>(def.getValueAsDag("arguments")->getArg(index))->getDef(); 155 if (!arg->isSubClassOf("OpVariable")) 156 return var_decorator_range(nullptr, nullptr); 157 return *arg->getValueAsListInit("decorators"); 158 } 159 160 const OpTrait *Operator::getTrait(StringRef trait) const { 161 for (const auto &t : traits) { 162 if (const auto *opTrait = dyn_cast<NativeOpTrait>(&t)) { 163 if (opTrait->getTrait() == trait) 164 return opTrait; 165 } else if (const auto *opTrait = dyn_cast<InternalOpTrait>(&t)) { 166 if (opTrait->getTrait() == trait) 167 return opTrait; 168 } else if (const auto *opTrait = dyn_cast<InterfaceOpTrait>(&t)) { 169 if (opTrait->getTrait() == trait) 170 return opTrait; 171 } 172 } 173 return nullptr; 174 } 175 176 auto Operator::region_begin() const -> const_region_iterator { 177 return regions.begin(); 178 } 179 auto Operator::region_end() const -> const_region_iterator { 180 return regions.end(); 181 } 182 auto Operator::getRegions() const 183 -> llvm::iterator_range<const_region_iterator> { 184 return {region_begin(), region_end()}; 185 } 186 187 unsigned Operator::getNumRegions() const { return regions.size(); } 188 189 const NamedRegion &Operator::getRegion(unsigned index) const { 190 return regions[index]; 191 } 192 193 unsigned Operator::getNumVariadicRegions() const { 194 return llvm::count_if(regions, 195 [](const NamedRegion &c) { return c.isVariadic(); }); 196 } 197 198 auto Operator::successor_begin() const -> const_successor_iterator { 199 return successors.begin(); 200 } 201 auto Operator::successor_end() const -> const_successor_iterator { 202 return successors.end(); 203 } 204 auto Operator::getSuccessors() const 205 -> llvm::iterator_range<const_successor_iterator> { 206 return {successor_begin(), successor_end()}; 207 } 208 209 unsigned Operator::getNumSuccessors() const { return successors.size(); } 210 211 const NamedSuccessor &Operator::getSuccessor(unsigned index) const { 212 return successors[index]; 213 } 214 215 unsigned Operator::getNumVariadicSuccessors() const { 216 return llvm::count_if(successors, 217 [](const NamedSuccessor &c) { return c.isVariadic(); }); 218 } 219 220 auto Operator::trait_begin() const -> const_trait_iterator { 221 return traits.begin(); 222 } 223 auto Operator::trait_end() const -> const_trait_iterator { 224 return traits.end(); 225 } 226 auto Operator::getTraits() const -> llvm::iterator_range<const_trait_iterator> { 227 return {trait_begin(), trait_end()}; 228 } 229 230 auto Operator::attribute_begin() const -> attribute_iterator { 231 return attributes.begin(); 232 } 233 auto Operator::attribute_end() const -> attribute_iterator { 234 return attributes.end(); 235 } 236 auto Operator::getAttributes() const 237 -> llvm::iterator_range<attribute_iterator> { 238 return {attribute_begin(), attribute_end()}; 239 } 240 241 auto Operator::operand_begin() -> value_iterator { return operands.begin(); } 242 auto Operator::operand_end() -> value_iterator { return operands.end(); } 243 auto Operator::getOperands() -> value_range { 244 return {operand_begin(), operand_end()}; 245 } 246 247 auto Operator::getArg(int index) const -> Argument { return arguments[index]; } 248 249 // Mapping from result index to combined argument and result index. Arguments 250 // are indexed to match getArg index, while the result indexes are mapped to 251 // avoid overlap. 252 static int resultIndex(int i) { return -1 - i; } 253 254 bool Operator::isVariadic() const { 255 return any_of(llvm::concat<const NamedTypeConstraint>(operands, results), 256 [](const NamedTypeConstraint &op) { return op.isVariadic(); }); 257 } 258 259 void Operator::populateTypeInferenceInfo( 260 const llvm::StringMap<int> &argumentsAndResultsIndex) { 261 // If the type inference op interface is not registered, then do not attempt 262 // to determine if the result types an be inferred. 263 auto &recordKeeper = def.getRecords(); 264 auto *inferTrait = recordKeeper.getDef(inferTypeOpInterface); 265 allResultsHaveKnownTypes = false; 266 if (!inferTrait) 267 return; 268 269 // If there are no results, the skip this else the build method generated 270 // overlaps with another autogenerated builder. 271 if (getNumResults() == 0) 272 return; 273 274 // Skip for ops with variadic operands/results. 275 // TODO: This can be relaxed. 276 if (isVariadic()) 277 return; 278 279 // Skip cases currently being custom generated. 280 // TODO: Remove special cases. 281 if (getTrait("OpTrait::SameOperandsAndResultType")) 282 return; 283 284 // We create equivalence classes of argument/result types where arguments 285 // and results are mapped into the same index space and indices corresponding 286 // to the same type are in the same equivalence class. 287 llvm::EquivalenceClasses<int> ecs; 288 resultTypeMapping.resize(getNumResults()); 289 // Captures the argument whose type matches a given result type. Preference 290 // towards capturing operands first before attributes. 291 auto captureMapping = [&](int i) { 292 bool found = false; 293 ecs.insert(resultIndex(i)); 294 auto mi = ecs.findLeader(resultIndex(i)); 295 for (auto me = ecs.member_end(); mi != me; ++mi) { 296 if (*mi < 0) { 297 auto tc = getResultTypeConstraint(i); 298 if (tc.getBuilderCall().hasValue()) { 299 resultTypeMapping[i].emplace_back(tc); 300 found = true; 301 } 302 continue; 303 } 304 305 if (getArg(*mi).is<NamedAttribute *>()) { 306 // TODO: Handle attributes. 307 continue; 308 } else { 309 resultTypeMapping[i].emplace_back(*mi); 310 found = true; 311 } 312 } 313 return found; 314 }; 315 316 for (const OpTrait &trait : traits) { 317 const llvm::Record &def = trait.getDef(); 318 // If the infer type op interface was manually added, then treat it as 319 // intention that the op needs special handling. 320 // TODO: Reconsider whether to always generate, this is more conservative 321 // and keeps existing behavior so starting that way for now. 322 if (def.isSubClassOf( 323 llvm::formatv("{0}::Trait", inferTypeOpInterface).str())) 324 return; 325 if (const auto *opTrait = dyn_cast<InterfaceOpTrait>(&trait)) 326 if (&opTrait->getDef() == inferTrait) 327 return; 328 329 if (!def.isSubClassOf("AllTypesMatch")) 330 continue; 331 332 auto values = def.getValueAsListOfStrings("values"); 333 auto root = argumentsAndResultsIndex.lookup(values.front()); 334 for (StringRef str : values) 335 ecs.unionSets(argumentsAndResultsIndex.lookup(str), root); 336 } 337 338 // Verifies that all output types have a corresponding known input type 339 // and chooses matching operand or attribute (in that order) that 340 // matches it. 341 allResultsHaveKnownTypes = 342 all_of(llvm::seq<int>(0, getNumResults()), captureMapping); 343 344 // If the types could be computed, then add type inference trait. 345 if (allResultsHaveKnownTypes) 346 traits.push_back(OpTrait::create(inferTrait->getDefInit())); 347 } 348 349 void Operator::populateOpStructure() { 350 auto &recordKeeper = def.getRecords(); 351 auto *typeConstraintClass = recordKeeper.getClass("TypeConstraint"); 352 auto *attrClass = recordKeeper.getClass("Attr"); 353 auto *derivedAttrClass = recordKeeper.getClass("DerivedAttr"); 354 auto *opVarClass = recordKeeper.getClass("OpVariable"); 355 numNativeAttributes = 0; 356 357 DagInit *argumentValues = def.getValueAsDag("arguments"); 358 unsigned numArgs = argumentValues->getNumArgs(); 359 360 // Mapping from name of to argument or result index. Arguments are indexed 361 // to match getArg index, while the results are negatively indexed. 362 llvm::StringMap<int> argumentsAndResultsIndex; 363 364 // Handle operands and native attributes. 365 for (unsigned i = 0; i != numArgs; ++i) { 366 auto *arg = argumentValues->getArg(i); 367 auto givenName = argumentValues->getArgNameStr(i); 368 auto *argDefInit = dyn_cast<DefInit>(arg); 369 if (!argDefInit) 370 PrintFatalError(def.getLoc(), 371 Twine("undefined type for argument #") + Twine(i)); 372 Record *argDef = argDefInit->getDef(); 373 if (argDef->isSubClassOf(opVarClass)) 374 argDef = argDef->getValueAsDef("constraint"); 375 376 if (argDef->isSubClassOf(typeConstraintClass)) { 377 operands.push_back( 378 NamedTypeConstraint{givenName, TypeConstraint(argDef)}); 379 } else if (argDef->isSubClassOf(attrClass)) { 380 if (givenName.empty()) 381 PrintFatalError(argDef->getLoc(), "attributes must be named"); 382 if (argDef->isSubClassOf(derivedAttrClass)) 383 PrintFatalError(argDef->getLoc(), 384 "derived attributes not allowed in argument list"); 385 attributes.push_back({givenName, Attribute(argDef)}); 386 ++numNativeAttributes; 387 } else { 388 PrintFatalError(def.getLoc(), "unexpected def type; only defs deriving " 389 "from TypeConstraint or Attr are allowed"); 390 } 391 if (!givenName.empty()) 392 argumentsAndResultsIndex[givenName] = i; 393 } 394 395 // Handle derived attributes. 396 for (const auto &val : def.getValues()) { 397 if (auto *record = dyn_cast<llvm::RecordRecTy>(val.getType())) { 398 if (!record->isSubClassOf(attrClass)) 399 continue; 400 if (!record->isSubClassOf(derivedAttrClass)) 401 PrintFatalError(def.getLoc(), 402 "unexpected Attr where only DerivedAttr is allowed"); 403 404 if (record->getClasses().size() != 1) { 405 PrintFatalError( 406 def.getLoc(), 407 "unsupported attribute modelling, only single class expected"); 408 } 409 attributes.push_back( 410 {cast<llvm::StringInit>(val.getNameInit())->getValue(), 411 Attribute(cast<DefInit>(val.getValue()))}); 412 } 413 } 414 415 // Populate `arguments`. This must happen after we've finalized `operands` and 416 // `attributes` because we will put their elements' pointers in `arguments`. 417 // SmallVector may perform re-allocation under the hood when adding new 418 // elements. 419 int operandIndex = 0, attrIndex = 0; 420 for (unsigned i = 0; i != numArgs; ++i) { 421 Record *argDef = dyn_cast<DefInit>(argumentValues->getArg(i))->getDef(); 422 if (argDef->isSubClassOf(opVarClass)) 423 argDef = argDef->getValueAsDef("constraint"); 424 425 if (argDef->isSubClassOf(typeConstraintClass)) { 426 attrOrOperandMapping.push_back( 427 {OperandOrAttribute::Kind::Operand, operandIndex}); 428 arguments.emplace_back(&operands[operandIndex++]); 429 } else { 430 assert(argDef->isSubClassOf(attrClass)); 431 attrOrOperandMapping.push_back( 432 {OperandOrAttribute::Kind::Attribute, attrIndex}); 433 arguments.emplace_back(&attributes[attrIndex++]); 434 } 435 } 436 437 auto *resultsDag = def.getValueAsDag("results"); 438 auto *outsOp = dyn_cast<DefInit>(resultsDag->getOperator()); 439 if (!outsOp || outsOp->getDef()->getName() != "outs") { 440 PrintFatalError(def.getLoc(), "'results' must have 'outs' directive"); 441 } 442 443 // Handle results. 444 for (unsigned i = 0, e = resultsDag->getNumArgs(); i < e; ++i) { 445 auto name = resultsDag->getArgNameStr(i); 446 auto *resultInit = dyn_cast<DefInit>(resultsDag->getArg(i)); 447 if (!resultInit) { 448 PrintFatalError(def.getLoc(), 449 Twine("undefined type for result #") + Twine(i)); 450 } 451 auto *resultDef = resultInit->getDef(); 452 if (resultDef->isSubClassOf(opVarClass)) 453 resultDef = resultDef->getValueAsDef("constraint"); 454 results.push_back({name, TypeConstraint(resultDef)}); 455 if (!name.empty()) 456 argumentsAndResultsIndex[name] = resultIndex(i); 457 } 458 459 // Handle successors 460 auto *successorsDag = def.getValueAsDag("successors"); 461 auto *successorsOp = dyn_cast<DefInit>(successorsDag->getOperator()); 462 if (!successorsOp || successorsOp->getDef()->getName() != "successor") { 463 PrintFatalError(def.getLoc(), 464 "'successors' must have 'successor' directive"); 465 } 466 467 for (unsigned i = 0, e = successorsDag->getNumArgs(); i < e; ++i) { 468 auto name = successorsDag->getArgNameStr(i); 469 auto *successorInit = dyn_cast<DefInit>(successorsDag->getArg(i)); 470 if (!successorInit) { 471 PrintFatalError(def.getLoc(), 472 Twine("undefined kind for successor #") + Twine(i)); 473 } 474 Successor successor(successorInit->getDef()); 475 476 // Only support variadic successors if it is the last one for now. 477 if (i != e - 1 && successor.isVariadic()) 478 PrintFatalError(def.getLoc(), "only the last successor can be variadic"); 479 successors.push_back({name, successor}); 480 } 481 482 // Create list of traits, skipping over duplicates: appending to lists in 483 // tablegen is easy, making them unique less so, so dedupe here. 484 if (auto *traitList = def.getValueAsListInit("traits")) { 485 // This is uniquing based on pointers of the trait. 486 SmallPtrSet<const llvm::Init *, 32> traitSet; 487 traits.reserve(traitSet.size()); 488 for (auto *traitInit : *traitList) { 489 // Keep traits in the same order while skipping over duplicates. 490 if (traitSet.insert(traitInit).second) 491 traits.push_back(OpTrait::create(traitInit)); 492 } 493 } 494 495 populateTypeInferenceInfo(argumentsAndResultsIndex); 496 497 // Handle regions 498 auto *regionsDag = def.getValueAsDag("regions"); 499 auto *regionsOp = dyn_cast<DefInit>(regionsDag->getOperator()); 500 if (!regionsOp || regionsOp->getDef()->getName() != "region") { 501 PrintFatalError(def.getLoc(), "'regions' must have 'region' directive"); 502 } 503 504 for (unsigned i = 0, e = regionsDag->getNumArgs(); i < e; ++i) { 505 auto name = regionsDag->getArgNameStr(i); 506 auto *regionInit = dyn_cast<DefInit>(regionsDag->getArg(i)); 507 if (!regionInit) { 508 PrintFatalError(def.getLoc(), 509 Twine("undefined kind for region #") + Twine(i)); 510 } 511 Region region(regionInit->getDef()); 512 if (region.isVariadic()) { 513 // Only support variadic regions if it is the last one for now. 514 if (i != e - 1) 515 PrintFatalError(def.getLoc(), "only the last region can be variadic"); 516 if (name.empty()) 517 PrintFatalError(def.getLoc(), "variadic regions must be named"); 518 } 519 520 regions.push_back({name, region}); 521 } 522 523 LLVM_DEBUG(print(llvm::dbgs())); 524 } 525 526 auto Operator::getSameTypeAsResult(int index) const -> ArrayRef<ArgOrType> { 527 assert(allResultTypesKnown()); 528 return resultTypeMapping[index]; 529 } 530 531 ArrayRef<llvm::SMLoc> Operator::getLoc() const { return def.getLoc(); } 532 533 bool Operator::hasDescription() const { 534 return def.getValue("description") != nullptr; 535 } 536 537 StringRef Operator::getDescription() const { 538 return def.getValueAsString("description"); 539 } 540 541 bool Operator::hasSummary() const { return def.getValue("summary") != nullptr; } 542 543 StringRef Operator::getSummary() const { 544 return def.getValueAsString("summary"); 545 } 546 547 bool Operator::hasAssemblyFormat() const { 548 auto *valueInit = def.getValueInit("assemblyFormat"); 549 return isa<llvm::CodeInit, llvm::StringInit>(valueInit); 550 } 551 552 StringRef Operator::getAssemblyFormat() const { 553 return TypeSwitch<llvm::Init *, StringRef>(def.getValueInit("assemblyFormat")) 554 .Case<llvm::StringInit, llvm::CodeInit>( 555 [&](auto *init) { return init->getValue(); }); 556 } 557 558 void Operator::print(llvm::raw_ostream &os) const { 559 os << "op '" << getOperationName() << "'\n"; 560 for (Argument arg : arguments) { 561 if (auto *attr = arg.dyn_cast<NamedAttribute *>()) 562 os << "[attribute] " << attr->name << '\n'; 563 else 564 os << "[operand] " << arg.get<NamedTypeConstraint *>()->name << '\n'; 565 } 566 } 567 568 auto Operator::VariableDecoratorIterator::unwrap(llvm::Init *init) 569 -> VariableDecorator { 570 return VariableDecorator(cast<llvm::DefInit>(init)->getDef()); 571 } 572 573 auto Operator::getArgToOperandOrAttribute(int index) const 574 -> OperandOrAttribute { 575 return attrOrOperandMapping[index]; 576 } 577