1 //===- Operator.cpp - Operator class --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Operator wrapper to simplify using TableGen Record defining a MLIR Op.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/TableGen/Operator.h"
14 #include "mlir/TableGen/Predicate.h"
15 #include "mlir/TableGen/Trait.h"
16 #include "mlir/TableGen/Type.h"
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Sequence.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/TypeSwitch.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/FormatVariadic.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 
29 #define DEBUG_TYPE "mlir-tblgen-operator"
30 
31 using namespace mlir;
32 using namespace mlir::tblgen;
33 
34 using llvm::DagInit;
35 using llvm::DefInit;
36 using llvm::Record;
37 
Operator(const llvm::Record & def)38 Operator::Operator(const llvm::Record &def)
39     : dialect(def.getValueAsDef("opDialect")), def(def) {
40   // The first `_` in the op's TableGen def name is treated as separating the
41   // dialect prefix and the op class name. The dialect prefix will be ignored if
42   // not empty. Otherwise, if def name starts with a `_`, the `_` is considered
43   // as part of the class name.
44   StringRef prefix;
45   std::tie(prefix, cppClassName) = def.getName().split('_');
46   if (prefix.empty()) {
47     // Class name with a leading underscore and without dialect prefix
48     cppClassName = def.getName();
49   } else if (cppClassName.empty()) {
50     // Class name without dialect prefix
51     cppClassName = prefix;
52   }
53 
54   cppNamespace = def.getValueAsString("cppNamespace");
55 
56   populateOpStructure();
57   assertInvariants();
58 }
59 
getOperationName() const60 std::string Operator::getOperationName() const {
61   auto prefix = dialect.getName();
62   auto opName = def.getValueAsString("opName");
63   if (prefix.empty())
64     return std::string(opName);
65   return std::string(llvm::formatv("{0}.{1}", prefix, opName));
66 }
67 
getAdaptorName() const68 std::string Operator::getAdaptorName() const {
69   return std::string(llvm::formatv("{0}Adaptor", getCppClassName()));
70 }
71 
assertInvariants() const72 void Operator::assertInvariants() const {
73   // Check that the name of arguments/results/regions/successors don't overlap.
74   DenseMap<StringRef, StringRef> existingNames;
75   auto checkName = [&](StringRef name, StringRef entity) {
76     if (name.empty())
77       return;
78     auto insertion = existingNames.insert({name, entity});
79     if (insertion.second)
80       return;
81     if (entity == insertion.first->second)
82       PrintFatalError(getLoc(), "op has a conflict with two " + entity +
83                                     " having the same name '" + name + "'");
84     PrintFatalError(getLoc(), "op has a conflict with " +
85                                   insertion.first->second + " and " + entity +
86                                   " both having an entry with the name '" +
87                                   name + "'");
88   };
89   // Check operands amongst themselves.
90   for (int i : llvm::seq<int>(0, getNumOperands()))
91     checkName(getOperand(i).name, "operands");
92 
93   // Check results amongst themselves and against operands.
94   for (int i : llvm::seq<int>(0, getNumResults()))
95     checkName(getResult(i).name, "results");
96 
97   // Check regions amongst themselves and against operands and results.
98   for (int i : llvm::seq<int>(0, getNumRegions()))
99     checkName(getRegion(i).name, "regions");
100 
101   // Check successors amongst themselves and against operands, results, and
102   // regions.
103   for (int i : llvm::seq<int>(0, getNumSuccessors()))
104     checkName(getSuccessor(i).name, "successors");
105 }
106 
getDialectName() const107 StringRef Operator::getDialectName() const { return dialect.getName(); }
108 
getCppClassName() const109 StringRef Operator::getCppClassName() const { return cppClassName; }
110 
getQualCppClassName() const111 std::string Operator::getQualCppClassName() const {
112   if (cppNamespace.empty())
113     return std::string(cppClassName);
114   return std::string(llvm::formatv("{0}::{1}", cppNamespace, cppClassName));
115 }
116 
getCppNamespace() const117 StringRef Operator::getCppNamespace() const { return cppNamespace; }
118 
getNumResults() const119 int Operator::getNumResults() const {
120   DagInit *results = def.getValueAsDag("results");
121   return results->getNumArgs();
122 }
123 
getExtraClassDeclaration() const124 StringRef Operator::getExtraClassDeclaration() const {
125   constexpr auto attr = "extraClassDeclaration";
126   if (def.isValueUnset(attr))
127     return {};
128   return def.getValueAsString(attr);
129 }
130 
getExtraClassDefinition() const131 StringRef Operator::getExtraClassDefinition() const {
132   constexpr auto attr = "extraClassDefinition";
133   if (def.isValueUnset(attr))
134     return {};
135   return def.getValueAsString(attr);
136 }
137 
getDef() const138 const llvm::Record &Operator::getDef() const { return def; }
139 
skipDefaultBuilders() const140 bool Operator::skipDefaultBuilders() const {
141   return def.getValueAsBit("skipDefaultBuilders");
142 }
143 
result_begin() const144 auto Operator::result_begin() const -> const_value_iterator {
145   return results.begin();
146 }
147 
result_end() const148 auto Operator::result_end() const -> const_value_iterator {
149   return results.end();
150 }
151 
getResults() const152 auto Operator::getResults() const -> const_value_range {
153   return {result_begin(), result_end()};
154 }
155 
getResultTypeConstraint(int index) const156 TypeConstraint Operator::getResultTypeConstraint(int index) const {
157   DagInit *results = def.getValueAsDag("results");
158   return TypeConstraint(cast<DefInit>(results->getArg(index)));
159 }
160 
getResultName(int index) const161 StringRef Operator::getResultName(int index) const {
162   DagInit *results = def.getValueAsDag("results");
163   return results->getArgNameStr(index);
164 }
165 
getResultDecorators(int index) const166 auto Operator::getResultDecorators(int index) const -> var_decorator_range {
167   Record *result =
168       cast<DefInit>(def.getValueAsDag("results")->getArg(index))->getDef();
169   if (!result->isSubClassOf("OpVariable"))
170     return var_decorator_range(nullptr, nullptr);
171   return *result->getValueAsListInit("decorators");
172 }
173 
getNumVariableLengthResults() const174 unsigned Operator::getNumVariableLengthResults() const {
175   return llvm::count_if(results, [](const NamedTypeConstraint &c) {
176     return c.constraint.isVariableLength();
177   });
178 }
179 
getNumVariableLengthOperands() const180 unsigned Operator::getNumVariableLengthOperands() const {
181   return llvm::count_if(operands, [](const NamedTypeConstraint &c) {
182     return c.constraint.isVariableLength();
183   });
184 }
185 
hasSingleVariadicArg() const186 bool Operator::hasSingleVariadicArg() const {
187   return getNumArgs() == 1 && getArg(0).is<NamedTypeConstraint *>() &&
188          getOperand(0).isVariadic();
189 }
190 
arg_begin() const191 Operator::arg_iterator Operator::arg_begin() const { return arguments.begin(); }
192 
arg_end() const193 Operator::arg_iterator Operator::arg_end() const { return arguments.end(); }
194 
getArgs() const195 Operator::arg_range Operator::getArgs() const {
196   return {arg_begin(), arg_end()};
197 }
198 
getArgName(int index) const199 StringRef Operator::getArgName(int index) const {
200   DagInit *argumentValues = def.getValueAsDag("arguments");
201   return argumentValues->getArgNameStr(index);
202 }
203 
getArgDecorators(int index) const204 auto Operator::getArgDecorators(int index) const -> var_decorator_range {
205   Record *arg =
206       cast<DefInit>(def.getValueAsDag("arguments")->getArg(index))->getDef();
207   if (!arg->isSubClassOf("OpVariable"))
208     return var_decorator_range(nullptr, nullptr);
209   return *arg->getValueAsListInit("decorators");
210 }
211 
getTrait(StringRef trait) const212 const Trait *Operator::getTrait(StringRef trait) const {
213   for (const auto &t : traits) {
214     if (const auto *traitDef = dyn_cast<NativeTrait>(&t)) {
215       if (traitDef->getFullyQualifiedTraitName() == trait)
216         return traitDef;
217     } else if (const auto *traitDef = dyn_cast<InternalTrait>(&t)) {
218       if (traitDef->getFullyQualifiedTraitName() == trait)
219         return traitDef;
220     } else if (const auto *traitDef = dyn_cast<InterfaceTrait>(&t)) {
221       if (traitDef->getFullyQualifiedTraitName() == trait)
222         return traitDef;
223     }
224   }
225   return nullptr;
226 }
227 
region_begin() const228 auto Operator::region_begin() const -> const_region_iterator {
229   return regions.begin();
230 }
region_end() const231 auto Operator::region_end() const -> const_region_iterator {
232   return regions.end();
233 }
getRegions() const234 auto Operator::getRegions() const
235     -> llvm::iterator_range<const_region_iterator> {
236   return {region_begin(), region_end()};
237 }
238 
getNumRegions() const239 unsigned Operator::getNumRegions() const { return regions.size(); }
240 
getRegion(unsigned index) const241 const NamedRegion &Operator::getRegion(unsigned index) const {
242   return regions[index];
243 }
244 
getNumVariadicRegions() const245 unsigned Operator::getNumVariadicRegions() const {
246   return llvm::count_if(regions,
247                         [](const NamedRegion &c) { return c.isVariadic(); });
248 }
249 
successor_begin() const250 auto Operator::successor_begin() const -> const_successor_iterator {
251   return successors.begin();
252 }
successor_end() const253 auto Operator::successor_end() const -> const_successor_iterator {
254   return successors.end();
255 }
getSuccessors() const256 auto Operator::getSuccessors() const
257     -> llvm::iterator_range<const_successor_iterator> {
258   return {successor_begin(), successor_end()};
259 }
260 
getNumSuccessors() const261 unsigned Operator::getNumSuccessors() const { return successors.size(); }
262 
getSuccessor(unsigned index) const263 const NamedSuccessor &Operator::getSuccessor(unsigned index) const {
264   return successors[index];
265 }
266 
getNumVariadicSuccessors() const267 unsigned Operator::getNumVariadicSuccessors() const {
268   return llvm::count_if(successors,
269                         [](const NamedSuccessor &c) { return c.isVariadic(); });
270 }
271 
trait_begin() const272 auto Operator::trait_begin() const -> const_trait_iterator {
273   return traits.begin();
274 }
trait_end() const275 auto Operator::trait_end() const -> const_trait_iterator {
276   return traits.end();
277 }
getTraits() const278 auto Operator::getTraits() const -> llvm::iterator_range<const_trait_iterator> {
279   return {trait_begin(), trait_end()};
280 }
281 
attribute_begin() const282 auto Operator::attribute_begin() const -> attribute_iterator {
283   return attributes.begin();
284 }
attribute_end() const285 auto Operator::attribute_end() const -> attribute_iterator {
286   return attributes.end();
287 }
getAttributes() const288 auto Operator::getAttributes() const
289     -> llvm::iterator_range<attribute_iterator> {
290   return {attribute_begin(), attribute_end()};
291 }
292 
operand_begin() const293 auto Operator::operand_begin() const -> const_value_iterator {
294   return operands.begin();
295 }
operand_end() const296 auto Operator::operand_end() const -> const_value_iterator {
297   return operands.end();
298 }
getOperands() const299 auto Operator::getOperands() const -> const_value_range {
300   return {operand_begin(), operand_end()};
301 }
302 
getArg(int index) const303 auto Operator::getArg(int index) const -> Argument { return arguments[index]; }
304 
305 // Mapping from result index to combined argument and result index. Arguments
306 // are indexed to match getArg index, while the result indexes are mapped to
307 // avoid overlap.
resultIndex(int i)308 static int resultIndex(int i) { return -1 - i; }
309 
isVariadic() const310 bool Operator::isVariadic() const {
311   return any_of(llvm::concat<const NamedTypeConstraint>(operands, results),
312                 [](const NamedTypeConstraint &op) { return op.isVariadic(); });
313 }
314 
populateTypeInferenceInfo(const llvm::StringMap<int> & argumentsAndResultsIndex)315 void Operator::populateTypeInferenceInfo(
316     const llvm::StringMap<int> &argumentsAndResultsIndex) {
317   // If the type inference op interface is not registered, then do not attempt
318   // to determine if the result types an be inferred.
319   auto &recordKeeper = def.getRecords();
320   auto *inferTrait = recordKeeper.getDef(inferTypeOpInterface);
321   allResultsHaveKnownTypes = false;
322   if (!inferTrait)
323     return;
324 
325   // If there are no results, the skip this else the build method generated
326   // overlaps with another autogenerated builder.
327   if (getNumResults() == 0)
328     return;
329 
330   // Skip ops with variadic or optional results.
331   if (getNumVariableLengthResults() > 0)
332     return;
333 
334   // Skip cases currently being custom generated.
335   // TODO: Remove special cases.
336   if (getTrait("::mlir::OpTrait::SameOperandsAndResultType")) {
337     // Check for a non-variable length operand to use as the type anchor.
338     auto *operandI = llvm::find_if(arguments, [](const Argument &arg) {
339       NamedTypeConstraint *operand = arg.dyn_cast<NamedTypeConstraint *>();
340       return operand && !operand->isVariableLength();
341     });
342     if (operandI == arguments.end())
343       return;
344 
345     // Map each of the result types to the anchor operation.
346     int operandIdx = operandI - arguments.begin();
347     resultTypeMapping.resize(getNumResults());
348     for (int i = 0; i < getNumResults(); ++i)
349       resultTypeMapping[i].emplace_back(operandIdx);
350 
351     allResultsHaveKnownTypes = true;
352     traits.push_back(Trait::create(inferTrait->getDefInit()));
353     return;
354   }
355 
356   // We create equivalence classes of argument/result types where arguments
357   // and results are mapped into the same index space and indices corresponding
358   // to the same type are in the same equivalence class.
359   llvm::EquivalenceClasses<int> ecs;
360   resultTypeMapping.resize(getNumResults());
361   // Captures the argument whose type matches a given result type. Preference
362   // towards capturing operands first before attributes.
363   auto captureMapping = [&](int i) {
364     bool found = false;
365     ecs.insert(resultIndex(i));
366     auto mi = ecs.findLeader(resultIndex(i));
367     for (auto me = ecs.member_end(); mi != me; ++mi) {
368       if (*mi < 0) {
369         auto tc = getResultTypeConstraint(i);
370         if (tc.getBuilderCall()) {
371           resultTypeMapping[i].emplace_back(tc);
372           found = true;
373         }
374         continue;
375       }
376 
377       resultTypeMapping[i].emplace_back(*mi);
378       found = true;
379     }
380     return found;
381   };
382 
383   for (const Trait &trait : traits) {
384     const llvm::Record &def = trait.getDef();
385     // If the infer type op interface was manually added, then treat it as
386     // intention that the op needs special handling.
387     // TODO: Reconsider whether to always generate, this is more conservative
388     // and keeps existing behavior so starting that way for now.
389     if (def.isSubClassOf(
390             llvm::formatv("{0}::Trait", inferTypeOpInterface).str()))
391       return;
392     if (const auto *traitDef = dyn_cast<InterfaceTrait>(&trait))
393       if (&traitDef->getDef() == inferTrait)
394         return;
395 
396     if (!def.isSubClassOf("AllTypesMatch"))
397       continue;
398 
399     auto values = def.getValueAsListOfStrings("values");
400     auto root = argumentsAndResultsIndex.lookup(values.front());
401     for (StringRef str : values)
402       ecs.unionSets(argumentsAndResultsIndex.lookup(str), root);
403   }
404 
405   // Verifies that all output types have a corresponding known input type
406   // and chooses matching operand or attribute (in that order) that
407   // matches it.
408   allResultsHaveKnownTypes =
409       all_of(llvm::seq<int>(0, getNumResults()), captureMapping);
410 
411   // If the types could be computed, then add type inference trait.
412   if (allResultsHaveKnownTypes)
413     traits.push_back(Trait::create(inferTrait->getDefInit()));
414 }
415 
populateOpStructure()416 void Operator::populateOpStructure() {
417   auto &recordKeeper = def.getRecords();
418   auto *typeConstraintClass = recordKeeper.getClass("TypeConstraint");
419   auto *attrClass = recordKeeper.getClass("Attr");
420   auto *derivedAttrClass = recordKeeper.getClass("DerivedAttr");
421   auto *opVarClass = recordKeeper.getClass("OpVariable");
422   numNativeAttributes = 0;
423 
424   DagInit *argumentValues = def.getValueAsDag("arguments");
425   unsigned numArgs = argumentValues->getNumArgs();
426 
427   // Mapping from name of to argument or result index. Arguments are indexed
428   // to match getArg index, while the results are negatively indexed.
429   llvm::StringMap<int> argumentsAndResultsIndex;
430 
431   // Handle operands and native attributes.
432   for (unsigned i = 0; i != numArgs; ++i) {
433     auto *arg = argumentValues->getArg(i);
434     auto givenName = argumentValues->getArgNameStr(i);
435     auto *argDefInit = dyn_cast<DefInit>(arg);
436     if (!argDefInit)
437       PrintFatalError(def.getLoc(),
438                       Twine("undefined type for argument #") + Twine(i));
439     Record *argDef = argDefInit->getDef();
440     if (argDef->isSubClassOf(opVarClass))
441       argDef = argDef->getValueAsDef("constraint");
442 
443     if (argDef->isSubClassOf(typeConstraintClass)) {
444       operands.push_back(
445           NamedTypeConstraint{givenName, TypeConstraint(argDef)});
446     } else if (argDef->isSubClassOf(attrClass)) {
447       if (givenName.empty())
448         PrintFatalError(argDef->getLoc(), "attributes must be named");
449       if (argDef->isSubClassOf(derivedAttrClass))
450         PrintFatalError(argDef->getLoc(),
451                         "derived attributes not allowed in argument list");
452       attributes.push_back({givenName, Attribute(argDef)});
453       ++numNativeAttributes;
454     } else {
455       PrintFatalError(def.getLoc(), "unexpected def type; only defs deriving "
456                                     "from TypeConstraint or Attr are allowed");
457     }
458     if (!givenName.empty())
459       argumentsAndResultsIndex[givenName] = i;
460   }
461 
462   // Handle derived attributes.
463   for (const auto &val : def.getValues()) {
464     if (auto *record = dyn_cast<llvm::RecordRecTy>(val.getType())) {
465       if (!record->isSubClassOf(attrClass))
466         continue;
467       if (!record->isSubClassOf(derivedAttrClass))
468         PrintFatalError(def.getLoc(),
469                         "unexpected Attr where only DerivedAttr is allowed");
470 
471       if (record->getClasses().size() != 1) {
472         PrintFatalError(
473             def.getLoc(),
474             "unsupported attribute modelling, only single class expected");
475       }
476       attributes.push_back(
477           {cast<llvm::StringInit>(val.getNameInit())->getValue(),
478            Attribute(cast<DefInit>(val.getValue()))});
479     }
480   }
481 
482   // Populate `arguments`. This must happen after we've finalized `operands` and
483   // `attributes` because we will put their elements' pointers in `arguments`.
484   // SmallVector may perform re-allocation under the hood when adding new
485   // elements.
486   int operandIndex = 0, attrIndex = 0;
487   for (unsigned i = 0; i != numArgs; ++i) {
488     Record *argDef = dyn_cast<DefInit>(argumentValues->getArg(i))->getDef();
489     if (argDef->isSubClassOf(opVarClass))
490       argDef = argDef->getValueAsDef("constraint");
491 
492     if (argDef->isSubClassOf(typeConstraintClass)) {
493       attrOrOperandMapping.push_back(
494           {OperandOrAttribute::Kind::Operand, operandIndex});
495       arguments.emplace_back(&operands[operandIndex++]);
496     } else {
497       assert(argDef->isSubClassOf(attrClass));
498       attrOrOperandMapping.push_back(
499           {OperandOrAttribute::Kind::Attribute, attrIndex});
500       arguments.emplace_back(&attributes[attrIndex++]);
501     }
502   }
503 
504   auto *resultsDag = def.getValueAsDag("results");
505   auto *outsOp = dyn_cast<DefInit>(resultsDag->getOperator());
506   if (!outsOp || outsOp->getDef()->getName() != "outs") {
507     PrintFatalError(def.getLoc(), "'results' must have 'outs' directive");
508   }
509 
510   // Handle results.
511   for (unsigned i = 0, e = resultsDag->getNumArgs(); i < e; ++i) {
512     auto name = resultsDag->getArgNameStr(i);
513     auto *resultInit = dyn_cast<DefInit>(resultsDag->getArg(i));
514     if (!resultInit) {
515       PrintFatalError(def.getLoc(),
516                       Twine("undefined type for result #") + Twine(i));
517     }
518     auto *resultDef = resultInit->getDef();
519     if (resultDef->isSubClassOf(opVarClass))
520       resultDef = resultDef->getValueAsDef("constraint");
521     results.push_back({name, TypeConstraint(resultDef)});
522     if (!name.empty())
523       argumentsAndResultsIndex[name] = resultIndex(i);
524 
525     // We currently only support VariadicOfVariadic operands.
526     if (results.back().constraint.isVariadicOfVariadic()) {
527       PrintFatalError(
528           def.getLoc(),
529           "'VariadicOfVariadic' results are currently not supported");
530     }
531   }
532 
533   // Handle successors
534   auto *successorsDag = def.getValueAsDag("successors");
535   auto *successorsOp = dyn_cast<DefInit>(successorsDag->getOperator());
536   if (!successorsOp || successorsOp->getDef()->getName() != "successor") {
537     PrintFatalError(def.getLoc(),
538                     "'successors' must have 'successor' directive");
539   }
540 
541   for (unsigned i = 0, e = successorsDag->getNumArgs(); i < e; ++i) {
542     auto name = successorsDag->getArgNameStr(i);
543     auto *successorInit = dyn_cast<DefInit>(successorsDag->getArg(i));
544     if (!successorInit) {
545       PrintFatalError(def.getLoc(),
546                       Twine("undefined kind for successor #") + Twine(i));
547     }
548     Successor successor(successorInit->getDef());
549 
550     // Only support variadic successors if it is the last one for now.
551     if (i != e - 1 && successor.isVariadic())
552       PrintFatalError(def.getLoc(), "only the last successor can be variadic");
553     successors.push_back({name, successor});
554   }
555 
556   // Create list of traits, skipping over duplicates: appending to lists in
557   // tablegen is easy, making them unique less so, so dedupe here.
558   if (auto *traitList = def.getValueAsListInit("traits")) {
559     // This is uniquing based on pointers of the trait.
560     SmallPtrSet<const llvm::Init *, 32> traitSet;
561     traits.reserve(traitSet.size());
562 
563     // The declaration order of traits imply the verification order of traits.
564     // Some traits may require other traits to be verified first then they can
565     // do further verification based on those verified facts. If you see this
566     // error, fix the traits declaration order by checking the `dependentTraits`
567     // field.
568     auto verifyTraitValidity = [&](Record *trait) {
569       auto *dependentTraits = trait->getValueAsListInit("dependentTraits");
570       for (auto *traitInit : *dependentTraits)
571         if (traitSet.find(traitInit) == traitSet.end())
572           PrintFatalError(
573               def.getLoc(),
574               trait->getValueAsString("trait") + " requires " +
575                   cast<DefInit>(traitInit)->getDef()->getValueAsString(
576                       "trait") +
577                   " to precede it in traits list");
578     };
579 
580     std::function<void(llvm::ListInit *)> insert;
581     insert = [&](llvm::ListInit *traitList) {
582       for (auto *traitInit : *traitList) {
583         auto *def = cast<DefInit>(traitInit)->getDef();
584         if (def->isSubClassOf("TraitList")) {
585           insert(def->getValueAsListInit("traits"));
586           continue;
587         }
588 
589         // Verify if the trait has all the dependent traits declared before
590         // itself.
591         verifyTraitValidity(def);
592 
593         // Keep traits in the same order while skipping over duplicates.
594         if (traitSet.insert(traitInit).second)
595           traits.push_back(Trait::create(traitInit));
596       }
597     };
598     insert(traitList);
599   }
600 
601   populateTypeInferenceInfo(argumentsAndResultsIndex);
602 
603   // Handle regions
604   auto *regionsDag = def.getValueAsDag("regions");
605   auto *regionsOp = dyn_cast<DefInit>(regionsDag->getOperator());
606   if (!regionsOp || regionsOp->getDef()->getName() != "region") {
607     PrintFatalError(def.getLoc(), "'regions' must have 'region' directive");
608   }
609 
610   for (unsigned i = 0, e = regionsDag->getNumArgs(); i < e; ++i) {
611     auto name = regionsDag->getArgNameStr(i);
612     auto *regionInit = dyn_cast<DefInit>(regionsDag->getArg(i));
613     if (!regionInit) {
614       PrintFatalError(def.getLoc(),
615                       Twine("undefined kind for region #") + Twine(i));
616     }
617     Region region(regionInit->getDef());
618     if (region.isVariadic()) {
619       // Only support variadic regions if it is the last one for now.
620       if (i != e - 1)
621         PrintFatalError(def.getLoc(), "only the last region can be variadic");
622       if (name.empty())
623         PrintFatalError(def.getLoc(), "variadic regions must be named");
624     }
625 
626     regions.push_back({name, region});
627   }
628 
629   // Populate the builders.
630   auto *builderList =
631       dyn_cast_or_null<llvm::ListInit>(def.getValueInit("builders"));
632   if (builderList && !builderList->empty()) {
633     for (llvm::Init *init : builderList->getValues())
634       builders.emplace_back(cast<llvm::DefInit>(init)->getDef(), def.getLoc());
635   } else if (skipDefaultBuilders()) {
636     PrintFatalError(
637         def.getLoc(),
638         "default builders are skipped and no custom builders provided");
639   }
640 
641   LLVM_DEBUG(print(llvm::dbgs()));
642 }
643 
getSameTypeAsResult(int index) const644 auto Operator::getSameTypeAsResult(int index) const -> ArrayRef<ArgOrType> {
645   assert(allResultTypesKnown());
646   return resultTypeMapping[index];
647 }
648 
getLoc() const649 ArrayRef<SMLoc> Operator::getLoc() const { return def.getLoc(); }
650 
hasDescription() const651 bool Operator::hasDescription() const {
652   return def.getValue("description") != nullptr;
653 }
654 
getDescription() const655 StringRef Operator::getDescription() const {
656   return def.getValueAsString("description");
657 }
658 
hasSummary() const659 bool Operator::hasSummary() const { return def.getValue("summary") != nullptr; }
660 
getSummary() const661 StringRef Operator::getSummary() const {
662   return def.getValueAsString("summary");
663 }
664 
hasAssemblyFormat() const665 bool Operator::hasAssemblyFormat() const {
666   auto *valueInit = def.getValueInit("assemblyFormat");
667   return isa<llvm::StringInit>(valueInit);
668 }
669 
getAssemblyFormat() const670 StringRef Operator::getAssemblyFormat() const {
671   return TypeSwitch<llvm::Init *, StringRef>(def.getValueInit("assemblyFormat"))
672       .Case<llvm::StringInit>([&](auto *init) { return init->getValue(); });
673 }
674 
print(llvm::raw_ostream & os) const675 void Operator::print(llvm::raw_ostream &os) const {
676   os << "op '" << getOperationName() << "'\n";
677   for (Argument arg : arguments) {
678     if (auto *attr = arg.dyn_cast<NamedAttribute *>())
679       os << "[attribute] " << attr->name << '\n';
680     else
681       os << "[operand] " << arg.get<NamedTypeConstraint *>()->name << '\n';
682   }
683 }
684 
unwrap(llvm::Init * init)685 auto Operator::VariableDecoratorIterator::unwrap(llvm::Init *init)
686     -> VariableDecorator {
687   return VariableDecorator(cast<llvm::DefInit>(init)->getDef());
688 }
689 
getArgToOperandOrAttribute(int index) const690 auto Operator::getArgToOperandOrAttribute(int index) const
691     -> OperandOrAttribute {
692   return attrOrOperandMapping[index];
693 }
694 
695 // Helper to return the names for accessor.
696 static SmallVector<std::string, 2>
getGetterOrSetterNames(bool isGetter,const Operator & op,StringRef name)697 getGetterOrSetterNames(bool isGetter, const Operator &op, StringRef name) {
698   Dialect::EmitPrefix prefixType = op.getDialect().getEmitAccessorPrefix();
699   std::string prefix;
700   if (prefixType != Dialect::EmitPrefix::Raw)
701     prefix = isGetter ? "get" : "set";
702 
703   SmallVector<std::string, 2> names;
704   bool rawToo = prefixType == Dialect::EmitPrefix::Both;
705 
706   // Whether to skip generating prefixed form for argument. This just does some
707   // basic checks.
708   //
709   // There are a little bit more invasive checks possible for cases where not
710   // all ops have the trait that would cause overlap. For many cases here,
711   // renaming would be better (e.g., we can only guard in limited manner against
712   // methods from traits and interfaces here, so avoiding these in op definition
713   // is safer).
714   auto skip = [&](StringRef newName) {
715     bool shouldSkip = newName == "getAttributeNames" ||
716                       newName == "getAttributes" || newName == "getOperation";
717     if (newName == "getOperands") {
718       // To reduce noise, skip generating the prefixed form and the warning if
719       // $operands correspond to single variadic argument.
720       if (op.getNumOperands() == 1 && op.getNumVariableLengthOperands() == 1)
721         return true;
722       shouldSkip = true;
723     }
724     if (newName == "getRegions") {
725       if (op.getNumRegions() == 1 && op.getNumVariadicRegions() == 1)
726         return true;
727       shouldSkip = true;
728     }
729     if (newName == "getType") {
730       if (op.getNumResults() == 0)
731         return false;
732       shouldSkip = true;
733     }
734     if (!shouldSkip)
735       return false;
736 
737     // This note could be avoided where the final function generated would
738     // have been identical. But preferably in the op definition avoiding using
739     // the generic name and then getting a more specialize type is better.
740     PrintNote(op.getLoc(),
741               "Skipping generation of prefixed accessor `" + newName +
742                   "` as it overlaps with default one; generating raw form (`" +
743                   name + "`) still");
744     return true;
745   };
746 
747   if (!prefix.empty()) {
748     names.push_back(
749         prefix + convertToCamelFromSnakeCase(name, /*capitalizeFirst=*/true));
750     // Skip cases which would overlap with default ones for now.
751     if (skip(names.back())) {
752       rawToo = true;
753       names.clear();
754     } else if (rawToo) {
755       LLVM_DEBUG(llvm::errs() << "WITH_GETTER(\"" << op.getQualCppClassName()
756                               << "::" << name << "\")\n"
757                               << "WITH_GETTER(\"" << op.getQualCppClassName()
758                               << "Adaptor::" << name << "\")\n";);
759     }
760   }
761 
762   if (prefix.empty() || rawToo)
763     names.push_back(name.str());
764   return names;
765 }
766 
getGetterNames(StringRef name) const767 SmallVector<std::string, 2> Operator::getGetterNames(StringRef name) const {
768   return getGetterOrSetterNames(/*isGetter=*/true, *this, name);
769 }
770 
getSetterNames(StringRef name) const771 SmallVector<std::string, 2> Operator::getSetterNames(StringRef name) const {
772   return getGetterOrSetterNames(/*isGetter=*/false, *this, name);
773 }
774